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Abstract: worm gear sets are used in many applications of the transmission field. These mechanisms have 

interesting advantages. Despite this, its modelization is still challenging. This is due to its complex 

geometry. The goal behind this is to have an accurate model that allows improvement of the design of 

worm gear sets. In this context, the paper presents a new mathematical model of a worm gear drive under 

rotational external excitations. Dynamic model is defined by fourteen degrees of freedom describing all 

rotations and translations of worm gear set, bearings, a motor and a receiver connected together. First, 

equations of motion are developed to describe the dynamic behavior. Lagrange formula is thus employed. 

Elastic deformations of meshed teeth are considered. The normal load associated with the meshing is 

established as function of the model degrees of freedom through the elastic deflection. Second, a 

numerical simulation is carried out. Newmark Beta method is used to solve equations. Numerical results 

are presented to discuss the model accuracy. The impact of the variation of friction coefficient and the 

stiffness of the worm gear is finally studied to discuss the consistency of the new formulation developed 

through this work. 
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1. Introduction 

In many applications of transmission power, worm gear drive is used for its interesting advantages. Its high 

transmission ratio and reduced volume are its most important assets.  However, its complex geometry presents a 

challenging issue to deal with. Despite this, scientists were interested by this mechanical device and tried to 

enhance the advanced knowledge about it. Most researches on worm gear sets were focused on the design [1] , the 

load/stress distribution [2], the wear behavior [3], the efficiency [4]-[5] or thermal analysis [6]. In the dynamic 

field, there is limited number of works done on worm gear. Most of research has been done on less complex sets 

such as spur gears. From simple to multiple stages of spur gears were studied. For simple category, one can mention 

the work of Tamminana et al. [7] who developed and validated both finite elements and discrete models to predict 

a spur gear dynamic. Wang et al. [8] proposed a three degrees of freedom (DOF) model for typical railway 

locomotive. Numerical study was then carried to detect the effect of some parameters on the dynamic behavior of 

the transmission set. Park et al. [9] investigated the dynamic characteristics of spur gears through a four DOF 

model and by introducing the time varying mesh stiffness and bearings stiffness. For more complex configurations 

considering multiple stages of spur gears, the work of Fakhfakh et al. [10] can be mentioned in which a twelve 

DOF model is used to study the dynamic behavior of healthy and defective system. Abboudi et al. [11] based their 

work on the previous one to study the dynamic of gear boxes with introduction of bearings and shafts inertia in 

the wind turbine application.  
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For worm gears sets, many assumptions were done concerning the modelization in order to investigate the dynamic 

behavior. Chung et al. [12] studied a model of two DOF. Only axial rotations of gears were considered, and no 

bearings were introduced. A comparison with experimental measurements was then done to illustrate a relatively 

correct model. Hammami et al. [13] investigated the dynamic behavior of a two DOF model with plastic material. 

Authors studied the evolution of modal frequencies by the variation of the plastic material characteristics. 

Stolyarchuk [14] presented a dynamic analysis of a worm gear drive through focusing on the sliding friction contact 

area. A mathematical formulation was developed considering the worm gear as a translational multibody system 

including two-dimensional logic. Benabid et al. [15] carried out their work on a eight DOF model to make 

diagnostics with vibration analysis. This number of DOF is chosen to combine modelling simplicity and dynamic 

accuracy.  Fang et al. [16] developed a mathematical model of the ZN-type worm gear. Their study was based on 

cutting mechanism and parameters of the cutter tool. The most recent work done in this field is the work of 

Chakroun et al [17] who considered a fourteen DOF model and used modal analysis to study the dynamic behavior.  

In this paper, a new approach is presented to model also a fourteen DOF mechanical system but by focusing in 

addition on local aspects. Considering the contact forces and teeth elastic deformations in meshing area will 

overcome the limitations of existing models. This developed model is thus more accurate and practically as fast as 

the others. It does not exclude any intervention coming from a DOF considered negligible in the other works. 

Added to this, more in-depth studies can be established in relation with the meshed area as contact forces and teeth 

deflections, that condition the global and the local performances, are taken into consideration. The general 

performance covers the dynamic behavior and the efficiency. The local one includes the stress distribution and the 

wear behavior…A new formulation relating contact forces and teeth deflections is developed here to include all 

DOF participation. The goal behind this approach is to make an accurate model of a worm gear drive to investigate 

its dynamic performance.  

For this purpose, in this work the dynamic model is first under investigation. A mathematical approach is then 

developed to establish equations of motion. This is done by using Lagrange formula. Relation between elastic 

deflection of meshing teeth and normal load associated with the motion functionality is developed. For this, the 

geometries of worm and worm gear are taken into consideration. Second, a numerical simulation is carried out. 

The Newmark beta method is used to solve the fourteen equations of motion.  

In real application, the dynamic of this model is affected by several factors. The motion between components in a 

worm gear drive is characterized by an important sliding. The study of the effect of friction coefficient seems to 

be judicious here. The impact of the gear stiffness is also studied by analyzing the dynamic behavior of different 

metallic materials employed in worm gear. The coherence of results allows to discuss the consistency of the new 

formulation developed in this manuscript. 

2. Dynamic model 

Worm gears can be found in many types of mechanical systems. In this study, the model under investigation is 

composed of worm gear drive, motor, receiver, transmission shafts and bearings. This type of configuration is 

widely found in the electro-mechanical applications. The gear meshing and bearings are modeled by linear springs. 

Two assumptions are taken here to make compromise between simplicity and reliability of the model. Error on 

tooth profile and clearance between teeth are not taken into consideration. And the shafts dynamic behavior is 

supposed negligible. Only friction damping is studied in this work. 

The model is composed of two blocks (Fig. 1).  The worm (𝑤), the transmission shaft, the bearing (Bearing 1), 

and the motor make the first block. The second one consists of worm gear (𝑔), transmission shaft, bearing (Bearing 

2), and receiver. 

The model presents fourteen DOF. Seven DOF for each block: three defining translations: (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)𝑖=1,2 

respectively along axes (�⃗�, �⃗⃗�, 𝑍) and four for rotations: (𝜃𝑗𝑥 , 𝜃𝑗𝑦 , 𝜃𝑗𝑦)
𝑗=𝑤,𝑔

 respectively around axes (�⃗�, �⃗⃗�, 𝑍) of 

worm, worm gear and bearings and (𝜃𝑘)𝑘=𝑅,𝑀 of the motor/receiver. 
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Fig. 1: Dynamic model 

When worm threads and worm gear teeth are engaged, loads are transmitted: the normal load 𝐹𝑛 and the tangential 

one 𝐹𝑓 representing frictional actions (Fig. 2). This frictional load is supposed to be proportional to normal one 

and is written as  𝐹𝑓 = 𝜇𝐹𝑛  . These two loads vary by time along the action line of the meshing area. Normal force 

is composed of three orthogonal forces [18]: 

𝐹𝑥 = 𝐹𝑛𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜆 + 𝐹𝑓𝑐𝑜𝑠𝜆 (1) 

𝐹𝑦 = 𝐹𝑛𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜆 − 𝐹𝑓𝑠𝑖𝑛𝜆 (2) 

𝐹𝑧 = 𝐹𝑛𝑠𝑖𝑛𝜙 (3) 

where, 𝜆 and 𝜙 are the lead and the pressure angles respectively. 

 

Fig. 2 worm gear force components 
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Using the Lagrange formalism, the equations of motions of the model are written as follows: 

 

Worm 

𝑚1�̈�1 + 𝑘𝑥1𝑥1 = 𝐹𝑥 (4) 

𝑚1�̈�1 + 𝑘𝑦1𝑦1 = 𝐹𝑦 (5) 

𝑚1�̈�1 + 𝑘𝑧1𝑧1 = 𝐹𝑧 (6) 

𝐼𝑤𝑥�̈�𝑤𝑥 + 𝑘𝜃𝑤𝑥𝜃𝑤𝑥 = 𝐹𝑧𝑅𝑤 (7) 

𝐼𝑤𝑦�̈�𝑤𝑦 + 𝑘𝜃𝑤𝑦(𝜃𝑤𝑦 − 𝜃𝑀) = 𝐹𝑥𝑅𝑤 (8) 

 𝐼𝑤𝑧�̈�𝑤𝑧 + 𝑘𝜃𝑤𝑧𝜃𝑤𝑧 = −𝐹𝑥𝑅𝑤 (9) 

Motor 𝐼𝑀�̈�𝑀 + 𝑘𝜃𝑤𝑦(𝜃𝑀 − 𝜃𝑤𝑦) = 𝜏𝑀 (10) 

 

Worm gear 

𝑚2�̈�2 + 𝑘𝑥2𝑥2 = −𝐹𝑥 (11) 

𝑚2�̈�2 + 𝑘𝑦2𝑦2 = −𝐹𝑦 (12) 

𝑚2�̈�2 + 𝑘𝑧2𝑧2 = −𝐹𝑧 (13) 

𝐼𝑔𝑥�̈�𝑔𝑥 + 𝐾𝜃𝑔𝑥(𝜃𝑔𝑥 − 𝜃𝑅) = −𝐹𝑦𝑅𝑔 (14) 

𝐼𝑔𝑦�̈�𝑔𝑦 + 𝑘𝜃𝑔𝑦𝜃𝑔𝑦 = −(𝐹𝑥+𝐹𝑧)𝑅𝑔 (15) 

 𝐼𝑔𝑧�̈�𝑔𝑧 + 𝑘𝜃𝑔𝑧𝜃𝑔𝑧 = −𝐹𝑥𝑅𝑔 (16) 

Receiver 𝐼𝑅�̈�𝑅 + 𝑘𝜃𝑔𝑥(𝜃𝑅 − 𝜃𝑔𝑥) = 𝜏𝑅 (17) 

Where, (𝑘𝑥𝑖 , 𝑘𝑦𝑖, 𝑘𝑧𝑖)𝑖=1,2 are the axial and radial stiffness, of worm gear set compounds, along global reference 

axes and (𝑘𝜃𝑗𝑥, 𝑘𝜃𝑗𝑦 , 𝑘𝜃𝑗𝑧) are the torsional stiffness around axes. 𝑚1 and 𝑚2 represent the weights of the first and 

second block respectively. (𝐼𝑗𝑥 , 𝐼𝑗𝑦 , 𝐼𝑗𝑧)𝑗=𝑤,𝑔
 are the inertial moments of worm and worm gear. (𝐼𝑀 . 𝜏𝑀) and (𝐼𝑅 , 𝜏𝑅) 

are respectively the inertia moment and the torque of motor and receiver. (𝑅𝑗)𝑗=𝑤,𝑔
 is the pitch radius. To highlight 

the elastic deformations of meshed teeth, the above equations of motion must be rewritten under a specific way 

detailed as follows below. First, the normal load must be expressed as function of the worm gear set DOFs. Normal 

load is related to deflections (𝛿𝑗)𝑗=𝑤,𝑔
 , generated by teeth elastic deformations in the engaged worm and worm 

gear by: 

𝛿𝑤(𝑡) =
𝐹𝑛(𝑡)

𝑘𝑤(𝑡)
 (18) 

𝛿𝑔(𝑡) =
𝐹𝑛(𝑡)

𝑘𝑔(𝑡)
 (19) 

𝑘𝑤(𝑡) and 𝑘𝑔(𝑡) are the meshed tooth spring constant respectively in worm and worm gear. To make next 

equations easier to read, the dependence on time of quantities will not be written. The assumption of equations 

(18) and (19) gives: 

𝛿𝑤 + 𝛿𝑔 =
𝐹𝑛

𝑘𝑤𝑔

 (20) 
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Each meshed teeth pair is modelled by two springs (𝑘𝑗)𝑗=𝑤,𝑔
 joined in series. The total mesh stiffness 𝑘𝑤𝑔, varying 

periodically in time and by the meshing gear pair number, is: 

𝑘𝑤𝑔 =
𝑘𝑔𝑘𝑤

𝑘𝑔 + 𝑘𝑤

 (21) 

Gears can operate normally by maintaining contact of deformed teeth in both worm and worm gear. The total 

displacement must be the same for each teeth pair in contact simultaneously. This displacement is the sum of the 

rotation movement of the worm/worm gear, the bearing excitations, and deformations of the elastic teeth. To 

determine the relation between normal load and deflections in the model, displacements are projected on �⃗�, �⃗⃗� and 

𝑍 axes. Then we sum the three equations and extract the deflections sum (𝛿𝑤 + 𝛿𝑔). For the displacement projected 

on the �⃗⃗� axis: when the worm rotates by an angle of 𝜃𝑤𝑦  the worm teeth move a distance of 𝑙𝑤𝜃𝑤𝑦 . Bearing 1 

translates worm a distance of 𝛿𝑏𝑤|𝑦. It also stimulates two rotational movements around �⃗� and 𝑍 axes. These 

rotations generate additional displacements 𝛿𝑏𝑤|𝑅𝑥 and 𝛿𝑏𝑤|𝑅𝑧 along the axial direction (Fig. 3). Deflection of tooth 

is normal to its direction and thus is equal to 𝛿𝑤 sin (
𝜋

2
− 𝜆). On the other side, worm gear rotates from 0 to 𝜃𝑔𝑥. 

Its teeth move a distance of 𝑅𝑔𝜃𝑔𝑥 along �⃗⃗� direction. Bearing 2 adds complementary movements. 𝛿𝑏𝑔|𝑦 is the 

deformation due to the translation. 𝛿𝑏𝑔|𝑅𝑦 and 𝛿𝑏𝑔|𝑅𝑧 are deformations generated by the bearing due to rotations 

around �⃗� and 𝑍 axes. The theory of the same displacement amplitude is thus written as: 

𝑙𝑤𝜃𝑤𝑦 − 𝛿𝑤 sin (
𝜋

2
− 𝜆) − 𝛿𝑏𝑤|𝑦 − 𝛿𝑏𝑤|𝑅𝑥 − 𝛿𝑏𝑤|𝑅𝑧

= 𝑅𝑔𝜃𝑔𝑥 + 𝛿𝑔 sin (
𝜋

2
− 𝜆) + 𝛿𝑏𝑔|𝑦 + 𝛿𝑏𝑔|𝑅𝑦 + 𝛿𝑏𝑔|𝑅𝑧 

(22) 

Rearranging equation (22), on can obtain: 

(𝛿𝑤 + 𝛿𝑔) sin (
𝜋

2
− 𝜆) = 𝑙𝑤𝜃𝑤𝑦 − 𝑅𝑔𝜃𝑔𝑥 − 𝛿𝑏𝑤|𝑦 − 𝛿𝑏𝑤|𝑅𝑥 − 𝛿𝑏𝑤|𝑅𝑧 − 𝛿𝑏𝑔|𝑦 − 𝛿𝑏𝑔|𝑅𝑧 − 𝛿𝑏𝑔|𝑅𝑦 (23) 

 

 

(a)                                                                            (b) 

 

(c)                                                                     (d) 
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Fig. 3 Deformations generated by rotational excitations of bearings. (a) rotation of worm around �⃗⃗⃗� axis, (b) 

rotation of worm around �⃗⃗⃗� axis, (c) rotation of worm gear around �⃗⃗⃗� axis, (d) (left) rotation of worm gear around 

�⃗⃗⃗� axis (right) top view of the rotation 

The bearings deflections projected along y axis are written as: 

𝛿𝑏𝑤|𝑦 = 𝑦1 , 𝛿𝑏𝑤|𝑅𝑥 = 𝜃𝑤𝑥𝑌𝑤𝑥 , 𝛿𝑏𝑤|𝑅𝑧 = 𝜃𝑤𝑧𝑌𝑤𝑧  (24) 

𝛿𝑏𝑔|𝑦 = 𝑦2, 𝛿𝑏𝑔|𝑅𝑧 = 𝜃𝑔𝑧𝑌𝑔𝑧 , 𝛿𝑏𝑔|𝑅𝑦 = 𝜃𝑔𝑦𝑌𝑔𝑦 (25) 

 

Considering two points 𝑀𝑤 and 𝑀𝑔 belonging to the active flank of the worm and the worm gear, respectively. 

The displacement of each point is denoted 𝑈𝑗(𝑀𝑗) (𝑗 = 𝑤, 𝑔) and is written referring to work done in [17]:  

𝑈𝑤(𝑀𝑤) = (

𝑥𝑤

𝑦𝑤

𝑧𝑤

) + (

𝜃𝑤𝑥

𝜃𝑤𝑦

𝜃𝑤𝑧

) ∧ (

𝑙𝑤𝑐𝑜𝑠𝜆

−𝑅𝑤𝑡𝑔(𝜙 − 𝛾) + (𝑝𝑤 − 𝑙𝑤𝑠𝑖𝑛𝜆)cos (𝛾 − 𝜙)

−𝑅𝑤 + (𝑝𝑤 − 𝑙𝑤𝑠𝑖𝑛𝜆)sin (𝛾 − 𝜙)
) (26) 

𝑈𝑔(𝑀𝑔) = (

𝑥𝑔

𝑦𝑔

𝑧𝑔

) + (

𝜃𝑔𝑥

𝜃𝑔𝑦

𝜃𝑔𝑧

) ∧ (

𝑙𝑔𝑐𝑜𝑠𝜆

𝑅𝑔𝑠𝑖𝑛(𝜙 − 𝛾) − (𝑝𝑔 + 𝑙𝑔𝑠𝑖𝑛𝜆)cos (𝛾 − 𝜙)

𝑅𝑔 cos(𝜙 − 𝛾) − (𝑝𝑔 + 𝑙𝑔𝑠𝑖𝑛𝜆)sin (𝛾 − 𝜙)

) (27) 

With, 𝑙𝑗=𝑤,𝑔 is the distance separating points 𝑀𝑗=1,2 from the middle of the line of action. One can thus obtain 

coefficients values as follows: 

𝑌𝑤𝑥 = 𝑅𝑏𝑤 − (𝑝𝑤 − 𝑙𝑤𝑠𝑖𝑛𝜆)sin (𝛾 − 𝜙) 

𝑌𝑤𝑧 = 𝑙w𝑐𝑜𝑠𝜆 

𝑌𝑔𝑧 = −𝑅𝑏𝑔 cos(𝜙 − 𝛾) + (𝑝𝑔 + 𝑙𝑔𝑠𝑖𝑛𝜆)sin (𝛾 − 𝜙) 

𝑌𝑔𝑦 = 0 

(28) 

The same procedure described above is established for the projections of displacements on �⃗� and 𝑍 axes. On can 

thus obtain: 

(𝛿𝑤 + 𝛿𝑔) sin(𝜆)cos (𝜙) = −𝑥1 − 𝑥2 − 𝑋𝑤𝑦𝜃𝑤𝑦 − 𝑋𝑤𝑧𝜃𝑤𝑧 − 𝑋𝑔𝑦𝜃𝑔𝑦 − 𝑋𝑔𝑧𝜃𝑔𝑧 (29) 

(𝛿𝑤 + 𝛿𝑔) sin2(𝜆)cos (𝜙) = −𝑧1 − 𝑧2 − 𝑍𝑤𝑥𝜃𝑤𝑥 − 𝑍𝑔𝑥𝜃𝑔𝑥 − 𝑍𝑔𝑦𝜃𝑔𝑦 (30) 

Where,  

𝑋𝑤𝑦 = 𝑙𝑤𝑐𝑜𝑡𝑔𝜆,  

𝑋𝑤𝑧 = 𝑅𝑏𝑤𝑡𝑔(𝜙 − 𝛾) − (𝑝𝑤 − 𝑙𝑤𝑠𝑖𝑛𝜆) cos(𝛾 − 𝜙) 

𝑋𝑔𝑧 = −𝑅𝑏𝑔𝑠𝑖𝑛(𝜙 − 𝛾) + (𝑝𝑔 + 𝑙𝑔𝑠𝑖𝑛𝜆)cos (𝛾 − 𝜙) 

𝑍𝑤𝑥 = −𝑅𝑏𝑤𝑡𝑔(𝜙 − 𝛾) + (𝑝𝑤 − 𝑙𝑤𝑠𝑖𝑛𝜆)cos (𝛾 − 𝜙) 

𝑍𝑔𝑥 = 𝑅𝑏𝑔𝑠𝑖𝑛(𝜙 − 𝛾) − (𝑝𝑔 + 𝑙𝑔𝑠𝑖𝑛𝜆)cos (𝛾 − 𝜙) 

𝑍𝑔𝑦 = 𝑙𝑔𝑐𝑜𝑠𝜆 

(31) 

From the relation defined in equation (20) and the sum of equations (23), (29) and (30) written under the following 

form (32), one can obtain the final expression of 𝐹𝑁. 
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𝛿𝑤 + 𝛿𝑔 = 𝑎. [−𝑥1 − 𝑥2 − 𝑦1 − 𝑦2 − 𝑧1 − 𝑧2 + 𝑎1𝜃𝑤𝑥 + 𝑎2𝜃𝑤𝑦 + 𝑎3𝜃𝑤𝑧 + 𝑎4𝜃𝑔𝑥 + 𝑎5𝜃𝑔𝑦 + 𝑎6𝜃𝑔𝑧] (32) 

Replacing the expression of the normal load in equations of motions (4)-(17) written above, the total equation of 

motion can thus be written under the matrix form: 

[𝑀]{ �̈�(𝑡)} + [𝐾(𝑡)]{𝑞(𝑡)} = {F(t)} (33) 

The degrees of freedom vector {𝑞(𝑡)} is written as: 

{𝑞(𝑡)} = {𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2 , 𝑧2, 𝜃𝑤𝑥 , 𝜃𝑤𝑧 , 𝜃𝑔𝑦 , 𝜃𝑔𝑧 , 𝜃𝑤𝑦 , 𝜃𝑀, 𝜃𝑔𝑥, 𝜃𝑅}
𝑡
 (34) 

External loads vector is given by: 

{𝐹(𝑡)} = {0,0,0,0,0,0,0,0,0,0,0, 𝜏𝑀, 0, 𝜏𝑅}𝑡 (35) 

 

The mass matrix is defined as a diagonal matrix: 

[𝑀] = [
𝑀𝑙 0
0 𝑀𝜃

] (36) 

composed of:  

[𝑀𝑙] = 𝑑𝑖𝑎𝑔(𝑚1, 𝑚1, 𝑚1, 𝑚2, 𝑚2, 𝑚2) (37) 

[𝑀𝜃] = 𝑑𝑖𝑎𝑔(𝐼𝑤𝑥 , 𝐼𝑤𝑧 , 𝐼𝑔𝑦 , 𝐼𝑔𝑧 , 𝐼𝑤𝑦 , 𝐼𝑀 , 𝐼𝑔𝑥 , 𝐼𝑅) (38) 

The stiffness matrix is the sum of two matrix: 

[𝐾(𝑡)] = [𝐾𝑐] + [𝐾𝑡(𝑡)] (39) 

The matrix of constant stiffness of worm and worm gears is: 

[𝐾𝑐] = [
𝐾𝑙 0
0 𝐾𝜃

] (40) 

where,  

[𝐾𝑙] = 𝑑𝑖𝑎𝑔(𝑘𝑥1, 𝑘𝑦1, 𝑘𝑧1, 𝑘𝑥2, 𝑘𝑦2, 𝑘𝑧2) (41) 

[𝐾𝜃] =

[
 
 
 
 
 
 
 
 
𝑘𝑤𝑥 0 0 0 0 0 0 0
0 𝑘𝑤𝑧 0 0 0 0 0 0
0 0 𝑘𝑔𝑦 0 0 0 0 0

0 0 0 𝑘𝑔𝑧 0 0 0 0

0 0 0 0 𝑘𝑤𝑦 −𝑘𝑤𝑦 0 0

0 0 0 0 −𝑘𝑤𝑦 𝑘𝑤𝑦 0 0

0 0 0 0 0 0 𝑘𝑔𝑥 −𝑘𝑔𝑥

0 0 0 0 0 0 −𝑘𝑔𝑥 𝑘𝑔𝑥 ]
 
 
 
 
 
 
 
 

 (42) 

The matrix of variant stiffness has this shape: 

[𝐾𝑡(𝑡)] = 𝑓(𝑡). 𝐾𝑡  (43) 
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𝐾𝑡 = [P Ρ P P Ρ P Ρ. A𝑤𝑥 Ρ. A𝑤𝑧 P. A𝑔𝑦 Ρ. A𝑔𝑧 Ρ. A𝑤𝑦 Ο Ρ. A𝑔𝑥 Ο] (44) 

𝑃 = [𝑃𝑡 𝑃𝑅]′ (45) 

𝑃𝑡 = [−𝑡1 −𝑡2 −𝑡3     𝑡1 𝑡2 𝑡3] (46) 

𝑃𝑅 = [−𝑡3 ∗ 𝑅𝑤 −𝑡1 ∗ 𝑅𝑤 (𝑡1 + 𝑡3) ∗ 𝑅𝑔     𝑡1 ∗ 𝑅𝑔 −𝑡1 ∗ 𝑅𝑤 0    𝑡2 ∗ 𝑅𝑔 0] (47) 

Parameters in (45) are defined in the table below: 

Table 1 Parameters of the variant stiffness matrix 

𝑡1 𝐾𝐸1𝑅𝑤 

𝑡2 K𝐸2𝑅𝑤 

𝑡3 K𝐸3𝑅𝑤 

𝐾𝐸1 𝑡11 sin (
𝜋

2
− 𝜆)𝐾𝑤𝑔 

K𝐸2 𝑡12 sin (
𝜋

2
− 𝜆)𝐾𝑤𝑔 

K𝐸3 𝑡13 sin (
𝜋

2
− 𝜆)𝐾𝑤𝑔 

t11 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜆 + 𝜇𝑐𝑜𝑠𝜆 

𝑡12 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜆 − 𝜇𝑠𝑖𝑛𝜆 

t13 𝑠𝑖𝑛𝜙 

 

Fluctuation of the stiffness by time is defined by 𝑓(𝑡) function. It describes the evolution of the length of the line 

of action for every meshing tooth pair period. It depends on geometrical parameters. In this work, it is taken as in 

the study of [17]. The goal is to compare results later. 

3. Numerical simulation 

3.1 Dynamic performance 

To investigate the dynamic performance of the model described above, a numerical simulation is carried out under 

MATLAB software. The worm gear set design parameters used are detailed in Table 2 [17], [19]. The Newmark 

beta solver is used to determine the amplitude of vibrations related to the DOF of the model. Fluctuation of the 

mesh stiffness by time is presented in Fig.4. Dynamic study is done on a period of 2s. The friction coefficient 

depends normally on relative velocity in the meshing during sliding. Many empirical expressions were developed 

to estimate it. However, it is considered here constant to linearize the problem. The influence of this coefficient 

will be presented later.  

 

Table 2 model design parameters 

 worm Worm gear 

Module (mm) 3   

teeth number 1 50 

Pitch radius (mm) 8 25 

Material Steel(S45C) Bronze (CAC702) 

Rotation speed (rpm) 1500 30 

Stiffness of bearings (N/m) 𝑘𝑥1 = 𝑘𝑧1 = 108 𝑘𝑦2 = 𝑘𝑧2 = 108 

Stiffness of shafts (N/m) 𝑘𝑦1 = 2,5.108 𝑘𝑦2 = 2.5.108 
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Torsional Stiffness of bearings (Nm/rd) 𝑘𝑤𝑥 = 𝑘𝑤𝑧 = 4. 107 𝑘𝑔𝑥 = 𝑘𝑔𝑧 = 4. 107 

Torsional Stiffness of shafts (Nm/rd) 𝑘𝑤𝑦 = 8,4. 105 𝑘𝑔𝑥 = 8.4. 105 

Teeth stiffness (N/m) 𝑘𝑤 = 108 𝑘𝑔 = 0.5 ∗ 108 

Angle of pressure 20°  

Worm’s lead angle 3°58’  

Normal pressure angle 14°33’  

Worm’s lead (mm) 9.4  

 

 

 
Fig. 4 Evolution of gear mesh stiffness by time  

 

 

 

Fig. 5 Amplitude of the temporal displacement of the worm along X axis 
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(a)                                                                        (b) 
Fig. 6 Amplitude of the worm displacement (a) displacement along Y axis, (b) angular displacement around X 

axis 

The displacements amplitudes of worm are displayed in Fig. 5 and Fig. 6. Results are very close to those found in 

the literature [15]-[17]. Fig. 7 presents a comparison between two configurations. In both, the worm is with steel 

material. However, the worm gear is either cast iron (FC200 with 𝑘𝑔 = 0.35 ∗ 108) or bronze (CAC702 with 𝑘𝑔 =

0.5 ∗ 108) for this numerical example. The goal here is to check the consistency of the developed approach when 

the characteristics of materials are changed. Curves show a decrease in the displacement amplitudes of bearing 

when cast iron is used compared to the bronze one. This material has a softening effect of vibrations amplitudes 

which is the case here.  

 

 

Fig. 7 Evolution of the angular displacement of the bearing around Y axis for steel-bronze and steel-cast iron 

configurations 

 

3.2 The impact of the variation of the friction coefficient  

To study the influence of the friction coefficient on the dynamic behavior of the model, a range of coefficient 

values is scanned [0.05,0.08], and displacements and rotations amplitudes are calculated. In Fig. 8, the effect of 

the friction coefficient on the rotation amplitudes of the worm (steel) and the worm gear (bronze) is presented. The 

evolution of theses amplitudes is presented through deviation defined as the ratio of the maximum amplitude on 

the end value: max(𝜃(𝜇)) /𝜃(𝜇=0.08). It is deduced that the higher is the coefficient, the smallest is the amplitude 

for both rotations. Faster decreasing of amplitudes is also observed for the worm gear rotation compared to the 

worm amplitudes. This can be explained by the proportionality of motion between components. 

 

Fig. 8 Evolution of the amplitude of the maximum angular displacement by the variation of the friction 

coefficient 
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Fig. 9 Evolution of the deviation of the maximum amplitude of the angular displacement 𝜽𝒈𝒙 by friction 

coefficient variation for both steel-bronze and steel-cast iron configurations 

In Fig.9, the effect of the friction coefficient on the deviation of the angular displacement  𝜃𝑔𝑥 of the worm gear is 

presented. Both materials of bronze and cast iron are the object of comparison here. Curves show here again the 

softening effect of the cast iron that exhibits lower values of amplitudes for the range of friction values scanned. 

The purpose of this investigation is to highlight the consistency of the results of the new formulation as in the 

previous section for the change of the material of one component. The results seem coherent. The amplitude of the 

displacements evolves inversely to the evolution of the coefficient of friction. 

4. Conclusion  

Through this paper, a new mathematical model of a worm gear drive is presented. The dynamic behavior of 

fourteen degrees of freedom model is under investigation focusing on contact force and teeth elastic deformations 

in the meshing area. The objective is to develop a more accurate model taking into consideration the geometry of 

worm gear sets, contact friction, inertia moments and shafts rigidities. A numerical simulation is carried out 

showing reasonably correct results. Softening the mesh with a cast iron material shows a drop in the amplitudes 

of vibrations as expected. The influence of the friction coefficient on the amplitudes is also studied showing a 

decreasing in amplitudes with higher values of friction coefficient while maintaining motion proportionality.   
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