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A B S T R A C T

Long-term and accurate wave hindcast databases are often required in different coastal engineering projects.
The assessment of the nearshore wave climate is often accomplished by using downscaling techniques to
translate offshore waves to coastal areas. However, dynamical downscaling approaches may incur huge
computational cost. Additionally, the common use of bulk parameterizations are often not accurate for
multidimensional waves. To overcome these limitations, we present a hybrid downscaling approach that
combines mathematical algorithms (statistical downscaling) and numerical modeling (dynamical downscaling)
over the individual spectral partitions. Every wave partition is downscaled and aggregated afterward by using
principles of wave linear theory. By assuming linearity in the propagation of the wave celerity, the application
of the method is limited from offshore to intermediate water depths. In addition, the method proposed uses
a technique to simplify the spectral boundary conditions in complex domains. The methodology has been
applied and validated in the island states of Samoa, American Samoa, Majuro, and Kwajalein, showing good
skill at reproducing the spectral hourly time series of significant wave height, peak period, and peak direction.
Moreover, an accurate representation of the observed energy spectrum was achieved. This study provides
insight into the numerical approximation of the combined sea-swell states while improving the quality of fast
spectral forecasting and early warning systems.
. Introduction

Downscaling of long-term series of local wave climates is essential
or many engineering activities related to ocean and coastal manage-
ent (e.g., design of coastal protection, analysis of wave resonance

n harbors, or the study of morphological evolution on beaches). Sim-
larly, forecasting local wave conditions is an essential input into
oastal hazard Early Warning Systems (EWS). At present, the devel-
pment of accurate and efficient EWS to forecast short-term coastal
azards is necessary to provide local risk managers with adequate tools
o anticipate severe coastal damages and reduce the vulnerability of
oastal communities. One of the advances needed in the development of
WS is the improvement of downscaling techniques for offshore waves
Wandres et al., 2020; Winter et al., 2020). The most widely utilized
ave transfer method is dynamic downscaling with third-generation

pectral wave models. However, this solution is often not practical
ue to computational resource constraints (Camus et al., 2011a,b). As
n alternative, hybrid and/or statistical downscaling techniques have

∗ Corresponding author.
E-mail address: ricondoa@unican.es (A. Ricondo).

been developed as computationally efficient complements to numerical
models (Camus et al., 2014; Cid et al., 2017), with a wide variety
of wave transformation metamodels (Camus et al., 2013; Gouldby
et al., 2014; Rajindas and Shashikala, 2021). These methods, however,
lose information on the full wave spectrum since they focus on the
integral parameters of the spectra (i.e. bulk wave statistics such as
significant wave height, mean period, and mean direction), which are
frequently used in engineering projects (Gerling, 1991). Additionally, in
locations with complex bathymetry and multimodal wave conditions,
as is typical for islands located in large ocean basins, it is crucial to
avoid the integral properties of the spectra as they may inadequately
solve the spectral transformation to the coast (Draycott et al., 2017).
Although recent studies have already made use of spectral partition-
ing algorithms in statistical downscaling approaches (Anderson et al.,
2021; Hegermiller et al., 2017), they use a limited number of spectral
partitions. To overcome these limitations, we present an adapted hybrid
method capable of downscaling complex hindcast or forecast wave
conditions in a highly computationally efficient manner.
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Table 1
Location, anchoring depth, and measurement period of the sensors used for validation off Pacific Islands.

Site Lon (◦) Lat (◦) Depth (m) Start End

Majuro 171.4016 7.0891 375 24 April 2010 19 January 2015
171.3918 7.0835 540 4 May 2016 Present

Roi-Namur 167.4678 9.4074 21 3 November 2013 4 April 2015

Kwajalein 167.7000 8.7200 11 9 November 2013 10 April 2015

Samoa 188.7800 −14.4150 80 1 September 1989 11 April 1990

American Samoa 189.5070 −14.2650 75 23 October 2014 30 May 2018
189.4995 −14.2732 55 30 May 2018 Present
-
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The methodology presented in this paper henceforth referred to as
yWaves (Hybrid Waves) aims at providing a rapid and robust tech-
ique to include spectral and directional complexity when downscaling
ulti-modal wave climate to coastal areas. Here we propose an efficient
ave-modeling tool supported by clustering and interpolation tech-
iques to overcome computational constraints and ease the integration
f long-term coastal hazards and future climate change scenarios for
omprehensive coastal risk assessments. We present its application and
alidation to multiple Pacific Island sites. Such locations are especially
hallenging to downscale due to the frequent existence of multiple swell
nd wind-sea systems at any given time, combined (typically) with
teep, complex, and rugous surrounding reef systems that modify the
ncoming wave fields in complex ways due to refraction and dissipation.

The paper is structured as follows: Section 2 presents the study sites
nd observational datasets collected. Section 3 describes the method-
logy in detail with five subsections ‘‘Energy aggregation: Super-point’’,

‘Super-point partitioning and rescaling’’, ‘‘Selection’’, ‘‘Dynamical down
caling’’ and ‘‘Wave systems reconstruction and aggregation’’. The
alidation of the metamodel is given in Section 4, while conclusions
re covered in Section 5.

. Study sites and data

HyWaves methodology has been applied and validated in several
acific Island nations (i.e., Majuro and Kwajalein Atolls in the Marshall
slands in the north Pacific, and Samoa and Tutuila Island in the
outh Pacific). These low-lying tropical coral reef-lined coasts and atoll
slands are exposed to distant north and south Pacific storm swells
ostly generated during their respective winter seasons (Genz et al.,
009). Out of the several wave-driven flooding hazards that threaten
hese coastal areas (e.g., tropical storms, typhoons, ENSO events) (Ford
t al., 2018), the episodes of flooding due to the dissipation of far
well fields are frequently overlooked (Hoeke et al., 2013, 2021).
owever, infragravity waves released from the breaking of long-crested
aves along the coral reef shoreline, generally when combined with
igh-tides, have a strong potential to cause overwashing.

In Kwajalein Atoll, HyWaves has been tested in two locations, Roi-
amur at the northern point and Kwajalein at the southern point. In
oi-Namur, a 0.5 m resolution bathymetric digital elevation model
Storlazzi et al., 2018) was used, and a 10 m resolution topo bathymetry
rom United States Army Corps Engineers (USACE) for the Kwajalein
ite. In Majuro Atoll, a 1-meter topobathymetric digital elevation model
as used, available at the United States Geological Survey (USGS)

Palaseanu-Lovejoy et al., 2018). Gaps in the bathymetry were filled in
oth domains with 0.42º resolution data from the General Bathymetric
hart of the Oceans (GEBCO).

In-situ data was collected for both Kwajalein Atoll deployments with
ottom-mounted pressure loggers from a geophysical survey carried out
y Rosenberger et al. (2020). The data used at the southern location
as collected by a Virtuoso Dwave sensor in two separate periods

9 November 2013 to 19 April 2014; 30 October 2014 to 10 April
015). Data in the northern location, in Roi-Namur, were measured by
600 kHz Nortek Acoustic Wave and Current Meter (AWAC) placed

n the fore reef as described in Cheriton et al. (2016) and collected

n three separate periods (3 November 2013 to 13 April 2014; 29 2

2

April 2014 to 6 October 2014; and 25 October 2014 to 4 April 2015).
In Majuro, the buoy employed is a Datawell Directional Waverider
Mark III (DWR-MkIII) owned and managed by the Pacific Islands Ocean
Observing System (PACIOOS) and collects data every half an hour with
a measuring period from 24 April 2010 to the present. Details on the
location of the buoys are given in Table 1.

For brevity, hereafter we focus on the application of the method to
the Samoa and American Samoa sites and omit the details of the Mar-
shall Islands sites, but the treatment is the same at all sites. The Samoa
Islands consist of Savai’i and Upolu, and on the western archipelago
of American Samoa, Tutuila Island is also addressed. Bathymetric data
have been obtained by combining two data sources. At the regional
scale of Samoa and Tutuila Island, the bathymetry used has been
produced by blending GEBCO, Smith and Sandwell (1997) bathymetry,
and nearshore multibeam echosounder bathymetry gridded at 250 m
resolution (Kruger, 2007). A finer bathymetry of Tutuila Island has
been embedded, providing a complete bottom coverage at a 5 m
grid resolution extending to 250 m depth, available from the Pa-
cific Islands Benthic Habitat Mapping Center (http://soest.hawaii.edu/
pibhmc). The merged bathymetries are shown in Fig. 1a.

Finally, the validation was undertaken using in-situ wave measure-
ments from both a bulk (non-directional) wave buoy located between
Savai’i and Upolu and a spectral wave buoy located 7 km offshore
the eastern shore of Tutuila Island, close to the small volcanic island
of Aunu’u. The non-directional Waverider buoy was located close to
Apolima Island and moored at 104 m depth. The buoy was part of
the South Pacific Applied Geoscience Commission (SOPAC) wave data
collection program aiming at mapping the wave energy of South Pacific
Island nations. With a relatively short collection period (1 September
1989–11 April 1990), the buoy was exposed to the passage of Cyclone
Ofa on 4 February 1990, to Tropical Cyclone Rae on 26 March 1990
and to south swells and trade winds (see details in Barstow and Haug,
1994). The mean significant wave height (𝐻𝑠) recorded by the buoy
was 1.5 m with a mean peak wave period (𝑇𝑝) of 10 s. However, the
buoy also measured extreme wave events of 𝐻𝑠 up to 10 m or 𝑇𝑝 up to
2 s.

The spectral Aunu’u buoy is also a DWR-MkIII owned and managed
y the Pacific Islands Ocean Observing System (PACIOOS). Moored at
5 m depth, it collects data every half an hour from 23 October 2014
o the present. Normal conditions range from calm (𝐻𝑠 < 2 m), to
ypical moderate wave events (𝐻𝑠 = 4−5 m), to energetic wave events
𝐻𝑠 > 4 m), as demonstrated in Fig. 1c. The longest period swells
pproach the island from the northern and southern hemispheres with
𝑠 between 2–3 m and periods between 20–22 s. Eastern trade winds

re constantly blowing over the area resulting in events with 𝐻𝑠 up to
m and 𝑇𝑝 ∼ 12 s.

Spectral wave data corresponds to the CAWCR wave hindcast 1979–
022 produced by the Bureau of Meteorology and CSIRO (Smith et al.,
020). The database comes from the WAVEWATCH III version 4.08
umerical wave model, with 0.4º global grid spacing and a series of
ested regional grids with 4 arc-minute (approximately 7 km) spatial
esolution, including around the Pacific islands. The wave hindcast is
orced with hourly surface winds from the Climate Forecast System
eanalysis (CFSR) (Saha et al., 2010) and CFSv2 Reanalysis (Saha et al.,

011) generated by the National Center for Environment Prediction

http://soest.hawaii.edu/pibhmc.A
http://soest.hawaii.edu/pibhmc.A
http://soest.hawaii.edu/pibhmc.A
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Fig. 1. Bathymetry and buoy data for the Samoan Islands. (a) SWAN computational grids (in dashed orange boxes) and bathymetry of Samoa and Tutuila used for the study. The
red dots are the locations of the Apolima buoy and the Aunu’u buoy. (b) Density scatter of the 𝐻𝑠 measured by the Apolima Buoy and the CAWCR hindcast point (white star in
(a)). (c) Hourly sea-states retrieved by the Aunu’u buoy. The radial axis corresponds to 𝑇𝑝 and colored points indicate the 𝐻𝑠 of the event.
(NCEP). In addition to gridded integrated wave parameter and partition
parameter output, hourly wave spectra discretized into 24 directional
and 29 frequency bins ranging from 0.0345 to 0.5476 Hz is available
at discrete locations. The comparison between the 𝐻𝑠 measured by
the Apolima buoy and the 𝐻𝑠 provided by the CAWCR hindcast point
located in southern Samoa is provided in Fig. 1a. Due to the inadequate
representation of the bathymetry, the hindcast has significantly less
energy than the buoy. This reinforces the need for a high-resolution
downscaling and calibration of the global wave hindcast.

3. Methodology

A schematic of the methodological framework is displayed in Fig. 2;
the details are described in the following sub-sections. HyWaves is
based on the use of a statistical-dynamical hybrid model to transfer
offshore multimodal wave climate to the coast with minimal com-
putational effort. First, the boundary conditions for the dynamical
downscaling are generated considering the convolution of the spectral
data from the 43-year CAWCR hindcast stations into a ‘‘Super-point’’
(Section 3.1). The spectral information is condensed and parameterized
into the wave partitions (Section 3.2), which are the input to HyWaves.
The metamodel is built up by the selection of representative cases with
the Maximum-Dissimilarity Algorithm (MDA) (Section 3.3); these cases
3

are dynamically (numerically) modeled using SWAN (Simulating Waves
till Nearshore) (Booij et al., 1999) (Section 3.4); and the reconstruc-
tion using the Radial Basis Functions (RBF) interpolation technique
(Section 3.5). Finally, the original record is reconstructed at certain
locations by linearly aggregating the different concurrent wave systems
(Section 3.5).

3.1. Energy aggregation: Super-point

Cagigal et al. (2021) first introduced the concept of ‘‘Super-point’’
as a practical way to aggregate spectral wave information and create
a unique time series of the incoming wave energy to an island. The
same approach is used in this work as the input to the numerical
(dynamical) downscaling, thus simplifying the library of cases to be
run by the metamodel. The available CAWCR spectral points around
Samoa and Tutuila Island are shown in Fig. 3. The ‘‘Super-point’’
construction is then built hourly on the angular sectors that receive
the incoming energy from each hindcast point. Note that for the 15
available points, a sector of 24º will be taken, except for the 2 points in
the northeast corner, which will each represent 36º. By doing this, the
Super-point aggregates all the incoming energy into a single spectrum
that represents the complexity of the multimodal directional spectrum.
An example of Super-point construction for 19 October 1987 at 01:00
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Fig. 2. Schematic of the HyWaves methodological framework for downscaling
ultimodal wave systems.

.m., which is representative of common wave and wind condition, is
resented in Fig. 3b.

.2. Super-point partitioning and rescaling

Applying the MDA selection algorithm over the full spectrum would
e impractical to manage. A well-known data reduction technique
onsists of obtaining the integral parameters of the spectrum. However,
n complex coastal settings, where wave propagation is highly sensitive
o spectral shape and directional properties, a more complete char-
cterization of the spectra is desired to prevent unrealistic numerical
esults. To accomplish this, the Super-point spectrum is decomposed
nto the individual wind sea and swell systems. The spectral partition-
ng technique, first introduced by Gerling (1992) and further enlarged
y Hanson and Phillips (2001) and Portilla et al. (2009), establishes
method to track the temporal evolution of spectral components.

ere, we use the Wavespectra package (https://github.com/metocean/
avespectra), which implements the watershed partitioning of Hanson
nd Phillips (2001). The algorithm is based on a topographical minima
riterion applied to recognize the peaks within the two-dimensional
pectrum. The local wind sea is identified based on the phase speed of
he wind sea, the 10-m elevation wind speed, and the angle between the
ind and the wind sea. After removing partitions with low energy and

ombining those with closely spaced spectral locations, the algorithm
onsiders the remaining wave peaks as swells. For this analysis, the
lgorithm is set up to identify a maximum of five swells. An example
artitioned sea surface spectrum of the Super-point instant is illustrated
n Fig. 3b. The partitions, delimited by different colormaps, exhibit
ix wave systems: one swell coming from the south and one from the
orth, two from the northwest, one from the northeast, and a wind-sea
oming from the east-southeast. The orange arrow indicates the peak

ind direction, corresponding to 130º and a wind speed of 5 m/s.

4

Table 2
Parameterization of the wave systems present in the Super-point composition at a given
time (10 October 1987, 01:00 a.m.). Partition 1 to 5 correspond to swell systems,
whereas partition 0 represents the local wind-sea component.

Partition 𝐻𝑠 𝑇𝑝 𝜃𝑝 𝜎 𝛾

0 1.13 8.7 112.5 23.2 1
1 0.69 11.8 217.5 8.5 9
2 0.59 14.2 217.5 10.9 100
3 0.59 10.1 7.5 9.3 60
4 0.35 11.1 187.5 1.2 74
5 0.3 8.1 37.5 12.7 15

The Wavespectra package also derives integral parameters (statis-
tics) of each partition of the wave spectrum; this represents a consider-
able data reduction that preserves multi-modal directional information.
The partitioned parameters are: 𝐻𝑠, 𝑇𝑝, peak wave direction (𝜃𝑝),
irectional spreading (𝜎), and JONSWAP peak-enhancement factor (𝛾).
ince the present Wavespectra version (v3.6.1) does not compute the
parameter, we calculate it by integrating the spectrum in frequencies

nd fitting it to a potential equation as in Cagigal et al. (2021).
lthough the JONSWAP formulation (Hasselmann et al., 1973) was
riginally proposed to describe partially developed spectra, it also fits
arrow-band spectra, characteristic of swells out of the wind fetch
Goda, 1983). The 𝛾 parameter is constrained between 0 and 50 to stay
ithin a numerically realistic range of values. As an illustration, the
arameterization of the wave systems existent at the specific moment
hown in the Super-point construction and partitioning (Fig. 3a, 3b, and
c) is summarized in Table 2.

In the absence of wind or non-linear effects, the propagated and the
nitial 𝐻𝑠 between two locations is directly proportional to a propaga-
ion coefficient (𝐾𝑝). We define 𝐾𝑝 as the rate at which wave amplitude
hanges as it propagates. This measure describes the attenuation or
mplification during wave propagation. Following this principle, in
eep waters, the propagated 𝐻𝑠 for an initial 𝐻𝑠 of 1 m will be directly
he 𝐾𝑝 and the propagated 𝐻𝑠 for an initial 𝐻𝑠 of 2 m is 2 ⋅ 𝐾𝑝.

Therefore, we can replace every 𝐻𝑠 value by 1 m and eventually
rescale the resulting value. Note that for small 𝑇𝑝, this approach may
create very steep waves. In order to prevent non-linearities of deformed
waves, 𝑇𝑝 smaller than 5 s are run with 𝐻𝑠 equal to 0.1 m and 𝑇𝑝
higher than 5 s with 𝐻𝑠 equal to 1 m. This assumption reduces the
dimensionality of the wave systems and allows direct visualization of
the 𝐾𝑝.

Once the partitions have been identified, it is possible to show
a new representation in the frequency-direction space, computed as
the percentage of time in which the peak energy is located at spe-
cific bins. The probability occurrence of spectral peak positions allows
greatly improved linkage of the wave systems with their generation
regions (Portilla-Yandún et al., 2015). The occurrence distribution of
bulk and partitioned peak wave systems, respectively, are presented in
Fig. 3d and 3e. With bulk statistics (Fig. 3d), the peak energy appears
condensed in the 80–130º sector, indicating that 18% of the time,
energy is present in that sector. However, using partitioned statistics
allows a more accurate description of wave energy. The probability of
occurrence of wave systems demonstrates how swells in the 170º and
200º sectors are more likely to be encountered than wind-sea (Fig. 3e).
These discrepancies highlight how bulk wave statistics are poorly fitted
to the multimodality of the wave climate in Samoa and reaffirms
the importance of avoiding bulk metrics in favor of the individual
parameterization of spectral partitions.

3.3. Selection

To reduce the computational effort involved in dynamically down-
scaling the wave conditions to the coast, we make use of the selection
MDA technique. This algorithm has been previously used in downscal-

ing works (Camus et al., 2011a,b) to select representative sea-states

https://github.com/metocean/wavespectra
https://github.com/metocean/wavespectra
https://github.com/metocean/wavespectra
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Fig. 3. Super-point definition. (a) Spectral stations around Samoa and Tutuila from the CAWCR wave hindcast. (b) ‘‘Super-point’’ creation from the stations in (a). (c) Wave systems
found at the spectral instant in (b). The arrow indicates the direction of the wind vector. (d) Probability of occurrence of bulk peak parameters. (e) Probability of occurrence of
peak spectral partitions. The direction in the spectra is the direction the waves are coming from; radial axis corresponds to frequency in hertz.
8

to construct a metamodel. In this research, the number of centroids
(M cases) that adequately reproduce the singularity of the dataset
were determined by a sensitivity analysis described in Section 3.5.
Once the number of design cases is known, the MDA algorithm is
implemented on the normalized data vectors, 𝑋𝑖 = 𝑇𝑝, 𝜃𝑝, 𝜎, 𝛾 using a
linear transformation that scales the scalar values between 0–1 and the
directional variables (dividing by 𝜋) between 0 and 2. In n-dimensional
space, the MDA identifies the subset cases iteratively. Distances are
implemented by the Euclidean distance in the case of scalar variables
and circular distances for directional variables. The algorithm seed
corresponds to the most dissimilar case. Subsequently, the following
subset case is calculated from the input data as the vector with the
maximum distance to the seed. The algorithm finishes when the length
of the subset reaches the desirable M cases. A more detailed description
of the algorithm is given in Camus et al. (2011a,b). The subset cases
distribution over the initial offshore conditions is shown in Fig. 4b.
Subset cases cover the space uniformly, avoiding issues with densely
populated areas and efficiently selecting extreme events.

3.4. Dynamical downscaling

At any time and position, the surface wave field can be reproduced
as the sum of a large number of harmonic wave components (Holthui-
jsen, 2010). These components are expected to behave as linear waves,
propagating out of their wind genesis with minimal interaction among
their constituents. In their shoreward propagation, waves start inter-
acting with bathymetry, where transformation processes such as wave
refraction, shoaling, and surf breaking takes place. Due to the narrow
reef flat and steep reef slope of these atolls, the bathymetry remains
deep water until relatively close to shore. Consequently, we can use
linear assumptions for the wave field, propagating the individual wave
partitions of the spectra separately and aggregating them linearly at
the target location. The numerical simulation of the M wave partitions
selected by the MDA is performed using the SWAN wave model.
5

The computational grid schemes for Samoa and Tutuila Island are
presented in Fig. 1a. A regular grid with a 1 km-wide cell is defined
for both islands, extending 2.6◦ longitude and 1.2◦ latitude. To better
downscale the CAWCR hindcast to the wave buoy locations, two nested
higher-resolution grids were set up. A mesh with a grid resolution
of 250 m was embedded between Savai’i and Upolu, containing the
Apolima wave buoy. This mesh is 30º rotated to make the north contour
perpendicular to the swell entrance. Finally, to improve the modeling
of shoaling and wave refraction close to the shallow water around the
Aunu’u buoy, a mesh with a resolution of 50 m was defined centered
on Tutuila Island.

As input for the dynamical downscaling, the SWAN model is forced
with hourly parametric wave conditions, constant along the bound-
aries. The tide level is set constant and equal to 0 and the simulation
period to 1 hour, run in stationary mode. The model output data
consists of the hourly parameters of 𝐻𝑠, 𝑇𝑝, 𝑇𝑚, 𝜃𝑝, and 𝜎. As the
00 subset cases were modeled in SWAN with 𝐻𝑠 equal to 1 m, the

outputted 𝐻𝑠 corresponds to the 𝐾𝑝 factor. Spatial fields of 𝐾𝑝, 𝑇𝑝 and
𝜃𝑝 can be seen in the propagation of the first 25 MDA cases in Fig. 4c
for the main mesh and Fig. 4d for the nested mesh in Tutuila Island.
The cases would be further defined by the 𝜎 and𝛾 parameters. Although
these parameters provide additional valuable information about wave
behavior, they have been omitted from the figure to keep it less com-
plicated. The output propagations are arranged first horizontally and
then vertically in the same sequence as the MDA selection. Therefore,
the first propagation in the panel corresponds to the most extreme MDA
condition, which has a 𝑇𝑝 of 27 s. In deep waters, the most important
variations in 𝐻𝑠 and 𝜃𝑝 are induced by island shadowing phenomena
(values smaller than 1 m). In the coastal areas of Tutuila Island, the
longest periods leader to greater wave focusing and particularly wave
shoaling, resulting in local enhancement of the energy (values larger
than 1 m).
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Fig. 4. MDA selection and numerical modeling. (a) Root-mean-square error of 𝐾𝑝 as a function of the selected number of cases. The black line is the second-degree exponential
fitting curve. (b) Multidimensional distribution of the MDA subset cases. The gray region delimits the input data vectors, while blue points represent the selected cases. (c)
Propagation coefficient, peak direction, and peak period of the first 25 subset cases of the MDA-swells for the full Samoa SWAN grid. The 𝑇𝑝 value is specified in the text box,

𝑝 is denoted by the color, and 𝜃𝑝 is mapped using streamlines. (d) Same 25 MDA subset cases that in (c) modeled on the nested grid of Tutuila.
.5. Wave systems reconstruction and aggregation

Long-term series of sea state parameters can be reconstructed in
hallow water through the radial basis function (RBF) interpolation
echnique. The RBF technique is typically used to interpolate large
ets of scattered data in high-dimensional spaces, as happens with data
elected with MDA (Camus et al., 2011a,b). Comparisons of multivari-
te interpolation schemes over scattered data (Alfeld, 1989; Franke,
982) identify the RBF method as very suitable in terms of accuracy,
lexibility, and computational cost. The method approximates a real-
alued function as a linear combination of RBFs. The subset cases at
eep water are defined as 𝑋𝑖 =

{

𝑇𝑝𝑖, 𝜃𝑝𝑖, 𝜎𝑖, 𝛾𝑖
}

, and the propagated
ea-state is expressed as 𝐷𝑗 =

{

𝐻𝑠𝑗 , 𝑇𝑝𝑗 , 𝑇𝑚𝑗,𝜃𝑝𝑗 , 𝜎𝑗
}

. The function to
pproximate is of the form:

𝐵𝐹 (𝑋𝑖) = 𝑝(𝑋𝑖) +
𝑀
∑

𝑗=1
𝑎𝑗𝛷

(

‖

‖

‖

𝑋𝑖 −𝐷𝑗
‖

‖

‖

)

(1)

here 𝑝(𝑋𝑖) is a linear polynomial with coefficients 𝑏 =
{

𝑏0, 𝑏1,… , 𝑏𝑑
}

,
being n the data dimension, ‖⋅‖ is the Euclidean norm, and 𝛷 are Gaus-
sian functions with 𝜀 a parameter specified by the user that controls
the shape of the distributions. Here, we use the algorithm proposed by
Rippa (1999) to obtain the optimal 𝜀 parameter. Coefficient 𝑎𝑗 and 𝑏
result from the interpolation condition:

𝑅𝐵𝐹 (𝐷𝑗 ) = 𝑓𝑖(𝐷𝑗 ); 𝑗 = 1,… ,𝑀 (2)

Multidimensional RBF interpolation allows the replacement of the
SWAN model to obtain the individual wave partitions downscaled at
any location in the domain.

Before the final metamodel setup, a sensitivity analysis on the
number of cases (M) has been conducted to determine the optimal
subset size. Evenly spaced values have been taken in the range of
100 to 1000. For every classification size M, a k-fold cross-validation
procedure has been applied to estimate the skill of the hybrid method
MDA-SWAN-RBF to predict 𝐾𝑝 at the Apolima buoy location. The cross-

validation procedure consists of shuffling the dataset randomly and

6

splitting it into k groups. Each unique group becomes the test set, and
the remaining groups are the training dataset. The RBF technique is
then fit on the training data and evaluated on the test data. Differences
between the predicted and modeled 𝐾𝑝 are estimated by the root-mean-
square error (RMSE). We decided to divide the dataset into 5 groups
(𝑘 = 5), obtaining the mean and standard deviation of the 𝐾𝑝 RMSE for
every M classification size (Fig. 4a). The error decreases exponentially
with M up to 800 cases, at which point it stabilizes and becomes
minimal. Accordingly, for our methodology, the MDA subset size is set
to 800.

Concurrent wave systems are aggregated as a linear superposition
of wave trains in the spectral band. At a given time, a sea state may be
characterized by a wind-sea partition and swell systems (partitions 1
to 5). From the training subset of boundary conditions and their prop-
agation at a certain location, the RBF interpolation permits to obtain
𝐾𝑝, 𝑇𝑝, 𝑇𝑚, 𝜃𝑝, and 𝜎 of each wave system. Every local wave partition
𝐻𝑠 is then calculated as the boundary wave partition 𝐻𝑠 multiplied by
the local 𝐾𝑝. The resulting integral sea state is then computed by the
quadratic aggregation of the 𝐻𝑠 values of the partitions, whereas the
wave period and wave direction are selected from the most energetic
partition, where the wave energy is evaluated as 𝐻2

𝑠 ⋅ 𝑇𝑝. However, the
major strength of the method used in this study is that it allows us to
reconstruct the directional spectral information in a fast and efficient
manner. For this purpose, we use once again the Wavespectra package
to construct a JONSWAP-type spectrum from the parameters 𝐻𝑠, 𝑇𝑝,
𝜃𝑝, 𝜎, and 𝛾 of every wave partition. At a specific location, we can
obtain from the MDA-SWAN-RBF metamodel the hourly structure of
the parameterized wave systems. Every wave system is then translated
into a JONSWAP spectrum, and the aggregated spectra is computed as
the linear summation of the spectral energy density.

4. Results

4.1. Validation

The capability of HyWaves to reconstruct long-term wave series has
been evaluated using instrumental data in Samoa, American Samoa,
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Fig. 5. Study sites validation: (a) Location of the study site islands in the western Pacific. A magenta box surrounds the computational domains, and stars indicate where the
uoys used for validation in (b) and (c) are located. (b) Density scatters of the measured wave height and wave period against reconstructed HyWaves output at the Apolima
uoy. (c) Scatter diagrams for Majuro, Roi-Namur, and Kwajalein study sites.
ajuro, and in the north and south of Kwajalein Atoll. The location of
he study sites in the western Pacific and their computational domains
re presented in Fig. 5; a comparison of the measured wave height
nd wave period against the HyWaves methodology results are shown
n Fig. 5b and 5c. Some diagnostic metrics are listed on the plots
o directly measure the accuracy of the method, such as Pearson’s
orrelation coefficient (𝜌), RMSE, the systematic deviation between two
andom variables (BIAS) and the residual scatter index (SI). HyWaves

predicts the 𝐻𝑠 accurately in all depths with biases that are consistently
close to zero. The best result in terms of 𝐻𝑠 prediction was observed
in Roi-Namur with the highest correlation coefficient (𝜌 = 0.92). The
accuracy of the reconstructed parameters is notably worse for wave
period. SI related to 𝑇 are below 0.25, RMSE below 2.5, and 𝜌 between
𝑝

7

0.39 and 0.64. The performance of the hybrid metamodel in Kwajalein
is significantly worse than in the rest of the study sites. This can be
explained by the poor quality of the bathymetric data in a complex
curving reef system, and a lower level of accuracy of the measurement
method (in this case pressure loggers versus the buoys used in Samoa
and Majuro), that can also affect the conclusions taken about model
performance. In our study, we do not have other measurements to
compare the error introduced during the wave measurement. However,
previous experiments such as the ones performed by Andrews and
Peach (2019), and Lancaster et al. (2021), show an underestimation of
the significant wave height (by 5–7%), and overestimation of the mean
wave period (by 18%–27%) when comparing wave parameter recorded
by pressure loggers to Spotter o RDI ADCP measurements in Australia.
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Fig. 6. Spectral validation at Aunu’s Buoy. (a) Scatter diagrams of measured versus modeled 𝐻𝑠, 𝑇𝑝 and 𝜃𝑝. (b) Averaged wave energy spectra reconstructed by HyWaves and
measured by the buoy. Colors represent the variance spectral density. (c) Comparison of averaged seasonal wave spectra from HyWaves and the buoy. The seasons correspond to
December–January–February (DJF), March–April–May (MAM), June–July–August (JJA), and September–October–November (SON).
Furthermore, the validation of the bulk parameters of the Aunu’u
buoy, whose location is displayed in Fig. 1a, is presented in Fig. 6a.
Although this buoy is anchored in intermediate waters and nonlinear
processes may become significant, HyWaves reconstructs the bulk pa-
rameters 𝐻𝑠, 𝑇𝑝 and 𝜃𝑝 quite accurately. In the 𝑇𝑝 scatter diagram, a
second density area centered on the 10 s measured by the buoy can
be observed. This can be associated with an erratic behavior of the
𝑇𝑝 measured by the buoy and noticeable in the Aunu’u time series of
the variable. Moreover, we have evaluated the ability of HyWaves to
obtain a spectral wave climate characterization at the Aunu’u wave
buoy. The 8-year measuring period of the buoy has been reconstructed
using HyWaves and compared to the spectral conditions measured
by the buoy. The average wave spectra of HyWaves versus the buoy
are presented in Fig. 6b and 6c. The spectral patterns found in the
reconstruction are qualitatively consistent with the ones measured by
the buoy, although the direction of the highest energetic southern
swells is slightly rotated south compared with the buoy.

To have an insight into the seasonal variability of the different
wave systems picked up by the buoy and reconstructed by HyWaves,
8

the averaged seasonal wave spectra are presented in Fig. 6c. In the
austral winter (June–August), the storms in the Southern Ocean gen-
erate long-period swells arriving in Tutuila Island from South and
Southeast directions. The energy of these swells greatly decays during
the months of September, October, and November. In turn, during the
boreal winter (December–February) north Pacific storms produce swells
that approach the Aunu’u buoy by the north. During the JJA and SON
months, higher frequency peaks are recorded from eastern directions
related to the contribution of the trade winds to the wave spectra.
Nevertheless, the overall consistency gives confidence in the robustness
of the methodology proposed.

In addition, the accuracy of the HyWaves reconstruction has been
tested against the dynamical downscaling approach by feeding SWAN
with hourly non-stationary spectral wave data from the Super-point.
Two months have been picked out from the available buoy period.
The first month (15 Oct 1989–15 Nov 1989) corresponds to average
wave climate conditions and the second month (01 Mar 1990–01 Apr
1990) includes a moderate wave event with a maximum 𝐻𝑠 of 4 m in
response to the passage of the Tropical Cyclone Rae through the South.
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Fig. 7. Comparison between measured and model 𝐻𝑠 , 𝑇𝑝 , 𝜃𝑝 at the Apolima Buoy (in gray) given by HyWaves metamodel (in blue) and the spectral non-stationary simulation (in
magenta).
The comparison of both approaches against the hourly wave parameters
recorded by the Apolima Buoy are provided in Fig. 7. The event on
26 March 1990 is slightly overestimated in 𝐻𝑠 by HyWaves and better
modeled by the non-stationary approach. However, the buoy record
and both model-based approaches are found to have a similarly good
agreement for the rest of the period. The full dataset of 800 cases and
the two months of non-stationary simulation took 2 days on the same
computer to run. The operating system employed is Ubuntu (x86-64),
using up to eight 3 GHz Intel i7-9700 processors and 32 GB of RAM. The
2 months were later reconstructed in less than a minute and the entire
40-years historical dataset in approximately 5 minutes. This analysis
highlights that dynamic modeling can also present discrepancies with
the buoy record while HyWaves presents comparable accuracy at a far
reduced computing cost.

5. Conclusions

In this study, a new hybrid methodology for downscaling spec-
trally multimodal wave fields to coastal areas, termed HyWaves, is
presented. Long-time series of offshore spectral wave conditions must
be used as training data, such as (as in this study) historical wave
hindcasts. The hybrid wave transformation model combines statis-
tical and numerical methods to replace the highly computationally
expensive method of solely spectral dynamical downscaling. Instead of
numerically downscaling several decades of hindcast records, HyWaves
allows the efficient reconstruction of wave conditions at any point of
the domain, based on, in the case presented here, just 800 stationary
wave simulations. The MDA algorithm allows optimizing the number
of cases to be run by the nearshore spectral wave propagation model
SWAN to use the RBF interpolation technique for the reconstruction of
individual wave partitions. Relying on the assumption of wave linear
theory allows rescaling of the unitary wave systems and to linearly
aggregate the reconstructed concurrent wave systems. However, this
assumption may be violated when higher non-linearities due to wave–
wave interaction and wave breaking play an important role in wave
transformation processes. In the intra-Pacific Islands of our study, the
very steep insular reef formations permit the assumption of linear-
ity in the rescaling and aggregation of unimodal SWAN simulations
to locations very close to the coast. Nonetheless, in shallow waters,
wave celerity (and thus shoaling) is increasingly governed by water
9

depth, and wave breaking by water depth/wave height ratios, and thus
the linear solution proposed in this study is not warranted. Another
non-linear key process in the modeling is the local wind generation.
The domains enclosing the oceanic islands presented in this study
are relatively small and the local wind generation can be assumed
negligible. A different approach must be used for downscaling wave
climate in regions with considerable local wind forcing since stationary
simulations could overestimate the wind field. For these reasons, we use
HyWaves to downscale wave climate to deep-to-intermediate waters
without considering the wind effect. Meanwhile, further research is
being done to propose new downscaling methods valid for shallow,
non-linear wave dynamics.

The ability of the hybrid method to reproduce the time series of
integral wave parameters in coastal areas has been tested against buoy
data and compared to dynamical downscaling. Comparison between
both approaches has proved to be similar and a positive validation
with measured data has been found. Furthermore, the capacity of
HyWaves to reconstruct long-term spectral wave conditions has been
compared to wave spectra measured by the buoy, finding an overall
good agreement in the energy distribution along frequencies and di-
rections. Even though HyWaves has been applied at singular locations
for validation purposes, the application of the metamodel to evenly
spaced locations in the entire domain permits to account for a wide
range of time scale spectral analyses (e.g., seasonal and interannual
variability). Moreover, downscaling from spectral partitioning allows to
easily track the wave systems over space and time and to gain insight
into multimodal climatology.

HyWaves is proposed as an efficient approach for transferring mul-
timodal offshore wave conditions to near-shore locations. Once the
method is locally trained, the computational effort is minimal. Al-
though in this paper the methodology has been applied to small Pacific
Islands (i.e., Samoa, Tutuila, Majuro, and Kwajalein) and forced with
hindcast wind-wave data, it could also be extended to larger spatial
scales and to emulated time series, such as developed in Cagigal et al.
(2021). In this way, the methodology can potentially facilitate the
integration of the effects of climate change in the occurrence and
intensity of distant storms and their effect on the nearshore wave
climate. In the short term, the use of HyWaves as a modeling tool
integrated into EWS can help to accelerate our response to coastal

flooding. Ultimately, this methodology advances research in proving an



A. Ricondo, L. Cagigal, A. Rueda et al. Ocean Modelling 184 (2023) 102210

t

efficient tool for supporting the detection of natural hazards and related
disasters by effectively accelerating our ability to make predictions
without sacrificing much skill.
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