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Abstract
An algorithm and a MATLAB implementation for computing the Kummer function
U(a, b, x) and its derivative is given in this paper. The algorithm is efficient and
accurate. Numerical tests show that the MATLAB algorithm allows the computation
of the function with ∼ 10−14 relative accuracy in the parameter region (a, b, x) ∈
(0, 500) × (0, 500) × (0, 1000) in double-precision floating point arithmetic.
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1 Introduction

Many applications in physics and engineering involve the computation of confluent
hypergeometric functions or some of their particular cases (Airy and Bessel func-
tions, Laguerre polynomials, parabolic cylinder functions etc.) See [1, 2, 8, 12] or
[11, §13.28] for some examples of applications in physics. As an additional example,
in recent work we have obtained expansions for the relativistic Fermi-Dirac inte-
gral and its derivatives (of great importance in stellar astrophysics) where confluent
hypergeometric functions play a key role [3, 5].
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In spite of their importance, few algorithms are available in double-precision
floating point arithmetic for the computation of any of the standard solutions of
the Kummer’s equation in the case of real or complex parameters. For the function
M(a, b, x), some algorithms can be found in the literature (see [9, 10]); however,
for the second solution U(a, b, x), no double-precision algorithms with good uni-
form accuracy seem to be available, as far as we know. For example, the SLATEC
library [16] includes the Fortran 77 function dchu.f which implements the conflu-
ent Kummer function U(a, b, x) for real parameters a, b and argument x. However,
one has to be careful when using dchu.f to compute U(a, b, x) when a or b are
large in comparison to x because a significant loss of accuracy occurs in the com-
putations. Another example of a double-precision implementation for the Kummer
U(a, b, x) function which is not free of accuracy problems is the function hyperu
included in the SCIPY [7] module scipy.special. Having accurate efficient double-
precision implementations is of interest in, for example, applications where a large
number of function evaluations are needed (such as in the condensed matter or astro-
physical calculations). On the other hand, extended precision implementations are
given in Mathematica, Maple or Arb [6].

In this paper, we describe an efficient and accurate algorithm implemented in
MATLAB for computing the Kummer U(a, b, x) function and its derivative. The
function U(a, b, x) satisfies the following integral representation

U(a, b, x) = 1

�(a)

∫ +∞

0
e−zt ta−1(1 + t)b−a−1 dt, (1.1)

valid for �a > 0, b ∈ C and x > 0.
In the algorithm, we consider real positive values of the function arguments

a, b, x. The algorithm uses series for small values of the parameters, asymptotic
expansions for large values of the parameters and a double-precision implementation
of the algorithm described in [14] in the rest of cases. Our numerical tests show that
the resulting algorithm is both accurate and efficient.

2 Computation for small values of the parameters

For 0 < a, b < 1
2 and 0 < x < 1, we use the series given in [4] for the Kummer

function U(a, b, z) and its derivative

U(a, b, z) = �(1 − b)

�(a − b + 1)
+ πb z

sin(πb)�(a)�(a − b + 1)

∞∑
m=0

wm

zm

m! ,

U ′(a, b, z) = πb

sin(πb)�(a)�(a − b + 1)

∞∑
m=0

wd
m

zm

m! , (2.1)

where the coefficients wd
m can be written in terms of the wm coefficients

wd
m = (m + 1)wm + zw′

m. (2.2)
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The coefficients wm satisfy

wm = um

vm

, (2.3)

where

um = (Am − Bm)/b,

vm = �(m + 2)�(b + m + 1)�(2 − b + m). (2.4)

with Am = �(m + 1)�(2 − b + m)�(a + m + 1) and Bm = z−b �(a − b + 1 +
m)�(b + 1 + m)�(m + 2).

To compute wm for m = 1, 2, ... using (2.4), it is convenient to obtain a stable
recursion for um when b is small. It is possible to verify that

um+1 = (amAm − bmBm)/b = amum + dmBm,

dm = (am − bm)/b, (2.5)

where

am = cm −
(
m2 + (a + 2)m + a + 1

)
b,

bm = cm + (m + 2)(a − b)b,

cm = (m + 1)(m + 2)(m + a + 1),

dm = −
(
m2 + 2m(a + 1) + 3a + 1

)
+ (m + 2)b. (2.6)

The starting u0 value of the recursion given in (2.5) is computed as u0 = v0w0,
where v0 = (1−b) πb

sin(πb)
and for calculating w0, we use

w0 = g0

rg4
(1 + rg2 − g3 − rg0g5g1 + z̃bg6) , (2.7)

where r = b − 1, z̃b = −eq log z
sinh q

q
with q = − b

2 log z and

g0 = �(a + 1), g1 = G(a, −b), g2 = G(0, b),

g3 = G(0, −b), g4 = 1 − bg0g1, g5 = 1 + bg2, g6 = 1 − bg3.
(2.8)

with

G(a, b) = 1

b

(
1

�(a + 1 + b)
− 1

�(a + 1)

)
. (2.9)

For computing G(a, b), we use the series

G(a, b) =
∞∑

k=2

c(k)d(k), d(k) = 1

b

(
(a + b)k−1 − ak−1

)
, (2.10)

where the first three c(k) coefficients are c(2) = 0.57721566490153286, c(3) =
−0.65587807152025388 and c(4) = −0.04200263503409523. More c(k) coeffi-
cients are given in Table 1 of [4].
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3 Algorithm based on the use of recurrences

One of the key ingredients in the algorithm described in [14] to evaluate U(a, b, x)

is the use of three-term recurrence relations satisfied by the function with respect to
the parameters a and b.

With respect to the a parameter, we have

U(a − 1, b, x) + (b − 2a − x)U(a, b, x) + a(1 + a − b)U(a + 1, b, x) = 0, (3.1)

and with respect to the b parameter,

(b − a − 1)U(a, b − 1, x) + (1 − b − x)U(a, b, x) + xU(a, b + 1, x) = 0. (3.2)

As discussed for example in [13], the Kummer function U(a, b, x) is the minimal
solution of the three-term recurrence relation (3.1). Therefore, the forward compu-
tation of the recursion is ill-conditioned and backward recursion should be applied.
On the contrary, U(a, b, x) is a dominant solution of (3.2) and forward recursion is
possible.

Briefly, the algorithm described in [14] uses a sophisticated version of the back-
ward a-recursion to compute U(a, b, x) for 0 < b < 1. This recursion is computed
using starting values given by asymptotic expansions in terms of Bessel functions (for
small x) or Miller algorithm’s when x is not small. For b > 1, backward recursion
(3.1) is first applied to a value b̃ = b − [b] in the interval [0, 1]; then, the forward b-
recursion (3.2) is applied. Technical details can be seen in [14]. This algorithm works
very well in extended precision; however, in double-precision floating point arith-
metic, some loss of accuracy could appear when using the recursions for large values
of the parameter a. This is the reason why it is better to use an alternative method of
computation for large values of the parameters, such as the expansions described in
the next section.

4 Asymptotic expansions for large values of the parameters

We consider the recent expansion given in [15]

U(a, b + 1, z) ∼ ezAz−ap0(μ)

∞∑
n=0

(−1)n
p̃n(μ)

zn
, z → ∞, (4.1)

where

p0(μ) = 1 − μτ√
βμτ 2 − 2μτ + 1

, A = μ (τ − ln τ − 1) − α ln(1 − μτ),

t0 = 2μ

β + 1 + √
(β + 1)2 − 4μ

, (4.2)

with τ = t0/μ, β = b/z and μ = (b − a)/z.
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The first coefficients of the expansion (4.1) are

p̃0(μ) = 1,

p̃1(μ) = μτ 2(1 − τ)
(
μ2τ 4 − μτ 3 + 8μτ 2 − 9τ + 1

)
12(μτ 2 − 1)3(μτ − 1)

,

p̃2(μ) = μτ 4(τ − 1)

288(μτ 2 − 1)6(μτ − 1)2

(
μ5τ 9 − μ5τ 8 − 2μ4τ 8 + 18μ4τ 7 − 304μ4τ 6

+μ3τ 7 − 35μ3τ 6 + 1396μ3τ 5 − 930μ3τ 4 + 18μ2τ 5 − 1892μ2τ 4

+2610μ2τ 3 − 304μ2τ 2 + 801μτ 3 − 2403μτ 2 + 595μτ − μ

+720τ − 288) . (4.3)

4.1 Expansion for U ′(a, b + 1, z)

For obtaining the asymptotic expansion of U ′(a, b + 1, z) we consider the relation

U ′(a, b, z) = −aU(a + 1, b + 1, z), (4.4)

and use the integral (see (4.3) of [15])

U ′(a, b + 1, z) = −a
z−b−1�(λ + 1)

2πi

∫ (0+)

−∞
ezt t−λ−1(1 − t)−a−1 dt, (4.5)

where λ = b − a. We write this in the form

U ′(a, b + 1, z) = −a
z−b−1�(λ + 1)

2πi

∫ (0+)

−∞
ezφ(t) dt

t (1 − t)
, (4.6)

where, with μ = λ/z,

φ(t) = t − α ln(1 − t) − μ ln t, φ′(t) = − t2 − (β + 1)t + μ

t(1 − t)
. (4.7)

The function φ(t) is the same as used in [15, §3], and the saddle point t0 and the
coefficients are the same as used in that section, up to a factor (−1)n. We obtain the
expansion

U ′(a, b + 1, z) ∼ −aezAz−a−1f0(μ)

∞∑
n=0

(−1)n
f̃n(μ)

zn
, z → ∞, (4.8)

where

A = φ(t0) − μ + μ ln μ, f̃n(μ) = fn(μ)

f0(μ)
, (4.9)

and

f0(μ) =
√

μ

βt2
0 − 2μt0 + μ

=
√

μ

(1 − t0)
(
μ − t2

0

) . (4.10)

The saddle point t0 is given by

t0 = 1
2 (β + 1) − 1

2

√
(β + 1)2 − 4μ = 2μ

β + 1 + √
(β + 1)2 − 4μ

, (4.11)
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with expansion

t0 = μ

β + 1
+ μ2

(β + 1)3
+ O

(
μ3

)
, μ → 0. (4.12)

The first few f̃n coefficients are f̃0 = 1 and

f̃1 = − 1

12
μτ 2

(
μ2τ 5 − 13μ2τ 4 − μτ 4 + 21μτ 3 + 4μτ 2 − 9τ 2 − 2τ − 1

)
(μτ 2 − 1)3(μτ − 1)

,

f̃2 = 1

288

μτ 4

(μτ 2 − 1)6(μτ − 1)2

(
μ5τ 10 − 26μ5τ 9 + 313μ5τ 8 − 2μ4τ 9

+68μ4τ 8 − 1690μ4τ 7 + mu3τ 8 + 1048μ4τ 6 − 60μ3τ 7

+3255μ3τ 6 − 3958μ3τ 5 + 18μ2τ 6 + 186μ3τ 4 − 2678μ2τ 5

+5462μ2τ 4 − 490μ2τ 3 + 801μτ 4 − 8μ2τ 2 − 3276μτ 3

+454μτ 2 + 4μτ + 720τ 2 + μ − 144τ
)

. (4.13)

5 Numerical testing and algorithm

The set of MATLAB functions implementing the methods used are:

1. Uabxsmall(a,b,x). Implementation of the method given in Section 2.
2. Uabxrec(a,b,x). Implementation of the method given in Section 3.
3. Uabxexpan(a,b,x). Implementation of the method given in Section 4.

For testing the computation of U(a, b, x) and U ′(a, b, x) using the different
methods, we consider the recurrence relations

aU(a + 1, b, x) + U(a, b − 1, x)

U(a, b, x)
= 1,

(a − 1)U ′(a, b − 1, x) + U ′(a − 1, b − 2, x)

U ′(a − 1, b − 1, x)
= 1. (5.1)

Also, for testing the method in Section 2, we consider the following alternative
relation

(a − b + x)U(a, b, x) − xU ′(a, b, x)

U(a − 1, b, x)
= 1. (5.2)

When using this relation, values a ∼ b should not be included to avoid the loss
of significant digits by cancellation. We have randomly generated 106 values in the
parameter region (a, b, x) ∈ (0, 0.5) × (0, 0.5) × (0, 1) for testing (5.2) using
Uabxsmall(a,b,x). The results obtained show that for more of the ∼ 98% of
the points, the obtained accuracy was better than 10−14. Also, for the same param-
eter region, this method is more than a 20% faster than the method implemented in
Uabxrec(a,b,x).

In Figs. 1 and 2, we show the accuracy obtained when using the expansion
(4.1) and (4.8) implemented in the MATLAB function Uabxexpan(a,b,x) to
approximate the values of U(a, b, x) and U ′(a, b, x). We take n = 5 terms in both
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Fig. 1 Test for the expansion (4.1). The blue (green) points indicate the region where the function values
are close or under (above) the underflow (overflow) limit in double-precision floating point arithmetics.
The red crosses indicate points where the error obtained when testing the first of the recurrence relations
in (5.1) is greater than 10−12

expansions. We check the recurrence relations (5.1) for few fixed values of x in the
region (a, b) = (0, 500) × (0, 1000) with 20,000 random points. The red crosses
indicate points where the error obtained when testing the recurrence relations (5.1)
is greater than 10−12. The blue points correspond to function values very close or
under the underflow limit in double precision. The green points correspond to func-
tion values very close or above the overflow limit in double precision. As can be
seen, the expansions are not accurate, in general for a small or when x is small,
for all values of a when the b-values are not large. As we have shown, the function
Uabxsmall(a,b,x) works very well (a, b, x) ∈ (0, 0.5) × (0, 0.5) × (0, 1).
For other small parameter values, the algorithm implemented in Uabxrec(a,b,x)
can be used. For x small, we have made a slight modification in the original algo-
rithm and we use a scaled version of the a-recursion in order to avoid the loss of
significant digits for large values of a when computed in double-precision floating
point arithmetics.

Fig. 2 Test for the expansion (4.8). The blue (green) points indicate the region where the function values
are close or under (above) the underflow (overflow) limit in double-precision floating point arithmetics.
The red crosses indicate points where the error obtained when testing the second of the recurrence relations
in (5.1) is greater than 10−12

Numerical Algorithms (2023) 94:669–679 675



Taking into account the results obtained in the different tests of the methods, the
resulting computational scheme is given in Algorithm 1. This algorithm is imple-
mented in the MATLAB function Uabxcomp.1 The front factors in the expansions
(4.1) and (4.8) are used in the full algorithm as an estimation of the function value to
avoid possible overflow/underflow problems.

For testing the accuracy of the full algorithm for computing U(a, b, x), we have
considered 108 random values in the parameter region (a, b, x) ∈ (0, 500) ×
(0, 500) × (0, 1000). Of all the randomly generated points, 2.64 × 107 were points
not in the underflow or overflow regions. The results show that at approximately
54% of these points, the accuracy is better than 10−14, while at around 43% of the
points the accuracy is between 10−14 and 10−13. The maximum error obtained was
∼ 10−11, at a point for which the function value was close to the underflow limit.
See also Fig. 3. Similar results were obtained for the derivative.

Algorithm 1 Computation of the Kummer function U(a, b, x) and its derivative.

As an additional test, we have compared our function Uabxcomp against the
intrinsic MATLAB function to evaluate the Kummer U(a.b, x) function which is
called kummerU. This function, included in the symbolic math toolbox, provides

1This function is available at http://personales.unican.es/gila/KummerUeval.zip

Numerical Algorithms (2023) 94:669–679676

http://personales.unican.es/gila/KummerUeval.zip


Fig. 3 Test for the combined algorithm. The blue (green) points indicate the region where the function
values are close or under (above) the underflow (overflow) limit in double-precision floating point arith-
metics. The red crosses indicate points where the error obtained when testing the first of the recurrence
relations in (5.1) is greater than 10−12

also floating-point results for numeric arguments. When checking the accuracy
obtained in comparison to our function, the tests reveal that for some parameters, the
computations obtained with kummerU are not accurate. For example, in Fig. 4, we
show that the calculation of U(a, b, x) using kummerU in MATLAB R2022b gives a
negative number for certain values of the parameters (U(a, b, x) is non-negative for
x > 0, a ≥ 0, b ∈ �). With respect to computational efficiency, the computations
with kummerU take much more time than those obtained with our algorithm, but
this is expected since kummerU is part of a symbolic package. As an example, the
computation of 500 function values with random arguments in the parameter region
(a, b, x) ∈ (0, 500) × (0, 500) × (0, 1000) took 9.4 10−2 s using Uabxcomp and
199 s using kummerU. The results have been obtained using MATLAB R2022b in a
PC with 8 GB RAM and Intel Core i5-4310U processor.

Fig. 4 Example of points in the (a, b)-plane where the calculation of U(a, b, x) using the intrinsic
function in MATLAB R2022b gives a negative number
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