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Abstract

Background and Purpose: Intracranial hemorrhage (ICH) is a common life-threatening

condition that must be rapidly diagnosed and treated. However, there is still a lack of

consensus regarding treatment, driven to some extent by prognostic uncertainty. While

several predictionmodels for ICHdetectionhavealreadybeenpublished, herewepresent

a deep learning predictivemodel for ICH prognosis.

Methods:We included patients with ICH (n = 262), and we trained a custom model for

the classification of patients into poor prognosis and good prognosis, using a hybrid input

consisting of brain CT images and other clinical variables.We compared it with two other

models, one trained with images only (I-model) and the other with tabular data only (D-

model).

Results: Our hybrid model achieved an area under the receiver operating characteristic

curve (AUC) of .924 (95% confidence interval [CI]: .831-.986), and an accuracy of .861

(95% CI: .760-.960). The I- and D-models achieved an AUC of .763 (95% CI: .622-.902)

and .746 (95%CI: .598-.876), respectively.

Conclusions: The proposed hybrid model was able to accurately classify patients into

good and poor prognosis. To the best of our knowledge, this is the first ICH prognosis

prediction deep learningmodel.We concluded that deep learning can be applied for prog-

nosis prediction in ICH that could have a great impact on clinical decision-making. Further,

hybrid inputs could be a promising technique for deep learning in medical imaging.
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INTRODUCTION

Intracranial hemorrhage (ICH) is a common life-threatening condition

affecting over 2 million people worldwide every year.1 It is defined as

the presence of intracranial blood outside the brain vessels andmay be

spontaneous or traumatic. The bleeding may cause increased intracra-
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nial pressure, which can rapidly lead to a fatal outcome. That is why

ICH must be rapidly diagnosed and treated.2,3 The diagnosis is usu-

ally performed using head CT, an imaging technique widely available

in hospitals and with a high sensitivity for ICH detection.1 However,

regarding treatment options, which includes medical, interventionist,

and surgical options, there are still some unsolved problems, such as
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the management of external ventricular drains or the indications for

early surgical treatment. One of the reasons for this lack of a clear

therapeutic protocol is the uncertainty regarding the prognosis, which

leads to difficult clinical decision-making, with the responsibility often

falling to the individual neurosurgeon.1,4-7

In this context, an Artificial Intelligence (AI) model that provides

information on the patient’s prognosis could be useful. In other dis-

eases, such as cancer8,9 or coronavirus disease 2019 (COVID-19),10

deep neural networks have already demonstrated good results in

predicting prognosis, opening the door to the use of these systems in

daily clinical practice. Regarding ICH, AI research has focused mainly

on its detection in CT images,11-15 not on prognostic prediction.

In this work, we aim to design a deep learning model able to clas-

sify patients with ICH according to their prognosis using CT images

combinedwith clinical data as input.

METHODS

Study design

We developed a deep learning model for the classification of patients

with ICH into those with poor prognosis and those with good progno-

sis, using 3-dimensional (3D) brain CT images (scans) combined with

clinical data. We adopted this hybrid input given that both images and

clinical variables could provide important information regarding prog-

nosis, and that both kinds of data are usually available: on the one hand,

all patients with ICH undergo a head CT scan at diagnosis, and on the

other hand, the clinical variables included are ones that are usually

collected on the patient’s admission due to suspected ICH. Data were

collected retrospectively.

The methodology was built according to the checklist for artifi-

cial intelligence in medical imaging requirements for AI in Medical

Imaging.16

Ethical approval

This study was approved by the Ethical Committee of our institution,

anddue to the retrospectivenatureof the studyand the lowriskof data

leakage, patient consent was waived.

Data: Sources and description

Initially, we included 277 patients diagnosed with ICH from 2010 to

2015, from a database provided by our institution’s coding depart-

ment, which conducted a searchwith the following criteria: all patients,

regardless of their age and sex, admitted to the hospital from 2010 to

2015.

Scans of the included patients were obtained from the Picture

Archiving and Communication System, and the clinical data for each

patient was manually gathered from the Electronic Health Records

(EHR) by three radiologists from our institution.

TABLE 1 Collected categorical and numerical variables

Categorical variables Numerical variables

Sex

Smoker

Alcohol

Head trauma

Hypertension

DiabetesMellitus

Dyslipidemia

Medical history of intracranial

hemorrhage

Medical history of cardiovascular

diseases

Medical history of neurologic

diseases

Medical history of dementia

Medical history of cancer

Medical history of hematologic

diseases

Medical history of other major

diseases

Anticoagulant drugs

Antiaggregant drugs

Antihypertensive drugs

Calcium antagonist drugs

Alpha-blockers drugs

Physical exploration with

neurological signs and symptoms

Age (years)

Systolic AP

Diastolic AP

Oxygen saturation

Temperature

Heart rate

Respiratory frequency

GlasgowComa Scale

Glucose

Creatinine

Sodium

Potassium

White blood cells

Hemoglobin

Platelets

Mean corpuscular volume

Red blood cell distribution

width

Mean corpuscular hemoglobin

concentration

Mean platelet volume

International normalized ratio

Fibrinogen

Abbreviation: AP, arterial pressure.

Images

All the scans included in the study were unenhanced sequential head

CTs, acquired with a slice thickness ranging from 2.5 to 5.0 mm. None

of these images had been previously used for research or published.

We have now made them available at DIGITAL.CSIC (https://doi.org/

10.20350/digitalCSIC/14706) for research purposes.17

Tabular data

Collected clinical variables, both categorical andnumerical (n=41), are

shown in Table 1.

Ground truth and labels

Two labels were set: poor prognosis and good prognosis. The poor

prognosis label was assigned to those patients who did not survive

the hospital stay after diagnosis of ICH, whereas the good prognosis

label was reserved for those who survived and were discharged. This

approach represented the consensus among the neurologists and radi-

ologists of our institution, since it was an objective outcome that was

recorded in the EHR,whereas other potential criteria such as the grade

of disability were subjective and not always recorded. Themean hospi-

tal stay was 17 (±5) days. Labels were encoded as 0 for good prognosis
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F IGURE 1 Flowchart showing patient
selectionmethod

TABLE 2 Demographic data of patients in both groups (poor prognosis and good prognosis groups)

Poor prognosis Good prognosis All patients

Number of patients 163 163 (99+ 64) 326

Age (years) 73.48± 6.36 61.52± 12.73 67.50± 12.73

Lowest age (years) : Highest age (years) 32 : 101 17 : 88 17 : 101

Sex (male : female) 97 : 66 102 : 61 199 : 127

Note: All the data represent mean± standard deviation unless otherwise indicated.

and 1 for poor prognosis. There was no missing information regarding

patient outcome.

Patients’ selection and image annotation

Scans were analyzed by two independent radiologists, with more than

3 years of experience and who report head CTs on a daily basis.

Patients with significant motion artifacts and/or significant postsurgi-

cal changes were excluded (n = 15), with no discrepancies between

radiologists. Thus, a total of 262 patients were finally included in the

study (Figure 1).

Of the total number of patients included, 99 survived the hospital

stay and were eventually discharged, while the remaining 163 patients

did not survive. Annotation of patients (or images) into good and poor

prognosis was performed manually by the three radiologists based on

the information they found in the EHR.

Data partition

We partitioned the data at patient level and label balanced. First, we

partitioned thedata assigning approximately 85%of thepatients to the

training set, and the remaining 15% to the test set. None of the patients

of the test set was included in the training set. Additionally, 20% of the

training setwas assigned to the validation set. Then, in order to achieve

a good label balance, we oversampled patients within each dataset,

repeating 64 patients in total (all with good prognosis). We performed

this oversampling after data partition so that no patient was repeated

within the different sets. After the oversampling, the total number of

TABLE 3 Data details of train and test sets

Details Train set Test set

Number of patients 276 50

Ratio of poor prognosis : good

prognosis

138 : 138 25 : 25

Age (years) 68.01± 4.95 64.68± 11.31

Sex (male : female) 162 : 114 37 : 13

Note: All the data represent mean ± standard deviation unless otherwise

indicated.

patients increased to 326 (demographic data are shown in Table 2), giv-

ing a total of 276 patients assigned to the training set and 50 patients

to the test (Table 3).

Data preprocessing

Preprocessing of images

For image preprocessing, we chose a 3D approach, despite the associ-

ated high computational cost of working with 3D images, to introduce

all the information contained in the scans, such as the correlation

between layers, information that is lost in the 2-dimensional approach.

We believe that information about hematoma volume andmorphology

could be of significant interest in predicting prognosis.5–7

In thepresentwork, 262uniqueDICOMvolumeswereused, allwith

an image size of 512 × 512 pixels and a variable number of slices. First,

we de-identified them using DICOMConfidential.18 Then, we rescaled
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F IGURE 2 An example of a slice of a head CT scan showing an intraparenchymal hematoma located in the right temporoparietal lobe: before
(A) and after (B) the preprocessing. Blue arrows point to skull before and after and green arrows point to the calcified pineal gland before and after

F IGURE 3 Sample of images of the dataset after the preprocessing (red arrows point to the intracranial hemorrhages): a right intraventricular
hematoma (A), an intraparenchymal and intraventricular hematoma (B), and an infratentorial hematoma (C)

them to Hounsfield Units (HU), resampled, and applied an HU range

between 15 and 100, setting to 0 those pixels with values out of range,

such as calcified structures or bone (Figures 2 and 3). Other HU ranges

were tried in a prior assessment obtaining the best performance with

the 15–100 UH range, which is consistent with prior studies suggest-

ing that the skull can complicate the detection of some ICH.19 In the

last preprocessing step, slices were downsampled to 128 × 128 and

the slice number of scanswasmatched. To do the latter, since themaxi-

mumnumber of sliceswas shown to be45,we filled in the volumeswith

fewer slices by adding empty slices to the top.We considered this to be

themethod that least disturbed the image.

Preprocessing of clinical data

Before introducing variables to the model, numerical variables were

normalized using the min–max normalization (equation 1) to get num-

bers between 0 and 1, and categorical variables were normalized to 0

(absence) or 1 (presence).20

x′ =
x −min (x)

max (x) −min (x)
(1)

Custom neural network: A model designed from
scratch

We designed a custom model based on a 3D convolutional neural net-

work (CNN) for image input and a feed-forward network for clinical

data input. CNNs have achieved the best results in artificial vision and

medical imaging in recent years,21 while neural networks have been

used with tabular data,22 showing promising results in areas such as

electrocardiogramreadingautomatization.23 In the last part of our cus-

tommodel, the output of the convolutional block and the output of the

feed-forward block are concatenated, and this hybrid input is passed

to the last dense layer with a sigmoid activation function. Hence, we
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222 INTRACRANIALHEMORRHAGE PROGNOSIS PREDICTION

F IGURE 4 Schematic overview of the full architecture of the network

F IGURE 5 Detailed architecture of the hybrid-model

refer to this model as the hybrid model. Figures 4 and 5 show the

architecture, and the code is available at: https://github.com/anesdo/

ICH_DETECTION_PROGNOSIS_2D3D.git.

Two reference models were also trained, one on image data only (I-

model), using the CNN, and the other on tabular data only (D-model),

using only the feed-forward network.
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TABLE 4 Hyperparameters used in all models

Hybridmodel I-model D-model

Parameters initialization Random (seed= 2) Random (seed= 2) Random (seed= 2)

Optimizer Adagrad Adagrad Adagrad

Learning rate 0.008 0.008 0.008

Batch size 6 6 6

Topmodel GMP GMP GMP

Number of epochs 25 9 13

Abbreviation: GMP, GlobalMax Pooling.

TABLE 5 Metrics of the different models

Hybridmodel I-model D-model

AUC (95%CI) .924 (.831-.986) .763 (.622-.902) .746 (.598-.876)

Accuracy (95%CI) .861 (.760-.960) .680 (.540-.80) .697 (.56-.82)

Specificity (95%CI) .960 (.862-1.0) .643 (.44-.838) .839 (.69-.962)

NPV (95%CI) .800 (.76-.96) .694 (.5-.875) .652 (.468-.813)

F1-score (95%CI) .843 (.703-.949) .688 (.522-.826) .642 (.471-.8)

Abbreviations: AUC, area under the curve; CI, confidence interval; NPV, negative predictive value.

Training and evaluation

Modelswere trainedon the training set (using thevalidation set toopti-

mize the model hyperparameters) and evaluated on the test set. For

model performance assessment, the area under the receiver operat-

ing characteristic curve (AUC), accuracy, specificity, negative predictive

value, and F1-score metrics were obtained. F1-score combines preci-

sion and recall in a single measure.

Software tools and statistical analysis

The training of deep learning models was implemented using Python

(v.3.6.3, Python Software Foundation, Delaware, USA, https://www.

python.org), and the Nvidia Graphics Processing Unit Titan X, with

Tensorflow (v.2.6.2, Google Brain Team, California, USA, https://www.

tensorflow.org/) and Keras (v.2.6, Google, California, USA, https://

keras.io/) libraries as the backend engine.

Confidence intervals of 95% for all the metrics of the evaluation

were calculated by bootstrapping (subsampling the test set) with a

bootstrapped sample size of 1000.

RESULTS

All models were trained using the binary cross-entropy loss function

and the early-stopping technique to avoid overfitting. The best results

were obtainedwith the hyperparameters shown in Table 4.

The hybrid model, I-model, and D-model achieved an AUC of .924,

.763, and .746, respectively. We note that the I-model has more false

positives (FP) than false negatives (FN), whereas the D-model shows

more FN than FP. The correct balance between FP and FN is achieved

with the hybrid model. Further, a statistically significant improvement

in specificity is seen in the hybridmodel compared to the I-model (from

.643 to .960). These metrics are shown in Table 5, while the learning

(accuracy) curves and the confusionmatrix are shown in Figure 6.

DISCUSSION

In this work, we trained a model that predicts patient survival with

an AUC of .924, while being unable to achieve these results using

only image features or tabular data features (Figure 7). Comparing the

results of the hybrid model and the reference models, a better perfor-

mance is observed in themodel that integrates both the image informa-

tion (providing themorphology, size, and density of the ICHamongoth-

ers) and the clinical information that is usually gathered by the admis-

sion service (first blood test, neurological symptoms at onset, etc.).

To the best our knowledge, this is the first deep learning network

to predict ICH prognosis, and could be a step forward in investigat-

ing ICH-related poor prognostic factors. Further, we believe that this

model could also be used to complement an ICH-detection system, as a

second step after the diagnosis, by providing more information about

the hemorrhage once it is detected, and therefore helping clinicians’

decision-making.

Regarding prognosis prediction in other diseases, most of the

research has been focused on cancer. An example of this is DeepProg,

a model for cancer prognosis prediction using multi-omics data pre-

sented in 2021 by Poirion et al.8 And, as an example of mixing images

with clinical data, Chieregato et al.10 presented in 2022 a hybridmodel

trainedwith images and clinical data frompatientswithCOVID-19 that

predicted the severity of the disease with an AUC of .949.
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F IGURE 6 Learning curves and confusionmatrix of the threemodels
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F IGURE 7 A combination of the areas under the curve of the
threemodels trained. ROC, receiver operating characteristic

Concerning the hybrid input approach, we found some other simi-

lar studies analyzing other diseases, and our conclusions are consistent

with those previous studies, which also found similar or better perfor-

mance when including tabular data. For instance, Heo et al.24 found

better results in identifying tuberculosis signs on X-rays mixing images

with demographic data compared to using images alone. Accordingly,

we believe that hybrid inputs could be a promising technique in med-

ical challenges since most diseases or outcomes have a multifactorial

cause.

Deep neural networks, which are data-driven systems, allow us to

include large amounts of data as input to the network, without know-

ing in advance if they are important regarding theproblem tobe solved.

The network itself will decide this during the training (feature selec-

tion), and the redundant or spurious data will not hinder the network.

This is one of themain advantages they provide since they save us from

having tomanually process the data in advance (end-to-end approach),

allowing us to feedmodelswith large amounts of data directly from the

patient’s EHR.22 Nonetheless, the development of these models is still

limited by some obstacles, notably, the shortage of annotated medical

images, the lack of data exploitation tools in hospitals, and the com-

plicated ethical and legal framework regarding medical data transfer,

three obstacles that are interconnected.

One of the reasons for the scarcity of large, annotated image

datasets is that manual annotation is a very time-consuming task for

radiologists. In recent years, some techniques have been developed to

automate image annotation such as natural language processing tech-

niques and structured radiological reports, but they are not yet widely

available in hospitals.25 And the same is true of data exploitation tools,

such as the one published in 2021 by Yi et al.26 We believe that with

these tools it will soon be possible to feed models with large anno-

tated image datasets and with large amounts of tabular data directly

from the patient’s EHR. To simulate this, in this study we introduced all

the patients’ blood test parameters, without manually choosing those

important parameters beforehand, to avoid amanual feature selection.

However, in preparing this work, we did not have any data exploita-

tion tools in our hospital, so we were obliged to gather all the clinical

data manually from the EHR, which was very time consuming. Conse-

quently, the clinical data we could get from each patient were limited.

Hence, this study also demonstrates the importance of bringing these

tools to hospitals, since the lack of them is an important barrier to the

development of AI systems in clinical settings.

Regarding the last limitation, the complicated ethical and legal

framework of medical data transfer is partially due to the requirement

for meticulous data de-identification, and patient consent at least in

prospective studies.19,27 Despite this handicap, there are some pub-

licly available databases that can be used for research purposes,28

to which we are adding the dataset used in this work.17 However,

using a database that does not adequately represent the real pop-

ulation can lead to a drop in model performance when tested in a

real setting.29,12 While we acknowledge this study included a limited

number of patients, it used a real-world dataset from our institution.

In summary, in this work we presented a novel deep neural network

trained using hybrid inputs that was able to accurately classify patients

with ICH into good and poor prognosis, based on hospital survival.

Thus, we conclude that deep learningmodels have potential to be used

for prognosis prediction of several illnesses including ICH, which could

have a great impact on clinical decision-making.

Further, this research also suggests that the use of hybrid inputs,

concatenating tabular data to the output of the convolutional part, is

a promising approach for deep learningmodels.
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