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Accelerating the Verification of Forward Error
Correction Decoders by PCIe FPGA Cards

Daniel Suárez, Víctor Fernández, Héctor Posadas, Pablo Sánchez

Abstract—Pre-silicon forward error correction (FEC) decod-
ing hardware is typically designed using hardware description
languages (HDL). Its verification is a hard task due to its
intrinsic tendency to correct errors. The generation and injection
of millions of random inputs as well as the cross-checking of
the corresponding outputs is highly recommended. Using HDL
simulations for such work leads to prohibitive execution times.
This letter proposes a verification strategy in which the software
testbed is executed on a multi-core host and the hardware under
verification is prototyped on a PCIe accelerator card. Data are
transferred in big blocks of codewords over a high-bandwidth
PCIe channel and applied to the decoder using a pipeline
management to maximize the use of computational resources
and to minimize the verification time. The decoder is replicated
with parallel access to DDRs. OpenMP is used to leverage the
parallel capabilities of the host and OpenCL, together with
Xilinx Runtime Library (XRT), to manage the PCIe FPGA card
execution. The results show an important speed-up with respect
to HDL simulation and to other prototyping approaches.

Index Terms—Verification, Data Center Alveo Cards, FPGA
Acceleration, Prototyping, Emulation, BER/CER testing.

I. INTRODUCTION

FORWARD error correction (FEC) components are widely
used in modern communications distributed systems.

The Viterbi, Reed-Solomon, Bose–Chaudhuri–Hocquenghem
(BCH), low density parity check (LPDC) and Polar codes,
among others, are essential components in charge of reducing
error rates (or the power required to get the same error rate)
caused by channel noise. New standards promote the use of
these modules with new higher requirements, which leads to
novel hardware implementations.

The verification of pre-silicon FEC decoders is a chal-
lenging task. In the initial stages of the design/correction
iteration process, HDL simulations are used due to their wide
debugging capabilities. However, decoders have, inherently, a
tendency to hide errors. When the design evolves and becomes
more stable, the detection of last errors is very difficult. A
validation test with a massive number of random inputs is
highly recommended blueat this point. To accomplish this,
two complementary methods are proposed in this letter: to
compare the decoder outputs to the ones produced by a golden
model (a mismatch is detected when outputs are different), if
it is available, and to obtain the bit or codeword error rate
(BER/CER) performance metric, by comparing the outputs
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with the ones generated by the coder (an error is computed
when the output of the decoder is different than the one
generated by the coder). Proposed computations demand a big
number of inputs [1], making HDL simulation extremely slow.

In pre-silicon phases, emulation and FPGA prototyping are
the two main verification alternatives to HDL simulation. In
recent years, emulation tools have evolved into very powerful
programmable computing infrastructures [2], [3]. They are
able to emulate very complex hardware/software (HW/SW)
SoC systems with high degree of debugging capabilities. Due
to those characteristics, they are, typically, slower than ad-hoc
FPGA prototypes [4], like the one presented in this letter. In
addition, they are much more expensive.

Concerning FPGA prototyping [5] and focusing on FEC
decoders, here are some previous relevant contributions. In
[6], predefined library components are used to verify the
performance of a communication system. However, this is not
useful for new designs that cannot be modeled based on those
components. Some approaches use simple, poorly accurate,
hardware random generators [7] or develop complex ad-hoc
hardware implementations [8], [9]. One of the most critical
aspects is that random values generated as coder inputs or
as channel noise have to meet stringent distributions, which
implementation in hardware can be tricky. In [10], a hard-
ware/sofware approach is presented with a Xilinx microblaze
device integrated into an FPGA with the task of debugging an
HDL version of a FEC decoder. The approach is focused on
improving the debugging capabilities. Speed is not a target,
and the generation of random data is performed in hardware
with a simple linear feedback shift register (LFSR).

In [11], Xilinx SoC FPGAs were used in an integrated
hardware/software solution for FEC decoding verification. The
decoder was integrated in the Programmable Logic (PL) part
of the FPGA. The rest of the testbed (pattern generation and
output checking) was programmed on the Processing System
(PS) part as software. The verification process is accelerated
from tens of days (with HDL simulation) to tens of minutes.
Processing is done on a codeword by codeword basis, and the
execution of software and hardware is sequential.

This letter presents a deep improvement of the verification
strategy shown in [11]. The presented approach uses pro-
cedures, equipment and tools not used by other authors. It
proposes an execution flow in which data is transferred in big
blocks of codewords over a high bandwidth channel combined
with HW/SW pipeline management to maximize the use of
computational resources and minimize the verification time.
A PCIe interface and several DDR blocks with large storage
capabilities are used to optimize HW/SW communications. A
Xilinx Alveo U200 card is used since it provides all these
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Fig. 1. Executing platform for the verification approach.

competences, but other similar options are applicable. By
using an Alveo card and Xilinx Tools, we avoid the need
for other specific verification equipment and tools, minimizing
the cost and knowledge required to implement the proposed
task. Decoding hardware under verification is replicated in the
Alveo card, maximizing the parallel use of its DDR memories.
Processing in the host is also parallelized by using available
cores with OpenMP. Moreover, OpenCL and Xilinx Runtime
are used to control the host-Alveo communication, execution
and synchronization.

The next section shows all the details of the proposed ver-
ification procedure. Section III reports the results of applying
the methodology to an LDPC decoder. The conclusions are
wrapped up in Section IV.

II. VERIFICATION PROCEDURE

The executing platform on which the verification proposal
is deployed can be seen in Fig. 1. Xilinx Vivado and Vitis
tools [12] make up the design environment for the generation,
integration and execution of hardware and software parts.

The verification infrastructure is split into two parts: the
testbed software, in charge of decoder input generation and
output verification, is implemented as software on the host
computer, and the component under verification (the FEC
decoder) is implemented in HW.

C code is used for input and expected output generation.
The decoder outputs can be tested with two possibilities: they
can be compared to expected decoder outputs and/or they can
be compared to the outputs generated by the coder in order
to compute the CER curve, for a range of 𝐸𝑏/𝑁0 values in
both cases. In the first case, the expected decoder outputs are
obtained by executing a software golden model of the decoder.
In the second case, the model of the decoder is not necessary
(or, maybe, it is not available).

To speed-up software execution, using the multi-core host
parallelization capabilities, OpenMP is used. It is a user-
friendly language (few modifications are needed in the input
generation and output checking code) and is optimum for long-
running multi-thread execution on a CPU. In addition, OpenCL
and Xilinx XRT facilities are used in order to manage the
transfer of inputs and outputs between the main memory and
the Alveo Card, as well as to control the execution of the
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Fig. 2. Global sequential execution flow.

decoder in the hardware part. More details can be found in
section II.A.

FEC decoders under consideration decode each input code-
word independently. Thus, the total number of input code-
words can be split into several blocks to be processed in
parallel by several decoders. The Alveo U200 card comprises
four independent 16GB DDR memory banks. In order to
accelerate the decoding speed, four instances of the decoder
under verification are integrated, with parallel access to input
codewords (See Fig. 1). The integration of four hardware
decoders (which are called kernels in OpenCL terminology)
and their control is performed with OpenCL and Xilinx tools
as it will be detailed in section II.B. If more speed is needed,
more decoders can be integrated in parallel and, in addition,
several codewords per memory address can be arranged.

Regarding the debugging capabilities of the presented ap-
proach, two features are addressed. In the comparison with
the golden model, apart from the primary outputs, other
internal values can be considered for comparison. In addition,
if any mismatch is produced, the software testbed records the
working status to enable its replication by HDL simulation for
a more detailed analysis.

A. Execution control
The global flow of execution can be depicted in Fig. 2. It

shows the main blocks executed in a, at first, sequential way.
Such blocks are detailed hereafter.

An initial stage ("Initial OpenCL Setup" in Fig. 2) is nec-
essary in order to setup the OpenCL configuration. Involved
tasks are related to platform, device, context, program, kernels
and memory configurations. Moreover, the memory needed for
storing the inputs and outputs in the DDR memories of the
Alveo card is allocated.

The block in charge of input and expected output generation
comprises the communication chain components: random in-
put generation, FEC coder, modulation, noise addition, demod-
ulation and FEC decoder (only for golden model matching).

Transfers between host and accelerator card memories are
implemented using proper OpenCL instructions. After the
data transfer and before the kernels execution, the number
and location of input codewords are transmitted. Kernels are,
then, executed. After that, outputs located on Alveo DDR
memories are read back from the host. To handle objects
like kernels or buffers located on Alveo, it is necessary to
use a command queue. In sequential execution flow, the host
enqueues commands and waits for the event that indicates the
completion of tasks.
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Finally, the outputs of the decoders are cross-checked ("Out-
puts checking" in Fig. 2) with the ones from the coder for CER
computation, and/or with the ones from the golden model,
software decoder.

The memory for storing inputs and outputs in the host
is arranged as follows. Three buffers are allocated (by the
aligned_alloc instruction): one for the inputs, one for the
expected outputs and the last one for the decoder outputs
generated on the Alveo card. The three buffers are split into
four sections to transfer data from/to the four DDR memories
of the Alveo.

In order to speed up the execution, the global flow depicted
in Fig. 2, which is sequential, has been modified according to
two strategies: software tasks have been parallelized by using
OpenMP and hardware/software execution has been pipelined
by OpenCL synchronization mechanisms.

For the pipelined flow, the three buffers of inputs and
outputs are duplicated in A and B sets. Buffers are always
accessed in ping-pong ABAB... order. With this solution, the
software part can execute in parallel with the hardware decod-
ing without stopping. At the beginning of the output checking,
there is a synchronization point, waiting for hardware outputs.
Just after the wait point, the kernel decoding is fired (including
memory transfers from host to Alveo and vice versa). The
fired hardware execution can even end before the outputs
checking is concluded because both processes use different
output buffers.

The exposed synchronization mechanism guarantees a cor-
rect execution, regardless of the hardware and software delays.
For the example used in the results section, the four hardware
kernels are fast enough to avoid the waiting for its termination.

Memory buffers are sized at 8 GB (four sections of 2 GB,
each). This is compatible with PCIe bandwidth, with DDR
sizes and with the host memory size (48GB in total, for the
six buffers). Sections of 2GB are transferred from the host to
Alveo and vice-versa. When the number of codewords needed
implies a greater value than that limit, the 𝐸𝑏/𝑁0 iteration is
split into permissible sizes.

B. Decoder Integration as a kernel

The design under verification is an HDL FEC decoder.The
AXI-Stream protocol is used for input reading and output writ-
ing as data are used/generated in a sequential fixed order. For
this streaming, the decoder needs to access the DDR memories
and also obtain an indication of the data location and size.
To accomplish this, some wrapping components, provided by
Xilinx, have to be included in the kernel architecture.

A control and several data registers are added. The control
register is accessed in order to start and finish the decoding
process, and the user registers are accessed to indicate the
location and number of inputs and outputs. They are reachable
via an AXI-Lite interface. Data located in DDR memories
is reachable via an AXI4 memory mapped interface. Data
transfer between the kernel AXI4 and the decoder AXI-Stream
interfaces is accomplished via a FIFO memory.

The kernel structure is compiled with the Xilinx IP Packager
and package_xo tools to generate a kernel object (.xo). The

TABLE I
EXECUTION TIMES FOR [11] AND PROPOSED APPROACHES

Verification
Approach Executing platform Verification

Time

Golden Model
Matching (105

Matches at Each
𝐸𝑏/𝑁0)

HDL Simulation ≈ 7 days

ZCU 102 SoC FPGA Board
[11] 20 min

Host+PCIe Alveo Card 1.2 min

CER Computation
(𝐸𝑏/𝑁0 in [0,6] dB,

1dB step)

HDL Simulation ≈ 80 days

ZCU 102 SoC FPGA Board
[11] 67 min

Host+PCIe Alveo Card 3.1 min

v++ -l linking command uses the platform info contained in
the XSA Xilinx file and links the kernel objects in order to get
the .xclbin file which is the binary requested by clCreatePro-
gramWithBinary openCL instruction. The linking command is
configured by connectivity.nk (to use 4 kernels), connectivity.sp
(to associate the kernels with DDRs) and connectivity.slr (to
associate the kernels with super logic regions) options.

III. RESULTS

The proposed verification method has been applied to the
same (128,64) binary LDPC decoder used in [11] in order to
compare verification speeds (the same VHDL has been used).
The decoder is specified in [13] by the Consultative Committee
for Space Data Systems (CCSDS) for Tele-Command (TC)
link. The algorithm used for decoding was the Normalized Min
Sum and the architecture follows a common partial parallel
structure [14]. The proposed methodology can be applied to
other types of decoders (Reed Solomon, BCH, Polar, etc.) in
the same way.

In terms of random values generated in the host, input
coder values (information words) are generated using the
SFMT method [15] with a period of 219937 − 1 values [16].
In addition, the noise model applied to the channel is the
classic Additive White Gaussian Noise (AWGN). To include it,
random normalized values are generated based on the Ziggurat
method, following [17]. Values from both random sources are
generated by several parallel threads created with OpenMP. In
order to avoid correlated sequences, seeds are generated by
using the shr3_seeded function. Other generation methods or
noise models can be supported without any modification of
the presented methodology.

The execution times needed to complete the two proposed
verification procedures are reported in Table I. For the golden
model matching approach, the checking is accomplished in
around one minute. In addition, the computation of the CER
curve requires nearly 3 minutes. Both timing results are
obtained with the parallel and pipeline flow strategy. For the
software tasks executed on the host, 40 threads (for the 40-core
host computer) were managed with OpenMP.

Execution profiling is shown in Fig. 3 and Fig. 4. Execution
times are computed in the host by the use of clock_gettime
function. Four main software blocks are considered: OpenCL
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Fig. 4. Execution profiling for output matching with golden model

setup, in/out generation, the wait for hardware and, finally, the
output checking. The wait for HW step covers the waiting from
the host perspective, including both the time corresponding to
the host/Alveo card data transfers and the decoder operation.
Purely sequential and parallel & HW/SW pipelined options are
compared. An intermediate step, labeled as "Parallel", in which
the software is parallelized but the hardware is not pipelined
with the software, is also included.

A speed-up is observed in two actions. The software
parallelization with OpenMP produces accelerations of more
than one order of magnitude (note the logarithmic scale) for
in/out generation and output checking. The HW/SW pipelining
also decreases the wait for hardware decoding by one order
of magnitude. Some residual time is still needed for the
decoding of the last set of codewords, which cannot be used
for computing the next inputs and outputs.

For the used decoder and the two applied verification
approaches, the software waits for zero time (for hardware
completion). In CER computation, the software needs a long
execution time to generate a massive number of codewords. In
golden model comparison, the number of codewords is rather
smaller, but the software has to execute the golden decoder.

IV. CONCLUSION

This letter proposes a verification methodology for FEC
decoding modules at the pre-silicon stage, capable of dealing
with large amounts of verification data-sets, where HDL simu-
lation is not applicable. The proposed platform and toolset are
comprised of a multi-core workstation, a PCIe Xilinx Alveo
accelerator card (including an Ultrascale+ XCU200 FPGA and
4 banks of DDR memory) and Xilinx XRT and design tools.

The proposed methodology can be easily applied in sim-
ilar PCIe acceleration environments. The highly integrated
hardware/software infrastructure comprises four copies of the
decoder under test, each accessing a dedicated DDR memory,
running in the FPGA while all the testbed is executing, with
a high level of parallelism, in the host. In addition, the
testbed software (in the host) and the hardware design under
verification (in the Alveo card) run in a pipelined way for extra
acceleration.

Results show that a verification based on millions of random
inputs is feasible in just 1-3 minutes, giving the design engi-
neers quick confidence in the designed or acquired decoder
IP.
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