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Abstract— An in-depth investigation of oscillation modes in an
oscillator based on a distributed amplifier is presented. It shows
that instability problems reported in previous papers are intrinsic
to the circuit nonlinear dynamics. The undesired phenomena
include discontinuous jumps when continuously varying the
tuning voltage, quasi-periodicity, or two incommensurable self-
generated oscillations, and nonuniqueness of the mode, meaning
that the same frequency can be achieved by several combinations
of tuning voltages. The numerical bifurcation analysis of the
circuit reveals a complicated dynamical structure that explains
the mechanisms leading to the reported undesired behaviors. Spe-
cial attention is paid to the presence of complicated bifurcation
scenarios leading to quasi-periodic behavior and a chaotic regime.
The results of this theoretical investigation are confirmed by inde-
pendent numerical simulations through time-domain integration
and qualitatively predict the experimental observations. Then,
a stabilization procedure based on the introduction of resistors
is presented, evaluating its impact on the oscillation amplitude
and the uniqueness of the desired oscillation modes obtained
when tuning the bias voltages.

Index Terms— Delay line oscillator, invariant manifold, local
bifurcation, Neimark–Sacker bifurcation.

I. INTRODUCTION

THE concept of an oscillator based on a distributed ampli-
fier was first introduced in [1] and later experimentally

verified in [2] and [3]. The ability of a distributed ampli-
fier to overcome the fundamental Bode–Fano limit is well
recognized [4], and the distributed-amplifier oscillator should
take advantage of the extreme bandwidths that the distributed
amplifier can reach. To illustrate its operation mechanism,
Fig. 1 presents the schematics of the three-stage microstrip
distributed amplifier oscillator that will be considered here.
Transistors are connected to the shared transmission line
(TL) with equidistant spacing l forming a multiple delay line
feedback path. For clarity, feedback loops for each transis-
tor (conceptually represented with the transfer functions Hi )
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Fig. 1. Microstrip realization of the distributed-amplifier oscillator.

are indicated with arrows. The microstrip TL of width w is
periodically loaded by the parasitic capacitances of the active
devices with equidistant spacing l. To ensure small reflec-
tions in an as-wide-as-possible bandwidth of the distributed
amplifier, the structure is conventionally terminated by Zobel’s
m-derived half sections [5] providing an optimal wideband
match to the real load R purely with the parameter value
m

.= 0.6 [4], [6]. According to Floquet’s theorem, a slow
Bloch wave can be excited in such a structure [7]. The oper-
ation regime of the distributed amplifier oscillator is intended
for the first passband given by the Bragg condition [7].

The frequency tuning control mechanism of the distributed
amplifier oscillator relies on the variation of the transconduc-
tances of adjacent pairs of active elements. This is done most
conveniently by adjusting the gate bias voltage of each stage.
The tuning, as interpreted in previous works [2], [8], gives rise
to a vector addition of the waves propagating from the active
elements in the common part of the artificial line. The tuning
function is then constructed by solving the system for the
amplitude and phase terms in two unknown transconductances,
such that the Barkhausen condition is fulfilled [2]. Indeed,
it was experimentally observed [2], [3], [8], [9] that, by a care-
ful adjustment of the bias voltages of adjacent transistors pairs,
it is possible to cover all frequencies from 0.31ωc up to ωc (ωc

is the cutoff frequency of the artificial TL). However during
the process of tuning, quasi-periodic oscillations, hysteresis,
and jumps to undesired modes occur, as reported in several
previous works [2], [3], [9]. In addition, some oscillation
modes are experimentally observed when varying the tuning
voltages in a certain sense only. This is an indication of the
complex underlying dynamics that will extremely complicate
the task of achieving an optimal tuning function. To date, it is
not clear if the undesired phenomena have their origin in an
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Fig. 2. Three-stage distributed amplifier oscillator under investigation.

imperfect circuit implementation or if they are inherent to the
circuit dynamics.

Previous works on the distributed amplifier oscillator [3],
[8] base the oscillatory modes prediction on the Barkhausen
criterion. Even though this small-signal prediction may par-
tially agree with the measurement, the mechanism for the
oscillation buildup is somewhat more complicated due to the
multiresonant nature of the involved feedback loops (Fig. 1).
The studies [8], [9] present a harmonic balance analysis of the
oscillatory solutions, complemented with a stability analysis
based on the envelope transient method that uses these solu-
tions as an initial value. Unfortunately, the envelope-transient
is not rigorous enough for the prediction of the stability prop-
erties due to its dependence on the integration time step [10].
In fact, the analysis and design of distributed oscillators
miss a detailed and rigorous mathematical investigation of
the instability mechanisms that often plague the practical
implementations. This investigation is the main contribution
of our work.

To address the origin of the undesired phenomena, here,
we propose a simplified yet realistic model of the oscillator
that is independent of implementation nuances. One of the
goals is to demonstrate, for a canonical circuit representation,
that mode jumps are not caused by parasitic effects. Thus,
their occurrence will be independent of the implementation.
A second fundamental goal is to verify that the desired
oscillations can be reliably achieved as stable and unique
solutions. Initially, we will perform a small-signal analysis in
the complex-frequency domain, which will provide insight into
the mechanisms for the generation of the oscillation modes.
This will be achieved through the calculation of the circuit
characteristic determinant [11]. As will be shown, only some
of the detected modes are intended in the design. Then, we will
carry out a detailed bifurcation analysis that will be used
as a general framework for a qualitative description of the
complex nonlinear dynamics of the circuit. Hopf bifurcations

can lead to stable oscillations, so knowing their trajectories in
the plane defined by the two control voltages will reveal how
the oscillations appear during the oscillator tuning. Special
attention is paid to the presence of complicated bifurcation
scenarios leading to quasi-periodic behavior and a chaotic
regime.

The results of this theoretical investigation will be confirmed
by independent numerical simulations through time-domain
integration and selected experimental measurements. As will
be shown, the theoretical analysis qualitatively predicts the
experimental observations. A stabilization mechanism through
the introduction of resistors will also be presented, considering
its impact on the oscillator performance.

In addition to the nonlinear-dynamics investigation, the
manuscript provides practical methods for stability analysis
and bifurcation detection, compatible with commercial sim-
ulators, and a full description of the circuit with arbitrary
models and parasitic effects. Those practical methods rely on
the calculation of the total admittance matrix of the complete
oscillator topology, defined at the device terminals.

This article is organized as follows. Section II describes the
small-signal analysis of the distributed amplifier oscillator, and
the results are compared with those in previous works [1], [2].
Section III presents a novel nonlinear state-space model of the
three-stage oscillator and outlines the stability analysis strategy
utilizing bifurcation theory. In Section IV, a detailed stability
analysis of each oscillator stage is provided. Section V is
devoted to the Hopf loci computation, which is closely related
to the actual tuning of the oscillator. Finally, Section VI
describes the possible stabilization of the oscillator.

II. SMALL-SIGNAL STABILITY ANALYSIS

The study [1] proposed an oscillator based on the introduc-
tion of a feedback path in a distributed amplifier, as shown in
Fig. 1, which can be described with the simplified equivalent
circuit of Fig. 2. The distributed-amplifier oscillator is intended
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Fig. 3. Conceptual schematic of the distributed-amplifier oscillator.

to be a wideband voltage-controlled oscillator (VCO) tuned
by gate voltage pairs by biasing adjacent active devices. The
conceptual schematic of Fig. 3 illustrates the entire idea of the
tuning mechanism. The active devices are inside multiresonant
feedback paths, and when using simple gain models for the
active devices, these paths can be represented as feedback
operators Hi(s), s ∈ C. All the operators Hi(s) are rational
functions with the same cutoff frequency ωc, but the number of
poles gradually grows with i = 1, 2, 3, . . . This multiresonant
nature of the feedback structure is the reason for the unreliable
behavior that will be investigated here. Changes in the gains
of the active devices lead to various oscillation frequencies,
because the oscillation buildup condition is determined by the
simultaneous action of the involved active devices of nonzero
gain. In fact, for the calculation of the possible oscillation
frequencies, in [2] and [3], it was initially assumed that
only the i th device was active. When using a feedback line
consisting of a particular phaselength [1], and provided that
the open loop gain is greater than unity, oscillation can occur
at the frequencies

�(i,k)
n = sin

(
π(2k − 1)

4i − 2

)
, k = 1, 2, . . . (1)

where �n is the frequency normalized to cutoff frequency ωc

of the line. At each k, the closed-loop phase shift is k2π .
In [3], it was argued that the oscillation always occurs at
the frequency corresponding to k = 1. Thus, the desired
oscillations will be of the kind �(i,1)

n . A practical problem is
that oscillations can also arise for k > 1, thus, corresponding
to modes �(i,k)

n , where k > 1, as will be shown in this work.
In fact, the desired tuning range of the oscillator is between

�(2,1)
n and �(1,1)

n , and between �(3,1)
n and �(2,1)

n [1], [2], [3].
Thus, careful tuning of the adjacent sections in the three-stage
oscillator has to cover a considerable range of frequencies
from �(3,1)

n
.= 0.31 to �c = 1. Remember that frequencies

are normalized to the cutoff frequency ωc = 2/
√

LC of the
artificial TL.

In this section, a small–small signal stability analysis of
the distributed-amplifier oscillator will be carried out, based
on the calculation of the characteristic determinant, and the
results will be compared with those obtained in previous
works [1], [2], [3]. The active devices in Fig. 2 will be
considered as linear voltage-controlled current sources with
the transconductances gmi . Note that in Section IV, a more

Fig. 4. Simplified small-signal equivalent of the full circuit.

realistic nonlinear description of these active devices will be
introduced, using voltage-controlled nonlinear current sources.

For simplicity, normalized values R = 1 and C = L = 2
will be assumed, since this normalization does not affect the
results. Hence, the artificial TL will have the cutoff frequency
ωc = 2/

√
LC = 1 and the characteristic impedance Z = 1.

Note that this is a fundamental, general representation of the
distributed-amplifier oscillator, as this topology was proposed
in [1].

For the stability analysis, we will consider a small-amplitude
perturbation of complex frequency s = � + j�. Then, we
will obtain the total admittance matrix at the perturbation
frequency s, considering the reduced small-signal equivalent
(see Fig. 4) LC-ladder structure inside the dotted area of
the structure in Fig. 2. Both ends of the artificial TL in the
small-signal model are considered to be terminated by the
conductance G = 1/Z , as shown in Fig. 4. As stated, general
current sources Ii at a given bias point are modeled as linear
voltage-controlled current sources of a given transconductance
gmi vi

∼= Ii , i = 1, 2, 3. Such a structure has an admittance
matrix Y(s) (see (2), shown at the bottom of the next page).
The circuit natural frequencies are given by the zeroes of the
matrix determinant, which agrees with the system character-
istic determinant.

In Fig. 5(a), we present the variation of the natural frequen-
cies in the upper complex plane (root loci) when sweeping
the transconductances of the first and second stages, that is, the
variation of the roots of det Y(s, gm1 , gm2). In Fig. 5(a), as the
color changes to yellow, the normalized transconductance of
the first stage [Fig. 5(a)] is varied from 0 to 4. In Fig. 5(b), the
same variation is considered for the transconductance of the
second stage. The sense of variation of the natural frequencies,
when increasing gm1 and gm2 , is indicated with arrows. Black
diamond marks show the original positions of the natural
frequencies when all the transconductances are zero. There
is one pair of complex conjugate natural frequencies close
to the imaginary axis at about �c = 1 corresponding to
the undesired mode �(2,2)

n . The actual position of the poles
deviates a little from �c. This is due to the fact that in the
simplified model, we do not consider the matching m-derived
half section used in [3]. For any nonzero transcondutance
value, it rapidly shifts to the right-hand side (RHS). In fact, for
each crossing of a pair of complex-conjugate frequencies to
the RHS, a Hopf bifurcation occurs, at which point a periodic
oscillatory solution is generated from zero steady-state ampli-
tude. There are Hopf bifurcations giving rise to oscillations
at the undesired mode �(2,2)

n and at the desired mode �(2,1)
n .

The occurrence of a particular Hopf bifurcation does not
mean that the generated periodic steady-state solution will be
stable; in fact, a periodic solution generated from an unstable
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Fig. 5. Trajectories of the zeroes of det Y(s, gmi , gmi+1 ), or circuit natural
frequencies, in the complex plane � + j�. (a) First and second active stages
(i.e., i = 1). (b) Second and third active stages (i.e., i = 2). Transconductances
were varied in the [0 ; 4] range. In (a) and (b), natural frequencies are crossing
the imaginary axis in multiple regions.

dc solution will be unstable, at least in the neighborhood of the
bifurcation, as established by the bifurcation relationships [12].
Even if unstable near the bifurcation, a periodic solution
may stabilize, as the parameter is further varied, which can
only be predicted through a stability analysis of the steady-
state oscillation. On the other hand, in the presence of two
or more pairs of complex conjugate natural frequencies in
the RHS, the physical solution may be quasi-periodic or even
chaotic. As an example, let us consider loci in Fig. 5(a).
When only the second stage of the oscillator is active (nonzero
transconductance gm2 ) and increasing gm2 , we observe the
crossing of a pair of complex-conjugate frequencies near
�(2,2)

n = �c = 1 (undesired mode). Then, for a larger gm2 ,
we have the crossing of a second pair at �(2,1)

n = 1/2 (desired
mode)—see the red arrow. The mode at �(2,2)

n = �c = 1
occurs first, so the desired one is initially unstable. However,
this mode may stabilize under a further variation of the tuning
parameter. However, this mode may stabilize under a further
variation of the tuning parameter. As stated, the prediction of

this stabilization requires a stability analysis of the steady-
state oscillation. This complicated behavior is investigated
in Section IV.

In Fig. 5(b), we present the variation of the natural fre-
quencies when sweeping the transconductances of the second
and third stages. The expected tuning range is between the
first modes (k = 1) of their respective frequencies �(3,1)

n
and �(2,1)

n . As seen in Fig. 5(b), there also exist undesired
crossings of the imaginary axis at a frequency slightly below
that of the undesired mode �(3,2)

n of the third stage and in the
neighborhood of the mode �(3,3)

n = �c.
Clearly, in the two cases considered in Fig. 5, there exist

tuning-parameter combinations for which a considerable inter-
val of the imaginary axis j� is crossed with k = 1. However,
in view of the additional crossings with k > 1 and taking
into account the bifurcation relationships [12], there is no
guarantee that the physical oscillation will occur for k = 1
as Divina and Škvor [2], [3] had stated. In Section IV,
we will address the steady-state analysis of the generated
periodic modes. As shown in Section IV, the Hopf bifurcations
predicted with the characteristic determinant are fully consis-
tent with the results of this analysis, based on time-domain
continuation.

III. DERIVATION OF THE STATE-FORM SYSTEM

In this section, the circuit in Fig. 2 will be conveniently
modeled and formulated to enable its nonlinear analysis with
a well developed toolkit of bifurcation theory [13], [14], [15].
Such a toolkit requires the smoothness of all the considered
functions, as well as a representation of the system in state
form. As a result, one should avoid differential-algebraic
equations, even though these can be more easily obtained using
modified nodal analysis, and obtain a proper state-space form
formulation [16]. This is, in fact, a difficult and laborious task.
There are works that deal with simple circuits with one or
two bipolar junction transistors (BJTs) [17], but, due to the
considerable complexity of the problem, circuit models with
multiple active devices and a large number of reactances do
not appear in the literature. To the best of our knowledge,

Y(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G + 2

sL
− 2

sL
0 0 0 0 0 0

− 2

sL
sC + 3

sL
− 1

sL
0 0 0 gm3 0

0 − 1

sL
sC + 2

sL
− 1

sL
0 gm2 0 0

0 0 − 1

sL
sC + 2

sL
gm1 − 1

sL
0 0 0

0 0 0 − 1

sL
sC + 2

sL
− 1

sL
0 0

0 0 0 0 − 1

sL
sC + 2

sL
− 1

sL
0

0 0 0 0 0 − 1

sL
sC + 3

sL
− 2

sL

0 0 0 0 0 0 − 2

sL
G + 2

sL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)
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here, we will present the first detailed bifurcation analysis
of a multidevice oscillator, performed through a time-domain
continuation.

In order to formulate the system with the first derivative of
physical quantities only, and because there is no proper voltage
tree and current co-tree in the circuit [16], the state variables
considered are the inductor currents iL(t), the voltages across
the capacitors vC(t), and the capacitor charges qC(t). As in
Section II, we will limit the number of stages to N = 3.
The resulting autonomous system of ordinary differential
equations (ODEs) is shown in the Appendix. This system can
be written compactly in the form

˙x(t) = A(μ)x(t) + f (x(t), μ) (3)

where t ∈ R stands for time, x ∈ Rn represents the vector of
state variables, A ∈ Rn×n describes the circuit linear part, the
smooth arbitrary function f models both passive and active
nonlinearities, and μ ∈ Rm is the parameter vector including
the bias voltages.

The requirement for smoothness of the system equations
is crucial; otherwise, the dimensionality of the switching
manifold, when a problem is formulated as a piecewise-smooth
system (Filippov systems), is unbearably high [18], [19].
Therefore, instead of piecewise-smooth FET modeling, we use
a properly scaled smooth approximation of the Heaviside step
function belonging to the logistic-function family, applied to
the hybrid modification of Sussman-Fort et al. [20], Cur-
tice [21], [22], and Statz et al. [23] GaAs MESFET model.
The active devices are modeled as nonlinear voltage-dependent
current sources given by

i(x, y) = e2σ (x−VT )

e2σ (x−VT ) + 1
β(x − VT )2(1 + λy) tanh γ y (4)

where we use1 steepness coefficient σ = 104, pinch-off
voltage VT = −1 V, saturation voltage parameter γ =
2 V−1, channel length modulation parameter λ = 0, and
transconductance parameter β = 0.08 AV−2. First argument
x is used for gate–source voltage, and second argument y for
the drain voltage. Time scaling is introduced for the numerical
stability of continuation algorithms with the parameters given
in the Appendix. Time scaling for the dynamic part is as
follows:

L
di

dt
= kL

di

d(kt)
(5)

C
dv

dt
= kC

dv

d(kt)
. (6)

This way both the reactive elements and the time variable
are scaled, which will result into a new cutoff frequency
of the artificial TL ωcscaled = kωcoriginal . Value k has to be
chosen as a trade-off between large values in bias circuits
and much smaller values in the RF part of the circuit to
obtain a satisfying numerical convergence of the continuation
algorithm that does not affect the qualitative properties of the
oscillator.

1These values were considered in order to follow the values of the obsolete
original 2–18-GHz low noise pseudomorphic high-electron-mobility-transistor
(pHEMT) ATF35376 (Hewlett-Packard) used in [2] and [3].

Divina and Škvor’s [2] element choice was: L = 125 nH
and C = 50 pF, which produces Z = 50 � and fc =
ωc/2π

.= 127 MHz. In our work, we scaled2 the dynamical
part of the circuit with k = 1 · 106, which gives us fc =
ωc/2π

.= 127 Hz, while Z = 50 is not affected. As a result, the
parameters of the nonlinear transistor model do not have to be
modified.

Also note that diodes modeling depleted layer effects at the
transistor gates in the schematics in Fig. 2 are not critical
in the presented analysis and can be omitted. The study is,
thus, not encumbered by parasitic influences; instead, we will
investigate the essential dynamical properties inherent to the
circuit.

The stability analysis and construction of the tuning function
for the distributed amplifier oscillator are addressed by finding
the solution paths of (3) through a time-domain continu-
ation, instead of using either conventional time-consuming
integration or harmonic balance. In the following, we describe
the theoretical foundations of time-domain continuation and
stability analysis.

A. Periodic Solution Curves

The solution curves will be computed numerically utiliz-
ing predictor–corrector methods also known as continuation.
This performed using the Moore–Penrose continuation algo-
rithm [24], [25] implemented in CL_MATCONT routines. Sin-
gularities are detected using specially designed test functions;
see, for example, [13].

We will consider the RHS of (3) as a state space flow
A(μ)x(t) + f (x(t), μ) := 
(x, μ, t) parametrized both by
μ and t . The periodic solutions (or limit cycles) are computed
as a boundary value problem [26]

ẋ(t) − T 
(x(t), μ) = 0 (7)

x(0) − x(1) = 0 (8)∫ 1

0

˙̃x(t)T x(t) dt = 0 (9)

using an orthogonal collocation method on the normalized
interval t ∈ [0; 1], treating period T as a free parameter. The
second equation imposes the T periodicity of the solution.
However, due to the autonomy of the circuit, such solutions
are invariant under a translation of phase; hence, the last of
the equations makes the entire boundary value problem system
unique by fixing the phase where ˙̃x(t) is the derivative of the
previous solution. For implementation details of the numerical
continuation and singularity detection, see [26].

B. Stability Analysis

To make the manuscript self-contained, the key concepts
to be used in the analysis of Section IV will be briefly

2Note that the scaling should not be confused with normalization used
throughout this article with capitalized letters: for instance, � is just � =
ωscaled/ωcscaled . In order to obtain the absolute values of frequency, the reader
needs to multiply the frequency � by ωcscaled or simply by 127 Hz. The use of
normalized results is much more clear in the view of the notation for discrete
modes �

(i,k)
n introduced in Section II.
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summarized here. An invariant set S of (3) is a set of points
x ∈ S that is invariant under the flow 
 [13], i.e.,

x ∈ S �⇒ 
(x, μ, t) ∈ S ∀t ∈ R. (10)

If x0 ∈ S is the only element of the invariant set S, we will
call it an equilibrium point (EP) or dc solution, which will
fulfill

0 = 
(x, μ, t). (11)

To determine the stability properties of x0, the Jacobian
matrix D
(x0, μ, t) := D
(μ)|x0 must be obtained. The EP
x0(μ) is stable if all the eigenvalues λi associated with the
linearization D
(μ)|x0 have a negative real part [14], i.e.,
Re λi < 0, ∀i, i = 1, 2, . . . , n. Note that these eigenvalues
agree with the roots of the characteristic determinant analyzed
in Section II.

The second invariant set of interest in oscillator design is
obtained when T ∈ R+, such that


(x, μ, t + T ) = 
(x, μ, t) (12)

and S is called a periodic orbit. Moreover, if T0 is the
smallest T in (12) and there is no other periodic orbit in
the neighborhood of S, S is called a T0-periodic limit cycle
and is denoted as �(μ) [14], [15]. The fundamental solutions
of the system (3) are given by the T -periodic time-varying
matrix M(t) satisfying

Ṁ(t) = DM(t) (13)

with the initial condition M(0) = I, where I ∈ Rn×n is
the identity matrix, and D is the Jacobi operator as used
previously. We call M(T ) the monodromy matrix [13]. The
eigenvalues of M(T )

1, μ1, . . . , μn−1 (14)

are called the Floquet multipliers of the periodic
orbit [13], [14]. The stability properties of periodic solutions
are formulated in terms of a unit disk where the boundary
plays the same role as the imaginary axis for the dc solutions
in Section II. If any Floquet multiplier fulfills |μk | > 1,
k = 1, . . . , n − 1, the limit cycle is said to be unstable. Note
that in any free-running oscillator, there is a trivial Floquet
multiplier |μ0| = 1 associated with the phase invariance;
see (7). There are three main types of local bifurcation [14]:
fold or turning point, when a real multiplier crosses the unit
circle through (1, 0), period doubling, when a real multiplier
crosses the unit circle through (−1, 0), and Neimark–Sacker,
when a pair of complex conjugate multipliers cross the
unit circle through 1e± j
0 , 0 < 
0 < π , which leads to a
quasi-periodic regime.

IV. STABILITY ANALYSIS VERSUS TUNING VOLTAGES

In this section, we will present a stability analysis of the
distributed oscillator versus the tuning voltage of each of the
three active devices when the other two devices are off. Note
that this is the same situation considered in the prediction of
the oscillation frequencies carried out in [1], and resulting in
expression (1).

Fig. 6. Bifurcation diagram of the first active section with RL = 1 � per
inductor in the artificial TL (dashed and solid lines correspond to the unstable
and stable invariant sets, respectively). Equilibrium path and maxima and
minima of the limit cycles in terms of the state variable vC are represented.

A. First Active Stage

We will start with the simplest case, in which the first stage
is the only active one in the oscillator (the other two stages
are switched off). For the first active stage, the expected mode
is �(1,1)

n as discussed in Section II. As can be seen from the
schematics in Fig. 2, when only I1 is active (i.e., I2(x12/C6 +
x14 < VT , x16) and I3(x20/C10 + x22 < VT , x24)), the feedback
structure, consisting of a single LC π network, is easily
identified as a simple common source Colpitts oscillator with
a single resonant tank. The rest of the network acts as a
redundant load of the resonator and oscillator output. The
distributed amplifier oscillator model possesses a single stable
EP x0 (EP) when VGSi ≤ VT , i = 1, 2, 3. Continuation
of this EP versus VGS1 provides an EP path (see Fig. 6)
that is traced in terms of vC/VDD where vC = x8 in the
schematics of Fig. 2. This continuation reveals two pairs of
Hopf bifurcations at which two periodic oscillation curves are
generated and extinguished when increasing VGS1 (see Fig. 6).
The periodic solutions are traced in terms of the maximum
maxvC /VDD�(VGSi ) and minimum minvC /VDD�(VGSi ) of the
waveform vC/VDD. In Fig. 6 and the rest of this manuscript,
we follow the convention that solid lines correspond to stable
invariant sets and dashed lines to unstable ones. The variation
of the normalized frequency versus VG1 is shown in Fig. 7.
The normalized frequency of the periodic oscillation obtained
between H1 and H 	

1 (oscillatory mode �1,1
n = 1, denoted as

Osc. 1) corresponds to the desired operation. On the other
hand, the periodic solution obtained between H2 and H 	

2 (mode
denoted as Osc. 2) corresponds to an undesired low-frequency
oscillation, coming from the bias circuitry. The variation of
its normalized frequency versus VG1 is also shown in Fig. 7,
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Fig. 7. Bifurcation diagram of the first active section with RL = 1 �
per inductor in the artificial TL (dashed and solid lines correspond to the
unstable and stable invariant sets, respectively). The normalized frequency of
the desired mode is given in the left y-axis, whereas that of the undesired
low-frequency oscillation is given in the right y-axis.

with values in the right axis. Bifurcation H1 leads to a stable
oscillation after the fold bifurcation F1 in the periodic solution
path. In contrast, the undesired low-frequency mode generated
at H2 is unstable. To understand the stability properties of the
two periodic paths, we will take into account the following
Hopf bifurcation relationships (valid only in the neighborhood
of the bifurcation) [12]:

dcm � dcm+2 + Pm supercritical (15)

dcm + Pm+1 � dcm+2 subcritical (16)

where dc indicates a dc solution, and P indicates a periodic
solution; m is the number of eigenvalues of the dc solution in
the RHS and the number of Floquet multipliers of the periodic
solution outside the unit circle. In the rightward sense (leftward
sense), the relationships correspond to direct (inverse) Hopf
bifurcations [12].

If a supercritical bifucation occurs from a stable dc solution
(m = 0), the generated periodic oscillation curve will initially
be stable. If a subcritical Hopf bifurcation occurs from a stable
dc solution (m = 0), the generated periodic oscillation curve
will initially be unstable, with a real Floquet multiplier larger
than 1. This is the case of bifurcation H1 in Fig. 6, which
arises from a stable dc solution of the type dc0 and fulfills
the relationship (16). However, this oscillatory solution passes
through the fold bifurcation F1 in a periodic regime, where
it becomes stable, as obtained through the analysis of the
Floquet multipliers. In fact, the bifurcation relationship of a
fold bifurcation in periodic regime is as follows:

Ø � Pm + Pm+1 (17)

where Ø indicates no solution.
The Hopf bifurcation pair H1 and H 	

1 is subcritical at the
two points. On the other hand, the Hopf bifurcation pair
H2 and H 	

2 is supercritical at the two points. Supercritical
and subcritical bifurcations are generally easy to distinguish
from the inspection of the solution curves. However, their
distinction at the bifurcation point (without tracing the solution
curves) requires the evaluation of a coefficient derived from

the normal form representation of the dynamical system [13].
This coefficient will be used in Section V to distinguish
supercritical and subcritical bifurcations in a two-parameter
plane.

At F1, fulfilling (15) in a rightward sense with m = 1, the
real multiplier (resulting from the subcritcal Hopf bifurcation)
enters the unit circle through the point (1, 0). At the second
fold bifurcation F 	

1 fulfilling (15) in a leftward sense with
m = 1, a real multiplier escapes from the unit circle through
(1, 0). The subcritical nature of the Hopf pair (H1, H 	

1),
together with the fold bifurcations (F1, F 	

1), gives rise to the
hysteresis. This is because in the VG1 intervals comprised
between F1 and H1, and between H 	

1 and F 	
1, the stable oscil-

lations coexist with stable dc solutions. In other words, if the
circuit is energized enough, it is possible to sustain oscillations
for control voltages below the threshold VT . The detected
hysteresis will be validated experimentally in Section IV-D.

As already indicated, the Hopf bifurcation pair (H2, H 	
2)

corresponds to an undesired low-frequency oscillation. Bifur-
cation H2 occurs from an unstable dc solution with m = 2,
since this dc solution has the pair of eigenvalues λi,i+1

associated with the oscillation mode Osc. 1 in the RHS. Note
that the pair of complex-conjugate eigenvalues that cross at
H2 is different, since they provide the oscillation mode Osc. 2.
Because the low-frequency mode Osc. 2 arises from a dc
solution of the type dc2, the periodic solution generated
at H2 will be initially unstable, according to (15). This is
understood by considering that a small amplitude limit cycle
(in the neighborhood of the bifurcation) cannot overcome
the original instability of the dc solution, associated with
the eigenvalues that give rise to Osc. 1. The analysis of the
Floquet multipliers predicts the unstable behavior of the whole
collection of periodic orbits comprised between H2 and H 	

2,
which exhibit a pair of complex-conjugate multipliers outside
the unit circle. Therefore, this low-frequency oscillation will
not be physically observable.

Fig. 8 shows the voltage waveforms (in terms of vC/VDD)
of the steady-state oscillation obtained for the control voltage
VG1 = 0 V. The blue waveform, corresponding to mode Osc. 1
(with frequency �c = 1 �⇒ fc = 127 Hz), is stable and,
thus, observable in practice. On the other hand, the violet
waveform, corresponding to mode Osc. 2 (with frequency
fc = 66 mHz) is unstable and, thus, reachable only from the
null set of initial values. The stable waveform of mode Osc. 1
has been compared with the one obtained using independent
simulations, incorporating LTspice (trapezoidal time-domain
integration). The resulting steady-state waveform is shown
in Fig. 8, where it has been traced with circles. The time
shift, with respect to the one obtained through the steady-state
analysis of Section III-A, is due to the autonomous nature of
the solution.

The stable section of the oscillation curve of mode
Osc. 1 has also been validated with independent simula-
tions using LTspice (trapezoidal time-domain integration). The
minima and maxima of the steady-state oscillation, when
varying VG1 , are represented with circles in Fig. 6. As can
be seen, there is excellent agreement with the path obtained
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Fig. 8. Five periods of the steady-state periodic solution, corresponding to
the mode Osc. 1, when only the first device is active at VG1 = 0 V in the time
domain. The blue waveform associated with the bottom x-axis corresponds
to a desired periodic solution of frequency �	

c
.= 0.94�c

.= 119 Hz, and the
green trace associated with the top x-axis depicts the unstable low-frequency
periodic solution �s

.= 66 mHz. Constant k0 ∈ N is the chosen fixed initial
index of the steady-state period. The gray circles correspond to the steady-state
solution obtained with LTspice trapezoidal integration.

through the method in Section III-A. Note that to obtain the
oscillatory solution below the threshold voltage and confirm
the existence of the fold bifurcation F1, we need to carefully
select a consistent initial condition [27] of the integration. The
time-domain integration becomes complicated near the fold
point F 	

1, because the transient response takes an excessively
long time to settle due to the low damping factor near the
bifurcation.

We have seen that, except for the existence of an unstable
parasitic variety of low-frequency oscillations, the first section
of the oscillator does not cause any problems. Truly delicate
complications are hidden in the remaining structure to which
the same workflow scheme in this section will be applied.

B. Second Active Stage

Now, we will switch off the first and third active devices.
For the second active stage, the expected desired mode is
�(2,1)

n = 1/2, according to (1). By continuation of EP, when
varying control voltage VG2 , a rich dynamic emerges, as seen
in Fig. 9(a). In this case, three pairs of Hopf bifurcations
and one sporadic Hopf point are detected in the EP path.
When increasing VG2 above the threshold voltage, the first
Hopf bifurcation H1 gives rise to the onset of an oscillation at
the frequency �1,1

n = �2,2
n = 1 [Fig. 9(b)]. This frequency

is common to that of the stable oscillation obtained when
only the first stage was active. However, it is not the expected
one when tuning VG2 . It is undesired in this case because
k = 2 (see Section II). The two Hopf bifurcations H1 and
H 	

1 are subcritical and fulfill (16) with dc0 in the left-hand
side. The oscillation that arises at H1 is initially unstable,
but, as predicted with the Floquet multipliers, it becomes

stable at the fold bifurcation F1, which fulfills (17) with
m = 1. However, at the period-doubling bifurcation PD,
a multiplier escapes from the unit circle through (−1, 0), and
the oscillation becomes unstable again. This is a branching
point from which a period-doubled solution emerges. Then,
the sequence of fold points F2 → F3 → F4 occurs until
the stable manifold of the desired mode �(2,1)

n is reached.
Note that this is the mode expected when tuning VG2 . This
manifold at the desired frequency �(2,1)

n = 1/2 fc (shown
in red) uniquely remains stable for a wide range of control
voltage until the inverse subcritical sporadic Hopf point H4 is
reached. This result will also be observed experimentally,
as shown in Section IV-D.

Note that other manifolds of undesired oscillatory solu-
tions arise from the remaining Hopf bifurcations. As seen
in Section II, this is due to the multiresonant nature of the
feedback structure, since the second active stage undergoes
feedback through H2(s) in Fig. 3. Also, note that the mani-
fold arising from Hopf point H2 is not properly terminated
in the inverse counterpart H 	

2, because convergence of the
numerical continuation becomes very difficult near the H 	

1
point. Additional oscillations arise from Hopf bifucations of
unstable dc solutions (due to the previous and subsequent
generation of oscillatory solutions). To be more specific, in H2,
we have m = 2, and in H3, we have m = 4, so according to
the bifurcation relationships of (15) and (16), the generated
oscillations are unstable in the neighborhood of the respective
Hopf bifurcations. The analysis of the Floquet multipliers
shows that they never stabilize.

The above results have been validated through the explicit
integration scheme Runge–Kutta–Dormand–Prince 45, which
is natively implemented in the MATLAB ODE suite. Note
that only stable sections can be obtained through time inte-
gration. The results are represented with circles in Fig. 9(a).
They correspond to the stable dc solution, the stable periodic
oscillation at �(2,2)

n ( fc
.= 127 Hz), and the stable subharmonic

oscillation at �(2,1)
n ( fc

.= 63 Hz) As can be seen, there is
excellent agreement.

C. Third Active Stage

Now, the first and second active devices are switched off,
and we analyze the circuit under variations in the tuning
voltage of the third stage. For the third active stage, the desired
mode is �(3,1)

n = 1/4(
√

5−1)
.= 0.31 according to (1) and [2].

This investigation is crucial, because the small-signal analysis,
both in [1] and in Section II, has shown that the buildup
condition is (nontrivially) met at two frequencies. Thus, there
is a question whether and under what conditions the desired
mode will become stable. Now, the feedback is the most
complicated, given by the passive function H3(s) (see Fig. 3).
As shown in Fig. 9(c), above the threshold voltage, there is
a sequence of Hopf bifurcations from the EP that lie close
together. In Fig. 9(c), they are distinguished using half-colored
marks to highlight their order of appearance. The normalized
frequency variation of the various modes versus VG3 is shown
in Fig. 9(d). This figure shows that, in this case, just one
undesired mode corresponding to �(3,2)

n = 1/4(
√

5 + 1) is
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Fig. 9. Bifurcation diagram of the second and third stages with RL = 1 � per inductor in the artificial TL (dashed and solid lines correspond to the unstable
and stable invariant sets, respectively). Equilibrium path and maxima and minima of the limit cycles in terms of the state variable vC of (a) second and
(c) third stages, and normalized frequency of the limit cycle families of (b) second and (d) third stages. Red marks are steady-state local maxima and minima
obtained using explicit Runge–Kutta–Dormand–Prince 45 integration scheme.

stable, thus contradicting the small-signal assumption that the
stable mode �(i,k)

n of the lowest k ∈ N will be stable with
nonzero losses [1]. Note that mode �(3,2)

n = 1/4(
√

5 + 1) is
generated from a stable dc solution in a subcritical bifurcation
[dc0 in the left-hand side of (16)]; it becomes stable after
undergoing a fold bifurcation F1 (fulfilling (17) in a rightward
sense with m = 1), where a real and positive multiplier
enters the unit circle. This mode is stable until reaching the

second fold bifurcation F 	
1 (fulfilling (17) in a leftward sense

with m = 1), where a real and positive multiplier escapes
from the unit circle. All the other modes, generated at the
Hopf bifucations H2, H3, and H4, arise from unstable dc
solutions and never stabilize. In H2, we have m = 2; in H3,
we have m = 4, and in H4, we have m = 6, so according to
bifurcation relationships (15) and (16), they are unstable in the
neighborhood of the respective Hopf bifurcations. The analysis
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Fig. 10. Implementation of the distributed amplifier oscillator and implementation. (a) Detailed schematic. (b) Top view. (c) Bottom view with biasing
circuitry. Optional cross-coupled FET investigated in [1] is not used.

of the Floquet multipliers shows that they never stabilize. The
desired mode �(3,1)

n arises at the Hopf bifurcation H3 [see
Fig. 9(c)] and is one of those modes that never stabilize.

The results have also been validated through the explicit
integration scheme Runge–Kutta–Dormand–Prince 45. Note
that only stable sections can be obtained though time integra-
tion. The results are represented with circles in Fig. 9(c). They
correspond to the stable dc solution and the stable undesired
periodic oscillation at �(3,2)

n = 1/4(
√

5 + 1). As can be seen,
there is excellent agreement.

The possible stabilization of the desired mode �(3,1)
n =

1/4(
√

5 − 1) by losses will be addressed in Section V.

D. Experimental Validation of the Stability Analysis

For the experimental validation of the detected phenom-
ena, we built a sample of the distributed-amplifier oscillator.
A detailed schematic of this experimental circuit is shown
in Fig. 10. The circuit was implemented as a double-sided
PCB on a standard FR-4. As an active device, we chose a
standard N-channel FET BSS138 (Onsemi). For more details
on the implementation and design method, see [2] and [3].
The cutoff frequency fc of the manufactured prototype is
fc = 1/π

√
LC

.= 1.61 MHz, and the impedance of the
artificial TL is Z = 50 �. This low frequency was chosen
to be able to measure at different points of the circuit without
significantly affecting the measurement. With regard to the

Fig. 11. Measurement setup: device under test (DUT), oscilloscope, and
four-channel output power supply.

low-frequency realization, the measurement was carried out
with a digital oscilloscope; see Fig. 11.

Considering the above values and using (1), the frequency of
the desired mode when only the first stage is active should be
fc

.= 1.61 MHz. However, the nonlinear analysis in Section IV
(Fig. 6) predicts the frequency 0.95�c, which translates to
ffirst = 0.95 fc

.= 1.53 MHz. This is in excellent agreement
with the experimental measurement shown in the spectrum of
Fig. 12. The frequency of the desired mode when only the
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Fig. 12. In the experiment, the circuit first oscillates at the undesired mode �c
(red spectrum); then, as the control voltage VG2 is further increased, a period
doubling occurs, which results in the desired mode �c/2. The upper horizontal
axis shows the expected positions of the modes. Black and red spectra, both
obtained for VG2 , confirm the hysteresis phenomenon predicted in Fig. 9(a).

second stage is active should be �c/2. In the experiment, the
circuit first oscillates at the undesired mode �c (red spectrum);
then, as the control voltage VG2 is further increased, a period
doubling occurs, which results in the desired mode �c/2.
This agrees with the predictions of Fig. 9(a), in which the
second mode was obtained through a period doubling. The
measured frequency of the second mode is fsecond

.= 650 MHz,
with a relative shift of 18%. This may seem like a significant
difference, but, in fact, in the original paper [2], the measured
frequency of the desired mode was 0.42 fc. Our measured
result is very close to this ratio at 0.40 fc (Fig. 12). This shift
can have a variety of causes, ranging from parasitic transistor
capacities to phase prolongation of the feedback path due to
layout design. Considering the accuracy of our model in the
case of the first mode, we can conclude that this shift can be
attributed to parasitic effects, which are accumulated in the
oscillator implementation but are not present in the canonical
model, thus indicating that they are parasitic.

The hysteresis predicted in the analysis of Section IV-A has
also been found experimentally. First, we have increased the
gate-bias voltage VG1 from below threshold to VG1 = 0.5 V.
The resulting spectrum at VG1 = 0.5 V is shown in black
in Fig. 12. As one can see, there is no oscillation, so the
dc solution is stable, in agreement with the predictions of
Section IV-A. Then, we have decreased VG1 from VG1 = 1.6 V
(with the circuit in an oscillatory state) to the same value
VG1 = 0.5 V. Now, for VG1 = 0.5 V, the circuit maintains
the oscillation. The corresponding spectrum is shown in red
in Fig. 12.

V. SINGULARITIES OF CODIMENSION 2

As indicated in Section II, the distributed amplifier oscillator
is intended to be a wideband VCO tuned by gate voltage
pairs. In Section II, this was demonstrated using small-signal
transconductance equivalents of the active devices plus a
stability analysis based on the use of the system characteristic
determinant det Y(s). In Section IV, these results were refined
using a nonlinear state-space model. We obtained the complete

solution curves and distinguished supercritical and subcritical
bifurcations from the analysis of the solution curves. Here,
we will consider the variation of two tuning parameters,
as done in Section II and which will be included in parameter
vector μ. We will obtain the loci of Hopf bifurcations in the
plane defined by these two parameters.

As we are not tracing the solution curves, we will dis-
tinguish supercritical and subcritical bifurcations using the
normal form [15] from an analysis of the bifurcation itself.
In the last century, great efforts were made to systematize the
theory of normal forms of vector fields, and this successfully
resulted into the well-established branch of dynamical system
theory [14], [15].

Here, we limit ourselves to an equilibrium normal form
only. Equation (3) is expanded around an EP into the truncated
power series ẋ = Ax+a1(x)+a2(x)+· · · , where A is assumed
to be in Jordan canonical form. A coordinate change x �→ y
is then performed to obtain a more advantageous form of less
complexity than the original system [15]. The normal form of
the Hopf bifurcation is usually given as follows [13]:

ẏ = j�0y + b1y|y|2 + · · · , bi ∈ C (18)

where Re b1 := l1 is the first Lyapunov coefficient, and
y is a complex representation of the incipient oscillation in
magnitude and phase as y = Ae j�t , where A is the amplitude,
and � is the frequency.

At this point, without losing clarity, it is enough to say
that the generated periodic orbit is stable, and the Hopf
bifurcation is supercritical if the first Lyapunov coefficient is
negative, l1 < 0. If this coefficient is positive l1 > 0, the
generated periodic orbit is unstable, and the Hopf bifurcation
is subcritical.

In this section, the Hopf loci refer to the curves of Hopf
points H (μ), where μ ∈ R

2
P in the vector of the two

parameters. As already stated, in a first analysis, this vector is
μ = (VG2, VG3). Fig. 13 presents the Hopf loci obtained under
the variation of VG2 and VG3 , represented in the plane defined
by these two parameters. There are four dominant distinct
loci, corresponding to the various distinct modes detected in
Section IV. To illustrate the frequencies of the oscillations
generated/extinguished at the distinct loci, at points denoted
with diamonds, we provide the eigenvalues λi causing the
singularity of the EP linearization D
(μ)|x0 discussed in
Section III-B. The normalized value of the frequency of
λ = ±2π j94 Hz is � = 94/127

.= 0.74, which corresponds
the undesired mode �(3,2)

n . Note that such notation for the
modes is only applicable when only one of the devices is
active, that is, when moving along the axes of Fig. 13(a).
On the VG2 axis and the VG3 axis are shown the Hopf bifur-
cations found in Sections IV-B and IV-C, respectively, in their
respective colors used in Fig. 9. However, the eigenvalues in
Fig. 13(a) evolve continuously from the modes analyzed in
Sections II and IV.

The Hopf bifurcation loci of Fig. 13(a) provide very useful
information on the oscillator tunability. One should consider
that in an ideal distributed oscillator, we would have a single
Hopf locus in the plane defined by each pair of tuning voltages,
unlike what happens in Fig. 13(a). When the second and
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Fig. 13. Hopf loci when tuning the second and third transistor at RL = 1 �.
(a) Through time-domain continuation. At points on the branches denoted with
diamond marks, we give an example of eigenvalues λ causing singularity of
the EP linearization D
(μ)|x0 . These eigenvalues are linked to the modes
introduced in Sections II and IV. On the VG2 axis and VG3 axis are shown
the Hopf bifurcations found in Sections IV-B and IV-C, respectively, in their
respective colors used in Fig. 9. Crossings of the loci are double-Hopf
singularities. They are further classified according to normal form coefficients
of which the most important is the unavoidable presence of complicated case
p11 p22 < 0 in the tuning region. (b) Through the calculation of the roots of
the characteristic determinant. Note the excellent agreement.

third transistors are active, the Hopf locus corresponding to
the desired mode is the rightmost one (locus D). In fact, the
bifurcations shown in the horizontal axis (third transistor off)
are those already analyzed in Fig. 9(a). When reducing VG2

from above H4, the desired mode (�(2,1)
n ) is generated at this

subcritical bifurcation (H4) and becomes stable after a turning

point of the periodic solution curve. To the right of the locus D,
the dc solution is stable. Then, when tuning the transistors
from this dc-stable region to the left (see arrow), the oscillation
generated corresponds to the desired mode and can be tuned
through the variation of VG2 and VG3 , in various manners.
Thus, it is recommended to start the tuning from the dc-stable
region on the right. Fig. 13(a) also illustrates why we had
a very bad behavior when only the third transistor was on
[Fig. 9(c)]. The vertical axis of Fig. 13(a), which corresponds
to this situation, is plagued with bifurcations, and the desired
mode never stabilizes.

Our aim is also to provide practical tools for a prediction of
the global-stability properties of the oscillator. Thus, we have
implemented a method to obtain the Hopf loci making use of
the characteristic determinant defined in Section II. Note that
it is the determinant of a total admittance matrix that can be
easily calculated in commercial software. We take into account
that at a Hopf bifurcation, we have a pair of complex-conjugate
zeroes crossing the imaginary axis. Consequently, we will
replace s = � + j� with j�. Thus, at any Hopf bifurcation
in terms of the parameter vector μ, the following condition
will be fulfilled:

det Y(μ, j�) = 0. (19)

When splitting (19) into real and imaginary parts, one
obtains a system of two equations in three unknowns, given
by � and the two components of the vector μ, which will
provide one or several curves in the plane defined by the
two parameters in μ. Note that because the frequency � is
autonomously generated, it will change through the Hopf
locus, so it is an unknown of the complex equation. Equa-
tion (19) can be easily solved through a contour-intersection
procedure [29]. In this method, we perform a triple sweep
of the two components in μ and �. For each value of the
first component μ1, we obtain (through an internal double
sweep) the real and imaginary parts Re [det Y(μ2, j�)] and
Im [det Y(μ2, j�)]. Next, we calculate the zero-value contours
of these two surfaces, given by Re [det Y(μ2, j�)] = 0 and
Im [det Y(μ2, j�)] = 0. Then, all the Hopf loci points existing
for the particular value μ1 are obtained from the intersections
of the two contours.

The results are presented in Fig. 13(b). As can be seen, there
is some discrepancy. This is because the admittance matrix
has been obtained with a commercial simulator where the
transistor model is different. It is a Curtice model, instead of
the model modification used in (4). The qualitative agreement
is very good considering the dramatic difference between the
two mathematical models. Recall the notes made in Section III
on the piecewise smooth DAE used by commercial simulators
and our smooth ODE model. This partial agreement between
such different models proves that the obtained results are
related to the circuit topology and not to transistor nonlin-
earity. We would also like to emphasize the excellent predic-
tion capability of the contour-intersection method applied to
the characteristic determinant (19). Moreover, in Fig. 13(a),
a scaled version of the circuit is analyzed, whereas the
circuit considered in Fig. 13(b) is not scaled. Once again, the
agreement proves the robustness of the presented procedure.
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The Hopf loci in Fig. 13(a) not only provide the parameter
values at which the periodic modes are generated, but also
very relevant information about the global circuit behavior.
This is because some particular points of the loci have
a significant impact on the circuit dynamics. They corre-
spond to codimension 2 bifurcations, since they require the
simultaneous fine-tuning of the two parameters in vector μ.
They are the Bautin and double-Hopf bifurcations, described
next.

A. Bautin Bifurcation

We will denote H +(μ) and H −(μ) a section of the
Hopf locus consisting of superciritical and subcritical Hopf
bfurcations. Note that the superscript refers to the sign of the
Lyapunov coefficient obtained from the normal form of the
bifurcation. Then, from the continuity of the loci, H (μ) =
H +(μ) ∪ H −(μ) ∪ B(μ), where the values of B(μ) are
generalized Hopf points at which l1 = 0, known as Bautin
bifurcations. Thus, the Hopf loci are divided into sections
of subcritical and supercritical Hopf bifurcations and discrete
transition points where l1 = 0. This codimension 2 singularity
will manifest itself as the collision of two limit cycles and
a disappearance via a fold bifurcation of periodic orbits in
the neighborhood [13]. When passing through a Bautin bifur-
cation, a subcritical Hopf bifurcation becomes supercritical
or vice versa. Branches of subcritical and supercritical Hopf
bifurcation points that may be encountered during the process
of oscillator tuning are indicated in Fig. 13(a). This has been
validated by comparing the predictions of Fig. 13 (for VG2

below threshold and increasing VG3) with the geometry of the
Hopf bifurcations encountered in Fig. 9(c) versus VG3 . There
is an excellent agreement.

B. Double-Hopf Bifurcation

As gathered from Fig. 13(a), there can be intersections
between two distinct Hopf loci, corresponding to double-Hopf
bifurcations. These are points at which two distinct pairs of
complex-conjugate eigenvalues of the EP cross the imaginary
axis simultaneously. A more formal definition follows.

When two Hopf loci intersect, H1(μ) ∩ H2(μ) = Ĥ
and the singular points Ĥ ∈ Ĥ fulfill additional technical
conditions on the generosity of the singularity given in [15],
and we refer to Ĥ as a double-Hopf bifurcation. This has a
4-D normal form often written as follows [13], [15]:

ẏ1 = y1
(
β1 + p11(β)y2

1 + p12(β)y2
2

)
(20)

ẏ2 = y2
(
β2 + p21(β)y2

1 + p22(β)y2
2

)
(21)

where βk and pi j are appropriately selected, so that the
resulting system is simpler; for details, see [13] and [15].
Under certain non-degeneracy conditions imposed on the
normal form coefficients (see [13], [14]), up to 11 different
unfolding scenarios are distinguished purely based on the pi j

coefficients. Their role is similar to that of the first Lyapunov
coefficient in an ordinary Hopf bifurcation. Indeed, the Jordan
canonical form associated with the linearization about the

double-Hopf bifurcation point is⎡
⎢⎢⎣

0 −ω1

ω1 0
0 −ω2

ω2 0

⎤
⎥⎥⎦

where two distinct nonzero eigenvalues jω1 and jω2 must
satisfy additional non-degeneracy conditions [14] as per usual.

In practice, the presence of a double-Hopf point will lead
to different phenomena depending on the signs of the coef-
ficients pi j . From the various possibilities, we are interested
only in the following.

1) p11 p22 > 0 (Simple Case): An invariant 2-D torus T2 is
generated (quasi-periodic solution). In the experiment,
this gives rise to a densely filled quasi-periodic invariant
torus.

2) p11 p22 < 0 (Complicated Case): A tri-torus T3 break-
down occurs via heteroclinic connection; thus, a local
birth of chaos will take place. This scenario of chaos
formation often gives rise to a spectrum with an abnor-
mally high level of noise. From a practical point of view,
we want to avoid such singularities.

In Fig. 13(a), we followed Kuznetsov’s notation pi j pi j , i, j =
1, 2, of normal forms [13]. In the parametric plane of the
two tuning voltages VG2 and VG3 , we have four double-Hopf
bifurcations fulfilling p11 p22 < 0. Thus, they are associated
with complicated cases. The presence of these points indicates
that during the process of tuning, the chaotic nature of the
system will inevitably manifest. This has been encountered in
the experiment as well. In fact, both the quasi-periodic and
chaotic behaviors predicted by the loci in Fig. 13 have been
observed in the experimental measurements. Fig. 14(a) shows
a quasi-periodic trajectory, while Fig. 14(b) shows a chaotic
attractor. The corresponding spectra are shown (in different
colors) in Fig. 14(c).

We would like to emphasize that this analysis of
double-Hopf bifurcations provides, for the first time to our
knowledge, a rigorous mathematical justification of the chaotic
spectra often found experimentally in multidevice oscillators
and other circuits.

VI. POSSIBLE STABILIZATION OF THE OSCILLATOR

In this section, we will deal with the crucial question on
the possible mode stabilization through the effect of losses
as stated by Škvor et al. [1], Divina and Škvor [2], and
Acampora and Georgiadis [8]. First, we will discuss the
procedure to eliminate the low-frequency oscillations due to
the bias circuitry. Then, we will address the undesired higher
frequency modes resulting from the impact of the feedback
paths, illustrated in Figs. 1 and 3.

A. Suppression of Oscillations Due to the Bias Circuitry

Even though all the low-frequency modes detected in our
investigation were unstable, it can be convenient to suppress
them in order to minimize the risk of interference with
the desired modes, and the subsequent onset of undesired
phenomena through a collision process [15], for instance.
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Fig. 14. Measured undesired phenomena. (a) Quasi-periodicity. (b) Chaotic
invariant set. Measured voltages correspond to the state variables in the
schematics of Fig. 2 denoted as vCα = x6 and vCβ = x8. c) Measured
spectrum of the quasi-periodic regime is shown in red, and spectrum of the
chaotic attractor is shown in blue.

To suppress these modes in an efficient manner, we will
make use of the Hopf bifurcation loci that were described in
Section V. However, instead of using two tuning voltages as
parameters, we will use one tuning voltage and a stabilization
series resistor RVi , i = 1, 2, 3 (see the schematic in Fig. 2).

Fig. 15. Suppression of the undesired low-frequency oscillation. Hopf
bifurcation loci in the plane defined by VG2 and RVi (see schematic of Fig. 2).
Undesired oscillation occurs inside the locus in green.

Note that the procedure can be repeated in a whole interval of
the other tuning voltage (the one that is kept constant for each
loci calculation). Fig. 15 presents the loci obtained when only
the first stage is active, traced in the plane defined by VG1 and
RV1 . This is sufficient, because, as shown in Sections IV-B
and IV-C, the undesired low-frequency mode is present and
unchanged in all the three stages when only a single device
is active. In Fig. 15, two distinct loci can be observed, one
corresponding to the desired mode and the other corresponding
to the undesired low-frequency oscillation. Note that we have
used the same color coding as in the rest of this article. The
two oscillations occur inside the boundaries of the respective
loci. The desired mode is not affected by the changes in
RV1 (it remains constant along the RV1 axis). However, the
undesired low-frequency oscillation vanishes for values of the
series resistance above RV1 = 26 �. Thus, by just increasing
this resistance, one will suppress the low-frequency mode.

B. Suppression of Higher Frequency Modes

The analyses and measurements of Sections IV and V
demonstrated quasi-periodic and chaotic behaviors of the dis-
tributed amplifier oscillator that are completely unacceptable.
As shown here, these phenomena are present in the oscillator
up to at least RL = 1 � per inductor in the artificial TL. Hence,
we will investigate if it is possible to avoid these phenomena
considering higher losses in the system. This, in fact, is the
assumption followed by all relevant works on the distributed
amplifier oscillator [2], [3], [8], [9]. In this section, we show
that this is not completely true. With this aim, we will carry
out an analysis through bifurcation loci analogous to the one
described in the previous subsection. Fig. 16(a) presents the
Hopf loci calculated in the plane defined by VG3 and RL/Z ,
thus denoted as H (VG3 , RL/Z). The aim is to investigate the
possible stabilization effect of RL as suggested in previous
works [2], [3], [8], [9].

In Fig. 16(a), we can distinguish several loci that correspond
to the modes obtained in the analysis of the third active stage
in Section IV-C. The frequency of the mode corresponding to
each locus is indicated. For RL = 1, the Hopf bifurcations
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Fig. 16. Two-parametric bifurcation diagram of the third stage. (a) Hopf loci
when losses RL are considered. (b) Corresponding frequencies of the limit
cycles �(VG3) for given losses RL .

agree with those detected in Fig. 9(c). The Hopf locus �s2

corresponds to the undesired low-frequency mode investigated
in Section VI-A. As can be seen, for low RL , there are plenty
of modes. When increasing RL , the Hopf points, in terms of
VG3 , approach their inverse Hopf pair counterpart until they
disappear. With a large portion of losses 30 � < RL < 200 �,
the desired mode �(3,1)

n is the only remaining one. For even
greater losses, the closed Hopf locus �s1 (traced in black)
appears, which is caused by wave reflection due to mismatch
in the artificial TL.

Even though, as gathered from Fig. 16(a), the unique mode
has been achieved under the original assumptions in [2], it is
observed that the following hold: 1) the resulting limit-cycle
paths at given losses tend to dramatically decrease in frequency
as losses increase, as shown in Fig. 16(b) and 2) the oscillation
amplitude becomes negligibly small.

To predict the impact on the steady-state oscillation fre-
quency [Fig. 16(b)] and amplitude, we first found all the Hopf

points of an equilibrium for a fixed value of RL , and then, their
corresponding limit cycle manifolds were computed. This is
the same workflow applied in Section IV. For each limit cycle
of the manifold, its frequency 1/T was found as in Fig. 7,
for instance. This was repeated for RL up to 1 k�. The
resulting steady-state oscillation frequencies are shown with
the color bar in Fig. 16(b). Note that the modeling of losses
using RL actually means a substantial change in the impedance
of the artificial TL and, therefore, a significant mismatch at
both ends. The presence of reflections in the TL degrades the
performance of the oscillator and gives rise to the additional
oscillation �s1 in Fig. 16(b).

C. Design Strategy

Despite the potentiality of time-domain continuation for the
investigation of nonlinear dynamics, the applicability of this
method is limited to circuits that can be described with a set of
nonlinear differential equations in state form. For a practical
design, stability and bifurcation analysis tools compatible with
the commonly used harmonic-balance software should be
used; this will allow considering a full description of the circuit
with arbitrary models and parasitic effects. As shown through
the manuscript, those practical methods rely on the calculation
of the total admittance matrix of the complete oscillator topol-
ogy, defined at the device terminals. The proposed methods
can also be of use for other multidevice configurations. Then,
the procedure to obtain a reliable behavior would consist of
the following stages.

1) Obtain the bias voltages of the active devices required
for the oscillator tuning that should enable the desired
frequency interval. This should be done according to the
expressions (or procedure) given in [2], [3], [8], and [9].
This is the standard method used in most works.

2) Perform a small-signal stability analysis versus the tun-
ing voltages through the pole-zero identification [28] of
the determinant of the total admittance matrix, defined at
the device nodes [see (2)], agreeing with the circuit char-
acteristic determinant. This matrix is easily calculated
in commercial harmonic-balance software. This initial
stability analysis would warn about possible instabilities
occurring when varying the tuning voltages. See the
analysis of Fig. 5 as an example.

3) Evaluation of the impact of the instability in a global
manner, making use of the Hopf bifurcation condition
expressed in terms of the characteristic determinant,
given by (19). Instead of an identification, we now
perform a root calculation in terms of the real frequency
ω and two tuning parameters. The resulting bifurca-
tion curves will provide the boundaries of existence
of each oscillation mode [see Fig. 13(b)]. The root
calculation is carried out through a contour intersection
procedure [29].

4) To limit the impact of instability, resistors can be intro-
duced at proper locations. Their values can be obtained
making use of mode-boundary contours through the
same root calculation of the characteristic determinant
(in terms of the real frequency ω).
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VII. CONCLUSION

The purpose of this work was to carry out an as-thorough-as
possible stability analysis of the distributed amplifier oscillator.
Using a bifurcation theory toolkit, we have verified that mode
jumps during oscillator tuning are a feature of the oscillator
itself and are not caused by implementation issues and active
device imperfections. This is especially frustrating for the
designer, as the oscillator behaves as expected in some tuning
voltage ranges from the small-signal analysis. For other values,
bifurcations appear, which have, to date, been misinterpreted
as implementation imperfections. We have also confirmed that
it is possible to achieve uniqueness of oscillatory solution
but at the cost of low oscillator efficiency and negligible
amplitude. We hope that with this work, we conclude the
possible future efforts in the realization of this distributed
amplifier oscillator topology, and the research activities will
stretch toward the synthesis of a multiloop feedback system
with an unambiguous buildup condition.

APPENDIX

STATE SPACE EQUATIONS

Parameters of the circuit in Fig. 2 are as follows: m = 0.6,
VT = −1 V, L1 = L2 = L6 = L7 = L10 = L11 = L14 =
L15 = 40 H , L3 = L5 = L8 = L9 = 125 mH, L12 = L13 =
(1/2 + m/2)125 mH, L16 = L17 = 125(1 − m2)/(2m) mH,
VDD = 2.5 V, RV1 = RV2 = RV3 = RVDD = 5 �, R1 = R2 =
50 �, C1 = C2 = C5 = C6 = C9 = C10 = C13 = C15 =
C17 = 10 mF, C3 = C4 = C7 = C8 = C11 = C12 = 50 μF,
and C14 = C16 = 25m μF. Note that in the equations below,
conductance terms (1/RCi ) are also included in parallel with
shunt capacitors in artificial TL; however, since we consider
them as 1 μS, they are not shown in the schematics for clarity

ẋ1 = 1

L1

(
VG1 − x1 RV1 − x2

)
(22)

ẋ2 = 1

C1
(x1 − x3) (23)

ẋ3 = 1

L2

(
x2 −

(
x4

C2
+ x6

))
(24)

ẋ4 = x3 − iD1

(
x4

C2
+ x6

)
(25)

ẋ5 = 1

L3

(
x8 − x5 RL3 − x6

)
(26)

ẋ6 = 1

C3

(
x5 − x7 +

(
x3 − iD1

(
x4

C2
+ x6

))
− x6

RC3

)
(27)

ẋ7 = 1

L4

(
x6 − x14 − x7 RL4

)
(28)

ẋ8 = 1

C4

(
x9 − x5 − x8

RC4

− I1

(
x4

C2
+ x6, x8

))
(29)

ẋ9 = 1

L5

(
x16 − x9 RL5 − x8

)
(30)

˙x10 = 1

C5
(x11 − x13) (31)

˙x11 = 1

L6

(
VG2 − x11 RV2 − x10

)
(32)

˙x12 = x13 − iD2

(
x12

C6
+ x14

)
(33)

˙x13 = 1

L7

(
x10 −

(
x12

C6
+ x14

))
(34)

˙x14 = 1

C7

(
x7 − x15 +

(
x13 − iD2

(
x12

C6
+ x14

))
− x14

RC7

)
(35)

˙x15 = 1

L8

(
x14 − x22 − x15 RL8

)
(36)

˙x16 = 1

C8

(
x17 − x16

RC8

− x9 − I2

(
x12

C6
+ x14, x16

))
(37)

˙x17 = 1

L9

(
x24 − x17 RL9 − x16

)
(38)

˙x18 = 1

C9
(x19 − x21) (39)

˙x19 = 1

L10

(
VG3 − x19 RU3 − x18

)
(40)

˙x20 = x21 − iD3

(
x20

C10
+ x22

)
(41)

˙x21 = 1

L11

(
x18 −

(
x20

C10
+ x22

))
(42)

˙x22 = 1

C11

(
x15 − x23 − x22

RC11

+
(

x21 − iD3

(
x20

C10
+ x22

)))
(43)

˙x23 = 1

L12

(
x22 −

(
x34

C17
+ (x23 − x33)R2

)
− x23 RL12

)
(44)

˙x24 = 1

C12

(
− x29 − x25 − x17 − x24

RC12

− I3

(
x20

C10
+ x22, x24

))
(45)

˙x25 = 1

L12

(
x24 −

(
x30

C15
+ (x25 − x31)R1

)
− x25 RL13

)
(46)

˙x26 = x29 − x27 (47)

˙x27 = 1

L14

(
x26

C13
− x27 RVDD − VDD

)
(48)

˙x28 = x31 (49)

˙x29 = 1

L15

(
x24 − x26

C13

)
(50)

˙x30 = x25 − x31 (51)

˙x31 = 1

L16

(
x30

C15
+ (x25 − x31)R2 − x28

C14

)
(52)

˙x32 = x33 (53)

˙x33 = 1

L17

(
x34

C17
+ (x23 − x33)R2 − x32

C16

)
(54)

˙x34 = x23 − x33. (55)
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