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Resumen

Los usuarios de Internet buscan conexiones más rápidas y seguras, con una
transferencia de datos fiable (integridad de la información). Hoy en día, los dispo-
sitivos se conectan a internet a través de enlaces inalámbricos susceptibles de sufrir
interferencias y otros efectos no deseados, lo que puede generar pérdida de paque-
tes de datos. Otra característica de los usuarios de internet a día de hoy (2023) es que
emplean dispositivos con múltiples interfaces de red, con acceso a diferentes tipos
de redes. Por ejemplo, los smartphones pueden acceder a redes móviles y Wi-Fi. El
uso simultáneo de múltiples interfaces de red, conocido como MultiPath (MP), po-
dría aumentar enormemente la fiabilidad de las comunicaciones, duplicando datos
en cada interfaz, o su capacidad, agregando los anchos de banda disponibles.

El protocolo extremo a extremo más popular, entre los que garantizan la inte-
gridad de los datos, Transmission Control Protocol (TCP), se diseñó para enlaces
cableados. A pesar de que se hayan diseñado múltiples extensiones y mejoras para
TCP, son difíciles de implementar por dos razones: TCP se implementa en el espacio
kernel y los nodos intermedios de la red están sobre-optimizados para las cabeceras
clásicas de TCP, descartando las que no sean conocidas. Así, los despliegues de ac-
tualizaciones de TCP requieren actualizar muchos dispositivos, por lo que se trata
de una tarea que quizá nunca se complete del todo en la Internet moderna. A pesar
de que existe un protocolo MP basado en TCP, MultiPath Transmission Control Pro-
tocol (MPTCP), este hereda el mismo problema de despliegue de nuevas versiones.

Con el fin de optimizar el tráfico web, Google Inc. comenzó el desarrollo de un
nuevo protocolo fiable basado en User Datagram Protocol (UDP), QUIC. Su espe-
cificación final ha sido finalizada en el marco del Internet Engineering Task For-
ce (IETF). QUIC se ejecuta en el espacio de usuario de los dispositivos que se en-
cuentran en los extremos de una conexión, apareciendo ante los nodos de la red
como el contenido de los datagramas del protocolo UDP. QUIC garantiza la integri-
dad de los datos, reduce la latencia a través de diferentes estrategias y encripta sus
paquetes, ofreciendo más seguridad a sus usuarios que TCP por sí solo. Aunque
QUIC tiene un mecanismo más eficiente para recuperar paquetes perdidos, pue-
de reducir todavía más el tiempo de recuperación utilizando la extensión Forward
Error/Erasure Correction (FEC). La primera versión de QUIC no incluye una fun-
cionalidad MP. Sin embargo, el gran interés en esta extensión está impulsando su
borrador de especificación desarrollado por el IETF. A pesar de los múltiples estu-
dios de FEC y MP aplicados a QUIC, existen muy pocos trabajos que hayan evalua-
do un uso conjunto de ambas extensiones en este protocolo.

Esta tesis se centra en mejorar aún más un protocolo de transporte que ya de por
sí es eficiente con las funcionalidades FEC y MP. Para implementar cada extensión
se revisa de manera profunda el estado del arte existente y se evalúan con detalle las
soluciones propuestas y sus desarrollos, emulando distintos tipos de tráfico, así co-
mo diferentes escenarios de red. Además de comprobar la reducción del tiempo de
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transmisión que ofrecen las técnicas propuestas, se estudian las interacciones entre
las extensiones y el protocolo QUIC original. Esto es valioso para combinar múlti-
ples extensiones, especialmente aquellas que puedan surgir en futuro alrededor de
MP.
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Abstract

Internet users are striving for faster and more secure connections, together with
reliable data transfer (data integrity). Nowadays, end devices connect to the inter-
net through wireless links, susceptible of interference and other hostile situations,
which can end up in data packet erasures. Another characteristic of modern internet
users is that they have use devices that entail multiple interfaces with access to dif-
ferent networks. For instance, smartphones can access cellular and Wi-Fi networks.
The simultaneous use of multiple network interfaces, known as MultiPath (MP),
could greatly increase the reliability by duplicating data, or the capacity, by aggre-
gating the available bandwidths.

The most popular end-to-end protocol that ensures data integrity, Transmission
Control Protocol (TCP), was designed for wired links. Although multiple exten-
sions and improvements have been designed for TCP, these are hard to deploy for
two reasons: TCP is implemented in kernel space and the intermediate nodes in the
network are over-optimized considering the traditional TCP headers, discarding
any unknown one. Deployments of TCP upgrades require updating many devices,
a task that might never be fully complete in modern internet. Despite there is a TCP
based MP protocol, MultiPath Transmission Control Protocol (MPTCP), it inherits
the same problem of new version deployment.

In order to optimize web traffic, Google Inc. began the development of a new
reliable transport protocol based on User Datagram Protocol (UDP), QUIC. Its fi-
nal specification has been recently concluded by Internet Engineering Task Force
(IETF). QUIC runs in user space of connection endpoints, while intermediate net-
work nodes treat it as UDP payload. It ensures data integrity, reduces latencies by
means of various mechanisms, and encrypts its packets, offering more security to
its users than TCP alone. Although QUIC has a more efficient mechanism to recover
lost packets, it can still reduce recovery time using a Forward Error/Erasure Correc-
tion (FEC) extension. The first version of QUIC does not include a MP functionality.
However, the strong interest in this extension is fostering its draft specification, de-
veloped by IETF. Despite there exist multiple studies of FEC and MP applied to
QUIC, very few works have tackled the evaluation of jointly using both extensions.

This thesis focuses on further improving an already efficient transport protocol
with FEC and MP functionalities. To implement each extension we carefully review
existing state of the art, and we thoroughly assess the performance of the proposed
solutions, by considering different traffic patterns over various emulated network
scenarios. Apart from verifying the transmission time reduction brought by the pro-
posed techniques, we observe the interactions between them and the original QUIC
protocol. This is of utter relevance when considering the combination of multiple
extensions, especially those that affect the upcoming MP QUIC.
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1

Introduction

Internet is a global network interconnecting millions of users across the world. The
growing demand for lower latency and greater Bandwidth (BW), stability and reliabil-
ity has been pushing its evolution. Wireless links are used to offer mobility and deploy-
ment flexibility to end users. Optical fiber is used for wired links, greatly increasing the
available BW and reducing propagation latencies. The devices connecting to internet
have also evolved. Not only they gained computational power, but also mobility and
the ability to connect to different kinds of networks. A typical smartphone has Wi-Fi,
mobile, Bluetooth and Near-Field Communication (NFC) network interfaces. Protocol
stacks also change to enable new features offered by modern networks and demanded
by the users, such as using multiple network interfaces simultaneously. For instance, a
smartphone could use both Wi-Fi and mobile connections, to either duplicate the data
for a greater reliability or to aggregate the available BWs.

There is a vast number of communication protocols that can be used in different
cases. Protocols are organized in layers, abstraction levels with specific functions. Fig-
ure 1.1 shows different views on protocol stack organization. Figure 1.1a represents the
Open Systems Interconnection (OSI) model [II94] and Figure 1.1b, the legacy protocol
suite specified in [Bra89a, Bra89b]. Data link layer protocols are chosen to adapt to the
physical layer, which is chosen at device/network installation and never changes. De-
spite its stability over time, the variety of technologies used to interconnect devices is
enormous: Ethernet, coaxial cable, optical fiber, Wi-Fi, ZigBee, Bluetooth, 3/4/5G, etc.
Protocols from the layers above transport are chosen by the programmer of each ap-
plication. The protocols present in almost every possible stack are found in network
layer, IPv4 [Pos81a] and IPv6 [DH17], and transport layer, Transmission Control Pro-
tocol (TCP) [Pos81b, Edd22] and User Datagram Protocol (UDP) [Pos80]. The growing
number of Internet of Things (IoT) devices use highly customized protocols in each
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Layer 7: Application

Layer 6: Presentation

Layer 5: Session

Layer 4: Transport

Layer 3: Network

Layer 2: Data Link

Layer 1: Physical

(a) OSI model [II94]
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(b) Classic internet protocol
suite [Bra89a, Bra89b]
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(c) QUIC protocol stack [IT21]

Figure 1.1: Internet protocol stacks overview.

layer. Nevertheless, to exchange information with remote endpoints their messages
will need to traverse networks with IP routing. Even if IoT devices in their local net-
work use another protocol instead of IP, there will be a traffic aggregator with internet
access translating packets to IP.

Given the few variability in network and transport layers, improvements with the
biggest impact should be sought there. However, the protocols from these layers are
usually implemented in kernel space of the end devices and the network nodes. Be-
sides, the latter are optimized to work with the headers of the known protocols. Up-
dates to TCP that change the packet header may result in certain nodes (middleboxes)
discarding the updated packets as corrupt. QUIC has recently emerged as an alter-
native to widespread TCP. QUIC formerly stood for “Quick UDP Internet Connec-
tions” [HISW16], however, now QUIC is a name, not an acronym [IT21, Section 1.2,
Paragraph 3]. First developed by Google for optimizing web traffic [LIB+17], its final
design has been carried out by Internet Engineering Task Force (IETF), finishing the
specification of the first version in 2021 [IT21, TT21, IS21]. It is a reliable transport layer
protocol running on top of UDP, as shown on Figure 1.1c. Its deployment and updates
are not dependent on network devices, but only on the endpoints, which implement
it in user space. QUIC counts on version negotiation to enable coexistence of different
QUIC versions as the protocol is upgraded over time [IT21, SR22]. Key players such as
Google, Apple, Microsoft, and Facebook have developed their own QUIC implementa-
tions [Pau23], fostering its widespread adoption.
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QUIC achieves lower latencies than TCP by shortening the handshake and improv-
ing loss recovery mechanism. A protocol with a faster loss recovery is better suited
for communications carried through wireless links, which are susceptible of suffering
interference. Packets with irreparable errors are discarded at data link layer, transport
layer protocols only see packet erasures. Both QUIC and TCP employ Automatic Re-
peat reQuest/Query (ARQ) mechanisms to detect and recover lost packets. Recovering
one packet with ARQ takes at least one Round Trip Time (RTT): the transmission in one
way of the ACKnowledgement (ACK) signaling the loss, plus the transmission in an-
other way of the lost packet. Nowadays internet users usually access internet through
wireless links, using either Wi-Fi or mobile networks. IoT devices also exploit wireless
links in most of the cases. Frequent packet erasures with delays of at least one RTT can
significantly delay transmission completion. To further reduce recovery time, another
technique can be applied: Forward Error/Erasure Correction (FEC). This technique
combines source symbols (original packets) to build coded or repair symbols that will
be sent to the network along with the source ones. Lost original packets can be recov-
ered from the coded ones without any retransmission, achieving recovery delays below
one RTT.

Another technique capable of significant transmission time reduction is MultiPath
(MP), which consists in concurrent use of multiple network interfaces. MP can be used
to increase reliability by duplicating data in each path and avoiding retransmissions,
or to aggregate the available BWs, and finish the transmission earlier. There is a MP
protocol based on TCP, MultiPath Transmission Control Protocol (MPTCP) [FRH+20],
which is as hard to update as Single Path (SP) TCP. A MP extension for QUIC would
inherit QUIC improvements and advantages, such as latency reduction and protocol
versioning. The vivid interest for a MP extension for QUIC protocol has driven multiple
IETF draft specifications, already unified in a unique proposal [LMC+23].

Upgrading a widely used transport layer protocol, namely TCP, would theoretically
improve most of communications. However, given the difficulties to deploy TCP up-
grades, new extensions might never be used outside their testbeds. QUIC is a new
transport protocol whose deployment requires no change in network nodes, which see
this protocol as UDP payloads. QUIC operates in user space, and it includes version
management, making new extensions easy to implement and deploy. Although it was
designed for web traffic, given that it implements the same functionality as TCP, QUIC
can be used for other types of traffic. QUIC includes mechanisms that help reducing
latency, however, other mechanisms could allow reducing the latency even further.
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1.1 | Motivation and Objectives
Improving communications usually translates in ensuring data delivery integrity, re-
ducing transmission time and providing high security (data privacy). The first two are
the most easily appreciated improvements. TCP alone ensures data integrity. QUIC, on
top of that, reduces latencies compared to TCP, and establishes the use of TLS 1.3 en-
cryption in its specification [TT21]. Working with QUIC seems an obvious step to take
towards a general communication improvement.

QUIC recovers its losses faster than TCP, which is especially beneficial for transmis-
sions traversing error-prone wireless links, thus reducing the overall transmission time
as well. This time can be further reduced with the use of different extensions. QUIC
extensions are easy to deploy, thanks to QUIC running in user space of the endpoints
using it. FEC can reduce recovery time and MP can greatly reduce the overall trans-
mission time. Combining both techniques might result in achieving the same level of
redundancy as by duplicating data in MP, making a much better use of the total avail-
able BW.

The main goal of this PhD thesis is to minimize latency in end-to-end communi-
cations. To achieve that, we extend QUIC protocol with FEC and MP techniques. This
overall goal boils down to the following specific objectives:

■ Forward Error/Erasure Correction (FEC)
Increase reliability and reduce latency by means of coding techniques.

– Identify the coding schemes that could be used with QUIC, which already
includes a reliable delivery mechanism (ARQ).

– Analyze the interactions required between FEC extension and the base pro-
tocol.

– Design and implement a QUIC extension to protect the end-to-end traffic
with coding techniques. The extension should be configurable and extend-
able with new coding schemes.

– Include a mechanism to adapt the generation of redundancies to the observed
network conditions.

– Evaluate the resulting extension in different environments, using different
traffic patterns and services.

■ MultiPath (MP)
Reduce latency by aggregating BWs available through different network inter-
faces.
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– Analyze the interactions required between MP extension and the base proto-
col.

– Add MP extension to QUIC. IETF draft specifications of MP will be followed,
but not strictly. MP design could be adjusted for the sake of optimal func-
tionality and latency minimization. At the beginning of this thesis the only
MP document at IETF was [CB18], based on the work presented in [DCB17].
The active MP draft at the time of writing is [LMC+23].

– Ensure the proposed extension is working accordingly. As we thoroughly
explain in Chapters 2 and 4, poor design of path selection algorithms, ignor-
ing possible receive buffer limitations, can lead to performance degradation,
resulting in greater than SP QUIC transmission times.

– Evaluate MP extension in different scenarios using different types of traffic.

■ FEC and MP
Optimize the joint use of FEC and MP extensions.

– Analyze the interactions required between both extensions for a combined
use. Review whether any of the extensions needs any update to their interac-
tions with the original QUIC protocol.

– Update both extensions for a joint operation.

– Evaluate the joint benefit of using both extensions separately.

– Evaluate the benefits of using both extensions jointly.

– Compare evaluation results, assessing whether there is any improvement in
a joint use over the separate use of both extensions.

1.2 | Document Structure
To tackle the objectives set for this thesis, we structure the rest of the document as fol-
lows:

■ In Chapter 2 we review the state of the art. First, we focus on QUIC, discussing
its features and functionality. Next we review the available coding techniques that
could be used in our FEC implementation. Then, we review existing uses of FEC
in transport layer protocols. We conclude the chapter with an overview of MP
protocols, paying special attention to path scheduling and the combination of MP
and FEC.
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■ Chapter 3 describes our FEC extension for QUIC. We start by defining the termi-
nology and coding techniques considered for the extension. Next we select a cod-
ing scheme that we expect to be efficient and evaluate its performance under dif-
ferent configurations. Then we implement our FEC extension for QUIC, which we
call rQUIC after the previous work in this direction [GSF+19]. We describe rQUIC
architecture and the adaptive coding scheme chosen to protect QUIC connection.
We thoroughly evaluate the implementation in different simulated networks with
different traffic patterns.

■ Chapter 4 describes our MP extension. We start by identifying path specific and
data related components of QUIC, to replicate path specif structure for each path.
To enable synchronization between paths, we review the necessary changes in dif-
ferent QUIC components, defining the new ones. We pay a special attention to
path scheduling. Unlike TCP and MPTCP, QUIC can have multiple data sources
represented by streams, a data organization abstraction used in HyperText Trans-
fer Protocol version 2 (HTTP/2). We propose a solution to handle data from dif-
ferent streams over multiple paths. We conclude the chapter with a careful review
of our FEC design, updating it to include new advances on FEC and enable a joint
operation with MP.

■ In Chapter 5 we summarize the work developed in this thesis, drawing conclu-
sions and identifying future research lines.
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2

Background & Literature Overview

As networks and the traffic traversing them evolve, the need to evolve the communi-
cation protocols as well becomes a goal. Intermediate nodes in different networks are
optimized to work with the most popular reliable transport protocol, TCP. The intro-
duction of new features and improvements in TCP becomes a hard challenge. On one
hand, TCP is implemented at kernel. On the other hand, the intermediate nodes are ex-
pecting to see packets with the TCP header they know, and if the header includes new
signaling, some of the intermediate nodes could discard such packets as corrupt.

QUIC is a new transport protocol implemented in user-space to be easy to update.
It encrypts most of its fields to avoid intermediate nodes interfering with its evolu-
tion [LIB+17]. Among other things, QUIC reduces latencies in different ways. In this
chapter we review QUIC protocol as well as the techniques that can be used to further
reduce latency. More specifically, we focus on FEC and MP extensions. We discuss some
of the most relevant related works that proposed a combination of QUIC and these ex-
tensions. Despite QUIC being a very novel protocol, there already exist many works
extending its functionality. Nevertheless, we still need to recur to the extensions of
other protocols, especially TCP, where both FEC and MP have been implemented with
different variations and extensively evaluated.

2.1 | QUIC
QUIC is a connection-oriented transport protocol that follows the traditional client–
server architecture. QUIC was initially proposed by Google [LIB+17] and its first version
was recently standardized by the IETF [IT21, TT21, IS21]. While retaining some of the
key TCP features, such as reliable delivery and Congestion Control (CC), QUIC is built
on top of UDP, with the aim of solving the challenges associated with protocols run-
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ning on top of TCP, such as connection-setup time, Head of Line Blocking (HoLB), and
middlebox interference.

QUIC establishes a secure connection with TLS 1.3 in just one RTT, since its own and
TLS handshakes are run in parallel. Thanks to TLS 1.3, application data can be sent in
zero RTT in subsequent reconnection.

Following HTTP/2 web object organization, QUIC implements streams, a data han-
dling abstraction that can be defined as sequences of ordered bytes. This feature not
only helps to manage data, but it also reduces the impact of HoLB. When one data seg-
ment is lost or arrives out of order, the subsequent segments are retained in the receive
buffer without being delivered to the application till the missing one arrives. While in
TCP the HoLB affects the whole connection, in QUIC it hinders only one of the streams
multiplexed within a connection.

Furthermore, QUIC brings additional latency reduction, thanks to its loss detection
mechanisms, including “Early Retransmits” and tail loss probes. QUIC introduces sig-
nificant improvements compared to traditional reliable transport layer solutions. Some
benefits of QUIC loss recovery mechanisms are a consequence of the numbering scheme,
where packet identifiers are never repeated. If a packet is lost, QUIC retransmits the
same information in another packet, with a different packet number, removing uncer-
tainty about the actual packet that is confirmed when an ACK is received. As a result,
QUIC achieves more accurate RTT measurements and can identify spurious retransmis-
sions [IS21].

QUIC loss detection algorithms are ACK-based, with a probe timeout to ensure that
the ACKs are received. Packets are considered lost if one of the following conditions is
met:

■ A packet was sent before an acknowledged packet and it has not been acknowl-
edged, and either of the following events occurred: (i) the packet was sent with
a packet number three times smaller than the latest acknowledged; or (ii) it was
sent after 9/8 RTT expiry time.

■ The probe timeout expires, that is, the last packet was sent, and the corresponding
ACK has not arrived in the expected time, calculated as the sum of a smoothed es-
timation of RTT, the variation of its estimate and the maximum ACK delay, which
is the time that an endpoint can introduce before sending an ACK, a parameter
negotiated at handshake. Upon reaching this timeout, the endpoint sends the last
packets without modifying their content to either recover the loss, or to at least
trigger an ACK transmission. This timeout is duplicated upon every probe trans-
mission.

8



Chapter 2. Background & Literature Overview 2.2. FEC and Network Coding

Middleboxes are networking elements that manage TCP traffic, analyze TCP seg-
ments and modify them with the aim of leveraging an optimal performance [HNR+11].
This might hinder TCP enhancements, as existing middleboxes would require to be
updated if there is any TCP modification. On the other hand, if TCP were upgraded,
this could affect several nodes and devices, because its implementation is usually at the
kernel of operating systems [LIB+17]. As for middleboxes meddling the connection,
QUIC encrypts its packets, leaving only unprotected header fields that are required to
identify a QUIC connection at an endpoint [TT21]. In addition to security reasons, this
encryption is used to avoid any interaction with middleboxes, and thus, protocol ossi-
fication [LIB+17]. Since QUIC packets are processed as opaque UDP payloads, middle-
boxes are not aware of them, ensuring a smooth interaction and facilitating migration
and update strategies. QUIC was designed to be deployed in the user-space, to enable
the management of computational resources with other applications within the same
node, or the establishment of logging levels as needed. In any case, QUIC can also be
implemented in the kernel [WBRP18], with the main goal of enhancing its performance.

Although QUIC facilitates the integration of new extensions, not all endpoints might
be able to upgrade at the same time, resulting in the coexistence of several QUIC ver-
sions. The version negotiation mechanism promoted by QUIC ensures an appropriate
operation, by allowing devices to negotiate the version they will use in the connection
during the establishment phase [IT21, SR22]. In addition to the simplification of the
protocol updates, this mechanism also enables the possibility of extending QUIC with
new functionalities, which devices may even share as plugins [DCMP+19].

Next, we introduce FEC and Network Coding (NC) basic functionality, focusing on
the features that will be considered in our design.

2.2 | FEC and Network Coding
Traditionally, there are two main causes of information loss events during communica-
tion: network congestion and transmission errors. Reliable protocols that ensure data
integrity, such as TCP [Pos81b] and QUIC [IS21], recover lost information using ARQ
mechanisms. These consist of signaling lost information and taking care of its retrans-
mission. On the other hand, FEC [ACC+07] techniques promote a different approach,
allowing the recovery of lost chunks of information or source symbols, by sending re-
dundant symbols along with the source ones. Redundant symbols are built as combi-
nations of the source ones, which is why they are also called coded or repair symbols.
FEC can improve latency, as losses might be recovered without additional signaling,
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and thus there is no need to wait for a retransmission, at the expense of increasing the
overhead sent to the network.

It is worth noting that depending on coding scheme implementation, a transport
protocol’s data packet could fit multiple symbols, both source and coded ones. In this
case, a packet loss implies the loss of multiple symbols, complicating loss recovery at
the decoder. To make the most of coding techniques, this thesis considers transmissions
of one symbol per packet. From this moment on the meaning of ‘packet’ is equivalent
to ‘symbol’.

FEC acts only at communication endpoints, at the transmitter (encoder) and the
receiver (decoder). However, at transport layer a communication link covers multi-
ple networks in which multiple nodes forward the information towards its destination.
Ahlswede et al.. introduced the concept of Network Coding (NC), where intermediate
nodes can perform coding operations on ongoing communication flows [ANLY00]. The
interaction with the information flow offers different opportunities to optimize network
usage. Depending on the kind of optimizations, NC can be of three types: analog,
inter-session and intra-session [KKR12].

■ Analog or Physical-layer NC is applied at physical layer. In the case of two end-
points in a shared access medium sending messages to each other through an in-
termediate relay node, there will be a total of four transmissions: one for each
sender and two for the relay node. In physical NC the messages can be sent si-
multaneously, interfering with one another. The relay node receives the interfered
message, amplifies it, and sends it back to the network. The endpoints can ex-
tract the new message from the interfered one with the message they sent. Thus,
the simultaneous endpoints’ transmissions and the relay retransmission reduce
medium access time by half.

■ Inter-session or Inter-flow NC combines data sequences from different data flows
to improve network efficiency. In the previous example, the endpoints cannot
send their messages interfering with one another. However, the relay node can
combine both messages with an XOR operation and send the combination instead
of the two original messages. The endpoints can recover the incoming message
from the combined one using the message they sent.

■ Intra-session or Intra-flow NC applies network coding techniques within a data
flow. It can be viewed as an FEC operating over each hop on the communication
path (between the two endpoints), with NC-enabled intermediate nodes. Note
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that the NC headers of packets protected with this technique must be visible to
the intermediate nodes.

Ho et al. proposed Random Linear Network Coding (RLNC) [HKM+03, HMK+06],
a coding technique where all the transmissions correspond to a random combination of
source symbols. These are grouped into data blocks or generations of N symbols and
combined to create N + K coded symbols. Whenever the destination (or an interme-
diate node) receives at least N linearly independent coded symbols, the original infor-
mation can be recovered. Because the combinations are randomly built, some useless
transmissions may occur (not linearly independent symbols). Hence, additional trans-
missions may be needed. The linear combination of coded symbols can also be seen
as a linear combination of source symbols; thus, intermediate nodes can perform re-
coding operations without needing to decode the entire generation. This has proven to
yield some benefits under certain circumstances, but if these are not met, and interme-
diate nodes simply forward the received packets towards the destination, RLNC boils
down to Random Linear Coding (RLC), where only the source node performs coding
operations.

The computational complexity of RLNC may be unfeasible for constrained devices.
Wang et al. have shown that the use of sparse coding matrices, where some of the coding
coefficients are zero, can alleviate this problem [WL06]. Hence, when building a coded
symbol not all the source symbols are considered. A particular case of sparse NC is
a systematic coding scheme in which source symbols are sent to the network without
coding, together with additional coded symbols, to compensate for eventual network
losses [HPFL09]. In this context, the coded symbols can be referred to as redundant
symbols. Systematic coding simplifies not only encoding, but also decoding operations,
because source symbols can be used as soon as they are received, and this can reduce
the overall latency.

As mentioned earlier, RLNC groups source symbols into blocks or generations. An-
other approach to building coding symbols, known as convolutional coding [LMZG97],
is protecting source symbols from a sliding window. Here, the equivalent of RLNC gen-
erations are overlapped, which brings two advantages: source symbols are protected by
more coded ones; coded symbols are inserted more frequently, giving the decoder more
opportunities to recover losses. A systematic RLNC with overlapped generations was
discussed in [WGP+17] and further extended with ARQ in [GWP+18]. Both works con-
sidered a constant sliding window to select source symbols to build a generation. The
frequency at which coded symbols were inserted between the source symbols, the code
rate, was also constant, as well as the redundant symbols per generation. Given that
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the coding window in both works was a multiple of the code rate, all source symbols
belong to the same number of generations, and they are protected by the same number
of coded symbols. This offers a different view on convolutional codes, where when one
of the concurrent generations is finished, it is replaced with a new one. This view is
exploited in this thesis (c.f.Section 3.2), focusing on concurrent generations rather than
on a coding window.

A convolutional coding scheme that overlaps generations yields an overall latency
reduction [WGP+17]. Because each source symbol is protected by multiple coded sym-
bols, this type of coding offers more robustness to bursty losses. However, if bursts are
long, a different coding approach might be necessary, such as interleaving [HWCK07],
where generations are grouped in interleaving blocks. Rather than sending symbols
from the same generation, all the ith symbols from each generation are transmitted.
Hence, consecutively transmitted symbols do not actually correspond to consecutive
source symbols, thus distributing the impact of burst losses among all generations in
the interleaving block.

Building interleaving blocks requires buffering all generations, which may cause ad-
ditional latency. Stolpmann et al. suggested a different, systematic approach to interleav-
ing network coded symbols, Interleaving with On-the-fly Coding [SPETG18]. Instead
of waiting for completing an interleaving block, each new source symbol is covered by
a different generation from the interleaving block under construction. In this way, all
source symbols can be transmitted in order, as soon as they are generated, and inter-
leaving properties are not lost, because burst losses are still distributed across multiple
generations.

2.3 | Coding at Transport Layer
Various studies have exploited coding techniques to increase the performance (mostly
throughput) offered by the transport layer, both for reliable-service (TCP) and real-
time applications (based on UDP). Below, some of the most important examples are
reviewed.

There is a lot of research focused on enhancing TCP, the most popular reliable trans-
port protocol. In what follows we review some of them. FEC as an extension of a
reliable transport protocol has been widely studied, which given TCP overwhelming
adoption means numerous studies on the integration of FEC with TCP. Subramanian et
al. have designed LT-TCP, a TCP modification that uses both ARQ and FEC to recover
lost packets [SKR06]. This modification uses Explicit Congestion Notification (ECN)
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signals to detect congestion events. Tsugawa et al. proposed TCP-AFEC, an adaptive
coding scheme that inserts enough redundant packets to ensure the application per-
ceived BW required for video streaming [TFH+07]. TCP-AFEC hides recovered losses
from TCP CC. The authors argue that congested networks’ collapse is avoided by tra-
ditional TCP mechanism when FEC fails to recover a packet and the loss is detected.
Teshima et al. have proved that TCP-AFEC is not optimized for wireless LAN, and pro-
posed TCP-TFEC [TOHI17], an adaptive coding scheme that is more suitable for this
scenario. Krishnaprasad et al. developed another TCP modification for improving its
performance over wireless links, TCP Kay [KTK15]. Apart from FEC operations, it in-
creases ACK frequency to grow the congestion window faster after a loss event. An
adaptive XOR FEC extension for MPTCP is presented in [FKCA18]. FEC efficiency is
optimized with congestion window information, however, no change is done to CC,
recovered packets mask the loss event. A more recent TCP modification is presented
in [SKI19], where Sato et al. introduce an adaptive XOR coding scheme. As [SKR06],
this scheme relies on ECN for congestion detection. In order to prevent lost packets’ re-
transmission, Sato’s FEC suppresses duplicate ACK packets, unless the decoder cannot
recover the losses. Additionally, this FEC implementation applies on-the-fly interleav-
ing similar to [SPETG18] with a variable interleaving block size.

A tight integration of FEC with a transport protocol is not the only approach to use
FEC above link layer. Bolot et al. apply FEC to audio stream at application level in a TCP-
friendly way, respecting congestion avoidance mechanism [BFPT99]. In [WCWC17] Wu
et al. present a coding scheme for video transmission over TCP. Their goal is not only
to shorten loss recovery, but also to address the poor performance of CC mechanism
over wireless, and typically error prone, links. On one hand, this approach does not
break the underlying transport protocol, but on the other hand, it is not preventing the
unnecessary congestion window reduction induced by a non-congestion loss.

The use of FEC as an extension of a reliable transport protocol (mostly TCP) has been
widely studied, in two main directions: (i) protecting TCP data flows, and (ii) extending
TCP itself. An example of the first group is found in [WCWC17], where the authors op-
timized video transmission by recovering losses using an adaptive coding scheme. On
the one hand, this approach does not break the underlying transport protocol, but on the
other hand, it does not prevent unnecessary congestion window reduction that might be
induced by non-congestion losses, which are very frequent in wireless links. Tsugawa
et al. proposed TCP-AFEC [TFH+07], which is an extension of TCP with an adaptive
coding scheme to improve video streaming. TCP-AFEC hides the recovered losses from
TCP CC. The authors argue that the collapse of congested networks is avoided by the
traditional TCP mechanism when FEC fails to recover a packet and the loss is detected.
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Later, Teshima et al. proved in [TOHI17] that TCP-AFEC is not optimized for WLAN,
proposing TCP-TFEC, an adaptive coding scheme that is more suitable for this technol-
ogy. Sato et al. extended TCP using the XOR coding scheme in [SKI19]. They interleave
generations, as was also suggested by [SPETG18], to mitigate burst losses and suppress
duplicate ACK packets, thus allowing the FEC scheme to recover losses by itself. Packet
losses are thus intentionally hidden from CC mechanisms, allowing high goodput to
be maintained. Congestion avoidance relies on Explicit Congestion Notification (ECN)
signals.

However, losses at transport layer are frequently caused by network congestion
events. When coding techniques are applied to reliable transport protocols with CC,
it is unclear how the latter should interact with the encoder. It is worth noting that there
is an Internet Research Task Force (IRTF) draft describing these interactions [KLMW22].
When coding techniques are applied to a reliable transport protocol’s data flow, that is,
above the transport layer as in [WCWC17], coded symbols and packet losses are visi-
ble to the CC. However, when coding techniques are integrated within the transport
protocol, successful recoveries may hide congestion losses from the Congestion Control
Algorithm (CCA). Depending on the coding scheme, the impact on a congested net-
work may not be negligible. Hence, an appropriate CCA might need to be aware of
coding operations. To do so, the CCA should be able to distinguish between congestion
and random losses, with the latter being responsible for unnecessary Congestion Win-
dow (CWND) reduction. The challenge of distinguishing the nature of packet losses
has received significant attention from the scientific community. Truchly et at. review
in [TSR19] some of the most relevant CCAs that have been proposed.

UDP datagrams protection with FEC has also been widely studied. Research on FEC
protection of UDP data flows focuses on real-time multimedia streaming. For this pur-
pose, the most common protocol is Real-time Transport Protocol (RTP) [SCFJ03] over
UDP. For this reason, although not strictly required [SCFJ03], the most common un-
derlying protocol is UDP. FEC protection can recover lost information with sufficiently
low latency, which is why it can be used to successfully increase transmission reliability.
RTP specifies different FEC extensions, such as the generic FEC specification [Li07] and
XOR coding with interleaving [Beg10], the latter being extensively evaluated in [LD12].
Another example of UDP video streams protected with an FEC is [GNPS19]. The au-
thors propose the simultaneous use of TCP and UDP over different network interfaces
for smooth video streaming over HTTP, proving that their approach is efficient not only
in terms of goodput, but also in terms of the energy consumption of mobile devices.

Another interesting approach that has recently gained relevance is extending QUIC
with coding techniques, although there are not many evaluations of this approach,
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mostly due to QUIC novelty. The first experiments integrating QUIC and FEC, car-
ried out by Google, are described in [Swe16]. Although the results did not reflect a
significant improvement, other researchers continued to work on coding techniques for
QUIC. As a result, it has been contemplated in the corresponding standardization ef-
forts, and the IRTF draft [SMRM20] focuses on how to implement a generic FEC scheme,
while [RMSM20] focuses specifically on RLC. Furthermore, Michel et al. presented
an FEC extension with a fixed code rate, assessing its performance over constrained
links [MDB19]. This extension is subsequently converted into a portable plugin, in-
tegrated along with multipath and other features in the pluginized QUIC [DCMP+19].
Garrido et al. presented the first version of rQUIC [GSF+19], an extension of QUIC with
an adaptive FEC. This thesis continues those experiments, extending for that purpose
the original implementation with a more generic scheme, which might be configured to
feature different coding solutions. As discussed in Section 3.6, the results demonstrate
that this renewed implementation yields a better performance than the original one. In
addition, the behavior that rQUIC exhibits when used with services having real-time
requirements is also assessed, such as video streaming.

As introduced previously, intra-flow NC can be seen as an FEC scheme between
coding capable nodes, applied on all hops along the path between the two endpoints.
One of its more relevant benefits is the reduction of overhead introduced by coded pack-
ets, as more reliable hops could require fewer redundancies. CTCP achieves a greatly
improved goodput compared to TCP both in controlled and real world scenarios. The
authors of [KCP+13] proposed the use of NC in the transport layer. They argue that this
approach grants backward compatibility with legacy network equipment, as link layer
protocols are not changed. This can be seen as another advantage of extending TCP with
NC, while it is even more important for QUIC, as it is meant to be implemented in the
application layer. However, to the best of our knowledge, there is no proposal to extend
QUIC with NC, despite the benefits reported for TCP [KCP+13, SSM+11, RE16, APA19].
This work argues that one of the main obstacles lies in QUIC philosophy, since it pre-
vents a tight interaction with middleboxes. If no interaction with middleboxes is al-
lowed, the intra-flow NC would boil down to the traditional FEC. In any case, the
design and implementation of rQUIC described here is conceived to be able to integrate
the main functionalities of NC.
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2.4 | Multipath – Multiple Network Interfaces

Nowadays, the devices connecting to internet have multiple network interfaces. In
smartphones both Wi-Fi and mobile networks are used to exchange information. If mo-
bile traffic tariff is not restrictive, both interfaces could be used simultaneously to finish
any data exchange earlier. The use of multiple transport layer paths or MultiPath (MP)
is not a new concept. MP has been implemented as new protocols and extensions to the
existing ones on all layers of the internet stack. There are multiple solutions to aggregate
the available BWs in link and network layers [LLO+16]. However, implementations at
transport layer can have more information for a better path scheduling. A reliable trans-
port protocol, such as QUIC, TCP or Stream Control Transmission Protocol (SCTP), can
estimate the latency, the available BW and the loss rate between both ends of a commu-
nication. In [LLO+16] Li et al. review and group transport protocols in two main groups:
TCP based and SCTP based. The only exception is MP Datagram Congestion Control
Protocol (DCCP), an extension of an unreliable protocol for video streaming. SCTP
is message oriented partially reliable transport protocol designed with multi-homing
support [STkN22]. QUIC with proper extensions could cover the functionality of TCP,
SCTP and DCCP, including the respective MP extensions.

Despite QUIC novelty, there have been multiple studies of MP extension in this pro-
tocol. In 2017 DeConinck et al. published their MP QUIC design and evaluation [DCB17],
which was used to prepare the first IETF specification draft for MP extension [DB21].
Among the available plugins were MP and FEC extensions. In 2018 Viernickel et al. pub-
lished a similar design [VFR+18]. In 2019 DeConinck et al. presented a new QUIC ex-
tension that supported plugins [DCMP+19]. It enables the endpoints sharing any nec-
essary extension between each other. Liu et al. published another draft specification
for MP QUIC, which was used to build the implementation called XLINK. It was used
for real-life video streaming. A detailed analysis of XLINK performance was published
by Zheng et al. in [ZML+21]. Christian Huitema also published a draft specification
of a simple MP QUIC extension. Later, the three draft specifications [DB21, Hui21b,
LMH+21] have been unified into one specification proposal, which at the time of writ-
ing has been updated to the version 04 [LMC+23].

One of the biggest challenges for any MP implementation is scheduling data packets
for each path. The rest of this section focuses on path scheduling and the combination
of MP and coding techniques.
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2.4.1 | Schedulers
The main goal of using different paths simultaneously is to maximize the throughput
and to minimize the latencies. To achieve this, MPTCP default scheduler chooses the
path with minimum RTT as long as it is available [FRH+20]. However, relying only on
RTT is not enough for an optimum scheduling. It is also important to evaluate network
losses and transmission rate on each path, as discussed in [NXHS14, KLL17].

To prevent HoLB at receive buffer caused by out-of-order arrivals, which is espe-
cially critical in heterogeneous paths, some scheduling algorithms estimate the arrival
time for the packets each path and alter transmission order of the data packets to opti-
mize in-order arrivals [SBL+13, KLM+14, SCW+18]. Yang et al. present a slightly differ-
ent scheduler: instead of scheduling multiple packets in a given time interval, it sched-
ules only 1 packet [YWA14].

Given the fundamental importance of receiving packets in the correct order in TCP,
several studies have focused on minimizing the delay caused by HoLB [FAMB16]. Ferlin
et al. proposed BLocking ESTimation (BLEST) algorithm, which schedules packets based
on HoLB predictions. Choi et al. use the estimated BWs to avoid HoLB [CCA+17]. Their
Optimal Load Balancing (OLB) scheduling uses a weighted round-robin (WRR) that
assigns packets to each path according to a given weight, which can achieve optimal
performance.

Taking excessive care of in-order delivery can result in aggreagted BW underutiliza-
tion. To avoid that, Lim et al. evaluate subflow RTT, BW, and queued data in the send
buffer to calculate the transmission completion time, choosing a path for a new packet
based on Earliest Completion First (ECF) principle [LNTG17]. Decoupled Multipath
Scheduler (DEMS) [GNM+17] minimize download completion times by measuring the
data chunk length and sending the first packet forward on one path and the last packet
back to the start on another path until there are no more packets to transmit.

Another way to assign traffic to a specific path is to consider the application layer’s
requirements. Fahmi et al. implement Stochastic Object-aware Scheduler (SOS) to re-
duce the delay of downloading application objects [FLKC18]. Instead of measuring
the packet delay, SOS measures the delay of the object and schedules the object to the
proper path. Shreedhar et al. proposed another scheduler based on a cross-layer ap-
proach, QAware [SMKK18]. It combines network information as the delay and the local
queue buffer occupancy getting a big aggregate throughput.

Other scheduling algorithms assume a sufficiently large receive buffer. This assump-
tion is frequently met in web traffic optimization, carried by HTTP/2 streams, which are
mapped to QUIC streams if QUIC is used. Viernickel et al. provided a stream-to-path
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scheduling policy based on MPTCP default minimum-RTT scheduler [VFR+18]. Ra-
bitsch et al. proposed a stream-aware scheduling for MP QUIC [RHB18]. They extend
the ECF scheduler from [LNTG17] to avoid a stream completion delay by a slower path
and to allocate the fair share of aggregated BW based on stream priority. In 2019 Shi et
al. proposed a different stream-aware scheduler: each stream is sent through only one
path [SWZL19]. Top priority stream is assigned to the path where it would complete
first. If various streams share one path, the BW assignment is made regarding their
priorities.

A MP protocol could be used by a mobile device whose paths’ parameters are het-
erogeneous and very dynamic. To properly adapt to such scenarios, Wu et al. pro-
pose a reinforcement learning scheduling algorithm Peekaboo, which they implement
in MP QUIC [WAB+20]. Later a version optimized for 5G networks has been pre-
sented [WCF+21].

Wang et al. designed a MP scheduler for HTTP/2 web traffic [WGX19]. Given that
streams represent web objects and none of them can be used till its transmission is com-
plete, the authors send only one stream at a time ordered by priorities provided by
HTTP/2. To ensure the earliest completion of each stream, they calculate stream data
distribution among the paths based on RTT and BW estimations and the queuing time
of the stream. In 2020 Shi et al. presented another scheduler focused on minimizing
transmission completion time. Instead of solving a system of equations to determine
the share of stream data to send through each path, they schedule packets based on
stream priorities till the delivery time for the last scheduled packets is practically the
same for all paths. Then the next packets are distributed among paths following BW
estimation and stream priorities.

2.4.2 | Multipath and Coding Techniques – Joint Use
Most of existing research about the combination of MP and coding techniques are based
on MPTCP protocol. MP Loss-Tolerant (MPLOT) applies a dynamic FEC scheme to
all paths, improving the aggregated throughput compared to MPTCP [SKK+08]. Li et
al. present a NC based MPTCP (NC-MPTCP), which applies NC to some of the paths.
Some paths deliver the original data, while others, the coded packets [LLC12]. Coded
TCP (C-TCP) applies systematic block codes with a modified CC [KPUM12]. The new
CC reacts not only to losses, but also to delays, and replaces the CWND concept with
tokens which authorize the sender to transmit more data. Li et al. present an adaptive
systematic coding MPTCP which is focused on mitigating packet reordering at the re-
ceive buffer rather than on packet erasure correction [LLT+13]. Fountain code-based
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MPTCP (FMTCP) aims at mitigating path heterogeneity by sending redundant packets
on different paths generated with fountain codes [CWW+15]. QuAlity-Driven MultI-
path TCP (ADMIT) uses FEC to optimize real-time high definition video [WYC+15].
Stochastic Earliest Delivery Path First (S-EDPF) schedules packets and applies FEC by
considering the stochastic time-varying nature of path delays [GSKL17]. Ferlin et al. use
adaptive XOR coding in MPTCP [FKCA18].

MP and FEC applied to UDP is mostly used for multimedia transmission. Chow et
al. build their own MP UDP with FEC for video streaming [CYX+09]. Kwon et al. use
both TCP and UDP for multimedia transmission with systematic Raptor codes protec-
tion [KGPS14]. Control traffic is sent through TCP connection and data, through UDP.
Wu et al. combine TCP and UDP for a BW-efficient video streaming considering differ-
ent quality metrics [WYC+16]. This work also uses systematic Raptor codes. Gabriel
et al. use NC techniques over MP UDP for a more general case of time-critical tactile
internet [GAF18].

Due to QUIC novelty, there are few works evaluationg the joint use of MP and FEC
extensions. A QUIC implementation with FEC and MP extensions has been presented
in [DCMP+19]. However, FEC and MP are implemented as separate extensions. To the
best of our knowledge, the first QUIC extended with FEC and MP that combines both
to maximize the benefits is [VW21]. Applying XOR coding and sending coded packets
only on the slowest path (unless paths are severely congested or other performance
degradation are found) they achieve significant reduction of transmission completion
time.

Apart from TCP and UDP based solutions, other protocols are also proposed. In
2019 Chiariotti et al. introduced Latency-controlled End-to-end Aggregation Protocol
(LEAP) [CKZC19]. LEAP optimizes the joint work of CCA, ARQ, FEC and MP schedul-
ing using custom solutions for each module.
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3

Forward Error Correction for
Transport Protocols

This chapter covers the use of FEC with a low latency protocol, namely QUIC. Before
extending QUIC with FEC, an analysis is done to understand which coding schemes
would be good for low latency communications, and more specifically, for QUIC. This
analysis includes a deeper view on a convolutional systematic coding scheme that uni-
formly protects all source symbols with a uniform distribution of the coded ones.

Next, FEC extension for QUIC is described, its architecture, operation and imple-
mentation details. The combination of QUIC and FEC is given the name ‘rQUIC’ (robust
QUIC), continuing with the efforts started by Pablo Garrido [GSF+19, Gar18]. rQUIC
is thoroughly evaluated with simulation campaigns, focusing on representative traffic
patterns over networks with packet erasures of different degrees.

QUIC specification finished in 2021, after we finished the design and evaluation of
our FEC extension. Throughout this chapter we reference QUIC specification drafts on
which the original QUIC code was based rather than the Request For Comments (RFC)
documents.

3.1 | Coding Variants and Characteristics
This section covers coding features that have been particularly considered for this work.
It also introduces naming conventions we will use throughout the document since the
terminology used in rQUIC development slightly differs from the one recommended
in [AAB+18].

One such difference is the use of the generation concept. Coding operations were
originally intended for RLNC operation. Hence, the term generation is widely used, de-
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fined here as a group of source symbols used to build coded symbols. However, as
will be explained later, the rQUIC design discussed here aims at systematic convolu-
tional coding schemes. A more appropriate term in this context is the encoding win-
dow [AAB+18].

Furthermore, the code rate is defined, from an implementation point of view, as
in [GSF+19]: the rate between source and coded symbols, which is different from the
definition in [AAB+18]. Thus, the code rate used in this study represents the number
of source symbols after which a coded symbol should be inserted. If only one coded
symbol is built for each generation, then the code rate equals the generation size.

An FEC implementation that is unaware of the transport layer protocol might send
multiple symbols per packet. However, when losses occur at the transport layer they
affect entire packets, not just a portion of them. Splitting a packet into multiple symbols
implies that redundancies that are required to successfully decode a generation can be
split between two or more packets. With a code rate perfectly adjusted to the network
losses, a lost packet with both source and coded symbols might never be recovered. As
introduced in Section 2.2, the symbols we consider comprise the whole packet, which
is why the words ‘symbol’ and ‘packet’ are used interchangeably. In addition, coded
packets can be referred to as redundant packets or redundancies.

As already mentioned in Section 2.2, convolutional coding with a constant coding
window, a multiple of the code rate, leads to uniformly overlapped generations, where
each source symbol belongs to the same number of generations. We define the overlap as
the number of generations to which any source symbol belongs. An overlap of 1 corre-
sponds to the traditional block coding approach. When using systematic convolutional
coding, along with a code rate that adapts to losses, focusing on overlap rather than on
encoding window might help to achieve a more uniform protection of source symbols,
and a more uniform distribution of coded symbols among the source symbols. A more
detailed study of the overlapping scheme is presented in Section 3.2.

As introduced in Section 2.1, QUIC advanced recovery schemes significantly reduce
its recovery time compared to TCP. Some coding schemes have an intrinsic delay that
may be longer than the original ARQ recovery. This FEC implementation is intended to
be an extension, not a replacement for QUIC ARQ mechanism.

Following are summarized the coding approaches considered in rQUIC design.

■ Systematic coding. Correctly received source packets can be used immediately
without waiting for the entire generation.

■ Adaptive coding. To minimize the overhead introduced by coded packets, the
number of redundancies is adjusted to the losses observed in the network.
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■ Convolutional coding. The overhead introduced by coded packets can be dis-
tributed more uniformly by focusing on overlapping the generations, thus reduc-
ing the waiting time between recovery attempts at the decoder.

■ No interleaving. Systematic coding with interleaving presented in [SPETG18] has
no transmission latency, while the decoding latency remains high. Coded packets
are transmitted after the entire interleaving block, which is multiple times greater
than the generation size. The authors of [AMD20] showed that replacing inter-
leaving techniques with RLC at the link layer can reduce latency, despite losing
the ability to recover burst losses.

The adaptive FEC scheme will change either the generation size g, overlap φ, or
redundancies per generation r to adjust the code rate Q to the observed loss rate. Given
the definition of Q in this work and that each g source packets are protected by rφ coded
ones, the relationship between coding parameters can be expressed as follows:

Q =
g

rφ (3.1)

As previously mentioned, the focus on overlapping generations is intended to uni-
formly distribute coded packets. This uniformity is achieved by shifting the φ over-
lapped generations by g/φ source packets, that is, every g/φ = Qr source packets a
generation is finished and replaced with a new one. Figure 3.1 shows an illustrative ex-
ample of a communication with 2 overlapped generations of 8 packets, protected with
2 redundancies per generation. The X axis represents source symbols to be transmitted,
and the Y axis corresponds to the packets that are actually sent to the network. Source
packets are represented with blank squares and cover only one source symbol, while
dark squares correspond to coded packets, covering all the source symbols that were
used to build it. In this case, it is important to remark that a coded symbol corresponds
to one single transmission, regardless of the number of source symbols it covers. Coded
packets are inserted every g/φ = 8/2 = 4 source packets. To keep this periodicity con-
stant from the beginning, the first φ − 1 generations must be shorter than the intended
g. More specifically, gi = i ⋅ g/φ if the generations are numbered starting with 1. To
comply with overlap definition given earlier, the last overlapping generations also need
to be shortened. In the example illustrated in Figure 3.1 this is seen in the last 2 coded
packets, which might be unnecessary in a real implementation.

When a lost packet cannot be recovered with a block code, the packets from the
corresponding generation can be delivered to the application and discarded. However,
when multiple generations are overlapped, all losses can be recovered at once by the
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Figure 3.1: Graphical representation of convolutional coding for 15 source symbols pro-
tected with 2 overlapping generations of 8 symbols and 2 coded symbols per generation.

communication endpoint. Figure 3.1 shows a short transmission of only 15 source pack-
ets with losses. Lost packets are marked with a zig-zag strike-through. Until the last
coded packet arrives, no lost source packets can be recovered. This example can be
extended to longer communications with different coding parameters. This shows the
robustness offered by convolutional coding, which could be useless when FEC is com-
bined with ARQ, since older losses will surely have been recovered with a retransmis-
sion. It is thus very important to carefully define coding parameters and the way they
are updated in an adaptive coding scheme, because what is beneficial for FEC alone,
might be useless when FEC is combined with ARQ, resulting in the transmission of
unneeded coded packets and an inefficient increase in computational complexity.

3.2 | Overlapping Generations – Convolutional Coding
Rethought

The overview of coding techniques presented in Section 3.1 shows that systematic and
convolutional ones help reducing recovery latency. For this reason and to further ex-
plore the specifics of convolutional codes that uniformly protect source symbols, a simu-
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lation campaign is carried out to evaluate the performance of a particular coding scheme
that could be used in applications where the latency is critical. More specifically, this
section studies a convolutional Systematic Network Coding (SysNC) focusing on the
concurring generations rather than on a coding window. What follows is a description
of the coding scheme that has been studied, its evaluation and the results.

3.2.1 | Coding Scheme
SysNC scheme is implemented in Python. Redundant symbols are built with RLNC
scheme, combining source symbols multiplied by random coefficients from Galois Field
GF (28). To understand how the overlap affects coding efficiency, a constant value is
used for each experiment.

In Figure 3.1 it is easy to identify groups of consecutive source symbols between
the coded ones. Such a group is referred to as block, the consecutive source symbols
belonging to the same generation between coded symbols. Generation and block sizes
will be referred to as g and k, respectively.

A convolutional coding could recover all losses at once by the end of transmission,
as discussed in Section 3.1 and depicted in Figure 3.1. Depending on the particular
protocol using this solution and its congestion control scheme, most of these symbols
will surely be resent by the transmitter before recovery becomes possible. However,
keeping all the received symbols in memory would eventually allow recovering the lost
ones. In other words, recovery probability depends on the amount of memory available at
the receiver. To evaluate recovery potential offered by this coding scheme, the decoding
window should be as long as possible. Thus, a sufficiently large buffer is considered to
store all source and coded symbols.

The recovery process is triggered after receiving a coded symbol. Given that the
channel (described in Section 3.2.2) delivers all symbols in order, this recovery policy is
equivalent to trying to recover after each received symbol.

3.2.2 | Channel
For the evaluation of this coding scheme, the simulated connection between the trans-
mitter and receiver is considered wireless, error prone and without packet reordering.

In previous works, the use of uniform distribution for symbol loss modelling is
quite common, as in[HPFL09]. However, burst errors might characterize real scenarios.
This type of erasure distributions can be mimicked with the well-known Gillbert-Elliot
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Figure 3.2: Gilbert-Elliot model implementation.

model, as in [WGP+17] and [SPETG18]. In this study both options are considered. Next
Gillbert-Elliot model is detailed.

In the Burst state (B) the loss rate is 100%, being 0% in the Gap state (G). Burst state
duration is set to d, with the Gap lasting pr ⋅ d. An overview of this implementation is
presented in the Figure 3.2. In this work, pr is adjusted to match an overall loss rate, so
the results can be compared with those obtained with a uniform channel model having
the same loss rate.

3.2.3 | Inputs and Outputs
Some of the inputs for the communication model used in this work have been already
mentioned: generation size, redundant (coded) symbols per generation, overlap, loss
rate, burst length, and the number of packets to store at the receiver. At this point one
last input needs to be specified: the number of symbols that will be transmitted per
experiment. One approach is to keep sending symbols until the decoder can receive
(and recover) n source symbols. These experiments follow an alternative approach: n
source symbols are sent to the receiver along with the corresponding coded symbols.

In order to see if the coding scheme is working, we need to ascertain whether the
receiver has seen all of the source symbols that were transmitted, and if not, how many
of them have been correctly received. Thus, the main output is the number of source
symbols that have correctly arrived at the receiver, either via regular reception or re-
covery. Another interesting metric is the ratio between the recovered symbols and the
lost source symbols. In this work we evaluate the probability of receiving all (regular
reception + recovery) source symbols (henceforth reception probability). This probability
is calculated by dividing the number of events in which all source symbols have been
either received or recovered, by the number of simulations executed for a specific set of
inputs, as shown in equation 3.2.

P(reception) = # success f ull experiments
# simulations

(3.2)
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Delay is going to be estimated in terms of time slots required for a packet to reach
the receiver. For a correct and reliable data transmission, in-order delivery is highly im-
portant. For this reason we focus on the end-to-end delay. In addition, we ignore delay
of packets that could not be recovered, and so we only consider for delay estimation
those cases where reception probability equals 1.

As stated earlier in this section, our aim is to evaluate the impact of changing redun-
dant symbols per generation with the overlapping SysNC coding scheme. Thus, the
two main variables in our input parameters are: redundancies per generation and over-
lap. In order to facilitate the discussion of results, both variables are combined into one,
the overhead, which we define as the ratio between the total number of coded symbols
and the total number of symbols generated by the transmitter. As can be observed in
Figure 3.1, by the end of the transmission (φ − 1) ⋅ r additional coded symbols are sent.
The overall number of coded packets C that protect S source symbols can be calculated
as follows:

C = (⌈S
k
⌉+ φ − 1) ⋅ r = (⌈ S

⌊g/φ⌋⌉+ φ − 1) ⋅ r (3.3)

From C, the overhead Ô can be obtained as follows:

Ô =
C

C + S
=

(⌈ S
⌊g/φ⌋⌉+ φ − 1) ⋅ r

(⌈ S
⌊g/φ⌋⌉+ φ − 1) ⋅ r + S

(3.4)

Combining coding techniques with a transport layer protocol that uses ARQ makes
sense only with relatively small generations. If generations are too big, losses will be
recovered with retransmissions requested by a feedback signal. Despite this fact, to
better assess the behaviour of this coding scheme when the overlap grows, especially
the overhead variations, the use of big generation sizes is more appropriate.

3.2.4 | Results
In order to better understand the impact of both the redundancy per generation and
the overlap over the coding scheme, a simulation campaign has been carried out with
the following input parameters: generations of g = 64, 256 symbols; overlaps of φ =

1, 2, 4, 8, 16 generations; 2000 source packets (symbols) are transmitted; loss rates of 1%,
5% and 10% with a uniform erasure distribution, and an overall loss rate of 10% with
burst losses, having a mean burst duration of 5 time slots (mean gap duration: 45 time
slots). In order to ease coding scheme analysis, the memory at the receiver is considered
big enough to store all source and coded packets sent by the transmitter. Furthermore,
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(b) 5% loss
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(c) 10% loss
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Figure 3.3: Probability of receiving and recovering transmitted packets (a–d) and end-
to-end delays (e–h) for generation size of 64 symbols. The plots are depicted for uniform
losses of 1% (a, e), 5% (b, f) and 10% (c, g), and burst losses (d, h).

to ensure statistical tightness of the results, 10000 independent experiments have been
run for every configuration.

The results are shown in Figure 3.3 and Figure 3.4. The top rows show the probabil-
ity of receiving or recovering all source packets for different loss models. The bottom
row depicts the mean end-to-end delay. As mentioned in Section 3.2.3, delays are only
studied when it is worthy (i.e. all packets were received). We include in all cases the
95% confidence interval.

In Figure 3.3c it can be observed that the reception probability with an overlap of 8
generations is not always higher than the one observed for overlaps of 2 and 4 genera-
tions. The same can be seen in Figure 3.3d, where the probability with φ = 16 at some
points is lower than with φ = 4 and φ = 8. This is due to the distance between the
available samples. The points in which lower overlap schemes have higher reception
probability are simply not available for schemes with greater overlap. For a fair com-
parison we would need to focus only on those overhead values for which the samples
of all curves under comparison are defined. At those points where the communication
overhead generated by coded symbols is comparable, schemes with higher degrees of
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Figure 3.4: Probability of receiving and recovering transmitted packets (a–d) and end-to-
end delays (e–h) for generation size of 256 symbols. The plots are depicted for uniform
losses of 1% (a, e), 5% (b, f) and 10% (c, g), and burst losses (d, h).

overlap are more likely to receive all the transmitted symbols.

In Figures 3.3 and 3.4 we can see that by having a greater overlap, the reception
probability increases and so delay decreases, being the latter the main advantage of
SysNC with overlap. According to these results, latency decrease is proportional to φ,
as could have been expected, since the blocks (as defined in Section 3.2.1) are precisely
φ times smaller than the blocks of SysNC with no overlap. The conclusion of these
observations is that within a given overhead, it is more efficient to increase overlap than
to have a greater number of redundant symbols per generation.

It is important to keep in mind that the bigger the overlap, the faster the overhead growth
rate becomes, as redundancies per generation increase. With respect to the possible imple-
mentations of this scheme in the IoT field, it should be noted that it might be impossible,
due to device limitations or implementation requirements, to increase the overlap. It is
thus important to bear in mind that the greater the degree of overlap to be used, the
larger the overhead, since there are more redundancies per generation.

An interesting aspect is the overhead at which reception probability reaches its max-
imum value. We refer to it as saturation overhead. This parameter is of special interest
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Figure 3.5: Saturation overhead values for different cases covered by the present study.

when it comes to implement NC in a network with restricted bandwidth. Given that
the delay was only studied for those overheads at which reception probability reaches
1, saturation overhead corresponds to the first sample of the delay curve, shown in Fig-
ures 3.3 and 3.4. Figure 3.5 shows saturation overhead for all configurations. As can be
observed, larger overlap does not necessarily lead to lower saturation overhead. This
parameter depends both on the ability of the encoding scheme to recover lost packets,
and on the overhead it introduces, so no clear conclusion can be drawn regarding this
parameter.

When it comes to choosing overlap and redundancies per generation, it is important
to identify the lowest possible saturation overhead. In other words, to find the config-
uration that will ensure the recovery of most of lost packets with the lowest possible
overhead. As the overlap increases, the saturation overhead may increase rather than
decrease. By optimizing the saturation overhead, the latency may not be optimal. It is
therefore essential to prioritize between channel efficiency (throughput) and delay.

3.2.5 | Summary
This section has studied a convolutional SysNC from an unusual perspective, focusing
on overlapping generations rather than on a coding window.

It was observed that full message reception latency reduces proportionally to the ap-
plied overlap, which was expected, since this parameter defines the frequency at which
coded symbols are inserted. Greater overlap implies a greater overhead. Nevertheless,
certain levels of overhead are achieved both by increasing overlap and redundancies per
generation. Reaching such values of overhead by increasing overlap is more beneficial
for the latency.
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In this work we have also identified saturation overhead, which we define as the
overhead at which reception probability reaches its maximum. Minimizing saturation
overhead optimizes throughput, but not the delay. It is therefore essential to find the
trade-off between channel efficiency (throughput) and delay to make the most use of
this scheme.

In the absence of feedback about received packets (which reveals the lost ones), this
coding scheme is among of the best ones to efficiently recover losses in minimum time.
However, extending QUIC with this scheme could be challenging due to the original
ARQ loss recovery. When the transmitter knows which are the missing packets, it can
retransmit them instead of sending the coded ones, avoiding decoding operations at
the receiver and saving time. Next sections detail the design and evaluation of the FEC
extension. The integration of coding schemes is further discussed in Section 3.4.

3.3 | rQUIC Architecture
QUIC has been developed considering a traditional client/server communication: the
receiver (client) downloads the information sent by the transmitter (server). Also, it is
assumed that there may be circumstances (congestion events or packet erasures) where
losses occur, and not all transmitted information correctly arrives at the receiver. To
recover lost packets, QUIC relies on the classical ARQ mechanism, missing even faster
recovery techniques offered by FEC.

This section presents the high-level rQUIC architecture, depicting the interactions
between its components. The extension presented in this work applies FEC to short
header QUIC packets. Packets with long headers used before handshake is finalized
are not modified. Figure 3.6 illustrates the architecture of the proposed extension. The
main components are the encoder, integrated within the transmitter operation, and the
decoder, which is placed at the receiver’s side. The figure also shows the decoder’s
buffer, which stores packets that might be needed for future decoding operations.

3.3.1 | Encoder
The encoder intercepts short header QUIC packets transmitted by an application, uses
them to build coded packets, and inserts the rQUIC header. Furthermore, it uses the
congestion window size and losses detected from ACK frames to determine when a
coded packet should be transmitted. A more detailed description of the coding opera-
tions is provided in Section 3.4.
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Figure 3.6: rQUIC architecture

The encoder processes packets in different ways. If a QUIC packet carries any frame
that would eventually be acknowledged, it will be protected with a coded packet. Oth-
erwise, it does not need to be protected and it will thus be ignored. Hence, rQUIC packet
types must be clearly identified. Three main rQUIC packet types are introduced, whose
signaling is discussed in more detail in Section 3.5.1.

■ Unprotected Packet (UP): they will not be acknowledged by the other endpoint.

■ Coded Packet (CP): linear combination of source packets.

■ Protected Packet (PP): source packets protected by CPs. These are transmitted, in
systematic coding schemes, with minimal FEC signaling, and can thus be used by
the application as soon as they are received.

3.3.2 | Decoder
The decoder removes the rQUIC header from the source packets and uses CPs to recover
the missing ones. It tries to recover as many packets as possible upon receiving a PP or
CP. Depending on the packet type, the following may occur:

■ Unprotected: the decoder removes the rQUIC header, and forwards the packet to
QUIC session.

■ Protected: the decoder subtracts it from every stored coded packet protecting it.
The source packet is then buffered for further decoding operations. Buffer opera-
tions are detailed below.

■ Coded: the decoder checks if it contains all the packets from the corresponding
generation. If no packet is missing, the new CP is discarded. Otherwise, the de-
coder tries to recover any source packet sent by the transmitter, by exploiting the
PP it already has. The recovered packets are then stored in the receiver buffer.
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3.3.3 | Receiver Buffer
As mentioned previously, the decoder buffers the packets for further decoding oper-
ations. In addition, this would also allow FEC module to recover packets that might
have been lost. Once source packets are passed to QUIC session, the latter might send
an ACK frame1 reporting all received and missing packet numbers. This could cause
packet retransmissions before the decoder can recover recent losses. However, hold-
ing source packets for a long time leads to an increase in latency. The decoder’s buffer
delivers source packets to the corresponding QUIC session when one of the following
conditions is met:

■ The packet is unprotected.

■ The packet is protected, and the previous one has already been delivered to QUIC
session.

■ The packet is protected, it is the first packet in the buffer, and there are no previous
PPs. In this case, the decoder cannot distinguish if there is a missing packet before
this PP packet.

■ At least 3 PPs2 from a newer generation were received. At this point it is assumed
that generation to which the undelivered packet belongs is already finished.

■ The packet has been buffered for too long, and it should be released after a Buffer
Timeout (BTO) to avoid compromising QUIC recovery.

Short BTO would make the buffer deliver non-consecutive packets to QUIC session
too early, triggering packet retransmission before the decoder was able to recover it. On
the other hand, there must be a tradeoff, and BTO should not be too long, as it might
delay retransmission when the decoder is not able to recover a loss.

One of the transport parameters defined during connection establishment is the
maximum ACK delay [IT20], in which an ACK must be sent for any packet. Therefore,
this work defines BTO as the maximum ACK delay D with a certain margin M:

BTO ∶= D − M (3.5)

The margin M is set to 1 ms. The default maximum ACK delay is 25 ms [IT20]. In the
quic-go implementation, the endpoints set their ACK delays to 26 ms, and thus BTO in
the following experiments is set to 25 ms.

1The normal operation establishes that an ACK is sent every two received packets, but this might
change depending on the implementation.

23 is the recommended value for kPacketThreshold, packet reordering threshold [IS21].
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3.4 | FEC Operations
This section provides details on how FEC operations are performed at both the encoder
and decoder, their configuration, and other operations on which they depend.

3.4.1 | Coding Configuration
An encoder builds CPs and decides when to send them. CP building techniques are
coding schemes that define how source symbols should be combined to build the coded
ones. The proposed rQUIC encoder is designed such that new coding schemes are easy
to incorporate. In the implementation used in the experiments reported in this work,
both XOR and systematic RLC are supported.

The distribution and frequency of CPs depend on the following parameters, intro-
duced in Section 3.1:

■ Code Rate (Q): the rate between source and coded packets.

■ Generation size (g): the number of PPs used to create the CP that protects them.

■ Redundancies per generation (r): the number of CPs created to protect a generation.

■ Overlap (φ): the number of different generations to which any PP belongs at the
same time.

rQUIC encoder can adjust the number of CPs it sends based on network conditions
(more details are given in Section 3.4.2). To do so, it estimates the code rate Q required
to compensate a certain loss rate, estimated from received ACK frames. Then, the gen-
eration size g is calculated using equation 3.1. A generation is considered complete
when adding a new source packet will make encoder’s Q exceeds the required value, or
because the generation has reached its maximum size:

gen. complete ∶= (g + 1 > Qrφ) OR (g ≥ gmax) (3.6)

Redundancies per generation (r) and overlap (φ) are static parameters that are set at
the beginning of the connection. As explained in Section 3.1, r CPs are inserted every
g/φ = Qr PPs. The lower the distance between the CPs, the more often the decoder per-
forms recovery operations. To minimize this distance, r should be set to 1 redundancy
per generation.

Big values of overlap φ yield a greater robustness, as well as a generation size in-
crease. Although losses at the beginning of a generation could be recovered by FEC,
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ARQ might recover them sooner. Moreover, a greater φ requires more memory at the
decoder. For these reasons, the use of a large φ is impractical in protocols with ARQ. The
value that minimizes the decoder buffer’s length and increases the usefulness of CPs is
φ = 1. However, if QUIC feedback mechanism is changed to optimize the use of FEC,
such as replacing ARQ scheme with Hybrid Automatic Repeat reQuest/Query (HARQ),
then greater values of φ could improve FEC efficiency. FEC extension described here is
meant to extend but not modify existing QUIC functions.

The most practical coding scheme for adaptive code rate, complying with the con-
dition r = φ = 1 seems to be the traditional XOR used in this study. Other values of r
and φ might lead to more efficient configurations, yet more complex interactions with
the corresponding congestion control schemes. Research on other configurations is left
for future studies.

Upon generation completion, the CPs are sent with the last PP it protects. There is a
risk of comprising the transmitter sending rate, known as pacing. [TT21] recommends
implementing a pacing mechanism, and quic-go has one. However, the impact on pac-
ing should be minimal, when using the XOR scheme with only one CP per generation.

At the receiver side, the decoder will try to recover as many lost packets as possible
with every new PP or CP. When a new PP is either received or recovered, it is subtracted
from all the received CPs protecting it. Upon each CP reception, the decoder checks if
any of corresponding PPs are missing. If no PP is missing, the new CP is discarded.
Otherwise, all received PPs corresponding to the new CP are subtracted from it. If the
generation of CP suffers more than one loss, the subtraction will not recover them, and
the resulting CP will still protect at least two packets. In this case, the decoder will
try to decode as many source packets as possible, solving the corresponding system of
equations, built with all CPs previously buffered.

3.4.2 | Dynamic code rate
To correct packet losses in environments with unpredictable and varying loss rates, the
extension proposed includes the dynamic code rate. The adaptive approach helps re-
cover losses without overloading the link with the CPs. The algorithm used is proposed
in [GSF+19, FKCA18].

The code rate Q changes depending on the Residual Loss (RL), defined as the rate
between lost and delivered packets. rQUIC encoder takes this information from the
received ACK frames. RLs are observed throughout a time period T over N periods,
and then the average value is used. As in the original experiment, the period depends
on the RTT, T = 3 ⋅ RTT, and so the number of periods is N = 3.
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The corresponding dynamic code rate update is presented in Algorithm 1. If the FEC
scheme does not prevent losses, Q should be decreased to introduce more CPs. If few
(or no) losses are observed, Q should be increased to reduce the redundancies sent to the
network. Hence, if the average RL is greater than a certain threshold γ, Q is multiplied
by 1 − δ; otherwise, Q is multiplied by 1 + δ, where δ is an arbitrary parameter. In the
current implementation, γ = 0.01 and δ = 0.33.

Algorithm 1 Adaptive code rate in rQUIC

1: Q ← Qinit
2: if RL > γ then
3: Q ← Q × (1 − δ)
4: else
5: Q ← Q × (1 + δ)
6: end if

In the absence of losses, Q may grow beyond CWND. If the latter closes, the CP
protecting the last PPs will be sent after CWND opens again. If one of the PPs from
the last generation is lost before CWND closes, it will not be recovered with FEC. To
minimize such cases, the code rate is kept below the CWND (expressed in terms of
packets). To convert the CWND from bytes to packets, the maximum QUIC packet size
allowed by the implementation is used.

3.5 | rQUIC Implementation Details
Hereafter, the QUIC specification is corresponding to the draft version 29 [IT20], which
was implemented in the base code chosen at the time of experimentation.

3.5.1 | Packet Fields
Protecting QUIC packets requires distinguishing coded packets from source packets. In
addition, for correct recovery and in-order delivery, the source packets must be appro-
priately signaled. One approach is to insert these new fields as new frame types. In
this way, all rQUIC signaling and coded payloads are encrypted within a QUIC packet.
This implies that coding coefficients, a new field, will also be encrypted. However, intra-
session NC might use middleboxes (recoders) to improve performance, as discussed in
Section 2.2. Although extending QUIC with NC is beyond the scope of this study, the
coding coefficients are left unencrypted. This implies that FEC coding is called after
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QUIC finishes its own encryption, whereas decoding is performed before QUIC de-
crypts.

There are other ways to enable the use of NC with QUIC, such as tunneling and the
establishment of dedicated QUIC connections for each hop. These solutions are more
complex, and the comparison in terms of complexity, connection establishment latency,
and power consumption impact on endpoints, such as cybersecure IoT edge devices,
define another line of research on their own.

Figure 3.7 illustrates the new fields introduced by rQUIC, which are explained in
more detail below.

1st Byte

Type = 1 Packet ID Gen. ID Overlap
QUIC Connection ID

Payload

1st Byte

Type = 0
QUIC Connection ID

Payload

Unprotected Packet (UP)

Protected Packet (PP)
Payload length

Payload
1st Byte

1st Byte

Type > 1 Packet ID Gen. ID Gen. Size
QUIC Connection ID

Seed or

Coding Coefficients

Coded Packet (CP)

Figure 3.7: New fields for different types of rQUIC packets.

3.5.2 | Headers
The fixed part of the short header packets ends with the Destination Connection ID
field [Tho21], after which rQUIC headers are inserted. For correct header insertion, the
original QUIC packet size is limited during construction.

The decoder applies different operations to different packet types. Therefore, the
first field is the type: PP, UP, and CP. CPs also need to specify the coding scheme used
for their creation, that is, coded packet sub-types. In this work, it is used one byte for
the type field, including the coding schemes used by the CPs.

All rQUIC packets, in addition to the unprotected ones, need to be identified for
correct recovery operations. The next field corresponds to the packet ID, which is 1
byte-length. Packet ID is a sequence number incremented by one after each PP, allowing
the identification of PP within the generation. rQUIC reuses old packet IDs. CPs cover
multiple PPs and take their IDs from the last PP they protect.

Long generations with a systematic coding scheme might generate CPs that, due to
packet ID reuse, might look obsolete. This issue can be overcome by identifying gener-
ations using their own IDs. Generation IDs also help the decoder to identify obsolete
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packets. This field is also 1 byte long and reuses its IDs. As mentioned in Section 3.1, PPs
can belong to multiple generations; therefore, they indicate the most recent generation
to which they belong.

Owing to the packet ID field, it is known that the most recent PP a CP is covering.
The next CP field after generation ID, which is also 1 byte long, indicates the generation
size. rQUIC has been designed to accommodate non-sparse coding schemes. A sparse
coding scheme should set this field as if it was covering all PPs between the oldest and
the most recent ones, indicating skipped packets with coding coefficients set to 0 in the
next field.

Depending on the coding scheme, the CP might need to indicate the coding coef-
ficients that were applied to its PPs, or the seed used to generate them. The size and
use of this field depend on both the coding scheme and the generation size, which were
included in previous fields. An RLC scheme will use this field to include its coefficients,
so its length equals the generation size. On the other hand, the XOR scheme does not
use this field because its coding coefficients are always one.

The use of variable-size generations implies dealing with a different number of cod-
ing coefficients. For coding schemes that write their coefficients in the protocol header,
such as RLC, the corresponding field length would also be dynamic. The longer the gen-
eration, the smaller the packet payload. It is not possible to know its size in advance,
especially during PP assembly. Based on the results obtained in [GSF+19] (cf. Figure 2
in that paper), the maximum generation size is set to 63, only reached in the absence of
losses.

Because the CP header is longer than the PP header, the PP payload should be lim-
ited to the maximum size of the CP payload. The implementation proposed in this
work, sets the PP header as long as the CP header without coding coefficients, writing
in the fourth field the overlap value used by the encoder.

3.5.3 | Payloads
QUIC leaves unprotected the Connection ID field, as well as some bits of the first byte
[IT20]. On the other hand, the payload of both the PP and UP goes after the rQUIC
header. Because the first byte is partially protected, the FEC must also protect it.

For the CP payload, PP payloads of different lengths can be padded before cod-
ing. When transferring large volumes of information or downloading web page objects,
most of the packets would be of full length, and only the last one would need padding.
However, in the case of an IoT traffic aggregator, with highly variable packet lengths,
padding can be much more relevant. An IoT traffic aggregator bundles information
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from edge devices into a single flow and sends packets either because they are of full
length or upon a timeout expiration. Instead of padding, rQUIC includes the packet
length in a dedicated field of 2 bytes.

The coded payload of the CP consists of three fields: (1) the length of the remaining
payload, (2) the first byte, and (3) the rest of the QUIC packet after the connection ID.
This is the payload that the FEC uses to build a CP, highlighted with a square pattern in
Figure 3.7.

To guarantee privacy, endpoints may change their connection IDs, which is the only
field that remains unprotected by FEC. If such a change occurs before a generation is
complete, the new CP will have a new connection ID. Then, if this is used to recover
a PP that was lost before the ID change, the recovered QUIC packet will differ from
the original packet in its connection ID. QUIC implementation at the client’s side might
keep track of the first packet number corresponding to the current connection ID, inter-
preting older packet numbers sent with the new connection ID as an attack, as QUIC
never repeats packet IDs. FEC activity does not aim to undermine the original QUIC
operation, nor should it appear to be doing it. Therefore, the encoder checks the desti-
nation connection ID, and if it changes, sends all coded packets even if it temporarily
increases the coding rate. In this way, every CP will cover PPs with the same connection
ID.

3.5.4 | Obsolete Packets
The decoder must keep all packets from a generation to decode its CPs. If generations
are overlapped, old CPs combined with recent ones could also recover more recent
losses along with the older ones, if the decoder keeps enough buffered packets. Because
there might be memory limitations, obsolete packets should be detected and discarded.

As explained in Section 3.5.2, packet and generation IDs, defined in PPs and CPs,
are 1 byte long, and their values are reused once the maximum value is reached. The
difference between recently arrived packet IDs is expected to be very small; therefore,
the comparisons are rather simple. Nevertheless, it is important to define which IDs
are considered more recent or older, compared to a specific one. It is considered half of
the 1-byte number space for recent IDs, and the other half, for the reference ID and the
older ones. As illustrated in Figure 3.8, an ID m is newer than ID n if it lies in the range
of consecutive IDs, starting with n + 1. The rQUIC implementation uses equation 3.7 to
see whether an ID k is older than ID n.

(n − k) % 256 < 128 (3.7)
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Figure 3.8: rQUIC ID comparison

As was mentioned above, if generations are overlapped, the decoder might not be
able to recover lost packets during a long time, until it finally receives enough CPs to
recover all losses at once. In a practical implementation, the decoder shall give up on
recovering old losses to avoid increasing the latency. A reasonable number of genera-
tions is kept, established as the overlap φ plus a margin, set to 1. equation 3.8 is used to
obtain the oldest valid generation G, being M the margin of generations to keep.

Goldest = Glast seen + 1 − φ − M (3.8)

Discarding ‘obsolete’ packets only based on the generation ID could still leave in
the decoder buffer many packets, most of which would not be needed to recover lost
and not retransmitted ones. Hence, the decoder will discard all packet IDs older than
the oldest allowed one. The decoder calculates the Oldest Valid Packet ID (OVPI) in
different moments. First, right after receiving a PP or a CP, the decoder will take its
packet ID as the last seen packet ID, and calculate OVPI as shown in equation 3.9. The
OVPI is also updated when the decoder detects a packet from an obsolete generation.
The new OVPI is the next packet ID after the obsolete one. In both cases the decoder
will update the OVPI only if the current value is older, according to equation 3.7.

poldest = plast seen − 128 + 1 (3.9)

3.5.5 | Assumptions and Design Simplifications
The coding extension for QUIC proposed in this work has been designed to support
other schemes, and thus exploit the potential benefits of combining QUIC with, for in-
stance, NC. For this purpose, FEC headers and coding coefficients are added after QUIC
encrypts its packets. On the other hand, unencrypted coding coefficients can be used
for pollution attacks. Although there are ways to protect the protocol operation against
them [ATP20], they can be completely avoided by applying coding techniques before
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encryption, leaving coefficients encrypted, as in [MDB19]. Furthermore, unencrypted
and recyclable packet IDs can also be used to hinder communication. Coding before
encryption not only protects these IDs, but also simplifies the whole process because
QUIC packet IDs can be used for FEC.

Even if FEC is applied before encryption, the difference between protected and
coded packet lengths may reveal that the communication is protected by the FEC. It
also allows the classification of protected and coded packets. The implementation pro-
posed uses shorter headers for PPs than for CPs. By making PP headers as long as CP
headers, most PPs will be as long as CPs.

As discussed in Section 3.5.3, there can be cases of frequent short packets not reach-
ing full length. In these situations, even with the same header length for PPs and CPs,
a CP will be detectable because it would be as long as the longest PP it is protecting.
One possible solution would be to artificially increase the payload of some randomly
selected PPs after the encoder has processed them, so that PPs sent to the network seem
larger than CPs. Another option would be to randomly split the CP payload into two
packets. Their lengths would not be necessarily similar, and if one of them was shorter
than the average PP, they could be expanded with random values that would be dis-
carded at the decoder.

One of the key functionalities of CCAs at the transport level is to detect conges-
tion events, and to take appropriate corrective actions, such as limiting the transmis-
sion rate. If the encoder is not appropriately configured, it might increase the network
congestion with its CPs. Furthermore, it is well known that congestion losses usually
occur in bursts, as Cataltepe and Moghe concluded in [CM03]. On the other hand,
[KLMW22] suggests that FEC coding could likely benefit communications with persis-
tent non-congestion losses, which is often the case for wireless networks.

Hence, the main assumption of this work is that isolated losses are mostly caused
by transmission errors rather than actual congestion. This innovative design also aims
to avoid tampering with the operation of CCAs. In this sense, rQUIC is configured to
send only one CP per generation, and the generation sizes are limited to the CWND.

3.6 | rQUIC Evaluation Results
This section discussed the evaluation that it was carried out to assess the performance
yielded by rQUIC and compare its behavior with that exhibited by the traditional QUIC
operation.
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3.6.1 | Setup
To carry out the experiments, we exploited the ns-3 simulator3 version 3.30.1. All net-
works have the same topology, as depicted in Figure 3.9. The corresponding binary files
of rQUIC test applications are placed in lxc containers4 (Ubuntu Trusty Tahr images),
which are connected to ns-3 ghost nodes through CSMA links with large bandwidth
and low delay. These ghost nodes are then connected with a point-to-point link, whose
characteristics are modified in the experiments to emulate different technologies and
network conditions.

Linux Container

QUIC
Client

Linux Container

QUIC
Server

ns-3 Simulated Network

CSMA
1 Gbps

CSMA
1 Gbps

p2p: {bw, rtt}

Figure 3.9: Emulation Scenario

The point-to-point link behavior depends on three parameters: BW, RTT, and loss
rate. We consider three networking technologies, with different BW and RTT, and then
evaluate rQUIC performance over the three of them, modifying the loss rate.

In particular, we selected the same parameters as those used in [GSF+19]. We aim to
loosely model the following technologies: (1) Wi-Fi (BW = 20 Mbps, RTT = 25 ms); (2)
cellular (10 Mbps, 100 ms); and (3) satellite (1.5 Mbps, 400 ms). In all cases, we introduce
different link error rates, α: 0, 1, 2, 3 and 5%.

As discussed earlier, rQUIC can use adaptive or static code rates. In all our exper-
iments, we used adaptive code rate, with residual loss threshold γ = 0.01 and ratio
variation parameter δ = 0.33, as mentioned in Section 3.4. The residual loss measure-
ment period is of 3 RTTs, and it is averaged over 3 measurement periods. As explained
in Section 3.4.1, we used XOR as the coding scheme in all experiments, so the number
of redundancies per generation (r) and overlap (φ) were both set to 1.

3https://www.nsnam.org/, Accessed: 23rd April, 2023.
4https://linuxcontainers.org/, Accessed: 23rd April, 2023.
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3.6.2 | Bulk Transfer
The server test application is launched in one container and waits for incoming commu-
nications. The client test application connects to the server from another container, and
as soon as the connection is established, the server transmits 20 MiB of random data for
the Wi-Fi and cellular configurations, and 5 MiB for the satellite.

We then compared the performance exhibited by QUIC and rQUIC by measuring
the download completion time, which is defined as the time required to complete the
transfer. In addition, to facilitate the comparison between the two protocols, we intro-
duce the completion rate, as defined in equation 3.10. This corresponds to the rQUIC
completion time divided by the average of the corresponding QUIC measurements. In
this sense, a value of ξ lower than 1 implies that rQUIC outperforms QUIC.

ξ =
rQUIC Completion Time

QUIC Completion Time
(3.10)

As discussed earlier, a coding scheme (in particular, FEC) aims to improve communi-
cation performance at the expense of sending extra packets to the network. Hence, in
addition to completion times, we also study the overhead Ô caused by coded packets:

Ô =
CP

PP + CP
(3.11)

Figure 3.10 shows the results of the bulk transmission experiment. We ran more than
1150 independent experiments for each configuration. Whisker plots were used to rep-
resent the overall delay observed for both QUIC and rQUIC. The boxes represent the
interquartile range with the median mark inside of the boxes. The whiskers represent
Tukey fences. The overhead bar plots (Figure 3.10d) 95% confidence intervals are rep-
resented, although they are difficult to appreciate, since the results are statistically very
tight.

For loss rates greater than zero, rQUIC clearly outperforms QUIC. For the Wi-Fi
network (Figure 3.10a), the rQUIC completion time is less than half of the QUIC time
in most runs. As the loss rate increased, the improvement became more relevant. For
instance, when the packet loss rate is 5%, rQUIC completes the 20 MiB downloads in
less than 40% of the QUIC completion time. Similar completion time reduction patterns
can be observed for the other technologies, where the gain brought by rQUIC becomes
more relevant when the loss rate increases.

On the other hand, the figure also shows that rQUIC performs well over ideal chan-
nels (0% loss), although the completion time is slightly larger than that shown for QUIC,
owing to the small overhead introduced by CPs. Figure 3.10d shows that at a 0% loss
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Figure 3.10: Completion time for bulk transfer and the overhead generated by coded
packets.

rate, when there is nothing to recover, rQUIC continues to send some CPs. However,
this time increase is very small, and it can hardly be appreciated in Figures 3.10a–3.10c.

Figure 3.10d shows that rQUIC sends more CPs as the loss rate increases. Further-
more, we can also see that more CPs are sent for cellular and satellite technologies,
which means that rQUIC observes more losses in these scenarios.

Despite the higher overhead observed for longer RTT values, the results indicate that
the gain of the proposed scheme is less relevant for satellite and cellular links, regardless
of the loss rate (i.e., when it is greater than 1%). In this sense, the completion time rate
stays below 50%, 70%, and 80% for Wi-Fi, cellular, and satellite links, respectively. This
behavior can be explained by the decoder’s buffer delivering non-consecutive packets
(the ones arriving after a loss event) to the QUIC session too early. In these cases, FEC
has fewer opportunities to recover lost packets, and thus QUIC reports losses to the
transmitter, whose encoder will send CPs more frequently to compensate for the ob-
served losses.

As explained in Section 3.3, the buffer delivers non-consecutive packets to QUIC
because either the BTO has been reached, or at least 3 packets from a more recent gener-
ation have been received. The latter will contribute to early packet delivery when gen-
erations are small, which is a consequence of the increased code rate. The most likely
cause of this performance loss is inappropriate BTO values. A more detailed discussion
of the impact of BTO on the performance is included in Section 3.6.5.

The above analysis reveals that excessive overhead can impair FEC by making the
decoder’s buffer see new generations too often. Another consequence of excessive over-
head is tampering with the congestion control. To better understand this circumstance,
we obtained the average code rate from Figure 3.10d.
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The overhead Ô defined in equation 3.11 can be rewritten as follows, where ḡ is the
average generation size, and Q̄ is the average code rate.

Ô =
rφ

ḡ + rφ
=

1
ḡ

rφ
+ 1

=
1

Q̄ + 1
(3.12)

From equation 3.12 the average code rate can be calculated as:

Q̄ =
1
Ô

− 1 (3.13)

Figure 3.10d shows that at a loss rate of 5%, the overhead is above 20%, surpassing
25% for the satellite network. Applying equation 3.13, such overheads correspond to the
average code rates of 4 and 3, respectively. Because we are using the XOR scheme, the
average generation size is, at a 5% loss rate, below 4 packets, very close to QUIC’s rec-
ommended minimum CWND of 2 packets [IS21]. Although at this loss rate the rQUIC
completion time is less than a half of that achieved by QUIC over all networks, the in-
teraction with congestion control should not be neglected. Hence, the assumption that
only 1 redundant packet per generation should prevent worsening congestion events
might not be true for network conditions that require high overhead.

Figure 3.11 compares the results with those obtained in [GSF+19] by illustrating the
completion rate metric for both cases (the results of our implementation are represented
with stronger colors). Confidence intervals have not been represented to simplify the
comparison. As can be seen, the rQUIC implementation discussed in this paper ex-
hibits a similar performance to the previous implementation, yielding better behavior
when the channel conditions worsen. In addition, the results indicate a more sensible
behavior, since the gain with the original QUIC increases for higher loss rates shows
a more sensible relationship with the underlying technology (i.e., RTT). In any case, it
is worth noting that the QUIC code base was a different one, and that the number of
experiments that we used to obtain our results is more than 10 times, which ensures a
more precise characterization. In this case, we could not compare the performance of
rQUIC with QUIC-FEC [MDB19] because they did not assess the performance of their
solution with bulk transfers.

3.6.3 | Webpage Download
This experiment is similar to the one described for bulk transfer. Instead of bulk-data
transmission, the client downloads a web page from the server using HTTP. To appro-
priately emulate web traffic, we used the tool Epload5, which saves downloaded objects

5http://wprof.cs.washington.edu/spdy/tool/
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Figure 3.11: Bulk transfer average completion rates for the current rQUIC and its previ-
ous version presented in [GSF+19].
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Figure 3.12: Completion time for web page download and the overhead generated by
coded packets.

and records a dependency graph. These graphs allow us to precisely mimic webpage
download patterns, including the time used to process the objects.

The goal of this experiment was to evaluate rQUIC in short-lived communications
with realistic traffic dynamics. We used the flickr.com webpage, obtained from Eproof
example data sets6.

Figure 3.12 shows the results of the web page download experiment. We performed
3500 independent experiments for each configuration, thus ensuring the statistical va-
lidity of the results.

The web experiment results show a similar trend to those discussed for bulk transfer.
In the presence of losses, rQUIC strongly improves the QUIC completion times. Under
ideal conditions, the results were similar.

One aspect that becomes more visible in this experiment (see Figure 3.12a) is that
QUIC completion times have much greater dispersion than rQUIC. This aspect might be

6http://wprof.cs.washington.edu/spdy/tool/server.tar.gz

46

http://wprof.cs.washington.edu/spdy/tool/server.tar.gz


Chapter 3. Forward Error Correction 3.6. rQUIC Evaluation Results

of interest, since services with stringent real-time requirements should not only ensure
a particular average delay, but also an acceptable jitter (variability).

When the QUIC connection is established, the initial CWND grows rapidly until
the first loss event. The larger the CWND, the more data is advanced before it shrinks.
When the first loss occurs, more or less data will be transferred, having an immediate
effect on the connection termination time. This initial CWND variation effect especially
impacts short communications, such as the web page download experiment presented
here. To better understand this effect, Figure 3.13 illustrates the evolution of the CWND
for two QUIC connections over a satellite link, with a 5% loss. The first one (red) reaches
large CWND values, and it finishes (completing the web download) in less than 70 sec-
onds, while the second one (blue) suffers a loss at the beginning of the connection, which
yields an early CWND shrink, causing the download time to go beyond 110 seconds.
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Figure 3.13: Original QUIC CWND evolution for a fast and a slow web page download
over the satellite link at 5% loss.

The main reason for dispersion reduction with rQUIC is that FEC recovery prevents
CWND from shrinking in the presence of a stable loss rate, and thus delays a strong
CWND shrink at the beginning of a communication.

The overhead behavior (both in terms of network technology and loss rate), illus-
trated in Figure 3.12d is similar to that discussed for the bulk transfer experiment. We
can see that the web experiment yields lower overhead. This is due to the shorter com-
munication duration, as well as to the initial generation size, which is as large as the
initial CWND, that is, 32 packets. This results in an overhead that might not be suffi-
cient for certain network conditions.

As we also observed in the bulk experiment, Figure 3.12d shows that, as the RTT
increases, the overhead increases, although, as can be seen in Figures 3.12a–3.12c, rQUIC
completion time does not necessarily improve, compared to QUIC. The reason for this
overhead increase, without a clear FEC performance improvement, is likely the same as
that discussed for the bulk transfer experiment: a too short BTO. Further discussion on
BTO is included in Section 3.6.5.
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As was done for the bulk experiment, Fig 3.14 compares the performance exhib-
ited by the rQUIC implementation discussed here with the one discussed in [GSF+19].
In this case, we can see that the corresponding completion rates exhibit much better
behavior. Again, the relationship between both the loss rate and RTT is more sensi-
ble. In this case, the behavior of the cellular and, especially, the satellite technologies
is clearly better than that obtained in [GSF+19]. Again, it is worth highlighting that,
although the characteristics of the experiment are similar, we have used a more recent
QUIC code base, and the number of experiments is notably higher than those that were
run in [GSF+19].

Figure 3.14: Web page download average completion rates for the current rQUIC and
its previous version presented in [GSF+19]

The results presented by Michel et al. in QUIC-FEC [MDB19] are not directly com-
parable with ours owing to different setups and coding schemes. They only used two
scenarios: (1) Direct Air-To-Ground Communication, with a bandwidth of 0.468 Mbps,
where FEC yielded a worse performance, due to a large overhead of 33.33%. (2) Mobile
Satellite Services, with a bandwidth of 1.89 Mbps, an RTT of 761 ms and a loss rate of
6%. In the latter case, the 1 MB file transfer is somewhat similar to our web page down-
load experiment, where less than 2 MB is transferred with a bandwidth of 1.5 Mbps,
an RTT of 400 ms, and a maximum loss rate of 5%. The rest of the experiments carried
out in [MDB19] imply the transmission of short files, and they are thus not comparable
with our results. While QUIC-FEC [MDB19] increases the completion time owing to
its relevant overhead, the rQUIC adaption scheme maintains the overhead at a reason-
able level, slightly greater than 25%, leading to a significant improvement compared to
the original QUIC. In any case, the setup parameters are not the same, and both imple-
mentations take different trade-offs: QUIC-FEC sacrifices bandwidth by sending more
redundant information, while rQUIC worsens congestion awareness by masking losses
from congestion control. Thus, we can conclude that a combination of an adaptive cod-
ing scheme, full congestion awareness, and an advanced CCA could bring additional
benefits.
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Figure 3.15: QUIC and rQUIC performance comparison using p1203 score.

3.6.4 | Video Streaming
The last bunch of experiments uses video streaming to ascertain whether rQUIC can
yield some gains with this real traffic.

Dynamic Adaptive Streaming over HyperText Transfer Protocol (DASH) is a stan-
dardized technique [II19] for sending video streams over HTTP. We used go-dash7, an
implementation in the GO language of the DASH protocol, published in [RMQ20], as
well as a DASH testbed8.

The DASH server streams “Tears of Steel” short movie. We used the p1203 [RGR+17]
Quality of Experience (QoE) parameter to compare rQUIC with QUIC. To better under-
stand the benefits of rQUIC, we also performed a qualitative comparison, by studying
the video resolution that was used under different network conditions.

Figure 3.15 depicts the average p1203 score with 95% confidence intervals for DASH
video streaming. For the Wi-Fi network (Figure 3.15a), the results indicate that rQUIC
outperforms QUIC when network conditions worsen (link error rate greater than 1%).
In the other two cases, the performance is almost similar to that exhibited by QUIC. In
the cellular network, rQUIC is able to yield a higher score than QUIC in all cases, but
for the ideal channel, where the performance is almost alike (i.e., rQUIC does not hinder
the performance exhibited by the original QUIC). These observations are aligned with
those observed in the two other experiments (bulk and web traffic). For the satellite
link, there is almost no difference between the two protocols, and rQUIC does not yield
any improvement compared to QUIC, as can be seen on Figure 3.15c. In any case, the
scores are rather low, implying that this technology might not be able to provide an
appropriate quality of service for this type of real-time application.

7https://github.com/uccmisl/godash
8https://github.com/uccmisl/godashbed
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To complement the previous p1203 score results, Figure 3.16 depicts the video reso-
lution probability distribution. The aim is to quantitatively show how rQUIC can out-
perform QUIC when using video streaming services by allowing the transmission of
higher quality frames. Because the results that were observed for the satellite tech-
nology evince rather low quality for both rQUIC and QUIC, we only illustrate, in Fig-
ure 3.16, the results obtained for Wi-Fi and cellular technologies.
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(b) Cellular (10 Mbps, 100 ms)
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Figure 3.16: QUIC and rQUIC performance comparison in terms of achieved video res-
olutions.

Figure 3.16a shows that when the loss rate is ≥ 2%, rQUIC is able to transmit higher
resolution frames than QUIC. Even for the worst conditions (5% loss rate), rQUIC can
maintain most of the resolutions at 1280 × 720, while with QUIC most of the time the
transmitted resolution is 640 × 360. For better quality channels (0% and 1% loss rate),
the resolutions for both QUIC and rQUIC are rather similar, corresponding to the p1203
score that was discussed earlier.

The same behavior is observed over the cellular link, where rQUIC clearly yields
better resolutions than QUIC when the conditions of the underlying links become worse
(Figure 3.16b). In this case, we observe this behavior for all values of loss rate, but for
the ideal case (loss rate 0%), where the resolutions that were seen for the two transport
protocols are almost alike.

3.6.5 | Buffer Timeout Exploration
We observed that the FEC performance worsened for larger RTT values. Our initial
assumption is that this degradation is caused by an inappropriate BTO value. However,
using a fixed BTO may not be a good solution for changing network conditions.

If packet transmission rate is paced, the optimum BTO can be searched according to
the pacing algorithm. Based on the recommendations in [IS21], quic-go implements its
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Figure 3.17: Average completion rates for different values of BTO in web page down-
load.
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Figure 3.18: Average completion rates for different values of BTO in bulk transfer sce-
nario.

sending rate as shown in equation 3.14, where sRTT corresponds to a smoothed RTT.
By default, the endpoints do not communicate their congestion windows, but each end-
point estimates the RTT. Thus, defining the BTO in terms of sRTT could yield a nearly
optimum value.

sending rate =
5
4

CWND
sRTT

(3.14)

To better understand the impact of different BTO values on the rQUIC performance,
we repeated the bulk transfer and web page experiments with different BTO values.

Figures 3.17 and 3.18 show the completion time rate (ξ) for a loss rate of 3%. The
figures show, with a vertical line, the RTTs of the three networks. The default BTO is 25
ms, corresponding to the RTT for the Wi-Fi network. Since there was some dispersion
in the results, caused by the dependency on both the congestion control algorithm and
the network conditions (loss rate), we have included, as thick lines, the 3rd order least
squares regression of the results observed for different BTO values.
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The corresponding trend would ease the identification of an optimum point, where
the BTO would yield a higher gain (shorter completion time).

Since the optimum BTO depends on the sending rate, impacted itself by the RTT, it
would be reasonable to expect that a BTO equal or proportional to the RTT would yield
a minimum completion rate. Figures 3.17 and 3.18 show the reduction in completion
rates for cellular and satellite links when BTO equals the underlying RTT. However, the
results indicate that lower completion rates might be obtained with BTOs greater than
RTT.

We can see that there is no clear or constant relationship between the BTO that yields
the minimum completion time and the corresponding RTT for the web traffic experi-
ments. In this sense, the minimum values in Figure 3.17 are observed at, approximately,
90, 240 and 700 ms for Wi-Fi, cellular and satellite links, respectively, 3.6, 2.4 and 1.75
times greater than their corresponding RTTs. Bulk transfer experiments neither yield a
constant BTO to RTT relationship, with minimum completion rates in Figure 3.18 found
around 300 (12 RTT), 400 (4 RTT), and 2500 ms (6.25 RTT) for Wi-Fi, cellular, and satellite
links, respectively. Thus we can conclude that the optimum BTO cannot be defined as
a function of RTT alone. However, a BTO that is equal to RTT seems to be a safe and
efficient solution for both short (web) and long (bulk) communications, as the difference
with the potential optimum performance is not very relevant.

On the other hand, excessively large BTO values would jeopardize the overall com-
munication delay. Figures 3.17 and 3.18 show that the completion time rates for the three
considered technologies grow as the BTO increases. This is due to the highest BTO val-
ues used for the test, which are comparable to the completion times in this particular
scenario. On the other hand, BTO values are approximately one order of magnitude
smaller than the completion times (see Figures 3.10 and 3.12) are greater than the opti-
mum BTO, and completion rates are growing (see Figures 3.18 and 3.17). This growth
is more difficult to appreciate in Figure 3.18 for cellular and satellite links, because the
communication is longer, and the observed growth rate is still low.

3.7 | Summary
This chapter has focused on integrating FEC functionality in a modern transport layer
communication protocol, namely QUIC. First, a thorough evaluation of coding schemes
has been done to choose those that would help minimize loss recovery latency. Next,
we presented the design and implementation of rQUIC, an integration of QUIC with
a FEC module. Our proposal can be configured to consider different coding schemes,
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including various Network Coding flavors. The implementation in the go language has
been made available in a public repository.

We assessed the performance of our proposed method by comparing it with that
exhibited by the original QUIC protocol. We exploited the ns-3 simulation frame-
work, which by means of virtualization, allows the integration of containers hosting real
nodes. Thus, we were able to use realistic traffic patterns. The simulator also allowed us
to perform repetitive and systematic experiments, in which different technologies and
conditions (link qualities) were considered. We used complementary traffic patterns,
embracing both long (with bulk data transmission) and short flows (typical for web
transfers). In the two cases, rQUIC clearly outperformed the original QUIC protocol, as
well as previous works that also integrated QUIC with a coding module. Furthermore,
we have also studied the benefits that the coding module could bring for a real-time
service, by integrating our proposal with the DASH protocol. In this case, the results
show that in scenarios where the video stream quality is reasonable, the use of rQUIC
increases the QoE perceived by the end user, allowing the transmission of frames with
a higher resolution.

To further enhance QUIC, we add MP functionality. There already is an ongoing
effort to define a basic MP for QUIC in the IETF [LMC+23], however few works have
evaluated the combination of QUIC, FEC and MP [VW21]. Next chapter details our
MP implementation and how MP and FEC can be combined to simultaneously boost
reliability and reduce latency.
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4

Multipath for Transport Protocols

MP techniques consist in using multiple paths through the network to connect the end-
points. The endpoints are not able to choose the exact network path, i.e., the routers that
will be traversed, nevertheless they can simultaneously use multiple network interfaces
if more than one are available. The resulting network paths would likely overlap, but
not in the close vicinity of the endpoints using multiple network interfaces.

MPTCP defines a path as a sequence of links between a sender and a receiver, iden-
tified at transport layer by a 4-tuple of source and destination address/port pairs, and
the data transmitted on a path is referred to as subflow [FRH+20]. An endpoint could
establish multiple paths over the same network interface using different ports, creating
overlapping sequences of links. Thus, it is necessary to distinguish between network
path, a sequence of links, and logical path, SoftWare (SW) defined path with its own
unique identification, the 4-tuple in case of MPTCP.

The first attempts of handling MP connections consisted in wrapping different SP
connections to present them as only one. TCP derived protocol pTCP follows this ap-
proach, wrapping TCP sockets in one socket available to the application [HS02]. How-
ever, transport layer connection need more synchronization than a simple wrapper. CC
applied separately to each transport connection adapts poorly if an intermediate node
used by multiple paths gets congested. The paths that are not the first ones to detect
the congestion will drop their packet transmission rates with a delay in which they will
be worsening that congestion. Moreover, uncoupled CCAs are not pareto-optimal: on
shared MP links the paths will use network resources as multiple SP connections, which
could result in throughput reduction of regular SP connections [LLO+16, JB22].

Probably the easiest approach to implement a MP extension is making maximal use
of SP code. MP can be seen as 2 or more SP connections, as in pTCP, but with shared
(synchronized) management, which includes flow and congestion control. Current draft
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specification for QUIC MP extension clearly states that it intends to maximally reuse
existing SP QUIC specification [LMC+23].

The architectures of original and extended QUIC are represented in Figure 4.1. The
rest of the chapter reviews QUIC architecture identifying the most relevant components
and describes technical details of our combined MP and FEC extension. To implement
our MP extension we follow both the specification [LMC+23], as well as the public dis-
cussion [IIa, IIb]. We focus on identifying connection management, which ensures the
original SP connection. We describe how this connection management is reused to cre-
ate new paths and the way multiple paths are synchronized. Then we describe the
integration of FEC in MP environment. For MP experiments we use the same quic-go

implementation as in Chapter 3.

4.1 | QUIC Components
Figure 4.1a shows the most important components of original QUIC that will be affected
by FEC and MP extensions. These components form two groups: data and connection
management.

QUIC was designed mainly for HTTP/2 traffic, which transfers data from multiple
sources in multiplexed streams to limit the HoLB problem [LIB+17]. To keep the streams
multiplexed, the retransmission of lost data is managed by the corresponding streams.
To further avoid HoLB, QUIC limits the receive buffer not only for the connection, but
also for each stream. If an application reads a specific stream’s data slowly, per-stream
flow control won’t let this stream fill the whole receive buffer dedicated to QUIC con-
nection. A QUIC receiver announces the available byte offset for each stream. If the
transmitter reaches the offset without receiving an updated one, the transmission on
that stream halts [LIB+17, IT21].

In Figure 4.1a we represent the stream manager in the upper part. It is comprised
of streams, with flow and retransmission control attached next to them, stream schedul-
ing which selects stream data for the next packet, and the stream map, which delivers
stream specific frames to the corresponding stream or its controller. The implementa-
tion we use also supports datagram extension [PKS22]. However, we do not represent
the datagram queue in Figure 4.1 because we do not consider using them neither to test
MP nor FEC.

Connection management comprises all those components that ensure and manage
the connection regardless of the streams. Connection management is what we reuse to
create new paths. This is why in Figure 4.1a (bottom) we call this group “Path 1”.
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In the moment QUIC detects it can send a packet, a packet packer prepares an empty
packet and fills it with control, and stream control and data frames. quic-go implemen-
tation always prioritizes control frames over others, and lost frames (retransmissions)
over the new ones. Once the packet is filled, it is encrypted. After building certain
number of packets QUIC may change its Connection ID (CID) for security reasons. An-
other reason to change CID is because the endpoints have detected a change in the IP
address [IT21, Section 8.2].

QUIC specification recommends using a pacer, the component that calculates next
packet transmission time [IS21]. quic-go includes a simple pacer that tries to match the
estimated BW. The latter is calculated as the ratio between CWND and RTT multiplied
by a correction factor of 5/4 to not to underutilize the actual BW. QUIC measures its
CWND in bytes, not packets. If the previous packet was short, the time to wait before
sending a new one will also be shorter. As soon as the next transmission time is reached,
a new packet is built and sent. Pacer is not the only component limiting packet trans-
missions. If the limits of CC (CWND) and connection flow control are reached, QUIC
will not send new data.

Just like TCP, QUIC uses ARQ to confirm received packet and detect the lost ones.
A more complex and efficient ACK transmission is not the only difference between the
two protocols. While TCP has only one transmission queue, QUIC has one for each
sending stream and requires the implementation of another one for non-stream control
frames. Upon a packet loss, its frames are enqueued in the corresponding queues.

QUIC control signals are packed as frames [IT21], unlike TCP, which sends them in
packets’ headers [Edd22]. Control frames can be produced by almost any component
we represented in Figure 4.1a. For instance, a change in peer’s IP address is detected at
packet reception. Whether it changed because of NAT rebinding or an intentional path
migration, the new IP triggers path validation carried out with PATH_CHALLENGE
and PATH_RESPONSE frames, and a change in CID, which might trigger issuing of
new CIDs via a NEW_CONNECTION_ID frame, or at least retire the one in use with the
RETIRE_CONNECTION_ID frame [IT21]. In Figure 4.1a we connect the components
interacting with control frame queue with a grey line.

4.2 | Parallel Connections
With the idea of reusing as much of SP design as possible, we think of MP as parallel
SP connections. The idea of parallelism raises the concern about the kind of devices
that will be running such a code. Low-end IoT devices, such as low-power microcon-
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trollers, will surely have only one network interface. A device running any MP protocol
will have at least two network interfaces and have enough memory and computational
power to handle multiple connections. On the othe hand, growing IoT applications are
becoming more complex. For instance, a warehouse management system can use multi-
ple unmanned vehicles with powerful processors to navigate safely avoiding collisions.
Nowadays smartphones include at least dual-core processors. Thus, we conclude that
parallel SP connections can be implemented as actually parallel threads running simul-
taneously. To open a new path, in the base QUIC implementation we replicate the con-
nection object, as represented in Figure 4.1b.

4.2.1 | Data Streams
The stream manager does not to change to send data to multiple paths. It would be
logical to expect that MP scheduler would properly manage the incoming data stream.
On the other side, MP scheduler could use some information from the stream manager
for better scheduling decisions. As we discuss in Section 4.3, we take the total amount
of data bytes to send and retransmit in each sending stream. On the other hand, it
has been proved that stream and MP schedulers perform better when aware of one
another. Rabitsch et al. designed a stream aware MP scheduler [RHB18], reducing page
load time on heterogeneous paths. In 2019 Shi et al. proposed a stream scheduler that
selects a path for each stream, making a SP transmission for each stream [SWZL19].
With a prioritized stream of 26 KB they observed a significant benefit of sending it only
on one path, avoiding MP latency due to different completion times on heterogeneous
paths. In 2020 Shi et al. proposed another stream-MP scheduler, focused on the earliest
completion of the prioritized streams that utilizes all paths that would not delay stream
completion time [SWZ+20].

4.2.2 | Build Packets
The packet packer component could need significant changes if it would have to build
packets for all paths. However, given that each path has its own dedicated connection
construct, this component is replicated and works exclusively with the corresponding
path, unaware of other paths. Apparently, the only extension of this component is en-
abling the interaction with FEC to signal source symbols and insert the coded ones.

QUIC control frames are queued in the control frame queue, which is path spe-
cific. Stream specific frames are managed by stream controllers with their own queues.
However, other application data related control frames, such as MAX_STREAMS and
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STREAMS_BLOCKED frames, have to be enqueued in one of the control frame queues.
Our proposed solution is to queue such frames in a dedicated queue managed by MP
manager. This queue would be available to the path with the lowest RTT. Upon a new
packet building, after packing path specific control frames the packet packer would try
to get frames from this queue.

MP draft specification does not introduce big changes to the encryption. In the first
version of the unified MP extension draft The nonce for packet protection was combined
(XOR operation) with path ID [LMC+22]. The latest version of this draft (04 at the time
of writing) forces the use of CID sequence number as the path ID [LMC+23]. The draft
also specifies how key update needs to be synchronized on all paths. More specifically,
if packet protection key update began on one path, at least one packet with the updated
keys has to be sent on the other paths. New key updates are not allowed until a packet
with current key is acknowledged on every path.

4.2.3 | Path and Connection IDs
To manage CIDs, QUIC refers to them with sequence numbers, assigned by the issuing
endpoint. As already mentioned, MP draft specification uses CID sequence numbers as
path identifiers. Given that each path is going to use its own CID, the sequence numbers
of the latter can perfectly and uniquely identify each path. Linking path identification
with CID results in the decision to reset packet number space every time a new CID is
used [LMC+23]. A client might change its CID and 4-tuple for privacy reasons [IT21,
Section 9.5 Paragraph 8]. The server would see a CID it has issued but which hasn’t
been used so far, and with the new 4-tuple it will not be able to map the new packets
to an existing path. QUIC packet numbers are integers in the range 0 to 262 − 1, but
the corresponding field in packets’ headers is limited to 32 bits [IT21, Section 17.1]. For
this reason, if a packet cannot be mapped to an existing path, it is impossible to know
the previous packet number necessary to infer the full packet number, without which
the packet cannot be decrypted. A generic algorithm that would deal with these cases
would reset packet numbers each time a new CID is used [IIb, Issue 1821].

The original QUIC does not reset packet number space because all CIDs belong to
the same SP connection. To preserve this behaviour, CIDs should be assigned to specific
paths. NEW_CONNECTION_ID frames can force the receiving endpoint to retire CIDs
prior to the one specified with its sequence number. In a SP connection these numbers
can be consecutive. In a MP connection that shares all available CIDs among all paths,
the sequence numbers will not be that consecutive. Using an explicit path identifier,

1https://github.com/quicwg/multipath/issues/182, Accessed: 23rd April, 2023.
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among other improvements, would greatly simplify CID management, remove the need
to reset packet number spaces and enable unambiguous path migration identical to SP
QUIC [IIb, Issue 2142]. With a separate path ID there would be a separate CID sequence
number space for each path.

To completely isolate CIDs for each path, path-opening endpoint should provide the
other one with at least one fresh CID to be used on a new path. We propose a simpler
solution: to open a new path, the endpoint takes the unused CID with the smallest
sequence number on the main path, which would keep an ordered consumption of CIDs
on the main path. The newly opened path would start with the sequence number of the
CID taken from the main path, and the other endpoint would issue CIDs starting with
the next sequence number. On one hand the path ID could be the first sequence number
used on the path. On the other hand, if a path starts late in a long lived connection,
the new sequence number defined as a variable integer could be longer than one byte.
We do not foresee the use of 64 concurrent paths in the nearest future, which is the
maximum range offered by 1-byte variable integer. We define path ID as a variable
integer, but do not link it to the first CID sequence number. Each newly open path will
increase the last ID by one. The first ID corresponding to the main path is zero. Trying to
open a path with an ID that has been used should generate a dedicated transport error.

4.2.4 | Transmission Rate Control
As explained in Section 4.1, the pacer limits transmission rate based on CWND and
RTT. To keep the right transmission rate, there should be a separate pacer for each path.
Nevertheless we need to introduce one modification in this component: it has to report
the average time between packets (or the average throughput).

The CCA we use is OLIA [KGPL13], reusing its implementation from [DCB17].
Each path uses its own instance of the CCA, all of which are linked through a mas-
ter object. In [JB22] researchers evaluated the performance of MPTCP using coupled
CCAs and compared it with SP TCP using New Reno CCA. They concluded that CCAs
Linked Increase Algorithm (LIA), Opportunistic Linked Increase Algorithm (OLIA) and
BAlanced LInked Adaptation (BALIA) were underutilizing the available BW when a
congestion event only affects one path. Despite the need for further research in CCAs
for MP, this effort is beyond the scope of the present work.

The goal of QUIC connection flow control is to prevent fast senders from over-
whelming the receive buffer [IT21, Section 4]. Given that QUIC connections have more
than one data sources (namely streams), QUIC also includes stream flow control, which

2https://github.com/quicwg/multipath/issues/214, Accessed: 23rd April, 2023.
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prevents a single stream from occupying the whole receive buffer. Extending QUIC
connection to multiple paths introduces the need for another level of flow control. The
receiving endpoint should be able to allocate more memory for each path, at least as
much as for the main path, and ideally, as much as twice the product of aggregate BW
and the maximum RTT [IRB+11, Section 5.3]. Separate connection flow control for each
path should work as in SP QUIC. However, a slow path would be underutilizing its
portion of buffer compared to a faster path. MP flow control could distribute connec-
tion (path) receive windows based on the average packet reception rate. MP HoLB
prevention can be achieved by FEC [LLT+14] or a proper MP scheduler that reorders
data during transmission to optimize in-order reception [SBL+13, KLM+14, SCW+18].
If HoLB prevention is already implemented and sufficient memory is allocated for the
receive buffer, MP level memory optimization might not achieve significant improve-
ments, nevertheless giving more margin for HoLB prevention.

4.2.5 | RTT and Loss Detection
[LMC+23] recommends sending the ACK on the same path where the acknowledged
packets were received. We refer to this strategy as default ACK strategy. Its use results
in path RTT measurements. Sending an ACK on a different path would measure what
we could call a cross-path RTT, which combines one-way delays of different paths. The
availability of multiple paths for sending ACKs can complicate RTT estimation, as dis-
cussed in [Hui21b, Section 3.3]. A MP implementation should support sending ACKs
on different paths in case one of them becomes unavailable in the ACK direction. More-
over, full support of cross-path RTTs can be beneficial for MP packet scheduling.

The knowledge of one-way delays could improve MP scheduling. Estimating it as
half of the path RTT is sensible, although not precise, given that network routing in
each direction could differ. As discussed in [Hui21a], measuring all path and cross-
path RTTs will neither provide one-way delay estimations. The only way to measure
them is using a timestamp extension [Hui22], and these measurements are not free of
the endpoints’ clock synchronization errors. On the other hand, more than the actual
one-way delay, MP scheduler needs the difference between these delays. Sending all
ACKs on the same path will result in each path’s working RTT estimation (the RTT
components in Figure 4.1b) being defined with its own transmission one-way delay and
the ACK path delay, which is common for all paths. We refer to this strategy as one-path
ACK strategy. With its application, the difference between the working RTTs is the same
as the difference between the transmission one-way delays. We believe that to keep the
RTT estimation consistent a receiver should use either the default or one-path strategy.
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A MP implementation should distinguish between all path and cross-path RTTs.
Otherwise, an ACK sent on a different path than usually will worsen RTT estimation
precision and increase its variance. Nevertheless, tracking all of possible RTTs can be
used to improve the connection. Using one-path ACK strategy, the receiving endpoint
could ping-probe each path to determine the fastest one for acknowledging the incom-
ing traffic. If for any reason a path becomes unavailable in the ACK direction, the ACKs
can be easily sent on another path. If at this moment all path and cross-path RTTs
have been sampled, the RTT update will consist in relying on the corresponding RTT
estimation, which is much more precise than updating the previous estimation or the
initialization value with each ACK. This feature comes with memory footprint increase.
Given a connection with P paths, there would be P2 RTTs to track. Nevertheless, with
a low number of paths (e.g., Wi-Fi and cellular) the complexity increase should be mini-
mal.

For a better MP scheduling, we choose the one-path ACK strategy. However, this
strategy still has an issue that the default one does not have: one of the intermediate
nodes might silently discard one direction traffic, which could potentially terminate all
paths except the ACK one [IIb, Issue 1903]. To avoid this, an ACK or a ping should be
sent on the non-ACK paths. Combining both, each endpoint can have estimations of
all possible RTTs. The receiving endpoint could send ACKs on non-ACK paths every
ACK delay defined for each path, replicate the ACK on the ACK path after an arbitrary
number of ACKs, or even do not send anything until one of the paths becomes inactive.

The most common example of MP use is a smartphone sending or receiving infor-
mation through Wi-Fi and cellular networks. One of the MP QUIC use cases analyzed
in IETF QUIC Working Group (WG) was video streaming from a smartphone using a
Wi-Fi hotspot to aggregate the BW [LM20]. Low Earth Orbit (LEO) satellites can already
directly connect to a smartphone for transferring text messages, with a more common
internet traffic coming in the future [Lau23]. It is thus not too early to consider three
paths for a smartphone. If available, a smartphone will first try to use Wi-Fi, which
will surely be the first path on which the connection will be established. If the receiv-
ing endpoint does not implement the capacity to select an ACK path, then the ACKs
would be sent on the first one, defined over Wi-Fi network. Path heterogeneity could
result in different ACK frequencies on each path, triggering very frequent ACK packets
transmissions over the shared access Wi-Fi link, with subsequent collisions with data
packets going in the other direction. One way to mitigate this is adjusting ACK fre-
quency on each path as specified in [ISK23]. The solution we choose is grouping ACKs
from different paths in one packet.

3https://github.com/quicwg/multipath/issues/190, Accessed: 25th April, 2023.
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When a path is ready to transmit an ACK, it will be delayed until all paths have an
ACK to send. If one of the paths is too slow triggering its ACK, all delayed ACKs will
be transmitted upon reaching the earliest maximum ACK delay. Paths recovering from
a congestion do not delay their ACKs. However, if at the time of sending the ACK for
the recovering path there are ACKs ready for transmission on other paths, these will be
included in the ACK packet.

Given that ACKs can travel through different paths, it needs to specify the path
whose packet numbers are acknowledged. [LMC+23] defines a new ACK_MP frame,
same as normal ACK frame but with path CID field to identify the path. [LMC+23]
recommends always using ACK_MP frames once MP extension has been negotiated. If
an endpoint receives a regular ACK frame on any path, it is treated as it corresponded
to the CID with the sequence number zero, i.e., the first packet number space of the
first path. In our proposal we replace the CID field in ACK_MP frame with the explicit
path ID and change the interpretation of the regular ACK frame to better match the
principle of maximal reuse of SP QUIC design: the regular ACK frame received on a
path acknowledges the packets transmitted on that path.

The last adjustment in loss detection mechanisms is reporting FEC module the loss
statistics, as was done for rQUIC (Chapter 3).

4.2.6 | Frame Handling
QUIC transmits control information and data in specialized frames. Stream data and
control frames are managed by the stream manager block. Other control frames related
to the connection are enqueued in a specialized control frame queue. On the Figure 4.1
we connect with the control frame queue the components that could generate a control
frame. We keep control frames related to the path in the corresponding queue. However,
some control frames intended for one path could be sent on another one, as in the case
of ACK frames. To enable that, control frame queue has to be connected to MP manager.

Other frames defined outside MP extension could also be path specific, but for any
reason would have to be enqueued in another path. To process these frames right, the
receiving endpoint has to pass them to the corresponding path. In Section 5.4 we discuss
a new frame that would enable treating any frame in the intended path.

Frame reading mechanism remains mostly the same, except that now it could read
an ACK frame intended for another path. This component is extended to pass these
frames to the corresponding paths.
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4.3 | Path Scheduling
The implementation of MP as SP connections running in parallel offers the possibility
to maximally utilize the throughput available to each path: a path will build a packet
and pull data to fill it as soon as congestion and flow control allow it. However, if paths’
one-way delays are very different, this strategy could send too many packets on the
slowest path delaying the MP connection transmission time.

Most of existing MP schedulers decide which path should be the one to send a
packet. If a supposedly optimal path has a very big CWND, such a scheduler could be
choosing that path repeatedly, missing transmission opportunities on the other paths. In
this section we describe the MP scheduler that fits our implementation. Since we focus
on the interaction between MP and FEC extensions, the study comparing this scheduler
with others will be carried after completing this thesis.

To maximize path utilization, the paths should be allowed to prepare a packet and
fill it with application data as soon as congestion and flow control allow it. To minimize
the transmission time on a MP connection, which equals the transmission time of the
slowest path, we need to ensure this time is the same on all paths. To achieve that
without sacrificing paths’ BW utilization, we need to limit the total amount of data
sent through each path. Wang et al. have already proposed and implemented this idea
in [WGX19]. Despite the similarity with [WGX19], we reach slightly different results.

4.3.1 | Scheduler Inputs
To calculate transmission completion time we need the estimations of RTT and BW. As
mentioned in Section 4.1, BW estimation is calculated with CWND, which covers both
application and control data, including packets’ and frames’ headers. Packet number
field and most of frames’ fields are defined as variable integers, meaning the payload is
not going to be a constant, even if the path Maximum Transmission Unit (MTU) is. In the
absence of Planck constant in the context of transport layer protocols, we represent the
throughput with h̄. The throughput can be calculated as an adjustment to the estimated
BW based on packet length and payload or overhead. Equation 4.1 shows its calculation
based on payload length.

h̄ ≔ BW
payload length
packet length

=
5
4

CWND
RTT

payload length
packet length

(4.1)

The increase in the variable integers included in packet and stream headers is the
same for each path and stream. Even if paths’ BWs are very different from each other,
the overhead difference of pure data packets will be very low: the packet number field
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length ranges between 1 and 4 bytes; stream offset field, between 1 and 8 bytes. The
difference between stream IDs should not be too big, but even if it was, the stream ID
field length ranges between 1 and 8 bytes. In a very extreme case, the overhead differ-
ence could grow up to 17 bytes. IPv6 requires a minimum MTU of 1280 bytes [DH17].
IPv6 and UDP headers are 40 and 8 bytes long [DH17, Pos80], which leaves to a QUIC
packet traversing an IPv6 network with minimal MTU a total of 1232 bytes. We con-
sider that the overhead variations in data packets is negligible. Nevertheless, new ex-
tensions could introduce more overhead or explicitly limit the payload of stream frames.
The combination of multiple extensions and very different path MTUs could make the
throughput estimation non-negligible. In our experiments we only use one extension
besides MP, the FEC. As we explain further in Section 4.4.2, our updated FEC intro-
duces a constant overhead. We consider that in our experiments we can take the BW
estimation as throughput.

Data throughput is also affected by control frames. Assuming that each path will
transmit the same amount of control traffic, data traffic throughput will be reduced in
the same proportion on all paths. To correctly estimate data distribution across paths
we can ignore control frames. However, depending on the extensions in use and path
MTUs, different paths could suffer throughput reductions of non-negligible difference.

QUIC treats all information as byte flows, not packet flows [IT21]. Thus, we work
with the throughput in terms of bytes per time unit, not packets. FEC integration will
require working with symbols instead of bytes.

4.3.2 | Data Limit for each Path
The transmission time on any path p should be the same as on the reference path r,
which is expressed in equation 4.2.

Tnxt(p) +
Np

h̄p
+ (RTTp − ACKdelayp) = Tnxt(r) +

Nr

h̄r
+ (RTTr − ACKdelayr) (4.2)

Where Tnxt(p) is time when the next packet will be transmitted on the path p, Np

is the number of bytes scheduled for the path p, and h̄p is the average path through-
put. If MP extension implements the default ACK transmission strategy, then ACKdelay
should be calculated as half of the corresponding RTT. With one-path ACK strategy this
variable is the same for all paths and can be simplified.

The next transmission time Tnxt and RTT are path parameters that are not going to
change during these calculations. They can be grouped into another variable, delivery
delay D.
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D ≔ Tnxt + RTT − ACKdelay (4.3)

With these considerations, the equation 4.2 can be rewritten as follows.

Dp +
Np

h̄p
= Dr +

Nr

h̄r
(4.4)

Using one of the P paths as a reference leaves us a system of P equations of which
only P− 1 are linearly independent and P variables. The Pth linearly independent equa-
tion in the system is the relationship between the data sent through each path and the
total data.

P

∑
i=1

Ni = N (4.5)

We can find another expression for the sum of all Ni summing all of the equations
defined as the equation 4.4. First, we clear the unknowns Np.

Np = h̄p (Dr − Dp +
Nr

h̄r
) (4.6)

Summing the P equations we obtain the following equation where all unknowns are
grouped like in equation 4.5 and only one unknown (Nr) outside the sum.

P

∑
i=1

Ni =

P

∑
i=1

h̄i (Dr − Di +
Nr

h̄r
) = (Dr +

Nr

h̄r
)

P

∑
i=1

h̄i −
P

∑
i=1

Di h̄i (4.7)

Given that we can use any path as a reference, we can rewrite the equation 4.7 for
the path p instead of r. Equations 4.5 and 4.7 can be combined as follows.

(Dp +
Np

h̄p
)

P

∑
i=1

h̄i −
P

∑
i=1

Di h̄i = N (4.8)

Clearing Np we obtain the number of bytes Np to be transmitted through the path p.

Np = h̄p (
N +∑P

i=1 Di h̄i

∑P
i=1 h̄i

− Dp) (4.9)

If the total amount of data to transmit N is very small, some of the Np could be zero
or negative. This means that transmitting any packet on these paths will delay the trans-
mission completion time. To find the correct information distribution, the equation 4.9
should be applied again, but only considering the paths with positive Np. For other
paths the Np will be zero.
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Wang et al. in 2019 proposed the same MP scheduling and combined it with a priority
based stream scheduler for HTTP/2 application [WGX19]. After determining streams’
priorities, their implementation was sending only one stream at a time. The overall
transmission time of the streams meant to be transmitted in parallel was the same, but
the completion time for each stream was minimal. As we discuss in Section 4.4.3, this
approach can also simplify scheduling FEC redundancies.

To schedule the subsequent streams we can apply the equation 4.9, with the total
number of bytes N corresponding to the next stream, and redefining the delay D. The
new value is the one defined in equation 4.3 adding the already scheduled bytes divided
by the throughput. Equation 4.10 represents the update of D for subsequent streams,
with subindex p representing the path and s, the stream.

Dp,s+1 = Tnxt(p) + RTTp − ACKdelayp +
∑s

i=1 Np,i

h̄p
(4.10)

4.3.3 | Stream Management in MP
The proposal to transmit only one stream at a time presented in [WGX19] suits very well
for the transmission of web objects. However, a web application could generate data for
specific streams almost continuously. If the throughput suddenly decreases (e.g. CWND
drop), the stream being transmitted would remain in the transmission queue for some
time, delaying the transmission of other streams, which probably care delay sensitive
data. This problem can also occur outside web traffic use-case.

Although streams were designed as an abstraction for web objects, they can be
used to represent other things. Beyond the web traffic, there is a lot of interest in us-
ing QUIC in IoT environments [LSR+18, KD19, Egg20, FZG+21, DJ21, JFD+22, ALM22,
SM23, IGK+23]. MQTT is an IoT application layer protocol that connects multiple de-
vices through a broker [BBBG19]. Devices send their messages through a labeled stream
called topic to the broker. Any device subscribed to that topic will receive this message
from the broker. An advanced IoT protocol stack could use MQTT over QUIC mapping
topics on QUIC streams. In this use-case sending one stream at a time till it has no more
data could harm IoT devices’ interoperability. Furthermore, this approach would apply
to the messages sent through the streams, but not the streams. In web traffic streams
represent the objects, the messages, however, in other environments it is worth distin-
guishing the two as different abstraction layers.

Despite the advantages of sending only one stream at a time, in our implementation
we do not follow this approach, keeping the original Round Robin (RR) stream sched-
uler.
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4.3.4 | In-Order Delivery
The more heterogeneous are the paths, the higher is the risk of overflowing the receive
buffer with out-of-order data, ending up in HoLB, with explicit signaling to the sender
to halt the transmission for a time. In [LLT+14] Li et al. have demonstrated the im-
portance of receive buffers to maximize the use of the aggregated BW. They achieved
significant throughput improvements in MPTCP with the use of FEC and pre-blocking
warning mechanism, which triggers the transmission of redundant packet when there
is a risk of HoLB. Other strategies to prevent HoLB consist in pre-reordering data pack-
ets in the scheduler to anticipate out-of-order delivery [SBL+13, KLM+14, SCW+18]. A
generic MP implementation should not count on FEC, but on its own components and
the ones defined in QUIC. In Section 4.3.2 we have calculated the data limits on a path
for the whole MP connection, without ensuring flow control safety.

Using one-way delay and BW estimation we could predict packet arrival on each
path. This information can be used to send the information scheduled on slower paths:
the slow path that starts to build a new packet could skip the information that would be
sent and delivered on faster paths before the packet it is building will reach the receiver.

Information skipping in QUIC is more complex than in TCP. In TCP there is only
one information flow, but in QUIC there are as many flows (streams) as the users need.
Moreover, we cannot simply estimate the number of bytes to skip and divide by the
number of active sending streams, because some of the streams could be prioritized
and treated differently by the stream scheduler. Note that the estimation of skipping
distance does not depend directly on the stream priorities, but on the stream scheduler,
which acts in a specific way based on the priorities.

In SP QUIC stream frames are multiplexed into one information flow at the time of
preparing a new packet. In MP QUIC there are multiple instances building a packet,
meaning that streams will have to merge into one information flow before reaching any
path. On the other hand, if there are at least as many streams as paths, the best op-
tion to ensure information in-order delivery would be assigning a complete stream to a
path like in [SWZL19], until the paths reach their transmission limit calculated in Sec-
tion 4.3.2. Although stream awareness can benefit a MP connection [RHB18, SWZL19,
SWZ+20], we focus on merging streams into one information flow, leaving more com-
plex interactions between stream and MP schedulers for future works.

Multiplexing streams into one information flow does not mean that stream frames
will be enqueued in a new buffer and treated like one continuous data block, sending
segments that not necessarily match the underlying stream frames. Instead, each path
would transmit the corresponding stream frame. When a path is building a packet and
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requests data to fill its contents, MP manager would pull as many new stream frames
as necessary from the stream manager till reaching the frame that would be delivered
in order if sent on that path. For instance, if a slow path estimates that by the time its
packet will reach the receiver N new packets will be built and delivered on other paths,
the stream manager would pull N + 1 stream frames, and the scheduler would deliver
the last of them to the path building the new packet.

The problem of pulling stream frames for faster paths is that QUIC payload is not
constant, as discussed in Section 4.3.1. We can identify three cases when the packet data
payload reduces: packet number field or stream frame offset field increases; path MTU
shrinks; and control frames are packed in the packet along with the stream frame. Pay-
load decrease results in splitting the already prepared stream frame into two, sending
the first part in the next packet and managing the transmission of the remaining one in
the next send opportunity, possibly on another path. If path MTU has increased and
QUIC includes MTU discovery mechanism, the new MTU could result underutilized.
Moreover, preparing a packet with larger payload will require packing more informa-
tion than what is provided in the pre-built stream frame. Possible strategies to solve
these issues could include limiting the size of the pre-built stream frames (limiting the
goodput as well) to anticipate the reduction of payload, managing the increase of stream
frames with data from the same stream, splitting stream frames and merging them with
the next ones.

The goal of altering frame order consists in avoiding HoLB at the receiver. To achieve
that, it is not strictly required to receive all of the frames in order. To prevent HoLB in
MPTCP with limited receive buffer, Li et al. implemented a coding solution focusing on
redundancy triggers rather than on a strict in-order packet delivery [LLT+14]. As long as
the ordered data can be received and passed to the application before the receive buffer
is full, HoLB is prevented. To ensure that, the information flow could be split into small
chunks, which then are sent to the network without any reordering at frame level, only
limited by the corresponding path limit for the chunk as given in the equation 4.9. If a
path is too slow to send any packet with the data from the current chunk, it can pack
the data from the next one, whose limits are calculated with the equation 4.10.

The size of the chunks can be calculated as a portion of the receive buffer, which
could be inferred from the send window increases signaled with MAX_DATA frames.
If these frames are lost or arrive out of order, the endpoint that receives them will keep
the highest Maximum Data field [IT21]. Since MAX_DATA frames do not have sequence
numbers, if one of these frames is lost, the inference would result in excessively big
values. To avoid any confusion, the receiving endpoint could explicitly notify how big
should the data chunks be. Matching the chunk size announced by the receiver should
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not interfere with flow control. The sender defining a new data chunk should take the
minimum between the MP connection flow send window and the chunk size announced
by the receiver.

The main difference between chunking the multiplexed information flow and pulling
the stream frames from the stream manager in advance is that the stream frames built
from a data chunk are defined during packet preparation, greatly simplifying stream
frames’ management. Another difference is the interaction between the scheduler and
the stream manager. Frame pulling requires almost no modification to the stream man-
ager. In the case of pulling data chunks, the stream manager has to provide data chunks
for each sending stream proportional to its stream scheduling policy. These chunks can
be implemented as large stream frames. However, the compliance with stream schedul-
ing policy will require increasing the interaction between MP and stream manager.

Data chunk definition depends on the maximum size announced by the receiver and
the MP connection flow control. Over time, the receiver could announce a new chunk
size. A sender should only define the chunks whose data will be transmitted in the next
time period. In other words, the sender would be defining new chunks until each path
has data to send in the next time period or the end of information flow is met. This time
period could be the time between ACKs, but then if an ACK frame is lost, some of the
paths that finished transmitting their share of the last defined data chunk would stall.
This should not happen if the time period is one RTT. New ACK frames, connection
flow control changes or new chunk size announcements would be used to update the
limits of the already defined chunks, but only for those whose transmission has not
started yet.

Apart from poor scheduling, data can arrive out of order due to packet erasures. Re-
transmitted frames arrive after the ones received in the first transmission. To minimize
HoLB, MP scheduler must ensure that frames detected as lost are retransmitted as soon
as possible. In our implementation lost frames handling is transparent to the scheduler.
All frames related to streams and stream management are handled by the stream man-
ager, which will enqueue frames marked as lost first. If MP scheduler tries to ensure
in-order delivery, the priorization of lost stream related frames is already ensured by
the stream manager. Application data related frames that are not specific to any stream
are managed by a dedicated queue in the path manager, and its frames are pulled by
the packet packer component bypassing the scheduler. When path specific frames are
lost, their retransmission is carried out by the corresponding path. If the path becomes
unavailable, the retransmission of path specific frames is useless. Sending path specific
control frames on another path could benefit MP performance, but in the absence of its
immediate need we do not implement this feature.
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4.4 | FEC
In this section we review what changes need to be done to our FEC implementation
since rQUIC development. The main goal of this review is to fit FEC to perform best
with MP. Nevertheless, other practical aspects are also considered.

4.4.1 | FEC Adjustments
Our previous rQUIC design (Section 3) built coded packets after QUIC encrypted the
source ones. Without specific adjustments, coded packets are invisible to the congestion
control algorithm. In spite of rQUIC inserting only one coded packet per generation,
we have seen that at high loss rates the overhead created by adaptive coding is not
negligible, with potentially significant impact on network congestion events. As we
discussed in Section 3.6.2, at 5% loss rate, rQUIC adaptive coding can consume more
than 20% of bandwidth. Measurements from in-flight communications reveal loss rates
of 7% [RNB+18]. We assumed that it was not necessary to update CC with coded packets
if we insert only one coded packet per generation, since the impact would be minimal.
However, if high loss rates are due to network congestion, 20% of traffic not accounted
by CC would lead to an even greater congestion. We thus conclude that even if at
fixed coding rates the impact of not reporting coded packets to the CC can arguably be
assumed minimal, with adaptive coding rates the coded packets must count towards
the CWND. FEC operations before encryption are, on the one hand, not compromising
congestion control in any case, and, besides the simplify coded packets management,
especially in MP environments.

After finishing the main experiments described in Section 3.6, we evaluated different
values of BTO to see its impact on the transmission completion time (Section 3.6.5). We
observed that at BTO values equal or slightly greater than RTT, the time to complete web
download and bulk transfer greatly decreases. After carefully analyzing the interaction
of rQUIC with CC, we conclude that such transmission time reduction could be a result
of other mechanisms than FEC recovery. Delaying a packet for one RTT or even more
could help FEC recovery, but generating an ACK could recover the missing packet with
a retransmission in the same time. If the buffered packet is released after the timeout
without recovering the preceding one, the buffer will also release all of the consecutive
packets after the first released one. In the absence of the ACK signaling, the loss and
the need to reduce the CWND, will cause the sender to keep on sending its data at the
same rate, even if the loss that delayed the ACK was provoked by network congestion.
When the packets are released, the receiver will acknowledge them. After receiving
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the ACK, the sender will at first reduce the CWND for the observed loss, but then,
quickly increase it because of the reception of the subsequent packets. This way the
CWND does not reduce to the appropriate values if BTO values are big. We conclude
that buffering hinders the work of CC by forcing it to work with outdated information,
always delaying the “bad news”. If there is any need to buffer the incoming packets,
the BTO should be very small. Rather than buffering packets at the receiver, the sender
should be able to delay retransmissions to let FEC recover the losses. Hence, in the
updated FEC module we do not buffer received packets.

rQUIC, as well as other FEC implementations, is based on a generic coding scheme.
Detailed use case analysis was outside the scope of rQUIC. In [MCM+22] Michel et
al. have identified three main categories of FEC use cases, to which they applied a ver-
satile coding scheme based on [CMBM20]. These use cases are bulk transfer, limited
receive buffer and delay-constrained messaging.

In bulk transfers only tail losses increase Download Completion Time (DCT). Lost
packets are quickly identified with frequent ACKs triggered by newer packets reaching
the receiver. To detect and correct tail losses, QUIC sends probe packets with already
transmitted content after a timeout [IS21]. Sending FEC packets without the timeout
allows to either recover losses as soon as these packets are received, or at least trigger
an acknowledgement, which would speed up the retransmission. We update rQUIC to
follow the same approach. Coded packets are inserted at the end of a transmission.

Tail losses can also affect the streams. Even if after finishing a stream other streams
still send data that trigger regular ACKs, the loss of the last packet in stream delays
message delivery by 1 RTT (ACK + retransmission). A coded packet sent right after the
one carrying the last frame in the stream could avoid incurring in this delay. The last
stream frame marks the end of the coding window. The beginning of the coding win-
dow should be the first packet in flight, since all previous packets are either delivered
or lost. The prediction of stream termination is possible only with the knowledge of
how streams are scheduled. Advanced interactions with the stream scheduler are not
covered by the scope of this study. The stream scheduler presented in [WGX19] could
greatly simplify end of stream protection, although this approach is not considered for
this implementation, as discussed in Section 4.3.3.

Protecting bulk transfers before they reach the end might seem useless. However,
if receiver’s memory is very small, packet loss could induce HoLB. Connection flow
control gives a good estimation of the receive buffer’s availability. Thus, another trigger
for sending coded symbols should be reaching the end of the connection flow control
window.
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Any data transmission can be seen as a series of bulk transfers of different sizes, mes-
sages that an application is sending to the other endpoint. A delay-constrained messag-
ing application, such as video streaming, sends short and frequent messages (frames).
Without FEC, each frame’s tail loss can be recovered either by regular retransmission
triggered by the next frame, or with tail loss probing [IS21]. If conventional recovery
schemes allow delivering the messages on time, FEC packets insertion at the end of
each message is unnecessary. If tail loss recovery would delay message delivery be-
yond its deadline, coded packets protecting in-flight packets can speed up recovery
process. In [MCM+22] the authors extend their implementation with delivery deadline
awareness to further improve FEC scheduling.

In specific cases FEC might not be enough to meet a deadline because of limited BW.
If the deadline is missed, what should a deadline awareness implementation do with the
message? Cancel its stream or try to deliver it after other messages? Advanced stream
management for time-sensitive traffic through application-defined priorities [SCQH19,
CMS+23], deadline specification, and stream cancelling [SCQH19, CMS+23, CLJY22,
ZGL+19] is attracting researchers’ interest. Despite potential improvements that these
techniques can yield, they are beyond the scope of this work.

When the last packets are lost, the corresponding ACK is triggered after reaching
the Probe Timeout (PTO) since the transmission of the last packet [IS21]. After PTO is
reached, QUIC repeats the last packets to either recover the loss of one of them, or to at
least trigger an ACK reporting the losses. We replace the repeated packets with coded
ones, allowing the receiver to recover any packet, not only the ones used for probing.

Prediction of packet loss periodicity and duration would result in a more precise
estimation of the number of required coded packets. However, given the limited use of
FEC, the impact of such models would be minimal. Taking into account that 85% of TCP
flows observed between 2008 and 2019 are smaller than 100 kB [BJH+21], the models
might not learn, for most of the cases, the loss pattern, probably not even encounter any
loss at all. Nevertheless, a simple estimation of the maximum burst loss could be used
to create sufficient redundancies by the end of the transmission if the burst happens
again.

When an acknowledgement reports losses that FEC failed to recover, it is better to
retransmit lost packets instead of sending more coded ones. When implementing an ex-
tension or any feature, it is important to bear in mind the goal that this feature pursues.
The goal of using FEC is to reduce communication latencies, while increasing robust-
ness, not to use FEC only because it is available. QUIC records all in-flight packets and,
by design, it is ready to retransmit the frames from the lost packets. Retransmitting a
packet instead of sending a new coded one not only reduces computational complexity
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to build it, but also saves decoding operations at the receiver. Note that after sending
N coded packets and detecting L packet erasures with L > N, the sender would need
to retransmit only L − N source packets, with exactly the same content as in the first
transmission.

4.4.2 | Updated FEC Operations
With the adjustments described in Section 4.4.1, FEC only protects the last part of the
communication. More specifically, FEC should be applied only to the packets that are
in flight when connection’s last packet is sent. We call this packet range coding set. It
comprises both source and coded packets at the transmitter, similarly to the payload
set specified in [AAB+18], which refers to the symbols of both types that reached the
receiver. Nevertheless, other definitions of coding set could be evaluated, such as coding
sets comprised of only source packets.

Given the new approach to implement FEC, most of the packets will not be pro-
tected. FEC signaling consumes bytes in packets, which is why we simply do not in-
clude it till reaching the end of the communication, the last batch of packets in flight,
the coding set. To start processing packets as source symbols and insert FEC headers,
we need to predict the beginning of the coding set. To do that, we compare the number
of remaining packets with the source ones. Remaining packets can be calculated from
the remaining bytes in the connection, dividing them by the source symbol payload
size, which in its turn can be calculated subtracting packet header and source symbol
header lengths from the packet length. We can calculate the number of source and coded
packets in the coding set with the help of loss rate estimation. Equalling the number of
redundancies to the number of expected losses we make sure the receiver gets enough
packets to recover the lost ones.

To activate FEC, i.e., to start treating new packets as source symbols and insert FEC
headers, two conditions must be met. The first condition is that the number of the
remaining packets is greater or equal to the source ones, so that FEC can protect every
packet in the coding set. The second condition is that after the next ACK, there would
be less remaining packets than source ones. This will ensure that FEC is not protecting
packets that can be recovered by ARQ.

If the last expected ACK before the coding set is lost, it will be impossible to know if
the packets that should have been acknowledged have been received or not. It could be
worth adding these packets to the coding set. Thus, the coding set could be increased
with a margin. This margin could be limited to only the number of packets between
consecutive ACKs, or comprise the packets sent in one RTT for greater robustness to
ACK loss.
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Type ? ? Symbol ID Payload

Type Seed # Source
Symbols Symbol ID Payload

Source
Symbol

Coded
Symbol

Figure 4.2: New FEC headers.

FEC headers change from rQUIC. We only signal protected and coded packets, the
absence of FEC signaling is per se a signal that the packet is not protected. Source sym-
bol header consists of frame type and symbol fields. It is placed at the beginning of the
packet and the rest of the frames are considered its payload, the source symbol itself.
Coded symbol header has the same fields plus the seed to generate coding coefficients
and the number of source packets. Symbol ID and the payload fields of the coded sym-
bols are linear combinations of the same fields of the source symbols. Both symbol
formats are represented in Figure 4.2.

Source symbols have two less fields than coded ones which cannot be used to send
more data, since it would increase the coded payload of the redundant symbols beyond
the packet length. These two empty fields can be used to communicate extra infor-
mation to the receiver, they can be omitted subtracting from the packet payload the two
bytes, or source packets can be filled with two offset frames before source symbol so that
source and coded packets are of the same length and indistinguishable after encryption.

The recovery of source packets should generate an ACK and a report on which pack-
ets have been recovered. Nevertheless, if the recovery was performed before receiving
all of the source and coded packets, their reception must trigger another ACK. The un-
used fields in source symbols could carry the information about the number of source
and coded symbols scheduled for the connection (path) where the symbol is sent. This
information would help the receiver to better scheduler its ACKs

4.4.3 | Redundancies in MP
MP gives access to different networks with different loss patterns. A FEC extension can
be applied to compensate losses on each path. However, in the presence of an ARQ
mechanism that frequently sends ACKs, the coding windows will be small, where only
one redundancy would be protecting against very high loss rates. If paths’ packet loss
rates are low but non-zero, a compound FEC could insert less redundancies protecting
all paths than if it was protecting each path separately.

Extending FEC to P paths, we now have P coding sets CS, with source and redun-
dant packets distributed among all paths. We can calculate their numbers with the loss
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rate of each path. Equation 4.11 shows how the total amount of redundant packets R in
all paths.

R = ⌈
P

∑
i=1

CSiαi⌉ (4.11)

To make sure the coded packets protect all source ones, the former are sent through
any path after transmitting the rest of packets. A path with a very high one-way delay
could stop sending packets before other paths, not sending any coded packet at all. The
number of redundancies sent on each path can be calculated by estimating the trans-
mission time of the last R packets sent through any path. This allows calculating the
number of source packets in every path, which is used to determine if a path should
activate FEC or not.

Protecting packets from multiple paths can lead to situations when a packet sent on
one path is recovered from the redundancy sent on another. If the recovered packet
carried path specific control frames, the decoder will have to know the path for which
these frames were intended. Thus, the symbol ID presented in Figure 4.2 must include
the path ID. On the other hand, if FEC is applied to each path separately, the symbol ID
does not need to include any path information.

FEC symbols can be scheduled as the rest of data, with the condition of not splitting
the symbols. To achieve this, the MP scheduler has to be able to manage data in terms
of symbols, and all of the FEC symbols should belong to the same data chunk. If paths
have different MTUs, the smallest of them will be used, so that all source symbols are of
the same length.

It has been proved that a stream aware MP scheduler [RHB18, SWZL19, SWZ+20]
can significantly improve QUIC goodput. FEC could protect not only the end of a con-
nection, but the end of a message avoiding possible 1-RTT recoveries, coinciding with
the end of a stream if streams are representing web objects or video frames. A stream
scheduler that transmits only one stream at a time (as proposed in [WGX19]) could help
schedule FEC packets. Whether the stream scheduler sends only one stream at a time or
uses a more general scheme based on priorities and deadlines, this research line is not
in the scope of the present work. Our studies count on single-stream connections.

4.5 | Summary
In this section we have reviewed QUIC architecture and its extension to include MP
and FEC functionality. We reviewed the new components in extended QUIC and the
changes to the existing ones.
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In the development of the MP extension we considered the strategy of replicating
all connection related constructs surrounding the UDP socket. Although the idea is
simple, its implementation raises many questions, such as: which path should be used
to send ACKs; how to handle CIDs and packet number spaces; and how to schedule
multiple streams on multiple paths. The ongoing design of a generic MP extension is
not finished yet, with a lot of discussion taking place, aimed at solving the question we
mentioned among many other issues. We address these discussions to better assess the
design of our own MP extension. We also analyzed existing MP schedulers to select one
that would best adapt to multiple connection managers running in parallel.

We updated our FEC design enabling its interactions with MP and improving its
interaction with CC. We also addressed different FEC use cases at transport layer iden-
tified in [MCM+22]. At the time of writing, the assessment of the proposed design is
ongoing.

78



5

Summary and Outline

In today’s modern society it is hard to imagine not being connected to internet. Laptops,
smartphones, tablets and other devices allow people to access any kind of information
at almost any time. Modern automated remote control and monitoring applications
are based on interactions between multiple devices connected through internet, leading
to the appearance of specialized communication protocols and network architectures
encompassed by the IoT paradigm. The growing global internet traffic and the use of
new types of communications and links, especially those that are wireless and so error-
prone, require improvements in network architectures and protocol stacks. QUIC is a
new transport protocol originally developed to improve web traffic [LIB+17], although
its design is not limited to any specific use case.

QUIC offers a functionality similar to TCP, bringing a series of improvements. Its
transport parameters enable an easy configuration for specific connections. Its user-
space implementation and a version negotiation [SR22] make QUIC easy to customize.
Improved connection establishment and loss recovery mechanisms reduce latencies. To
further reduce them, we seek to implement extensions that would enable such improve-
ments. More specifically, we focus on FEC, to minimize recovery latencies, and on MP,
to deliver data through different networks and complete transmissions in less time.

In this chapter we first summarize the research carried out during this PhD thesis,
discussing the most relevant results and drawing conclusions. Then we explore the re-
search lines that have been opened after the work discussed herewith, which would lead
to further latency reductions. At the time of writing, the assessment of such proposed
design is ongoing.
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5.1 | FEC
There are many coding techniques, potentially exploited at the transport layer, which
can significantly improve a communication suffering from data corruption or loss. Nev-
ertheless, applying a coding technique to a reliable protocol capable of recovering data
losses through ARQ mechanisms can result too complex for the low latency reduction
that can be achieved.

Before extending an existing transport protocol, we analyzed existing coding tech-
niques and evaluated those that could best suit a protocol with an ARQ mechanism. We
evaluated convolutional systematic RLC for generation sizes of 64 and 256 source sym-
bols with different number of redundant symbols. We defined a special condition for
the convolutional coding: each source symbol should be protected by the same number
of coded symbols. We observed, in a simulation-based study, that convolutional coding
was able to reduce the recovery latency proportionally to the number of concurrent gen-
erations. Apart from the latencies, we also studied the required overhead, defined as the
ratio between the number of coded symbols and all transmitted symbols, both source
and coded. More specifically, we observed the saturation overhead, the one at which
full message reception probability reaches its maximum. Results evince that minimiz-
ing saturation overhead optimizes throughput, but not the delay. This observation is
especially important in those cases where the throughput requirement is more relevant
than the delay.

While implementing coding techniques in QUIC protocol, the first thing we found
was that ACK frequency used by the implementation we chose is the one recommended
in [IT21, Section 13.2.2], i.e. every two packets. Neither the generation sizes of 64 sym-
bols nor convolutional coding would significantly reduce recovery latency, because by
the time the coded symbols are received, ARQ has already recovered most of the losses.
Our coding scheme consisted in inserting only one coded symbol for each generation
of variable size. Generation size was determined by the adaptive coding rate presented
in [FKCA18]. All coding operations were performed over packets ready to be sent to
the network. To avoid unnecessary retransmissions, we delayed ACK generation at the
receiver by buffering packets arrived out of order. If the order was altered due to a
packet loss, waiting for a coded packet within a reasonable time can indeed prevent the
retransmission and so reduce the recovery latency despite the waiting time. Neverthe-
less, the packets should not stay for too long in the buffer. We defined BTO after which
packets are released as QUIC maximum ACK delay minus a certain margin. A buffered
packet that reaches its BTO is released from the buffer to be processed by QUIC as usual,
triggering the corresponding ACK within the margins established during QUIC hand-
shake.

80



Chapter 5. Summary and Outline 5.2. Multipath

We evaluated our implementation using ns-3 simulator emulating Wi-Fi, mobile and
satellite links between the endpoints with packet loss rates between 0 and 5%. We used
three traffic patterns: bulk transfer, small web page download and video streaming.
Simulation results showed significant improvements in the presence of packet losses
but for a particular exception in video streaming scenario. Because of FEC overhead,
the QoE and the probability of reaching higher resolutions at 1% loss using Wi-Fi link
were better for the original QUIC. Video streaming QoE improvement on satellite link
was minimal, due to high RTT. After finishing the main experiments, we also evaluated
different values of BTO to see its impact on the transmission completion time.

To enable FEC and MP interaction, our FEC module needed to be updated. We care-
fully analyzed our first implementation and the most recent related works with other
FEC extension proposals. The first changes we introduced addressed CC interaction:
coded packets now count towards CWND and received packets are no longer buffered
to give FEC more opportunities to recover losses. Following the analysis of FEC use
cases for different traffic types published in [MCM+22], we adopt the idea of protect-
ing only the end of a message and the end of the send window (protecting the receive
buffer). If a packet can be recovered with ARQ before the message transmission con-
cludes, the transmission time perceived by the application will be the same as if the loss
was recovered by FEC. At the same time, ARQ sends only one packet for each erasure,
unlike FEC, which in its attempts to predict a loss can send several coded packets. On
the other hand, if one of the last packets of the transmission is lost, its recovery can take
approximately one RTT (ACK and retransmission), a time that FEC can save. Further-
more, we also reviewed how multiple paths should be protected with FEC.

5.2 | Multipath
To assess the joint performance of FEC and MP, we needed to add the MP to our im-
plementation. To address the challenges that arise from handling multiple sockets, we
ended up implementing our own MP module. In what follows we summarize the most
relevant challenges we found.

■ Path scheduling.
Most of existing schedulers choose one path or another for an already prepared
packet. If a path is chosen several times in a row, the other path looses sending
opportunities. We thus allow each path to decide when to send a packet and
send them as soon as path’s congestion and flow controls allow it. This kind of
scheduler would need to limit the data sent on each path to ensure the minimal
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transmission time. We reviewed the scheduling algorithms based on this principle
and proposed our own version of such algorithms.

■ Data source – stream selection.
Whenever a path gets a transmission opportunity and starts ‘preparing’ a new
packet, it needs to choose the source from which it will take new data to send. In
QUIC there are as many data sources as send streams. In SP QUIC, stream data are
multiplexed into one data flow at the connection level, when the only existing path
pulls data from the stream manager. Leaving stream-to-path scheduling outside
this thesis’ scope, we perform this multiplexing at the MP manager.

■ Receive buffer overflow.
Data frames could be delivered to QUIC connection out of order due to path het-
erogeneity. In these cases QUIC connection could suffer HoLB: if the receive buffer
is filled with out-of-order data, it will not be able to receive new data and so stall
the communication on all paths. Sending only one or few streams at a time will not
necessarily avoid HoLB, because the amount of data to send on the stream could
be larger than the receive buffer. The existing solutions include altering packet
order at the sender and using FEC. For MP extension alone, we propose sending
the multiplexed data flow in chunks that would fit the MP connection flow limits.
Within each chunk, the data can be sent in any order.

■ Scheduling control frames.
QUIC sends its control signals in specialized frames in packet payloads, along
with data frames. Reviewing scheduling algorithms, we had to distinguish be-
tween path specific and data related frames. We concluded that data related
frames, i.e., stream frames and frames related to the control of one or multiple
streams, should be multiplexed into the unified data flow. Path specific frames,
such as flow control frames, should be sent on the path to which they are related.

■ Packet acknowledgement.
We reviewed two strategies to acknowledge packets: acknowledge on the path
where the packets were sent, or use only one path to send the ACKs for packets
from any path. We discussed the differences and advantages of both strategies.

■ Path identification.
According to the existing draft specification of IETF MP extension for QUIC, each
path is identified by its CID sequence number [LMC+23]. This results in several
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design complications that can be solved by assigning each path an explicit identi-
fication. We discuss the differences of both proposals and explain why we choose
explicit path IDs.

Analyzing frame scheduling, we identified two types of frames: data related and
path specific. This classification translates in selecting the queue that would manage
a frame. To enable MP compatibility, other extensions should indicate to which type
do their frames belong. QUIC datagram extension [PKS22] introduces a new datagram
frame, which is of data related type. ACK frequency extension introduces two new
frames [ISK23], both being path specific. Our FEC extension introduces two frames:
source and coded symbols. Source symbols are path specific, and they include a header
to indicate that the rest of the packet is FEC protected. If FEC is applied to each path
separately, then coded symbol is a path specific frame. If FEC is applied to all paths,
then coded symbols can be seen as data frames that are sent at specific moments.

As mentioned earlier, packet acknowledgements corresponding to one path can be
sent on another one. QUIC original ACK frames in our extension are path specific,
they are sent on the same path whose packets are being acknowledged. However, the
new MP ACK frame introduced in [LMC+23] is a special case. It is explicitly not path
specific, because in our implementation it is used to signal packet acknowledgements
from another path. It can neither be viewed as a data related frame, because it cannot be
added to the unified data flow and wait to be transmitted by an arbitrary path, it has to
be sent immediately on the path indicated by an ACK scheduling policy. The MP ACK
frame is specific to MP extension, which modifies its management. We can conclude
that the suggested frame classification into data related and path specific frames applies
to the frames that do not modify MP behaviour.

5.3 | Multistreaming
One of the most distinctive QUIC novelties compared to TCP is the possibility to han-
dle multiple data flows or streams within one connection. QUIC specification defines
streams as information flow abstractions which the implementations should be able to
prioritize [IT21]. Applications like video streaming would make a greater use of streams
if they could include more control elements, such as deadlines and an advanced stream
cancelling mechanism [SCQH19, CMS+23, CLJY22, ZGL+19].

We observed that combining streams without the advanced features with MP and
FEC extensions already poses interesting challenges. Although this work does not study
the issue of scheduling streams, it is worth reviewing the interactions between stream
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manager and the extensions implemented in this work. Other QUIC extensions could
have similar interactions with the stream manager.

In MP there are many ways to schedule an information flow through different paths.
To handle multiple streams we multiplex them before MP scheduling. However, it
is possible to optimize stream completion time designing scheduling algorithms com-
prising both streams and paths [RHB18, SWZL19, WGX19, SWZ+20]. MP schedulers
that alter packet order to adapt to path heterogeneity, as the ones proposed in [SBL+13,
KLM+14, SCW+18], would need to pull certain stream frames skipping others. To pro-
vide the appropriate stream frames to each path, stream scheduler would need to know
which path is trying to pull more data from it, its throughput and delay estimations,
and the MTU. Moreover, the stream scheduler could distribute stream frames among
paths based on their throughput and one-way delay. Even in SP connections path infor-
mation could help the stream scheduler to adjust its scheduling to deliver the streams
before the specified deadlines.

We conclude that stream schedulers should consume path related information and
provide each path stream frames. If MP manager uses its own MP scheduler, it should
be able to communicate the stream manager the path that is trying to pull new data. We
believe that path related extensions should provide the stream manager information
regarding the impact they have on a path, either through a (multi)path manager or
directly to the stream scheduler. Such information could be the overhead generated by
extension’s frames and the throughput modification.

FEC protection applied at the end of a stream can save up to one RTT in stream com-
pletion time. To achieve that, FEC could be applied separately to every sending stream,
which might be inefficient. Especially in the presence of multiple streams multiplexed
over time, the older stream frames protected by FEC will be already acknowledged, and
those that are lost will be recovered with ARQ mechanism. Such frames would unnec-
essarily increase FEC operations. A FEC implementation that sends coded packets at
the end of a stream would need to predict when the last stream frame would be sent,
to protect only packets in flight. This prediction is only possible knowing how streams
are scheduled. A FEC aware stream scheduler would activate FEC based on bytes in
flight, its own stream scheduling and streams’ remaining bytes. A more generic stream
manager would not be aware of all of the extensions interacting with it. To interact with
FEC, the stream manager would need to limit its frames to a specific symbols size pro-
vided by the FEC module, report the bytes in flight, and report if any stream is going to
finish within the encoding window provided by FEC.
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5.4 | Future Research Lines

5.4.1 | FEC
FEC and ARQ are designed to solve the same issue: recovering lost information. ARQ is
the mechanism that introduces minimal overhead, for each lost packet it generates only
one retransmission. If ARQ feedback is sufficiently frequent, FEC packets sent through-
out a communication become useless very fast, since most of the losses are retransmitted
via ARQ. An extension modifying ACK frequency could result in sufficiently spaced
ACKs to give FEC more recovery opportunities. Thus, it is worth exploring the combi-
nation of FEC and reduced ACK frequency.

Another way FEC can be useful within a connection is delaying retransmissions of
lost frames till the expected time of coded packets’ reception. Its combination with
ACK frequency variations can potentially result in an efficient FEC application, avoid-
ing early retransmissions and too long ACK delays.

One practical aspect of using an extension in any environment is to stop using it
if the expected improvement is not achieved (improvement-complexity trade-off), es-
pecially when the extension is worsening the overall performance. If FEC extension is
enabled in the middle of a communication, it could be outperformed by ARQ, generat-
ing redundancies that will never be used. It is thus important to include a mechanism
to evaluate FEC performance and disable the extension when it is no longer beneficial.

QUIC datagram extension enables unreliable transmissions. However, depending
on application’s needs, it could be worth making a vague attempt to recover lost data-
grams with FEC.

Congestion events can be expected when the RTT increases, probably due to an in-
termediate node becoming congested, or when CWND approaches the value when a
packet was lost and the CWND had to drop. A careful congestion prediction could be
used to temporarily activate FEC, thus preventing the retransmissions due to congestion
losses.

5.4.2 | MP
When FEC is protecting the packets only at the end of a message, the coding window on
each path corresponds to the packets in-flight. These windows are easy to combine for a
joint FEC protection of the whole MP connection. However, if FEC could be used in the
middle of a connection, synchronizing coding windows of each path becomes challeng-
ing. Not only ACK frequency variation could impact MP ACK transmission strategy,
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but also protecting packets from a slower path could delay decoding operations. Apart
from analyzing the coding windows, a MP sender would have to discard paths for the
joint protection based on the estimated packet arrivals.

MP scheduling that alters information order to adapt to path heterogeneity could
end up packing two or more non-consecutive data frames from the same stream. To
save the resulting overhead, the STREAM frame could be extended with ranges similar
to ACK frame ranges. The first STREAM frame would include the offset and length
fields. Instead of inserting the next frame with its full header, we propose to extend the
header of the first frame with a field indicating the number of grouped frames and the
offset of the next frame. The latter would be expressed as the length of the gap preceding
it. If there is a third frame to append, the compound header would include the length of
the second frame before adding the offset of the third one. This new compound frame
adds one new field for the number of appended steams, and saves the type and stream
ID fields for all the subsequent frames; it also reduces the offset field size. We did not
implement this frame because of the small goodput gain. However, if due to losses and
reordering in MP there were multiple data frames corresponding to the same stream
and the MTU of the path where the new packet is going to be sent is very low, using
extended stream frames could improve path goodput.

New QUIC extensions could add connection control frames, which in the context of
MP would be path specific. If their delivery were urgent, and the corresponding path
were suffering a severe congestion, control frames intended for one path should be sent
on another one. To indicate the receiving endpoint that the frame specified outside MP
extension is meant for another path, we propose the INTENDED_PATH frame. It has
only two variable integer fields: frame type and the destination path ID. This new frame
flags that all following frames are intended to be processed by the path specified in the
path ID field.

In our MP extension we simplify stream to path scheduling by multiplexing all data
and data related (control) frames into one data flow. However, a MP aware stream man-
ager could improve ordered frame delivery and reduce stream completion time [RHB18,
SWZL19, WGX19, SWZ+20]. Stream extended with additional control, such as dead-
lines, prioritization and partial reliability with a safe stream cancellation [SCQH19,
CMS+23, CLJY22, ZGL+19], could benefit from MP awareness, especially for scheduling
time critical streams.
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5.4.3 | IoT
The existing and upcoming IoT use cases could greatly benefit from an extended QUIC.
IoT communications could benefit from MQTT over QUIC [KD19, FZG+21]. Despite
QUIC streams were intended to represent web objects [LIB+17], MQTT topics can be
mapped to QUIC streams. QUIC can be run on traffic aggregators in IoT environments.
However, after undergoing sufficient optimizations, QUIC could also run on low-end
devices. In [Egg20], Lars Eggert evaluated QUIC in two 32-bit IoT edge devices. By sim-
plifying QUIC functionality, he was able to fit a QUIC client in a few tens of kilobytes.

Nevertheless, QUIC can be run on more advanced devices with a relatively powerful
processor onboard. The growing use of unmanned vehicles and Artificial Intelligence
(AI) along with mobile networks evolution foster new IoT applications. One of these
applications could be a system for rescue missions based on different drone swarms
guided by AI, with each swarm being specialized on different tasks. One swarm would
monitor weather conditions, another would overfly the area collecting data for iden-
tifying survivors and finding transportation routes, ground-based and aerial swarms
would clean the debris, etc. One of the drones could aggregate the traffic from other
drones and forward it to a remote server using a QUIC connection, mapping each data
flow to a stream. In this scenario, the traffic aggregating drone, especially if it has mul-
tiple network interfaces, can benefit from the extensions studied in this work and the
research lines analyzed in this section.

5.5 | Thesis Contributions
This thesis resulted in multiple contributions to the state of the art. Some of them (J1,
C1, C2, C3, O1), were directly derived from the research carried out within the scope
of this thesis, while others (J2, C4, C5) were collaborations that were opened thanks to
the expertise and knowledge that was acquired during this period, which allowed to
support other research activities with some common goals.

5.5.1 | Journals
J1 Mihail Zverev, Pablo Garrido, Fátima Fernández, Josu Bilbao, Özgü Alay, Simone

Ferlin, Anna Brunström, and Ramón Agüero. Robust QUIC: Integrating Practical
Coding in a Low Latency Transport Protocol. IEEE Access, 9:138225–138244, 2021.

J2 Fátima Fernández, Mihail Zverev, Pablo Garrido, José R. Juárez, Josu Bilbao, and
Ramón Agüero. Even Lower Latency in IIoT: Evaluation of QUIC in Industrial IoT
Scenarios. Sensors, 21(17), 2021.
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5.5.2 | Conferences
C1 Mihail Zverev, Pablo Garrido, Ramón Agüero, and Josu Bilbao. Systematic Net-

work Coding with Overlap for IoT Scenarios. In 2019 International Conference on
Wireless and Mobile Computing, Networking and Communications (WiMob), Barcelona,
Spain, pages 1–6, 2019.

C2 Mihail Zverev, Pablo Garrido, Ramón Agüero, and Josu Bilbao. Combinación de
Network Coding Sistem’atico y Solapamiento en escenarios IoT. In XIV Jornadas de
Ingeniería Telemática (JITEL 2019), Zaragoza, Spain, pages 1–6, 2019.

C3 Mihail Zverev, Pablo Garrido, Ramón Agüero, and Josu Bilbao. Network Coding
for IIoT Multi-Cloud Environments. In Proceedings of the 9th International Conference
on the Internet of Things, Bilbao, Spain, 2019.

C4 Fátima Fernández, Mihail Zverev, Pablo Garrido, José R. Juárez, Josu Bilbao, and
Ramón Agüero. And QUIC meets IoT: performance assessment of MQTT over
QUIC. In 2020 16th International Conference on Wireless and Mobile Computing, Net-
working and Communications (WiMob), Thessaloniki, Greece, pages 1–6, 2020.

C5 Fátima Fernández, Mihail Zverev, Pablo Garrido, José R. Juárez, Josu Bilbao, and
Ramón Agüero. Evolución del Stack IoT: MQTT sobre QUIC. In XV Jornadas de
Ingeniería Telemática (JITEL 2021), A Coruña, Spain, pages 1–8, 2021.

5.5.3 | Other Contributions
O1 Presentation and discussion of rQUIC FEC/NC extension for QUIC at Coding for

efficient NetWork Communications Research Group (NWCRG), 105th IETF meeting,
2019.
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[DJ21] Jasenka Dizdarević and Admela Jukan. Experimental benchmarking of http/quic protocol
in iot cloud/edge continuum. In ICC 2021 - IEEE International Conference on Communications,
pages 1–6, 2021.

[Edd22] Wesley Eddy. Transmission Control Protocol (TCP). RFC 9293, August 2022.

[Egg20] Lars Eggert. Towards securing the internet of things with quic, 2020.

[FAMB16] Simone Ferlin, Özgü Alay, Olivier Mehani, and Roksana Boreli. Blest: Blocking estimation-
based mptcp scheduler for heterogeneous networks. In 2016 IFIP Networking Conference (IFIP
Networking) and Workshops, pages 431–439, 2016.

[FKCA18] Simone Ferlin, Stepan Kucera, Holger Claussen, and Özgü Alay. MPTCP Meets FEC: Sup-
porting Latency-Sensitive Applications Over Heterogeneous Networks. IEEE/ACM Transac-
tions on Networking, 26(5):2005–2018, oct 2018.

[FLKC18] Kariem Fahmi, Douglas Leith, Stepan Kucera, and Holger Claussen. Low delay scheduling
of objects over multiple wireless paths, 2018.

[FRH+20] Alan Ford, Costin Raiciu, Mark J. Handley, Olivier Bonaventure, and Christoph Paasch. TCP
Extensions for Multipath Operation with Multiple Addresses. RFC 8684, March 2020.

[FZG+21] Fátima Fernández, Mihail Zverev, Pablo Garrido, José R. Juárez, Josu Bilbao, and Ramón
Agüero. Even lower latency in iiot: Evaluation of quic in industrial iot scenarios. Sensors,
21(17), 2021.

[GAF18] Frank Gabriel, Javier Acevedo, and Frank HP Fitzek. Network Coding on Wireless Multipath
for Tactile Internet with Latency and Resilience Requirements. In 2018 IEEE Global Communi-
cations Conference (GLOBECOM), pages 1–6. IEEE, 2018.

[Gar18] Pablo Garrido Ortiz. Opportunistic Network Coding over Wireless Networks. PhD thesis, Univer-
sity of Cantabria, September 2018.

[GNM+17] Yihua Ethan Guo, Ashkan Nikravesh, Z. Morley Mao, Feng Qian, and Subhabrata Sen. Demo:
Dems: Decoupled multipath scheduler for accelerating multipath transport. In Proceedings of
the 23rd Annual International Conference on Mobile Computing and Networking, MobiCom ’17,
page 477–479, New York, NY, USA, 2017. Association for Computing Machinery.

91



References References

[GNPS19] Yunmin Go, Hyunmin Noh, Goeon Park, and Hwangjun Song. Energy-Efficient HTTP Adap-
tive Streaming with Hybrid TCP/UDP Over Heterogeneous Wireless Networks. In 2019 IEEE
20th International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoW-
MoM), pages 1–10, 2019.

[GSF+19] Pablo Garrido, Isabel Sanchez, Simone Ferlin, Ramon Aguero, and Özgü Alay. rQUIC: Inte-
grating FEC with QUIC for Robust Wireless Communications. In 2019 IEEE Global Communi-
cations Conference (GLOBECOM), pages 1–7. IEEE, dec 2019.

[GSKL17] Andres Garcia-Saavedra, Mohammad Karzand, and Douglas J Leith. Low delay random
linear coding and scheduling over multiple interfaces. IEEE Transactions on Mobile Computing,
16(11):3100–3114, 2017.

[GWP+18] Frank Gabriel, Simon Wunderlich, Sreekrishna Pandi, Frank H P Fitzek, and Martin Reisslein.
Caterpillar RLNC With Feedback (CRLNC-FB): Reducing Delay in Selective Repeat ARQ
Through Coding. IEEE Access, 6:44787–44802, 2018.

[HISW16] Ryan Hamilton, Jana Iyengar, Ian Swett, and Alyssa Wilk. QUIC: A UDP-Based Multiplexed
and Secure Transport. Internet-Draft draft-hamilton-quic-transport-protocol-00, Internet En-
gineering Task Force, 07 2016. Work in Progress.

[HKM+03] T. Ho, R. Koetter, M. Médard, D. R. Karger, and M. Effros. The benefits of coding over routing
in a randomized setting. In IEEE International Symposium on Information Theory, 2003. Proceed-
ings., page 442, 2003.

[HMK+06] Tracey Ho, Muriel Médard, Ralf Koetter, David R Karger, Michalle Effros, Jun Shi, and Ben
Leong. A Random Linear Network Coding Approach to Multicast. IEEE Transactions on
Information Theory, 52(10):4413–4430, 2006.

[HNR+11] Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam Greenhalgh, Mark Handley, and
Hideyuki Tokuda. Is it still possible to extend TCP? Proceedings of the ACM SIGCOMM Internet
Measurement Conference, IMC, pages 181–194, 2011.

[HPFL09] J. Heide, M. V. Pedersen, F. H. P. Fitzek, and T. Larsen. Network Coding for Mobile Devices -
Systematic Binary Random Rateless Codes. In 2009 IEEE International Conference on Commu-
nications Workshops, pages 1–6, 2009.

[HS02] Hung-Yun Hsieh and R. Sivakumar. pTCP: an end-to-end transport layer protocol for striped
connections. In 10th IEEE International Conference on Network Protocols, 2002. Proceedings.,
pages 24–33, 2002.

[Hui21a] Christian Huitema. One-way delays for multipath quic. https://huitema.wordpress.com/
2021/09/19/one-way-delays-for-multipath-quic/, Sep 2021. Accessed: 25th April, 2023.

[Hui21b] Christian Huitema. QUIC Multipath Negotiation Option. Internet-Draft draft-huitema-quic-
mpath-option-01, Internet Engineering Task Force, September 2021. Work in Progress.

[Hui22] Christian Huitema. Quic Timestamps For Measuring One-Way Delays. Internet-Draft draft-
huitema-quic-ts-08, Internet Engineering Task Force, August 2022. Work in Progress.

92

https://huitema.wordpress.com/2021/09/19/one-way-delays-for-multipath-quic/
https://huitema.wordpress.com/2021/09/19/one-way-delays-for-multipath-quic/


References References

[HWCK07] Zheng Huang, Xin Wang, Xueqing Chen, and Haibin Kan. Network Coding with Interleav-
ing. Proceedings of the International Conference on Parallel Processing Workshops, pages 1–6, 2007.

[IGK+23] Faheem Iqbal, Moneeb Gohar, Hanen Karamti, Walid Karamti, Seok-Joo Koh, and Jin-Ghoo
Choi. Use of quic for amqp in iot networks. Comput. Netw., 225(C), apr 2023.

[IIa] IETF QUIC WG and Internet Community. IETF QUIC WG Mail Archive. https://
mailarchive.ietf.org/arch/browse/quic/. Accessed: 25th April, 2023.

[IIb] IETF QUIC WG and Internet Community. MP QUIC Github issues. https://github.com/
quicwg/multipath/issues. Accessed: 25th April, 2023.

[II94] ISO and IEC. Information technology — Open Systems Interconnection — Basic Reference
Model: The Basic Model. Standard, International Organization for Standardization, Geneva,
CH, November 1994.

[II19] ISO and IEC. Information technology — Dynamic adaptive streaming over HTTP (DASH) —
Part 1: Media presentation description and segment formats. Standard, International Orga-
nization for Standardization, Geneva, CH, December 2019.

[IRB+11] Jana Iyengar, Costin Raiciu, Sebastien Barre, Mark J. Handley, and Alan Ford. Architectural
Guidelines for Multipath TCP Development. RFC 6182, March 2011.

[IS21] Jana Iyengar and Ian Swett. QUIC Loss Detection and Congestion Control. RFC 9002, May
2021.

[ISK23] Jana Iyengar, Ian Swett, and Mirja Kühlewind. QUIC Acknowledgement Frequency, March
2023. Work in Progress.

[IT20] Jana Iyengar and Martin Thomson. QUIC: A UDP-Based Multiplexed and Secure Transport,
June 2020. Work in Progress.

[IT21] J. Iyengar and M. Thomson. QUIC: A UDP-Based Multiplexed and Secure Transport. Internet
Requests for Comments, May 2021.

[JB22] Farinaz Jowkarishasaltaneh and Jason But. An analysis of mptcp congestion control. Telecom,
3(4):581–609, 2022.

[JFD+22] Sidna Jeddou, Fátima Fernández, Luis Diez, Amine Baina, Najid Abdallah, and Ramón
Agüero. Delay and energy consumption of mqtt over quic: An empirical characterization
using commercial-off-the-shelf devices. Sensors, 22(10), 2022.

[KCP+13] MinJi Kim, Jason Cloud, Ali ParandehGheibi, Leonardo Urbina, Kerim Fouli, Douglas Leith,
and Muriel Medard. Network Coded TCP (CTCP), 2013.

[KD19] Puneet Kumar and Behnam Dezfouli. Implementation and analysis of QUIC for MQTT. Com-
puter Networks, 150:28–45, feb 2019.

[KGPL13] Ramin Khalili, Nicolas Gast, Miroslav Popovic, and Jean Yves Le Boudec. MPTCP is not
pareto-optimal: Performance issues and a possible solution. IEEE/ACM Transactions on Net-
working, 21(5):1651–1665, 2013.

93

https://mailarchive.ietf.org/arch/browse/quic/
https://mailarchive.ietf.org/arch/browse/quic/
https://github.com/quicwg/multipath/issues
https://github.com/quicwg/multipath/issues


References References

[KGPS14] Oh Chan Kwon, Yunmin Go, Yongseok Park, and Hwangjun Song. MPMTP: Multipath mul-
timedia transport protocol using systematic raptor codes over wireless networks. IEEE Trans-
actions on Mobile Computing, 14(9):1903–1916, 2014.

[KKR12] Dina Katabi, Sachin Katti, and Hariharan Rahul. Chapter 2 - Harnessing Network Coding in
Wireless Systems, pages 39–60. Academic Press, Boston, 2012.

[KLL17] Bruno Yuji Lino Kimura, Demetrius C. S. F. Lima, and Antonio Alfredo Ferreira Loureiro.
Alternative scheduling decisions for multipath tcp. IEEE Communications Letters, 21:2412–
2415, 2017.

[KLM+14] Nicolas Kuhn, Emmanuel Lochin, Ahlem Mifdaoui, Golam Sarwar, Olivier Mehani, and
Roksana Boreli. Daps: Intelligent delay-aware packet scheduling for multipath transport.
In 2014 IEEE international conference on communications (ICC), pages 1222–1227. IEEE, 2014.

[KLMW22] Nicolas Kuhn, Emmanuel Lochin, François Michel, and Michael Welzl. Forward Erasure
Correction (FEC) Coding and Congestion Control in Transport. RFC 9265, July 2022.

[KPUM12] MinJi Kim, Ali ParandehGheibi, Leonardo Urbina, and Muriel Meedard. CTCP: Coded TCP
using multiple paths. arXiv preprint arXiv:1212.1929, 2012.

[KTK15] Krishnaprasad K, Mohit P. Tahiliani, and Vinay Kumar. TCP Kay: An end-to-end improve-
ment to TCP performance in lossy wireless networks using ACK-DIV technique amp; FEC.
In 2015 IEEE International Conference on Electronics, Computing and Communication Technologies
(CONECCT), pages 1–6, 2015.

[Lau23] Lucas Laursen. No more “no service”: Cellphones will increasingly text via satellite. IEEE
Spectrum, 60(1):52–55, 2023.

[LD12] Lin Liu and Xiaoshe Dong. Evaluating Packet-level Forward Error Correction: 1-D inter-
leaved parity codes. In 2012 8th International Conference on Computing Technology and Informa-
tion Management (NCM and ICNIT), volume 1, pages 370–375, 2012.

[Li07] Adam H. Li. RTP Payload Format for Generic Forward Error Correction. RFC 5109, December
2007.

[LIB+17] Adam Langley, Janardhan Iyengar, Jeff Bailey, Jeremy Dorfman, Jim Roskind, Joanna Ku-
lik, Patrik Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton, Victor Vasiliev, Alistair
Riddoch, Wan-teh Chang, Zhongyi Shi, Alyssa Wilk, Antonio Vicente, Charles Krasic, Dan
Zhang, Fan Yang, Fedor Kouranov, and Ian Swett. The QUIC Transport Protocol. In Proceed-
ings of the Conference of the ACM Special Interest Group on Data Communication - SIGCOMM ’17,
pages 183–196, New York, New York, USA, 2017. ACM Press.

[LLC12] Ming Li, Andrey Lukyanenko, and Yong Cui. Network coding based multipath TCP. In
Computer Communications Workshops (INFOCOM WKSHPS), 2012 IEEE Conference on, pages
25–30. IEEE, 2012.

[LLO+16] Ming Li, Andrey Lukyanenko, Zhonghong Ou, Antti Ylä-Jääski, Sasu Tarkoma, Matthieu
Coudron, and Stefano Secci. Multipath Transmission for the Internet: A Survey. IEEE Com-
munications Surveys & Tutorials, 18(4):2887–2925, 2016.

94



References References

[LLT+13] Ming Li, Andrey Lukyanenko, Sasu Tarkoma, Yong Cui, and Antti Ylä-Jääski. Tolerating
path heterogeneity in multipath TCP with bounded receive buffers. In ACM SIGMETRICS
Performance Evaluation Review, volume 41, pages 375–376. ACM, 2013.

[LLT+14] Ming Li, Andrey Lukyanenko, Sasu Tarkoma, Yong Cui, and Antti Ylä-Jääski. Tolerating path
heterogeneity in multipath TCP with bounded receive buffers. Computer Networks, 64:1–14,
2014.

[LM20] Yanmei Liu and Yunfei Ma. Mpquic use cases. https://github.com/quicwg/wg-materials/
blob/main/interim-20-10/MPQUIC%20use%20cases.pdf, Oct 2020. Accessed: 25th April,
2023.

[LMC+22] Yanmei Liu, Yunfei Ma, Quentin De Coninck, Olivier Bonaventure, Christian Huitema, and
Mirja Kühlewind. Multipath Extension for QUIC. Internet-Draft draft-ietf-quic-multipath-00,
Internet Engineering Task Force, 02 2022. Work in Progress.

[LMC+23] Yanmei Liu, Yunfei Ma, Quentin De Coninck, Olivier Bonaventure, Christian Huitema, and
Mirja Kühlewind. Multipath Extension for QUIC. Internet-Draft draft-ietf-quic-multipath-04,
Internet Engineering Task Force, March 2023. Work in Progress.

[LMH+21] Yanmei Liu, Yunfei Ma, Christian Huitema, Qing An, and Zhenyu Li. Multipath Extension
for QUIC, September 2021. Work in Progress.

[LMZG97] Hang Liu, Hairuo Ma, Magda El Zarki, and Sanjay Gupta. Error Control Schemes for Net-
works: An Overview. Mob. Networks Appl., 2(2):167–182, 1997.

[LNTG17] Yeon-sup Lim, Erich M Nahum, Don Towsley, and Richard J Gibbens. Ecf: An mptcp path
scheduler to manage heterogeneous paths. In Proceedings of the 13th international conference on
emerging networking experiments and technologies, pages 147–159, 2017.

[LSR+18] E. Liri, P. K. Singh, A. B. Rabiah, K. Kar, K. Makhijani, and K. K. Ramakrishnan. Robustness
of IoT Application Protocols to Network Impairments. In 2018 IEEE International Symposium
on Local and Metropolitan Area Networks (LANMAN), pages 97–103, 2018.

[MCM+22] Francois Michel, Alejandro Cohen, Derya Malak, Quentin De Coninck, Muriel Medard, and
Olivier Bonaventure. FlEC: Enhancing QUIC With Application-Tailored Reliability Mecha-
nisms. IEEE/ACM Transactions on Networking, pages 1–14, 2022.

[MDB19] Francois Michel, Quentin De Coninck, and Olivier Bonaventure. QUIC-FEC: Bringing the
benefits of Forward Erasure Correction to QUIC. In 2019 IFIP Networking Conference (IFIP
Networking), pages 1–9. IEEE, may 2019.

[NXHS14] Dan Ni, Kaiping Xue, Peilin Hong, and Sean Shen. Fine-grained forward prediction based
dynamic packet scheduling mechanism for multipath tcp in lossy networks. In 2014 23rd
international conference on computer communication and networks (ICCCN), pages 1–7. IEEE, 2014.

[Pau23] Rui Paulo. Implementations · quicwg/base-drafts Wiki. https://github.com/quicwg/
base-drafts/wiki/Implementations, 2023. Accessed: 25th April, 2023.

95

https://github.com/quicwg/wg-materials/blob/main/interim-20-10/MPQUIC%20use%20cases.pdf
https://github.com/quicwg/wg-materials/blob/main/interim-20-10/MPQUIC%20use%20cases.pdf
https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/quicwg/base-drafts/wiki/Implementations


References References

[PKS22] Tommy Pauly, Eric Kinnear, and David Schinazi. An Unreliable Datagram Extension to QUIC.
RFC 9221, March 2022.

[Pos80] Jon Postel. User Datagram Protocol. RFC 768, August 1980.

[Pos81a] J. Postel. Internet Protocol. RFC 791, September 1981.

[Pos81b] Jon Postel. Transmission Control Protocol. STD 793, RFC Editor, September 1981.

[RE16] Justin Ridgewell and Hala Elaarag. NCTCP: A Network Coded TCP Protocol. Simulation
Series, 48(3):39–46, 2016.

[RGR+17] Alexander Raake, Marie-neige Garcia, Werner Robitza, Peter List, Steve Goring, and Bernhard
Feiten. A bitstream-based, scalable video-quality model for HTTP adaptive streaming: ITU-T
P.1203.1. In 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX),
volume 12, pages 1–6. IEEE, may 2017.

[RHB18] Alexander Rabitsch, Per Hurtig, and Anna Brunstrom. A stream-aware multipath quic sched-
uler for heterogeneous paths. In Proceedings of the Workshop on the Evolution, Performance, and
Interoperability of QUIC, EPIQ’18, page 29–35, New York, NY, USA, 2018. Association for Com-
puting Machinery.

[RMQ20] Darijo Raca, Maelle Manifacier, and Jason J. Quinlan. goDASH — GO Accelerated HAS
Framework for Rapid Prototyping. In 2020 Twelfth International Conference on Quality of Mul-
timedia Experience (QoMEX), pages 1–4. IEEE, 2020.

[RMSM20] Vincent Roca, François Michel, Ian Swett, and Marie-Jose Montpetit. Sliding Window Ran-
dom Linear Code (RLC) Forward Erasure Correction (FEC) Schemes for QUIC, March 2020.
Work in Progress.

[RNB+18] John P. Rula, James Newman, Fabián E. Bustamante, Arash Molavi Kakhki, and David
Choffnes. Mile high wifi: A first look at in-flight internet connectivity. In Proceedings of the
2018 World Wide Web Conference, WWW ’18, page 1449–1458, Republic and Canton of Geneva,
CHE, 2018. International World Wide Web Conferences Steering Committee.

[SBL+13] Golam Sarwar, Roksana Boreli, Emmanuel Lochin, Ahlem Mifdaoui, and Guillaume Smith.
Mitigating receiver’s buffer blocking by delay aware packet scheduling in multipath data
transfer. In 2013 27th International Conference on Advanced Information Networking and Applica-
tions Workshops, pages 1119–1124, 2013.

[SCFJ03] Henning Schulzrinne, Stephen L. Casner, Ron Frederick, and Van Jacobson. RTP: A Transport
Protocol for Real-Time Applications. RFC 3550, July 2003.

[SCQH19] Hang Shi, Yong Cui, Feng Qian, and Yuming Hu. Dtp: Deadline-aware transport protocol.
In Proceedings of the 3rd Asia-Pacific Workshop on Networking 2019, APNet ’19, page 1–7, New
York, NY, USA, 2019. Association for Computing Machinery.

[SCW+18] Hang Shi, Yong Cui, Xin Wang, Yuming Hu, Minglong Dai, Fanzhao Wang, and Kai
Zheng. {STMS}: Improving {MPTCP} throughput under heterogeneous networks. In 2018
{USENIX} Annual Technical Conference ({USENIX}{ATC} 18), pages 719–730, 2018.

96



References References

[SKI19] Yurino Sato, Hiroyuki Koga, and Takeshi Ikenaga. TCP Using Adaptive FEC to Improve
Throughput Performance in High-Latency Environments. IEICE Transactions on Communica-
tions, E102.B(3):537–544, 2019.

[SKK+08] Vicky Sharma, Shivkumar Kalyanaraman, Koushik Kar, KK Ramakrishnan, and Vijay-
narayanan Subramanian. MPLOT: A transport protocol exploiting multipath diversity us-
ing erasure codes. In IEEE INFOCOM 2008-The 27th Conference on Computer Communications,
pages 121–125. IEEE, 2008.

[SKR06] Vijaynarayanan Subramanian, Shivkumar Kalyanaraman, and K.K. Ramakrishnan. An End-
to-End Transport Protocol for Extreme Wireless Network Environments. In MILCOM 2006 -
2006 IEEE Military Communications conference, pages 1–7, 2006.

[SM23] Darius Saif and Ashraf Matrawy. An experimental investigation of tuning quic-based
publish-subscribe architectures in iot, 2023.

[SMKK18] Tanya Shreedhar, Nitinder Mohan, Sanjit K Kaul, and Jussi Kangasharju. Qaware: A cross-
layer approach to mptcp scheduling. In 2018 IFIP Networking Conference (IFIP Networking) and
Workshops, pages 1–9. IEEE, 2018.

[SMRM20] Ian Swett, Marie-Jose Montpetit, Vincent Roca, and François Michel. Coding for QUIC, March
2020. Work in Progress.

[SPETG18] D. Stolpmann, C. Petersen, V. Eichhorn, and A. Timm-Giel. Extending On-the-fly Network
Coding by Interleaving for Avionic Satellite Links. In 2018 IEEE 88th Vehicular Technology
Conference (VTC-Fall), pages 1–5, 2018.

[SR22] David Schinazi and Eric Rescorla. Compatible Version Negotiation for QUIC. Internet-Draft
draft-ietf-quic-version-negotiation-14, Internet Engineering Task Force, December 2022. Work
in Progress.

[SSM+11] Jay Kumar Sundararajan, Devavrat Shah, Muriel Médard, Szymon Jakubczak, Michael
Mitzenmacher, and João Barros. Network Coding Meets TCP: Theory and Implementation.
Proceedings of the IEEE, 99(3):490–512, mar 2011.

[STkN22] Randall R. Stewart, Michael Tüxen, and karen Nielsen. Stream Control Transmission Protocol.
RFC 9260, June 2022.

[Swe16] Ian Swett. QUIC FEC v1. https://docs.google.com/document/d/
1Hg1SaLEl6T4rEU9j-isovCo8VEjjnuCPTcLNJewj7Nk/edit, 2016. Accessed: 23rd April,
2023.

[SWZ+20] Xiang Shi, Lin Wang, Fa Zhang, Biyu Zhou, and Zhiyong Liu. Pstream: Priority-based stream
scheduling for heterogeneous paths in multipath-quic. In 2020 29th International Conference on
Computer Communications and Networks (ICCCN), pages 1–8, 2020.

[SWZL19] Xiang Shi, Lin Wang, Fa Zhang, and Zhiyong Liu. Fstream: Flexible stream scheduling and
prioritizing in multipath-quic. In 2019 IEEE 25th International Conference on Parallel and Dis-
tributed Systems (ICPADS), pages 921–924, 2019.

97

https://docs.google.com/document/d/1Hg1SaLEl6T4rEU9j-isovCo8VEjjnuCPTcLNJewj7Nk/edit
https://docs.google.com/document/d/1Hg1SaLEl6T4rEU9j-isovCo8VEjjnuCPTcLNJewj7Nk/edit


References References

[TFH+07] Tomoaki Tsugawa, Norihito Fujita, Takayuki Hama, Hideyuki Shimonishi, and Tutomu
Murase. TCP-AFEC: An adaptive FEC code control for end-to-end bandwidth guarantee.
In Packet Video 2007, pages 294–301, 2007.

[Tho21] Martin Thomson. Version-Independent Properties of QUIC. RFC 8999, May 2021.

[TOHI17] Fumiya TESHIMA, Hiroyasu OBATA, Ryo HAMAMOTO, and Kenji ISHIDA. TCP-TFEC:
TCP Congestion Control based on Redundancy Setting Method for FEC over Wireless LAN.
IEICE Transactions on Information and Systems, E100.D(12):2818–2827, 2017.

[TSR19] P. Truchly, M. Sith, and R. Repka. End-to-end Packet Loss Differentiation Algorithms and
Their Performance in Heterogeneous Networks. In 2019 17th International Conference on
Emerging eLearning Technologies and Applications (ICETA), pages 777–783. IEEE, nov 2019.

[TT21] Martin Thomson and Sean Turner. Using TLS to Secure QUIC. RFC 9001, May 2021.

[VFR+18] Tobias Viernickel, Alexander Froemmgen, Amr Rizk, Boris Koldehofe, and Ralf Steinmetz.
Multipath QUIC: A Deployable Multipath Transport Protocol. In 2018 IEEE International Con-
ference on Communications (ICC), pages 1–7. IEEE, may 2018.

[VW21] Vu Anh Vu and Jan Wolff. Supporting Delay-Sensitive Applications with Multipath QUIC
and Forward Erasure Correction. In Proceedings of the 17th ACM Symposium on QoS and Secu-
rity for Wireless and Mobile Networks, pages 95–103, New York, NY, USA, nov 2021. ACM.

[WAB+20] Hongjia Wu, Özgü Alay, Anna Brunstrom, Simone Ferlin, and Giuseppe Caso. Peekaboo:
Learning-based multipath scheduling for dynamic heterogeneous environments. IEEE Journal
on Selected Areas in Communications, 38(10):2295–2310, 2020.

[WBRP18] Peng Wang, Carmine Bianco, Janne Riihijärvi, and Marina Petrova. Implementation and Per-
formance Evaluation of the QUIC Protocol in Linux Kernel. In Proceedings of the 21st ACM
International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
MSWIM ’18, page 227–234, New York, NY, USA, 2018. Association for Computing Machin-
ery.

[WCF+21] Hongjia Wu, Giuseppe Caso, Simone Ferlin, Özgü Alay, and Anna Brunstrom. Multi-
path scheduling for 5g networks: Evaluation and outlook. IEEE Communications Magazine,
59(4):44–50, 2021.

[WCWC17] Jiyan Wu, Bo Cheng, Ming Wang, and Junliang Chen. Priority-Aware FEC Coding for
High-Definition Mobile Video Delivery Using TCP. IEEE Transactions on Mobile Computing,
16(4):1090–1106, 2017.

[WGP+17] Simon Wunderlich, Frank Gabriel, Sreekrishna Pandi, Frank H.P. Fitzek, and Martin Reisslein.
Caterpillar RLNC (CRLNC): A Practical Finite Sliding Window RLNC Approach. IEEE Access,
5:20183–20197, 2017.

[WGX19] Jing Wang, Yunfeng Gao, and Chenren Xu. A multipath quic scheduler for mobile http/2. In
Proceedings of the 3rd Asia-Pacific Workshop on Networking 2019, APNet ’19, page 43–49, New
York, NY, USA, 2019. Association for Computing Machinery.

98



References References

[WL06] Mea Wang and Baochun Li. How Practical is Network Coding? In 200614th IEEE International
Workshop on Quality of Service, pages 274–278. IEEE, jun 2006.

[WYC+15] Jiyan Wu, Chau Yuen, Bo Cheng, Ming Wang, and Junliang Chen. Streaming high-quality
mobile video with multipath TCP in heterogeneous wireless networks. IEEE Transactions on
Mobile Computing, 15(9):2345–2361, 2015.

[WYC+16] Jiyan Wu, Chau Yuen, Bo Cheng, Yuan Yang, Ming Wang, and Junliang Chen. Bandwidth-
efficient multipath transport protocol for quality-guaranteed real-time video over heteroge-
neous wireless networks. IEEE Transactions on Communications, 64(6):2477–2493, 2016.

[YWA14] Fan Yang, Qi Wang, and Paul D. Amer. Out-of-order transmission for in-order arrival
scheduling for multipath tcp. In 2014 28th International Conference on Advanced Information
Networking and Applications Workshops, pages 749–752, 2014.

[ZGL+19] Han Zhang, Haijun Geng, Yahui Li, Xia Yin, Xingang Shi, Zhiliang Wang, Qianhong Wu,
and Jianwei Liu. DA&FD–Deadline-Aware and Flow Duration-Based Rate Control for Mixed
Flows in DCNs. IEEE/ACM Transactions on Networking, 27(6):2458–2471, 2019.

[ZML+21] Zhilong Zheng, Yunfei Ma, Yanmei Liu, Furong Yang, Zhenyu Li, Yuanbo Zhang, Jiuhai
Zhang, Wei Shi, Wentao Chen, Ding Li, Qing An, Hai Hong, Hongqiang Harry Liu, and
Ming Zhang. Xlink: Qoe-driven multi-path quic transport in large-scale video services. In
Proceedings of the 2021 ACM SIGCOMM 2021 Conference, SIGCOMM ’21, page 418–432, New
York, NY, USA, 2021. Association for Computing Machinery.

99


	Introduction
	Motivation and Objectives
	Document Structure

	Background & Literature Overview
	QUIC
	FEC and Network Coding
	Coding at Transport Layer
	Multipath
	Schedulers
	Multipath and Coding Techniques – Joint Use


	Forward Error Correction
	Coding Variants
	Convolutional Coding
	Coding Scheme
	Channel
	Inputs and Outputs
	Results
	Summary

	rQUIC Architecture
	Encoder
	Decoder
	Receiver Buffer

	FEC Operations
	Coding Configuration
	Dynamic code rate

	rQUIC Implementation Details
	Packet Fields
	Headers
	Payloads
	Obsolete Packets
	Assumptions and Design Simplifications

	rQUIC Evaluation Results
	Setup
	Bulk Transfer
	Webpage Download
	Video Streaming
	Buffer Timeout Exploration

	Summary

	Multipath for Transport Protocols
	QUIC Components
	Parallel Connections
	Data Streams
	Build Packets
	Path and Connection IDs
	Transmission Rate Control
	RTT and Loss Detection
	Frame Handling

	Path Scheduling
	Scheduler Inputs
	Data Limit for each Path
	Stream Management in MP
	In-Order Delivery

	FEC
	FEC Adjustments
	Updated FEC Operations
	Redundancies in MP

	Summary

	Summary and Outline
	FEC
	Multipath
	Multistreaming
	Future Research Lines
	FEC
	MP
	IoT

	Thesis Contributions
	Journals
	Conferences
	Other Contributions


	References

