
Vol.:(0123456789)1 3

Climate Dynamics (2023) 61:47–64 
https://doi.org/10.1007/s00382-022-06560-2

Spin‑up time and internal variability analysis for overlapping time 
slices in a regional climate model

A. Lavin‑Gullon1 · J. Milovac1   · M. García‑Díez2 · J. Fernández1 

Received: 27 August 2021 / Accepted: 21 October 2022 / Published online: 8 November 2022 
© The Author(s) 2022

Abstract
Long-term regional climate simulations are computationally very costly. One way to improve their computational efficiency 
is to split them into overlapping time slices, which can then be run in parallel. Although this procedure reduces the cost, suf-
ficient spin-up must be left at the start of each slice. In any case, discontinuities will occur due to internal variability where 
two different slices join. In this study, we explore the relative role of spin-up time and internal variability in the discontinui-
ties of overlapping time slice simulations and their effect on the simulated climate. This analysis has implications also for 
non-overlapping time slices, commonly used in very high resolution climate modelling, where long transient simulations 
cannot be afforded. We show that discontinuities are negligible for surface and upper-air variables, but they are noticeable in 
variables with long response times, such as soil moisture or snow depth. For these variables, differences between the slices 
are mainly attributed to internal variability, but also to insufficient spin-up time, depending on the region. In general, the 
results show that the overlapping time slice approach is valid to accomplish long term regional climate simulations.
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1  Introduction

Climate model resolution has always increased hand in hand 
with the available computer power. As an example, 30 years 
ago, the computational demand of the first regional climate 
models (RCMs; Giorgi 2019) limited their use to 60 km 
grid spacing for a month-long simulation (Dickinson et al. 
1989; Giorgi and Bates 1989). Currently, centennial RCM 
simulations at ca. 10 km grid spacing are routinely carried 
out at different research centers (Jacob et al. 2020). Still, the 
experiments with the highest spatial resolution (currently 

at kilometer-scale grid spacing) can only be afforded for 
time slices of about a decade (Coppola et al. 2020; Pichelli 
et al. 2021). This approach considers a decadal simulation 
driven by a future scenario and a reference decade driven 
by historical conditions to explore changes in climate. Such 
practice limits the climate analyses to periods well below 
the minimal climate standard of 30 years (WMO 2017). In 
the near future, centennial simulations of a kilometer-scale 
RCM will be feasible, especially if the RCM community 
adopts the latest advances in computing (Leutwyler et al. 
2016). However, time slices will still be required for the 
ever-increasing model resolution, complexity and coupling 
with other demanding model components. In this work, we 
consider the use of a set of overlapping time slices to accom-
plish multi-decadal RCM simulations and we explore the 
effects of this approach on the simulated climate.

The idea of splitting a climate simulation into pieces is 
nearly as old as regional climate modelling (Pan et al. 1999). 
There are different reasons for doing so, though. A common 
reason to re-initialize a climate simulation is to keep it close 
to the observations. For this purpose, a frequent re-initial-
ization is advocated (Pan et al. 1999; Qian et al. 2003; Lo 
et al. 2008). The frequent cold-start from reanalysis initial 
conditions constrains the weather trajectory of the model to 
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be close to the observed one. This approach can introduce 
discontinuities in the weather events and, more importantly 
for climate analyses, may disrupt the proper evolution of 
variables with long response times, such as deep soil vari-
ables. To prevent this disruption, the so-called poor man’s 
reanalysis approach (Berg and Christensen 2008; Stahl et al. 
2011; Lucas-Picher et al. 2013) keeps the soil variables 
across the different re-initializations, and updates only the 
atmospheric initial conditions from reanalysis data. In this 
latter approach, the simulation pieces are not independent 
of each other and there is no computational advantage in the 
re-initialization.

The computational advantage is a second reason to split 
an RCM simulation into pieces, which can then be run in 
parallel (Jimenez et al. 2010; Menendez et al. 2014). This 
form of parallelism can be more efficient than standard high-
performance parallel computing paradigms such as Open 
Multi-Processing (OpenMP) or Message Passing Interface 
(MPI) (Jerez et al. 2009). Using these standard parallel com-
puting approaches, computing time typically scales well 
with the number of processors up to a limit. This limit is 
usually much lower than the number of processors available. 
Even for a reasonable scaling, there is always a loss in using 
an increasing number of processors. Therefore, computing 
time is used more efficiently when splitting the simulation 
and running the pieces on a smaller amount of processors. 
For their use in climate studies, the initial part of each sim-
ulation piece must be disregarded as model spin-up. This 
spin-up period is, typically, at least one year (Christensen 
1999), although a few months might suffice depending on 
the season when the pieces are initialized (Jerez et al. 2020). 
This computing time trade-off between the gain by a more 
efficient use of the processors and the waste due to spin up 
of each simulation piece, can be used to optimize the length 
of the pieces (Jerez et al. 2009).

RCM simulation splitting is hardly avoidable for very 
long simulations, such as those for the last millennium 
(Gómez-Navarro et al. 2011). This procedure can also allevi-
ate the computational burden for research groups to perform 
centennial climate change RCM simulations. As an example, 
in this work, we analyze RCM simulations carried out in the 
last decade at Universidad de Cantabria (UCAN) as split 
runs and also as continuous simulation (Sect. 2.1). A form 
of simulation splitting is also used for the most computa-
tionally demanding RCM simulations (Coppola et al. 2020; 
Pichelli et al. 2021), where only a couple of decadal time 
slices can be afforded. Time slicing is just a simulation split 
into pieces, but with pieces that do not usually overlap. Here, 
we analyse the effect that overlapping a set of time slices 
would have on the simulated regional climatology. Note that 
this analysis cannot be carried out on standard time slice 
experiments, where the slices do not overlap and the proper 
initialization of the simulation cannot be assessed.

Due to internal variability in the RCM (Christensen 
et al. 2001; Lucas-Picher et al. 2008), a perfect match of 
the weather trajectory in two consecutive time slices is not 
possible. Internal variability is unavoidable and is triggered 
by the different initial conditions in the time slices, so there 
will always be a ’weather jump’ at the joints. On top of the 
internal variability, the coarse initial conditions from the 
driving GCM or reanalysis need some time (spin-up time) 
to be assimilated by the RCM dynamics. This spin-up time 
depends on the variable. It is quite short for atmospheric 
variables, but it can extend for several months or even years 
for other slow-varying variables (Christensen 1999; Cos-
grove et al. 2003; Jerez et al. 2020).

The objective of this study is to show the effect of the 
overlapping time slice approach on the regional climate sim-
ulated by an RCM. For this purpose, we used state-of-the-
art simulations carried out under the COordinated Regional 
climate Downscaling EXperiment (CORDEX; Giorgi and 
Gutowski 2015) framework using the Weather Research & 
Forecasting (WRF) modelling system (Sect. 2.1). Analy-
ses were carried out for variables with different response 
time, using split and continuous simulations for different 
regions, at different resolutions and with time slices in split 
simulations initialized in different seasons. We studied the 
weather jumps in split simulations, locating their occurrence 
(Sect. 3.1), analysing their evolution in time (Sect. 3.2) and 
their geographical location (Sect. 3.3). Finally, we analysed 
the potential effect of splitting the simulations into time 
slices on the simulated climate (Sect. 3.4).

2 � Data and methods

2.1 � Data

In this study we analyse three sets of simulations using the 
WRF model (Skamarock et al. 2008), with different param-
eterization schemes, spatial domains, horizontal resolutions 
and time periods. Simulations were performed over three 
model domains as defined within CORDEX. One set of sim-
ulations was carried out over the CORDEX South American 
domain at the standard 0.44◦ horizontal resolution (SAM-
44), regular on a rotated latitude-longitude projection (Falco 
et al. 2019; Solman and Blázquez 2019). These simulations 
were carried out for the historical period 1951–2005 and 
for the future scenarios RCP 4.5 and RCP 8.5 for the period 
2002–2100, all driven by the Canadian Earth System Model 
(CanESM2; Arora et al. 2011). The other two sets consisted 
of evaluation simulations over Europe at 0.44◦ (EUR-44) and 
∼ 15 km (EUR-15) horizontal grid spacing, driven by the 
ERA-Interim reanalysis (Dee et al. 2011). EUR-44 simula-
tions span the period 1979–2010 (Vautard et al. 2013), while 
the EUR-15 simulations were generated under the CORDEX 
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Flagship Pilot Study on convective phenomena at high reso-
lution over Europe and the Mediterranean (FPS-CONV), 
covering the period 1999–2009 (Coppola et al. 2020). An 
additional convection-permitting (CP) simulation at ∼ 3 km 
horizontal resolution, is also analysed to evaluate the effect 
of the resolution. This CP simulation was nested into the 
EUR-15 domain and centered on the Alpine region (ALP-
3). The model setup is the same as EUR-15, except for the 
cumulus parameterization, which was deactivated (Ban et al. 
2021).

Two different model configurations were used in terms 
of physical parameterizations. Namely, EURO-CORDEX 
WRF configuration WRF341I (Manzanas et al. 2018) was 
used in EUR-44 and SAM-44, while an updated model ver-
sion and configuration, WRF381BI (Ban et al. 2021), was 
used in EUR-15. The most important difference concern-
ing our results is the different land surface model (LSM). 
WRF381BI used the new Noah with multi-parameteriza-
tion options (Noah-MP v1.1) LSM (Niu et al. 2011), while 
WRF341I was coupled to its predecessor Noah LSM (Chen 
and Dudhia 2001). All simulations were carried out with 
prescribed sea surface temperature and sea ice, evolving as 
provided by the driving global model or reanalysis.

The three sets of simulations were performed by splitting 
the runs into several time slices. In order to allow for the 
required spin-up time, adjacent time slices were overlapped 
for at least one year (Fig. 1). Additionally, the EUR-15 and 
EUR-44 simulations were also performed continuously. 
The continuous runs were produced in two different ways. 
For EUR-44, the first time slice (S1) was extended to cover 
the full period. For EUR-15, the full period was simulated 
again, but the model was compiled with a different compiler 

version and linked to a different version of the parallel com-
puting (OpenMPI) libraries. Therefore, the differences 
between the EUR-15 continuous run and the first time slice 
of the split simulation (EUR-15 S1) will be due to different 
numerical round-off in the model executable. These differ-
ences are expected to grow and evolve with the flow as those 
caused by perturbing initial conditions, i.e. internal variabil-
ity (Geyer et al. 2021). The continuous runs are considered 
as a reference to investigate possible inhomogeneities caused 
by the time slicing of the split simulations.

It is worth noting that these sets of simulations were 
not specifically designed for this study. We use them as an 
ensemble of opportunity to study the spin-up length and 
the role of internal variability in the climate simulated by 
overlapping time slices. As such, we can only explore the 
variables available for each simulation, and the initialization 
seasons of the slices used in these multi-year simulations. 
A designed, systematic exploration of the required spin-up 
time has been recently carried out by Jerez et al. (2020) over 
Europe for a 1-year test period. Our approach extends this 
work by considering domains in different climates, different 
spatial resolutions, longer spin-up lengths, and the role of 
interannual and internal variability.

We focus our analyses on three types of variables. Initially, 
we consider slow-varying variables as their accurate initializa-
tion and representation are of key importance for weather and 
climate modelling. They require significant spin-up times as 
their initial conditions, taken from the driving model, usually 
differ greatly from the conditions generated by the RCM (Jerez 
et al. 2020). For this purpose, among the available variables, 
here we analyze total soil moisture and snow depth. These 
variables control energy partitioning at the land surface and, 

Fig. 1   Schematic representation 
of the analysed simulations. 
Time slice simulations (S1, S2, 
etc.) are used to compose split 
simulations for each domain 
(switching time between 
slices is indicated by arrows). 
Continuous simulations are 
represented either as independ-
ent simulations (EUR-15) 
or by extending the S1 slice 
(EUR-44). Overlapping periods 
are shaded in grey shades: light 
grey for the overlap of two 
simulations, and dark grey for 
three overlapping simulations
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through land-atmosphere feedbacks, they influence the evolu-
tion of the atmospheric conditions in the planetary bound-
ary layer. In such a way, these variables impact local weather 
and regional climate (Seneviratne et al. 2006). Furthermore, 
we considered near-surface temperature and precipitation, 
two fundamental variables that characterize the regional cli-
mate and are often considered in climate and impact studies. 
Both are highly variable in time and space. The atmospheric 
circulation was analysed as well, since it has also a strong 
but non-local impact on the regional climate (Zappa 2019). 
Atmospheric circulation shows the shortest response time, as 
compared to surface or subsurface fields. We characterize the 
circulation by means of the geopotential height at 850 hPa. The 
analysis was carried out for daily mean values for all variables.

2.2 � Methodology

The analysis of discrepancies across the simulation slices is 
based on simple differences. For a given variable X(s, n, t), 
taken from a simulation slice s at grid point n and time step t, 
we define the following differences:

for consecutive time steps t − 1 and t, and consecutive simu-
lation slices s − 1 and s. Note that the meteorological jump 
( Dst ) in variable X, occurring at the joint between time t − 1 
in simulation slice s − 1 and time t in slice s, can be decom-
posed as the difference between slices Ds at time t − 1 plus 
the variable tendency in time ( Dt ) within slice s:

In order to have a relative measure, we consider non-dimen-
sional differences in terms of standard deviation units, by 
dividing each of them by the standard deviation in time at 
each grid point:

where the standard deviation sdDtX(s, n) is calculated as

from a 45-day time period ( � ) prior to the target time t. The 
overline represents time average over a given time period �:

(1)DtX(s, n, t) = X(s, n, t) − X(s, n, t − 1)

(2)DsX(s, n, t) = X(s, n, t) − X(s − 1, n, t)

(3)DstX(s, n, t) = X(s, n, t) − X(s − 1, n, t − 1)

(4)
DstX(s, n, t) = DsX(s, n, t) + DtX(s − 1, n, t)

= DsX(s, n, t − 1) + DtX(s, n, t),

(5)dstX(s, n, t) =
DstX(s, n, t)

sdDtX(s, n)

(6)

sdDtX(s, n) =

√

1

T(�)−1

∑

t∈�

[
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�
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]2

with T(�) representing the number of time steps in � . This 
is done to use intra-seasonal variability as reference, thus 
preventing the annual cycle variability to mask large differ-
ences for a given season. These time period averages have 
also been used to assess the long-term impact of time slicing 
on the climatology of a given variable (Sect. 3.4).

Differences (D) are spatio-temporal fields. We summa-
rize them by means of spatial root mean squared differences 
(RMSD), to avoid compensation of opposite differences 
across the domain. For each slice, the intra-slice daily ten-
dency ( RMSDtX ) summarizes the differences between con-
secutive time steps:

Inter-slice differences ( RMSDsX ) are employed to quantify 
the differences between two slices along the overlapped 
period (see Sect. 3.3):

We also consider the quadratic average of DstX ( RMSDstX ), 
which arises in the context of split simulations; it is the 
RMSDtX at the joint of time slices. This measure quantifies 
the inhomogeneity introduced at the joint for different vari-
ables (see Sect. 3.1):

Finally, as a reference for natural variability we also estimate 
transient eddy variability (Caya and Biner 2004; Lucas-
Picher et al. 2008; Lavin-Gullon et al. 2021):

where � represents in this case all days in a calendar month, 
in order to have a monthly TEV estimate.

3 � Results

3.1 � Detection of meteorological inhomogeneities

Unlike continuous regional climate simulations, split 
simulations contain meteorological inhomogeneities, i.e. 
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unphysical changes in the state of the system at the joints 
of the time slices. This is unavoidable, given that an exact 
match of two climate simulations is impossible due to the 
chaotic nature of the climate system. For RCMs, the con-
straint exerted by the lateral boundary conditions make the 
inhomogeneities much smaller than in global models. Still, 
substantial internal variability develops in RCMs (Lucas-
Picher et al. 2008; Bassett et al. 2020; Lavin-Gullon et al. 
2021), preventing a smooth transition between simulation 
slices.

The ability to detect these meteorological inhomogenei-
ties depends on the simulation sampling frequency (i.e. out-
put frequency) used. The inhomogeneity will pass unnoticed 
if it is smaller than the change between consecutive out-
put times. And this change is larger as sampling frequency 
decreases. Intra-slice daily tendencies ( RMSDt ) quantify the 
changes between consecutive time steps. At the slice joints 
in a split simulation, RMSDt becomes RMSDst and quanti-
fies the size of the inhomogeneity along with the variable 
tendency.

Of course, the relevance of the inhomogeneity depends 
also on the variable. For geopotential height (Fig. 2), inho-
mogeneities go unnoticed. Average daily geopotential ten-
dencies in mid-latitudes (EUR-15, EUR-44) range between 
20 and 100 m, with a prominent annual cycle. The geo-
potential change remains within this range when passing 
from one time slice on one day to the next time slice on 
the next day (indicated by arrows in Fig. 2), regardless of 

the season when joining occurs. The SAM-44 domain spans 
mid-latitude as well as tropical regions and, thus, geopoten-
tial heights show a smaller range of change (20–80 m) and 
a much weaker seasonal cycle. However, daily inhomoge-
neities go unnoticed. Geopotential height is strongly driven 
by the lateral boundary conditions and the pass of weather 
systems through the domain. Moreover, the 1-year spin-up 
period considered in the time slices is expected to be long 
enough for upper atmospheric variables, such as geopoten-
tial height, to reach physical equilibrium within the model. 
Therefore, these variables do not suffer from noticeable 
inhomogenities.

The same result applies for variables that are influenced 
to a greater or lesser extent by the lateral boundary forc-
ing, such as near-surface temperature, precipitation or snow 
depth (not shown). For snow depth, which varies slowly, 
regional inhomogeneities are apparent, but the domain-wide 
summary in RMSDt masks the differences in the relatively 
small snow-covered regions in the domains considered. Soil 
variables (e.g. total soil moisture in Fig. 3), however, show 
large discontinuities at the slice joints. RMSDt shows inho-
mogeneities in all three sets of simulations, clearly unveiling 
the time when two slices join. Daily tendencies in total soil 
moisture range between 2 and 10 kg∕m2 , except for peaks on 
certain days with values beyond 30 kg∕m2 , corresponding to 
the joints of the time slices. The order of magnitude of these 
peaks is not sensitive to the season in which the adjacent 
slices join (winter in EUR-44, summer in SAM-44, winter 

Fig. 2   RMSD between consecutive days ( RMSDt ) for geopotential 
height at 850 hPa (m) in the EUR-15, EUR-44 and SAM-44 split 
simulations. Joints of time slices are indicated by arrows. In SAM-44, 

light gray shading refers to the historical run while dark gray shading 
corresponds to RCP 8.5 forced run
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and spring in EUR-15). These peaks also show low interan-
nual variability, clearly standing out from the background 
variable tendency for every joint in different years (see inset 
in Fig. 3). Despite the strong signal in RMSDt , these peaks 
in the differences are still one order of magnitude smaller 
than the variable itself; e.g. the quadratic mean of total soil 
moisture in SAM-44 is about 600 kg∕m2.

These strong discontinuities at the joints indicate that 
there are high discrepancies in soil moisture between two 
time slices. This could be due to two reasons: (1) the spin-
up period considered is not long enough for soil moisture to 
balance within the model or/and (2) soil moisture internal 
variability is larger than the daily tendency. This is investi-
gated next.

3.2 � Meteorological inhomogeneities in time

In a split simulation, a set of time-sliced simulations are 
concatenated after removing an initial spin-up period. In 
principle, the longer the spin-up period, the better. A given 
slice enters the split simulation just after the previous slice 
has finished (as depicted in Fig. 1). However, the switch 
between the slices can be chosen to occur at any time dur-
ing the overlapping period (grey-shaded areas in Fig. 1). 
We can quantify the size of the discontinuity by means of 
inter-slice differences ( RMSDs , Eq. 9). As an example, Fig. 4 

shows RMSDs for the 1.5-year overlap between S1 and S2 
time slices for EUR-15 domain, covering the period from 
Sep., 2003 to Feb., 2005. The EUR-15 continuous simula-
tion is also included (black line in the Fig. 4) as reference for 
RMSDs . Figure 5 shows another example for a 1-year overlap 
period between S1 and S2 for the SAM-44 domain, covering 
the complete year 2006. In this case, no reference continuous 
run was available, but we included TEV as a reference for 
natural variability (black line in the Fig. 5).

3.2.1 � Total soil moisture

Total soil moisture intra-slice daily tendencies (Fig. 4a, top 
panel) differ between the two time slices at the beginning 
of the overlapping period. At this time, total soil moisture 
in S2 is mainly provided by the initial conditions from 
ERA-Interim, while in S1 the soil state is generated by the 
RCM itself. In EUR-15, the overlap period is initiated in 
late summer (September) so that the difference in the daily 
tendencies between S1 and S2 decreases rapidly. Day-to-day 
variability is mainly determined by the variability in the top 
soil layer, which in turn depends on precipitation. Therefore, 
there is evident correlation between day-to-day variability 
of total soil moisture and precipitation (see Fig. 4a and d, 
top panels). Thus, under drier conditions like it is the case in 
late summer, daily soil moisture tendencies from the driving 

Fig. 3   As Fig. 2, but for the total soil moisture content ( kg∕m2 ). The inset in the lower panel shows the whole 1950-2100 SAM-44 historical 
(grey) plus RCP 8.5 scenario period. Numbers at the top of the each panel represent maximum values (out of scale) at the joints of the slices
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model adapt faster to the soil moisture conditions in the long 
term RCM run (i.e. slice S1 here).

In SAM-44, the overlapped period starts in austral sum-
mer, which in this region corresponds to the rainy season. 
In this case, intra-slice daily tendencies for soil moisture 
(Fig.  5a, top panel) show that more than 3 months are 

necessary for the two adjacent slices, S1 and S2, to start 
evolving coherently in time. It is interesting to notice that 
the two slices tend to diverge again at the end of the overlap-
ping period, which also corresponds to the austral summer. 
This can be associated to the discrepancies in summertime 
precipitation between the two slices (see Fig. 5d top panel).

Fig. 4   RMSD for a total soil moisture, in kg∕m2 , b snow depth, in m, 
c near-surface temperature, in K, d daily accumulated precipitation, 
in mm, and e geopotential height at 850 hPa, in m, for EUR-15 S1, S2 

and continuous simulations; see Fig. 1. For each variable, intra-slice 
daily tendencies ( RMSDtX ) for each simulation (top panel) and inter-
slice differences ( RMSDsX ) between S1 and S2, and between S1 and 
continuous (bottom panel)
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Daily soil moisture inter-slice differences ( RMSDs , bot-
tom panels of Figs. 4a and 5a) are more controlled by the 
moisture state of deeper soil layers, therefore we can con-
sider these differences to be strongly influenced by soil mois-
ture spin-up . These differences will reach a minimum and 
never a zero value due to internal variability (Lavin-Gullon 
et al. 2021). When RMSDs is stabilized, this denotes that 
internal variability had overcome the initial spin-up tran-
sient. To distinguish internal variability from insufficient 

spin-up, we can also use the continuous run as the reference 
when available (i.e. EUR-15 domain). In EUR-15 case, we 
computed the inter-slice difference between S1 (initialized 
5 years before the overlapping period, see Fig. 1) and the 
continuous simulation (black line in Fig. 4a). These differ-
ences are controlled by internal variability only, and they set 
the lower limit for inter-slice differences. RMSDs between 
S1 and S2 during the overlapped period are initially very 
high in both domains (bottom panels of Figs. 4a and 5a). In 

Fig. 5   As Fig. 4, but for the SAM-44 domain, and overlapping time slices S1 and S2
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EUR-15, RMSDs stabilizes at 40 kg∕m2 after about one year, 
while in SAM-44 the minimum value of 70 kg∕m2 is reached 
after just a few months. At these points internal variability 
becomes the major cause of the differences between S1 and 
S2, which leads to a conclusion that spin-up in SAM-44 is 
shorter than in EUR-15.

This highlights that not only the season determines the 
spin-up time, but also the synoptic regimes specific for the 
region. In SAM-44, the overlapped period starts in the aus-
tral summer (DJF) but, unlike in EUR-15, summer is the wet 
season in Central South America (Liebmann and Mechoso 
2011), which largely contributes to the annual precipitation 
(and soil moisture) in the whole SAM-44 domain. Shorter 
spin-up in moist regimes (SAM-44) than in drier regimes 
(EUR-15) may be related to the parameterization of vertical 
water transport within the soil. It is based on Richards’ equa-
tion in all LSMs used in the analysed simulation sets, which 
is more efficient under moist conditions in the wet season 
(Khodayar et al. 2015).

It is worth comparing the scales of inter- and intra-slice 
differences for soil moisture, which differ by about one order 
of magnitude. This scale difference causes the RMSDt peaks 
in split simulations denoting the soil moisture inhomogenei-
ties at the slice joints shown in the previous section. In par-
ticular, the first peak in Fig. 3 (top panel) has a contribution 
from both RMSDt(S2) and RMSDs(S1 − S2) lines (Fig. 4a) 
at the end of the overlapping period, when slice S1 switches 
to S2 in the EUR-15 split simulation. This shows that an 
earlier switch from S1 to S2 would have not led to smaller 
inhomogeneities.

3.2.2 � Snow depth

Snow depth shows a different behavior than soil moisture 
in EUR-15 (Fig. 4b, top panel). Initial RMSDt values in S2 
are significantly higher than those in S1, but they get close 
to each other in just a few days. In SAM-44 (Fig. 5b, top 
panel), this initial difference is not evident as the snow depth 
is insignificant there during the austral summer, when the 
overlapped period starts. After balancing, RMSDt evolves 
coherently in time for both slices in both domains, with 
an evident seasonal cycle. The variability of day-to-day 
RMSDt is higher in winter and early spring, when snow 
depth changes due to snowfalls and snow melting, and lower 
values occur in summer when snow coverage is small and 
limited to areas with permanent snow. Inter-slice differences 
during the overlapped period in EUR-15 (bottom panel in 
Fig. 4b) show an interesting behavior. After just a few days, 
RMSDs for S1 and S2 slices reaches a winter minimum that 
remains almost constant until the end of April 2004. After 
that time, it starts to drop again. In summer, since the snow 
coverage is minimal, inter-slice differences reach the overall 

minimum. Afterwards, as the snow depth starts to increase, 
RMSDs increases again following the seasonality pattern of 
internal variability. However, RMSDs never reaches the first 
winter minimum again. This leads to a conclusion that the 
occurrence of the initial drop to the first winter minimum 
does not mean the balancing of the snow. When the RMSDs 
values drop to the overall minimum, which is limited by the 
inter-slice differences between slice S1 and the continuous 
run (black line on the bottom panel in Fig. 4b), snow depth 
spin-up can be considered as completed. These results show 
that, for this specific simulation, joining the slices at the end 
of summer would minimize the inhomogeneity of the snow 
depth, while not affecting significantly the inhomogeneity of 
soil moisture at the S1–S2 joint. Moreover, this is valid also 
for shorter overlapped periods initialized in June (for EUR-
15 for S2–S3 slices) or in March (for EUR-15 for S3–S4 
slices), which can be seen in the Supplementary Material in 
Figures ESM1 and ESM2, respectively. Minimal snow depth 
inhomogeneities across time slices are obtained by switching 
slices at the end of late summer (September) in all cases, 
although for the S2–S3 slices when the overlapped period 
starts in June (just 3 months before) 1 year long overlap 
period is insufficient for soil moisture to spin up. In SAM-44, 
minimum values also appear in austral summer for RMSDt 
(Fig. 5a) and in late summer for RMSDs (Fig. 5b), when it 
would be most convenient to join the slices. Although snow 
in SAM-44 is scarce, covering only some areas in the south-
ern Andes, selecting austral summer to start the overlapping 
in SAM-44 is beneficial.

In EUR-44 (Figs. ESM 3a and b in the Supplementary 
Material) a 2-year overlap period is available. This allows 
for better assessment of the annual cycles and variability of 
RMSDt , inter-slice differences ( RMSDs ) between S2 and S3, 
and the internal variability, estimated by RMSDs between 
S2 and the continuous run. This time slice overlap (S2-S3) 
confirms all the results previously shown for EUR-15: (1) 
late summer is a good season to choose to switch slices for 
snow cover, (2) the seasonal cycle in soil moisture internal 
variability, peaks also in late summer, which is clearer here. 
However, for this particular year, soil moisture seems not 
to be completely spun up. This highlights the need for an 
interannual assessment of soil moisture spin-up times.

3.2.3 � Other variables

The other variables (Fig. 4c–e) show no initial discrepancies 
as a hint of spin-up period, with an evolution of day-to-day 
changes ( RMSDt ) similar for both slices, and inter-slice dif-
ferences ( RMSDs ) consistent with internal variability. The 
order of magnitude of both RMSDs is the same, therefore 
there is no apparent inhomogeneities at the joints (e.g. see 
Fig. 2).
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Geopotential height (Fig. 4c top panel) exhibits seasonal 
cycle with larger day-to-day changes ( RMSDt ) in winter than 
summer, which is typical mid-latitude variability in Europe 
(Caya and Biner 2004). On the other hand, this seasonality 
is not evident in SAM-44 (Fig. 5c top panel). The SAM-
44 domain is not limited only to mid-latitudes, but it also 
covers large tropical areas showing no variable seasonal-
ity, which smooths the final results. Nevertheless, the larger 
summer internal variability is apparent in the RMSDs . Inter-
slice differences ( RMSDs ) between S1 and S2 slices do not 
show strong deviations from internal variability (i.e. RMSDs 
between the continuous simulation and S1 in EUR-15), 
therefore most of the differences between time slices can 
be explained by the internal variability itself. For precipita-
tion intra-slice daily tendencies evolve more coherently in 
SAM-44 than in EUR-15, especially in the austral winter. In 
both domains, differences in RMSDt between the two slices 
does not change along all the overlapped period, regardless 
of the season. On the other hand, a seasonal cycle appears 
in inter-slice differences, with higher (lower) differences 
between the slices in the austral summer (winter), following 
the seasonal pattern observed for geopotential height at 850 
hPa. This seasonal behaviour is more apparent in SAM-44 
than in EUR-15.

The results for near-surface temperature follow the simi-
lar pattern as those for the geopotential height at 850 hPa.

3.2.4 � Horizontal resolution

We bilinearly remapped all EUR-15 variables to the ALP-3 
domain (not shown). Apart from a slightly higher initial state 
of the soil moisture in ALP-3, all RMSDt and RMSDs time 
series during the overlap periods are virtually identical in 
the remapped EUR-15 and ALP-3 resolutions. Horizontal 
resolution does not seem to play any major role on the model 
spin-up and inhomogeneities of split simulations. This small 
sensitivity to the change in horizontal resolution can be seen 
also in Figs. 2 and  3, with very similar RMSDt evolution 
in both EUR-44 and EUR-15, regardless of the time slice 
considered and despite the differences in model version and 
configuration.

3.2.5 � Another view on spin‑up time

The SAM-44 simulation setup does not allow to estimate 
the internal variability limit, since the only year with two 
long-term overlapping simulations (S14 and S1) is 2006. 
In this year, the GCM boundary conditions driving S14 and 
S1 bifurcate into two different global climate realizations 
forced by the RCP 4.5 (S14) and 8.5 (S1 and S2) concen-
tration scenarios. As a result, differences between S14 and 
S1 in 2006 do not represent RCM internal variability, but 
different global driving fields. In particular, the changes in 

the forcing between the RCP 4.5 and 8.5 scenarios are so 
small in 2006 that the two global climate realizations can be 
considered as resulting from the GCM internal variability. 
At least, regarding the atmospheric fields fed to the RCM. In 
a few weeks, the slight forcing differences make the GCM 
circulation diverge and the synoptic situation of correspond-
ing days in the two global model realizations will be as dif-
ferent as two random days in the corresponding season. Note 
that no inhomogeneity occurs, since both GCM realizations 
are started from the same final state of the historical run at 
the end of 2005. Synoptic conditions depart smoothly as 
slight changes in the forcing introduce small perturbations 
which are amplified by the model dynamics to become finite 
perturbations.

From the point of view of the RCM, soil variables will 
evolve smoothly, with the land surface model responding in 
a physically consistent manner to the new atmospheric con-
ditions. Snow cover should also adjust smoothly to the new 
synoptic conditions fed through the boundaries. This adjust-
ment process is similar to the spin-up, since the RCM inter-
nal fields need to adjust to the new driving fields. Unlike the 
spin-up process, model states are physically consistent dur-
ing the whole process; no tendencies develop in the model 
to account for the mismatch between the initial conditions 
and a balanced model state. The expected RMSDs(S1 − S14) 
value after the adjustment is not the RCM internal variabil-
ity limit in this case (since the driving fields differ), but the 
GCM internal variability. This can be estimated from the 
transient eddy variability (TEV, Eq. 11). In particular, for 
uncorrelated fields from two GCM realizations, RMSDs 
should reach 

√

2TEV (Caya and Biner 2004).
This decorrelation time to reach the GCM internal vari-

ability level sets a minimum response time for the spin-
up time. The RCM starts the adjustment process from an 
internally consistent state, unlike in the spin-up process, 
which needs to bring the initial state into line with the RCM 
dynamics. Therefore, spin-up times should be longer than 
the smooth adjustment time to decorrelated synoptic situ-
ations. This is illustrated in Fig. 5, where the monthly 

√

2

TEV lines have been included as reference. As expected, 
surface and upper air variables adjust in a few weeks. In fact, 
geopotential height will adjust almost immediately, since the 
2-week delay shown in Fig. 5e is likely the time taken by the 
GCM circulation to decorrelate. Soil moisture takes about 3 
months to reach decorrelation ( 

√

2TEV line in Fig. 5a). Note 
that the Figure includes Dec-2005, which still represents 
RCM internal variability levels.

Snow depth takes longer to decorrelate, since the adjust-
ment starts in austral summer, with no snow, and RMSDs 
keeps low until April (mid-autumn). Then, decorrelates rela-
tively fast, growing along with the TEV line. This is different 
from the spin-up process, which efficiently uses the summer 
months to reset the snow cover fields.



57Spin‑up time and internal variability analysis for overlapping time slices in a regional climate…

1 3

Interestingly, for soil moisture, inter-slice differences 
between S2 and S1 stabilize at the 

√

2TEV level. This means 
that soil moisture differences between time slices subject to 
the same boundary conditions are as different as those in two 
random days in this month (note that TEV was computed 
considering interannual variability). This may indicate a 
generally low departure from average conditions in this vari-
able. It could also be result of insufficient spin-up. Since the 
low internal variability level ( RMSDs(S1 − S14) ) from Dec-
2005 is not reach by the end of the overlapping period, this 
suggest that the soil moisture spin-up for RMSDs(S1 − S2) 
may have not finished in Dec-2006, despite the apparent 
stabilization.

Precipitation also gets close to the decorrelation limit dur-
ing the austral summer months. In this case, summer con-
vective precipitation is weakly forced by the boundaries and 
precipitation centers are likely mislocated between slices, 
even if forced by the same boundary conditions.

3.3 � Meteorological inhomogeneities: spatial 
distribution

In the previous sections we quantified day-to-day changes 
and changes between time slices with spatial root mean 
squared differences, which masked the spatial distribution 
of these changes. Therefore, in this section, we analyse how 
the inhomogeneities in split simulations are spatially dis-
tributed. As an example we show the differences in EUR15 
(Fig. 6) that cause the RMSDt peak on March 1st, 2005, 
shown in Fig. 3 (top panel). The results for other joints are 
qualitatively similar (not shown). The first column shows 
the observed change at the time-slice joint ( DstX ) for the 
different variables. The changes shown will stand out as a 
noticeable inhomogeneity (i.e. peaks in Figs. 2 or 3) if (and 
where) DsX (second column) is significantly larger (for an 
order of magnitude) than DtX (third column). In order to 
have a relative measure to compare different variables, in the 
fourth column we show the differences in standard deviation 
units ( dstX).

For soil moisture content (Fig. 6, first row), as already 
inferred from the RMSDt time series, the change between 
consecutive days ( DtX ) is negligible as compared to change 
between slices ( DsX ). The relatively high differences at 
joints are spread across the whole domain (Fig. 6d), with 
highest values (i.e above three standard deviations) in east-
ern and northeastern parts of Europe, as well as in north-
ern Africa. In the European regions, these high discrepan-
cies can be explained only by changes between the slices 
( DsX ) at the specific joint, since soil moisture has very long 
response time so the changes between consecutive days 
( DtX ) are negligible. The two slices are joined within the 
transitional time during which soil moisture reaches the 

full equilibrium and internal variability starts to dominate 
(Fig. 4). This can vary with the region, since the length of 
the spin-up depends on the soil characteristic and the climate 
conditions. Therefore, these inhomogenities can be contrib-
uted to the internal variability for sure, but regionally they 
may contain also the effects of the spin-up due to the differ-
ent climate conditions (Yang et al. 2011; Lim et al. 2012). 
On the other hand, high differences in northern Africa are 
the consequence of our standardization - this area is very dry 
and absolute changes of soil moisture are very small, which 
leads to large (i.e. above three standard deviation) relative 
changes in standard deviation units. The results for snow 
depth are qualitatively similar. Due to its long response time, 
most of the differences occur between the slices, except for 
an elongated area north of the Black Sea. Since the spin-up 
was sufficient (Fig. 4b), we may attribute the discrepancies 
between both slices to the internal variability. These snow 
accumulation differences between slices (Fig. 6f) have typi-
cal depths from individual misplaced snowfall events, such 
as the one north of the Black Sea, occurring on the ana-
lysed day (Fig. 6g). As such, unlike soil moisture, which 
is relatively stable at this joint (Fig. 4), the specific spatial 
pattern can fully differ from one joint to another for snow 
depth, even considering the same season. As an example, 
on March 1st, 2008 (Fig. ESM 5), the synoptic conditions 
over Europe barely provided any snow and, as a result, inho-
mogenities in snow depth are very small. This emphasizes 
the role of interannual variability at the joint, which in turn 
may increase or decrease the inhomogeneities. Four areas 
with differences up to two standard deviations stand out 
in the 850 hPa geopotential height (Fig. 6i, l). Unlike for 
the previous slow-varying variables, these differences are 
almost exclusively due to changes in synoptic conditions 
between consecutive days (Fig. 6k). Along the day, two lows 
develop north of France and Scandinavia, and a third low 
moves and deepens from the west to the north of the Black 
Sea. Only west of the Black Sea the inhomogeneities have a 
slightly larger contribution of the changes between between 
the two slices (Fig. 6j), which weakens and slightly shifts 
the low northwards. The season is again an important factor. 
In winter (Figs. 6 and ESM 5), when boundary forcing at 
mid latitudes is dominant, the differences are mainly attrib-
uted to the day-to-day natural variability of the atmosphere 
(e.g. low pressure systems entering or moving across the 
domain). However, by the end of the spring, the strength 
of the boundary forcing decreases and internal variability 
increases, allowing for larger discrepancies between time 
slices. Thus, the discrepancies between the two slices are 
larger at the joint on June 1st, 2006 (Fig. ESM 4), as it can 
be observed over northern Europe.

Even though differences found in the geopotential 
height are small, they may affect the results in other vari-
ables, especially those that are dependent on the synoptic 
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Fig. 6   Spatial distribution of differences (Equations  1–3 and 5 ) for 
EUR-15 at the joint from 28th February ( t − 1 ) to 1st March, 2005 (t) 
between slices S2 (s) and S1 ( s − 1 ). From left to right: DstX(s, n, t) , 
DsX(s, n, t − 1) , DtX(s, n, t) , and dstX(s, n, t) . Note that the latter is 

non-dimensional and the same colorbar is used for all variables (from 
top to bottom): total soil moisture ( kg∕m2 ), snow depth (m), geo-
potential height at 850 hPa (m), daily accumulated precipitation (mm) 
and near-surface temperature (K)
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circulation, such as precipitation. Discrepancies between the 
slices ( DsX ) in the low pressure area, west of the Black Sea 
(Fig. 6f), drive precipitation changes there, causing inhomo-
geneities to increase up to 50 mm in northern Bulgaria. This 
is due to a northward shift in precipitation which accompa-
nies the corresponding shift in the low pressure system. This 
is observed in the other domains, as well. For example, in 
SAM-44 (not shown), the joint on January 1st, 2015 exhibits 
extended precipitation inhomogeneities east of Brazil, driven 
by time slice differences in simulating a low pressure system 
over the Atlantic.

Inter-slice differences for near-surface temperature 
(Fig. 6r) are generally small over the domain. There are 
only isolated locations with notable differences, especially 
in Ukraine, but still these are within one standard deviation 
(Fig. 6t). Therefore, inhomogeneities that appear at the joint 
can be mostly explained with the day-to-day natural change 
of the variable (Fig. 6s).

3.4 � Simulated climate

In previous sections we have shown that discontinuities in 
split simulations can be relatively large, especially for slow-
varying variables. Since these discontinuities occur on indi-
vidual time steps, it is expected that the simulated climate 
should not be affected by the splitting procedure, especially 
when the differences are within the range of model’s internal 
variability. In this section, we compare the climatology of 
the split and continuous simulations. For this purpose, we 
used the EUR-44 set of simulations, which has the longest 
simulated overlapping period (20 years) among all of our 
simulation sets (see Fig. 1).

Figure 7 shows the winter (DJF) and summer (JJA) dif-
ferences in the seasonal climatology for the full overlapping 
period 1991–2010 (first and fourth columns). All variables 
considered are shown in different rows and differences use a 
common non-dimensional scale of seasonal standard devia-
tion units. In winter, soil moisture and snow depth show 
significant differences, while upper air and surface variables 
show much lower, non-significant differences. Differences 
are spatially smooth for all variables except snow depth, 
which shows patchy differences over snow-dominated areas 
in the domain. In summer (Fig. 7, fourth column), snow 
depth differences vanish due to lack of snow. Somewhat 
larger differences arise in upper air and surface variables, 
especially in the summer season. Significant precipitation 
differences (Fig. 7, row d, column 4) are concentrated mostly 
over Mediterranean, having a very patchy pattern which is 
consistent with a weak mid-latitude lateral boundary forc-
ing in summer months, and the mainly convective origin of 
precipitation. A relative low geopotential height develops in 
the split simulation over northern Africa/central Mediterra-
nean Sea in summer (row c and column 4 in Fig. 7), which 

is consistent with the relatively colder region over northern 
Africa (row e and column 4 in Fig. 7).

In order to check whether these differences are consist-
ent with low frequency internal variability or a side effect 
of the splitting, we computed the seasonal climatology 
differences for two different 10-year periods. The years 
1991–1995 and 2001–2005 (columns 2 and 5 in Fig. 7) 
are considered as years during which the differences could 
potentially be affected by a long term spin-up transient, 
since they were initialized less than 6 years before the sim-
ulation start (see Fig. 1). On the other hand, we consider 
the years 1996–2000 and 2006–2010 (columns 3 and 6 in 
Fig. 7) as periods when the differences are dominated by 
the model internal variability, since the RCM initialization 
occurred at least 6 years after the simulation start. Note 
that the 20-year seasonal climatology differences (columns 
1 and 4 in Fig. 7) are the average of these two 10-year cli-
matology differences. In this way, differences in the long-
term climatology can be ascribed to periods dominated 
either by potential spin-up or internal variability.

In general, no significant difference can be ascribed par-
ticularly to the period with a potential spin-up transient 
regime. Seasonal differences in the two 10-year periods 
show similar magnitudes for all variables. Moreover, some 
features in the 20-year climatology differences, such as 
summer differences in geopotential height or tempera-
ture, correspond to stronger differences during the inter-
nal variability dominated 10-year period. More or less 
co-located differences during the first 10-year period lead 
to significant differences during the full 20-year period. 
Patchy summer precipitation differences in the 20-year 
period also correspond to constructive averages with even 
patchier differences in the 10-year periods. The same is 
true for winter snow depth. This points to no spin-up tran-
sient effect in the first 10-year period, and to differences 
compatible with internal variability, even if statistically 
significant.

No systematic effect is apparent in both periods, except 
for the soil moisture differences over northern Africa, 
which are quite robust in all periods and seasons and reach 
several standard deviations. This is likely related to the 
extremely dry soils and low variability there, which would 
need further research. Unfortunately, for this simulations 
soil moisture at different depths is not available to inves-
tigate properly the source of this difference between the 
continuous and split runs. Over continental Europe these 
differences are also significant, reaching about half the 
standard deviation. However, they are compatible with 
internal variability since there is no systematic location 
of differences across the 10-year periods. The differences 
found in the full 20-year period are the result of partly 
overlapping positive and negative differences in the other 
two time periods.
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4 � Summary and conclusions

We presented a post hoc analysis of several regional cli-
mate simulation experiments carried out with the WRF 
RCM as a set of overlapping time slices. The simulations 
span different domains, boundary conditions, horizontal 
grid spacing and overlapping periods. Overlapping time 
slices were joined to build split simulations. Continuous 
simulations are available as reference to evaluate split 
simulations for some of these experiments. We evalu-
ated the discontinuities in time and space introduced by 
this procedure at the joints of the time slices, devising 
a methodology to discern between insufficient spin-up 
and RCM internal variability effects. Finally, the effect 

of overlapping time slices on the regional climate was 
assessed.

The analysis was carried out on variables with different 
response times and, at the same time, variables typically 
saved in coordinated dynamical downscaling initiatives, 
such as CORDEX. For this purpose, we also focused on 
daily model output, commonly available in public reposi-
tories. An analysis at higher temporal frequencies would 
likely ease the location of meteorological discontinuities 
for the variables with the shortest response times (geo-
potential height, temperature, precipitation), which went 
unnoticed in our study. However, the output frequency 
does not affect spin-up times or seasonal climatology 
analyses.

Fig. 7   Seasonal climatology differences for different periods (in col-
umns) and variables (in rows) between the EUR-44 split and EUR-
44 continuous. Differences are in non-dimensional standard deviation 

units. Black contours show statistically significant differences accord-
ing to a two-sample t-test with 95% confidence. Snow depth (snd) dif-
ferences are masked out where the variability is below 0.001 m
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We avoided spatial averaging and used root mean 
squared differences to highlight any mismatch between 
time slice simulations. The relative size of time slice 
switch differences with respect to daily variable tendencies 
only led to noticeable inhomogeneities in soil moisture. 
Locally, snow depth can also be used to reveal slice joints. 
Surface and upper air variables show larger day-to-day 
variations than across time slices.

Jerez et  al. (2020) showed that the optimal spin-up 
period is not always the longest, recommending an ini-
tialization in the warm season. We found that this depends 
on the region, though. As an example, unlike in Europe, 
the warm season in South America is also the wet season, 
due to deep convective events which lead to greater pre-
cipitation internal variability and, thus, more uncertain 
initial soil moisture conditions. The optimal starting point 
should therefore be found for each region to minimize the 
contents of slow-varying reservoirs (e.g. snow and soil 
water), thus avoiding gross errors in their initial levels. 
We also found that mismatches at the slice joints are also 
minimized during the warm/dry season. Therefore, a mini-
mal overlapping time slice setup could be a 1-year spin-up 
period initialized at the end of the warm/dry season and 
entering the split simulation one year later.

The largest and more spatially extended differences 
were found in total soil moisture, both regarding mete-
orological inhomogeneities and long term climatologies. 
This agrees with previous studies warning on the very long 
spin-up required by soil variables, and especially soil mois-
ture (Christensen 1999; Cosgrove et al. 2003; Yang et al. 
2011; Jerez et al. 2020). We found that significant differ-
ences in the climatology over continental Europe might 
be ascribed to internal model variability. However, differ-
ences over low-precipitation, non-vegetated areas (northern 
Africa) present systematic differences which persist along 
the simulated period. This is likely due to initial soil mois-
ture inconsistencies between the forcing reanalysis and the 
RCM equilibrium soil state over these areas. The land sur-
face model takes a very long time to restore the equilibrium, 
especially from extremely dry initial conditions (Cosgrove 
et al. 2003). The situation is likely exacerbated due to the 
lack of precipitation and deep roots. A dedicated study with 
long-term, continuous simulations would be necessary to 
properly disentangle the internal variability and spin-up 
of soil variables in coupled simulations. Most studies on 
soil spin-up rely on off-line land surface model simulations 
(Cosgrove et al. 2003; Yang et al. 2011), where there is a 
target equilibrium soil moisture that is consistent with the 
prescribed atmospheric forcing. Coupled simulations, with 
an active soil-atmosphere feedback, could develop greater 
internal variability with persistent anomalies in the slowest 
components. There are examples, though, of the opposite 
effect (reduced internal variability) for simulations coupled 

to other slow interactive components such as a regional 
ocean (Ho-Hagemann et al. 2020).

For other variables, the discrepancies between the cli-
matology in split simulations and continuous simulations 
can be ascribed to internal variability, even if statistically 
significant (e.g. for snow depth). No special effect on the 
climatology was found for periods closer to the initialization 
with respect to those farther away.

Our results are robust to interannual variability regarding 
the detection of meteorological inhomogeneities. Spin-up 
times for slow-varying variables can depend on the specific 
conditions of the initialization year. We showed examples 
with a long plateau in snow depth differences across time 
slices in EUR-15 in 2003 (Fig. 4), which did not occur in 
other overlapping years (Figs. ESM1 or ESM2). Also, the 
soil moisture spin-up time, as represented by the time to 
reach the internal variability limit, differs from year to year. 
While one year is usually enough, there are instances (e.g. 
1999 in EUR-44, Figure ESM3) when over two years seem 
necessary to reach equilibrium.

All in all, this work shows that the use of overlapping 
time slices to accomplish long term regional climate sim-
ulations is a valid approach. This procedure can largely 
improve the efficiency of regional climate simulations, both 
for computationally heavy simulation (e.g. kilometer-scale 
simulation) or for a faster accomplishment of lower reso-
lution runs, which do not scale efficiently to a large num-
ber of processors. Modelling workflow managers, such as 
WRF4G (Fernández-Quiruelas et al. 2015) —used in our 
simulations—, can help in the extra design, job submission 
and monitoring burden of this approach.

As a final cautionary remark, note that we considered 
RCM simulations with prescribed sea surface tempera-
tures. RCM simulations coupled to a regional ocean pose 
an even greater spin-up challenge due to the strong ther-
mal and dynamic inertia of the ocean surface. The results 
shown could also be sensitive to the model parameteriza-
tions and other model components (e.g. land surface model) 
used. Multi-model uncertainty was also not explored in this 
study and would require coordination of different modelling 
groups. Given the uncertainties, in order to be on the safe 
side of soil spin-up, longer slices and spin-up times could 
be considered. For example, centennial scenario simulations 
could be safely split into 30-year slices (e.g. near-, mid-, 
and far-future) with a 5-year spin-up each, especially if soil 
variables are initialized from an RCM soil climatology (Cos-
grove et al. 2003; Rodell et al. 2005; Jerez et al. 2020).
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Fita L, Frisius T, Gašparac G, Giorgi F, Goergen K, Haugen JE, 
Hodnebrog O, Kartsios S, Katragkou E, Kendon EJ, Keuler K, 
Lavin-Gullon A, Lenderink G, Leutwyler D, Lorenz T, Maraun 
D, Mercogliano P, Milovac J, Panitz HJ, Raffa M, Remedio AR, 
Schär C, Soares PMM, Srnec L, Steensen BM, Stocchi P, Tölle 
MH, Truhetz H, Vergara-Temprado J, de Vries H, Warrach-Sagi 
K, Wulfmeyer V, Zander M (2021) The first multi-model ensem-
ble of regional climate simulations at kilometer-scale resolu-
tion, part I: evaluation of precipitation. Clim Dyn 57:275–302. 
https://​doi.​org/​10.​1007/​s00382-​021-​05708-w

Bassett R, Young PJ, Blair GS, Samreen F, Simm W (2020) A large 
ensemble approach to quantifying internal model variabil-
ity within the WRF numerical model. J Geophys Res: Atmos 
125(7):e2019JD031286. https://​doi.​org/​10.​1029/​2019J​D0312​86

Berg P, Christensen J (2008) Poor man’s re-analysis over Europe. 
Tech Rep, WATCH Technical 5 Report No. 2

Caya D, Biner S (2004) Internal variability of RCM simulations 
over an annual cycle. Clim Dyn 22(1):33–46. https://​doi.​org/​
10.​1007/​s00382-​003-​0360-2

Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrol-
ogy model with the penn state-NCAR MM5 modeling system. 
Part i: Model implementation and sensitivity. Mon Weather Rev 
129(4):569–585. https://​doi.​org/​10.​1175/​1520-​0493(2001)​129<​
0569:​caals​h>2.​0.​co;2

Christensen OB (1999) Relaxation of soil variables in a regional 
climate model. Tellus A 51:674–685. https://​doi.​org/​10.​1034/j.​
1600-​0870.​1999.​00010.x

Christensen OB, Gaertner MA, Prego JA, Polcher J (2001) Internal 
variability of regional climate models. Clim Dyn 17:875–887. 
https://​doi.​org/​10.​1007/​s0038​20100​154

Coppola E, Sobolowski S, Pichelli E, Raffaele F, Ahrens B, Anders I, 
Ban N, Bastin S, Belda M, Belusic D, Caldas-Alvarez A, Cardoso 
RM, Davolio S, Dobler A, Fernandez J, Fita L, Fumiere Q, Giorgi 
F, Goergen K, Guttler I, Halenka T, Heinzeller D, Hodnebrog O, 
Jacob D, Kartsios S, Katragkou E, Kendon E, Khodayar S, Kun-
stmann H, Knist S, Lavin-Gullon A, Lind P, Lorenz T, Maraun 
D, Marelle L, van Meijgaard E, Milovac J, Myhre G, Panitz HJ, 
Piazza M, Raffa M, Raub T, Rockel B, Schär C, Sieck K, Soares 
PMM, Somot S, Srnec L, Stocchi P, Tolle MH, Truhetz H, Vau-
tard R, de Vries H, Warrach-Sagi K (2020) A first-of-its-kind 
multi-model convection permitting ensemble for investigating 
convective phenomena over Europe and the Mediterranean. Clim 
Dyn 55:3–34. https://​doi.​org/​10.​1007/​s00382-​018-​4521-8

Cosgrove BA, Lohmann D, Mitchell KE, Houser PR, Wood EF, 
Schaake JC, Robock A, Sheffield J, Duan Q, Luo L, Higgins 
RW, Pinker RT, Tarpley JD (2003) Land surface model spin-up 
behavior in the North American Land Data Assimilation System 
(NLDAS). J Geophys Res Atmos. https://​doi.​org/​10.​1029/​2002J​
D0033​16

Dee DP, de Rosnay P, Poli P, Kobayashi S, Andrae U, Balmaseda M, 
Balsamo G, Van de Berg L, Bidlot J, Bormann N, Dragani R, 
Fuentes M, Vitart F (2011) The ERA-interim reanalysis: con-
figuration and performance of the data assimilation system. Q J 
Royal Meteorol Soc 137:553–597. https://​doi.​org/​10.​1002/​qj.​828

Dickinson RE, Errico RM, Giorgi F, Bates GT (1989) A regional cli-
mate model for the western United States. Clim Chang 15:383–
422. https://​doi.​org/​10.​1007/​BF002​40465

Falco M, Carril AF, Menéndez CG, Zaninelli PG, Li LZX (2019) 
Assessment of CORDEX simulations over South America: added 
value on seasonal climatology and resolution considerations. Clim 
Dyn 52:4771–4786. https://​doi.​org/​10.​1007/​s00382-​018-​4412-z

Fernández-Quiruelas V, Blanco C, Cofiño A, Fernández J (2015) 
Large-scale climate simulations harnessing clusters, grid and 
cloud infrastructures. Future Gener Comput Syst 51:36–44. 
https://​doi.​org/​10.​1016/j.​future.​2015.​04.​009

Geyer B, Ludwig T, von Storch H (2021) Limits of reproducibility and 
hydrodynamic noise in atmospheric regional modelling. Commun 
Earth Environ. https://​doi.​org/​10.​1038/​s43247-​020-​00085-4

Giorgi F (2019) Thirty years of regional climate modeling: Where 
are we and where are we going next? J Geophys Res: Atmos 
124(11):5696–5723. https://​doi.​org/​10.​1029/​2018J​D0300​94

Giorgi F, Bates GT (1989) The climatological skill of a regional model 
over complex terrain. Mon Weather Rev 117(11):2325–2347. 
https://​doi.​org/​10.​1175/​1520-​0493(1989)​117<​2325:​TCSOA​
R>2.​0.​CO;2

https://doi.org/10.5281/zenodo.5012560
https://doi.org/10.5281/zenodo.5012560
https://github.com/wrf-model/WRF
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1029/2010GL046270
https://doi.org/10.1029/2010GL046270
https://doi.org/10.1007/s00382-021-05708-w
https://doi.org/10.1029/2019JD031286
https://doi.org/10.1007/s00382-003-0360-2
https://doi.org/10.1007/s00382-003-0360-2
https://doi.org/10.1175/1520-0493(2001)129<0569:caalsh>2.0.co;2
https://doi.org/10.1175/1520-0493(2001)129<0569:caalsh>2.0.co;2
https://doi.org/10.1034/j.1600-0870.1999.00010.x
https://doi.org/10.1034/j.1600-0870.1999.00010.x
https://doi.org/10.1007/s003820100154
https://doi.org/10.1007/s00382-018-4521-8
https://doi.org/10.1029/2002JD003316
https://doi.org/10.1029/2002JD003316
https://doi.org/10.1002/qj.828
https://doi.org/10.1007/BF00240465
https://doi.org/10.1007/s00382-018-4412-z
https://doi.org/10.1016/j.future.2015.04.009
https://doi.org/10.1038/s43247-020-00085-4
https://doi.org/10.1029/2018JD030094
https://doi.org/10.1175/1520-0493(1989)117<2325:TCSOAR>2.0.CO;2
https://doi.org/10.1175/1520-0493(1989)117<2325:TCSOAR>2.0.CO;2


63Spin‑up time and internal variability analysis for overlapping time slices in a regional climate…

1 3

Giorgi F, Gutowski WJ (2015) Regional dynamical downscaling and 
the CORDEX initiative. Annu Rev Environ Resour 40(1):467–
490. https://​doi.​org/​10.​1146/​annur​ev-​envir​on-​102014-​021217

Gómez-Navarro JJ, Montávez JP, Jerez S, Jiménez-Guerrero P, Lor-
ente-Plazas R, González-Rouco JF, Zorita E (2011) A regional cli-
mate simulation over the Iberian peninsula for the last millennium. 
Clim Past 7(2):451–472. https://​doi.​org/​10.​5194/​cp-7-​451-​2011

Ho-Hagemann HTM, Hagemann S, Grayek S, Petrik R, Rockel B, 
Staneva J, Feser F, Schrum C (2020) Internal model variability of 
the regional coupled system model GCOAST-AHOI. Atmosphere. 
https://​doi.​org/​10.​3390/​atmos​11030​227

Jacob D, Teichmann C, Sobolowski S, Katragkou E, Anders I, Belda 
M, Benestad R, Boberg F, Buonomo E, Cardoso RM, Casanueva 
A, Christensen OB, Christensen JH, Coppola E, De Cruz L, Davin 
EL, Dobler A, Dominguez M, Fealy R, Fernandez J, Gaertner 
MA, Garcia-Diez M, Giorgi F, Gobiet A, Goergen K, Gomez-
Navarro JJ, Aleman JJG, Gutierrez C, Gutierrez JM, Guettler I, 
Haensler A, Halenka T, Jerez S, Jimenez-Guerrero P, Jones RG, 
Keuler K, Kjellstrom E, Knist S, Kotlarski S, Maraun D, van Mei-
jgaard E, Mercogliano P, Montavez JP, Navarra A, Nikulin G, de 
Noblet-Ducoudre N, Panitz HJ, Pfeifer S, Piazza M, Pichelli E, 
Pietikainen JP, Prein AF, Preuschmann S, Rechid D, Rockel B, 
Romera R, Sanchez E, Sieck K, Soares PMM, Somot S, Srnec L, 
Sorland SL, Termonia P, Truhetz H, Vautard R, Warrach-Sagi K, 
Wulfmeyer V (2020) Regional climate downscaling over Europe: 
perspectives from the EURO-CORDEX community. Reg Environ 
Change 20:51. https://​doi.​org/​10.​1007/​s10113-​020-​01606-9

Jerez S, Gimenez D, Montávez JP (2009) Optimizing the execution of a 
parallel meteorology simulation code. IPDPS 2009 - Proceedings 
of the 2009 IEEE International Parallel and Distributed Process-
ing Symposium https://​doi.​org/​10.​1109/​IPDPS.​2009.​51611​54

Jerez S, López-Romero JM, Turco M, Lorente-Plazas R, Gómez-
Navarro JJ, Jiménez-Guerrero P, Montávez JP (2020) On 
the spin-up period in WRF simulations over Europe: trade-
offs between length and seasonality. J Adv Model Earth Syst 
12(4):e2019MS001945. https://​doi.​org/​10.​1029/​2019m​s0019​45

Jimenez PA, Gonzalez-Rouco JF, Garcia-Bustamante E, Navarro 
J, Montavez JP, de Arellano JVG, Dudhia J, Muñoz-Roldan 
A (2010) Surface wind regionalization over complex terrain: 
evaluation and analysis of a high-resolution WRF simulation. J 
Appl Meteorol Climatol 49:268–287. https://​doi.​org/​10.​1175/​
2009J​AMC21​75.1

Khodayar S, Sehlinger A, Feldmann H, Kottmeier C (2015) Sensitiv-
ity of soil moisture initialization for decadal predictions under 
different regional climatic conditions in Europe. Int J Climatol 
35(8):1899–1915. https://​doi.​org/​10.​1002/​joc.​4096

Lavin-Gullon A, Fernandez J, Bastin S, Cardoso RM, Fita L, Gian-
naros TM, Goergen K, Gutierrez JM, Kartsios S, Katragkou E, 
Lorenz T, Milovac J, Soares PMM, Sobolowski S, Warrach-Sagi 
K (2021) Internal variability versus multi-physics uncertainty 
in a regional climate model. Int J Climatol 41(S1):E656–E671. 
https://​doi.​org/​10.​1002/​joc.​6717

Leutwyler D, Fuhrer O, Lapillonne X, Lüthi D, Schär C (2016) 
Towards European-scale convection-resolving climate simula-
tions with GPUs: a study with COSMO 4.19. Geosci Model 
Dev 9(9):3393–3412. https://​doi.​org/​10.​5194/​gmd-9-​3393-​2016

Liebmann B, Mechoso CR (2011) The South American Monsoon 
System. In: Chang CP, Johnson RH, Lau NC, Wang B, Yasunari 
T (eds) The Global Monsoon System: Research andForecast. 
2nd edn. World Scientific, Singapore, pp 137–157. https://​doi.​
org/​10.​1142/​97898​14343​411_​0009

Lim YJ, Hong J, Lee TY (2012) Spin-up behavior of soil mois-
ture content over east Asia in a land surface model. Mete-
orol Atmos Phys 118(3–4):151–161. https://​doi.​org/​10.​1007/​
s00703-​012-​0212-x

Lo JCF, Yang ZL, Pielke RA Sr (2008) Assessment of three dynami-
cal climate downscaling methods using the weather research and 
forecasting (wrf) model. J Geophys Res: Atmos. https://​doi.​org/​
10.​1029/​2007J​D0092​16

Lucas-Picher P, Caya D, de Elía R, Laprise R (2008) Investigation of 
regional climate models’ internal variability with a ten-member 
ensemble of 10-year simulations over a large domain. Clim Dyn 
31:927–940

Lucas-Picher P, Boberg F, Christensen JH, Berg P (2013) Dynami-
cal downscaling with reinitializations: A method to gener-
ate finescale climate datasets suitable for impact studies. J 
Hydrometeorol 14(4):1159–1174. https://​doi.​org/​10.​1175/​
JHM-D-​12-​063.1

Manzanas R, Gutiérrez J, Fernández J, van Meijgaard E, Calmanti S, 
Magariño M, Cofiño A, Herrera S (2018) Dynamical and statis-
tical downscaling of seasonal temperature forecasts in Europe: 
added value for user applications. Clim Serv 9:44–56. https://​
doi.​org/​10.​1016/j.​cliser.​2017.​06.​004

Menendez M, Garcia-Diez M, Fita L, Fernandez J, Mendez FJ, Gut-
ierrez JM (2014) High-resolution sea wind hindcasts over the 
Mediterranean area. Clim Dyn 42:1857–1872. https://​doi.​org/​
10.​1007/​s00382-​013-​1912-8

Niu GY, Yang ZL, Mitchell KE, Chen F, Ek MB, Barlage M, Kumar 
A, Manning K, Niyogi D, Rosero E, Tewari M, Xia Y (2011) 
The community Noah land surface model with multiparameteri-
zation options (Noah-MP): model description and evaluation 
with local-scale measurements. J Geophys Res. https://​doi.​org/​
10.​1029/​2010j​d0151​39

Pan Z, Takle E, Gutowski W, Turner R (1999) Long simulation 
of regional climate as a sequence of short segments. Month 
Weather Rev 127(3):308–321. https://​doi.​org/​10.​1175/​1520-​
0493(1999)​127<​0308:​LSORC​A>2.​0.​CO;2

Pichelli E, Coppola E, Sobolowski S, Ban N, Giorgi F, Stocchi P, 
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