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SUMMARY
A high percentage of patients with brain metastases frequently develop neurocognitive symptoms; however,
understanding how brain metastasis co-opts the function of neuronal circuits beyond a tumor mass effect
remains unknown. We report a comprehensive multidimensional modeling of brain functional analyses in
the context of brain metastasis. By testing different preclinical models of brain metastasis from various
primary sources and oncogenic profiles, we dissociated the heterogeneous impact on local field potential
oscillatory activity from cortical and hippocampal areas that we detected from the homogeneous inter-model
tumor size or glial response. In contrast, we report a potential underlying molecular program responsible for
impairing neuronal crosstalk by scoring the transcriptomic and mutational profiles in a model-specific
manner. Additionally, measurement of various brain activity readouts matched with machine learning
strategies confirmed model-specific alterations that could help predict the presence and subtype of
metastasis.
INTRODUCTION

Brain metastases have a dramatic impact in the quality of life

(QoL). Apart from the impact in reducing survival,1 44% of pa-

tients suffering brain metastases also experience cognitive

disabilities.2–4 Why some individuals are more affected than

others is unknown, since the tumor mass effect has been

questioned as the sole cause. In spite of limited research on

the crosstalk between metastatic cells and neuronal circuits,

a role for N-methyl-D-aspartate receptor has been described

in breast cancer brain metastasis.5 However, this crosstalk is

described as unidirectional, addressing the benefit of cancer

cells by co-opting a neural-like behavior5 while no data exist

on the consequences it might have on brain function. Given

the neural mimicry of metastatic cells in the brain,6–9 and the

high prevalence of neurocognitive impairment, we decided to

couple in vivo electrophysiology and ex vivo calcium imaging
Cancer Cell 41, 1–13, Sept
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of various established brain metastasis models to better un-

derstand their cellular, molecular, and electrophysiological

profiles.

Here, we unveil an inter-model heterogeneity, which impacts

on brain circuits independently of the tumor mass effect. In an

effort to characterize this phenotype, we confirm its correlation

with specific electrophysiological and molecular signatures

suggesting potential molecular mediators. Additionally, to rein-

force the model-dependent impact on brain function, we

demonstrate that computational analysis of in vivo electrophys-

iological profiles with machine learning approaches is capable

of defining metastasis-dependent brain alterations and sub-

types, which could inspire novel strategies for noninvasive

diagnosis.

In summary, our findings report a preclinical strategy to

address brain functional compromise by metastasis. In addition,

our data suggest that, besides tumor size, a molecular crosstalk
ember 11, 2023 ª 2023 The Author(s). Published by Elsevier Inc. 1
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Figure 1. Effect of brain metastasis in electrophysiological brain activity

(A) Schema of experimental design. Mice were implanted with head-bars and habituated to stay head-fixed in a wheel. After 7 days, brain metastatic cells from

lung cancer (482N1), breast cancer (E0771-BrM), or melanoma (B16/F10-BrM) were inoculated intracranially in the right hemisphere. 7 days later, local field

potential (LFP) recordings were obtained during 4 days using a 16-channel linear probe in each hemisphere. On day 10, animals were transcardially perfused with

4% PFA and the brains extracted and processed for histological analysis.

(B) Representative coronal section of a mouse with a 482N1 metastasis. Scale bar: 1500 mm. The silicon probe was stained with Red-DiI to identify the

probe track.

(C) LFP signals recorded across cortical and hippocampal layers surrounding the tumor in a representative example from each group. LFP from the ipsilateral side

is shown. The position in the wheel is shown at the top of each panel.

(D) Mean power spectrum from ipsilateral cortical layers of the examples shown in C.

(E) Enlarged 1 to 20 Hz band representing mean values of all data.

(F) Schema of experimental design indicating analysis of LFP corresponding to cortical areas.

(G) Differences of cortical LFP power in the delta (1–4 Hz; Chi.2 = 13.4, p = 0.0037), theta (4–12 Hz; Chi.2 = 21.4, p < 0.0001), gamma slow (40–60 Hz, Chi.2 = 23.8;

p < 0.0001), and ripple (100–200 Hz; Chi.2 = 28.9, p < 0.0001) bands among mice without or with metastases from three different models, as evaluated during

(legend continued on next page)
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between metastases and neurons could be exploited to prevent

and target brain metastasis-associated impact in QoL.

RESULTS

Effect of brain metastasis in electrophysiological brain
activity
We inoculated three brain organotropic mouse cancer cell lines

(482N1,10 E0771-BrM,11 B16/F10-BrM12) directly into the brain

to eliminate the variable of metastasis location when systemic

inoculation is used,13 which is a crucial aspect for our purpose.

We adapted the protocol of opening a cranial window and

obtaining longitudinal electrophysiological recordings from

head-fixed mice during the survival period of brain metastasis

syngeneic models.10–12,14 Twenty head-fixed awake mice were

trained to rest comfortable (Still) and to move on a wheel (Run)

before the experimental session (Figure 1A; sham = 6 mice;

B16/F10-BrM = 5; E0771-BrM = 4; 482N1 = 5). Local field poten-

tials (LFPs) where recorded from several penetrations at two time

points (7 and 10 days post implantation) in each animal to maxi-

mize data acquisition and to compare potential differences along

tumor evolution (Figure 1A) within the two weeks survival period

of these models.10–12 Sixteen-channel linear array silicon probes

were inserted in both peritumoral (Right hemisphere) and in the

homotopic contralateral tumor-free region (Left hemisphere),

as confirmed by posterior histological analysis (Figure 1B).

Analysis of LFP oscillatory activity from cortical and hippo-

campal areas showed a general decrease in the power spectrum

for cortical penetrations ipsilateral to the tumor (Figure 1C;

sham = 17 penetration sessions from 6 mice; B16/F10-BrM =

17 from 4 animals; E0771-BrM = 12 from 5 animals; 482N1 =

15 from 5 animals). Changes affected all frequency bands,

from the ripple (100–200 Hz) and slow gamma bands (40–

60 Hz,) (Figure 1D), to delta (1–4 Hz) and theta (4–12 Hz) activity

(Figure 1E), especially in the 482N1-BrM model (Figures 1F and

1G). Spectral differences between groups could not be ex-

plained by the degree of locomotor activity (Figure S1A). Instead,

they rather reflect evident differences among brain metastasis

models. Remarkably, although limited in prevalence, interictal

discharges were detected in all models, while non-convulsive

seizures were recorded in the E0771-BrM and the B16/F10-

BrM models (Figures S1B and S1C) (8.33% and 5.88% inci-

dence, respectively in all recorded sessions). Similar oscillatory

changes were detected from hippocampal penetrations ipsilat-

eral to the tumor (Figures S1D and S1E). To exclude any potential

volume conduction effect, we also evaluated the current-source

density signals (Figure S1F), which provide a measure of the

direct currents flowing through different cortical layers and found

comparable results (Figures S1G and S1H). Thus, our findings
continuous running periods. Values are shown in box-and-whisker plots where ev

themedian. The boxes go from the upper to the lower quartiles and thewhiskers go

from percentile 75) (penetration sessions: 17 sham, 12 E0771-BrM, 17 B16/F10-B

Tukey test. Only significant p values are shown.

(H) Schema of experimental design indicating analysis of LFP corresponding to

metastasis.

(I) Analysis of the interhemispheric as measured by the theta power spectrum. Val

penetration and the line in the box corresponds to the median. The boxes go from

maximum. Data from 27 bilateral penetrations (sessions: 8 sham, 6 E0771-BrM,
suggest that individual brain metastasis models might influence

neural communication differently both locally (neocortex) and at

nearby structures (hippocampus).

To confirm this point, we expanded analysis of LFP recordings

to the contralateral tumor-free area in the cortex (Figure 1H) and

hippocampus (Figure S1D) to evaluate inter-hemispheric effects

(sham = 16 penetrations; B16/F10-BrM = 17; E0771-BrM = 12;

482N1 = 17). We found significant differences only for the

482N1-BrM model (Figures 1I and S1I). Such a heterogeneity

in the long-range impact on neural circuits consolidates the

metastasis model evaluated as a key variable.

Thus, even though the three different brainmetastasesmodels

were inoculated in the same cortical area and they share a gen-

eral negative influence on neural communication, inter-model

heterogeneity was evident regarding the qualitative impact influ-

encing brain field potential both locally (peritumoral area) and

distally (contralateral tumor-free hemisphere).

Dissociation between altered local field potential and
mass effect or inflammation
In order to dissect the underlying cause of the differential impact

of metastases on LFP, we interrogated the histology of the brains

evaluated with electrophysiology.

In agreement with previous clinical studies,4 histological anal-

ysis of the three models at the endpoint of the experiment

confirmed no correlation between tumor size and LFP

(Figures 2A and 2B). Indeed, no significant differences in tumor

size exist among the three models (Figure 2B). If anything, the

E0771-BrM model, which tends to generate bigger tumors

compared to the other two models (Figure 2B), has electrophys-

iological patterns that in some of the analyses performed are

closer to the control than to the other two models (Figures 1G

and S1E). In conclusion, our findings argue against the mass

effect of the tumor as the solely contributor to explain its impact

in neural circuits.

The brain microenvironment includes glial cells that are a ma-

jor component reacting to the presence of the metastasis and

contributing very significantly to the local progression of the

tumor as part of the inflammatory milieu.10–12 Consequently,

we explored whether different experimental metastases could

have a different impact on surrounding glial cells. Neither

reactive GFAP+ astrocytes, Iba1+ microglia/macrophages, nor

Olig2+ oligodendrocytes were different in numbers respect

to the sham or between different brain metastasis models

(Figures 2C and 2D), as they are against control non-operated

mice (Figures S2A and S2B). These findings discard a correla-

tion between general markers for glial populations, which

was confirmed with additional ones in the case of astro-

cytes (Figures S2C and S2D) and microglia/macrophages
ery dot represents a different penetration and the line in the box corresponds to

1.5 times the range between percentile 25 and 75 (down frompercentile 25, up

rM and 15 482N1). p value was calculated using Kruskal-Wallis with a post-hoc

cortical areas at the ipsi- and contralateral sides respect to the location of the

ues are shown in box-and-whisker plots where every dot represents a different

the upper to the lower quartiles and the whiskers go from the minimum to the

7 B16/F10-BrM, 6 482N1). See also Figure S1.
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Figure 2. Dissociation between altered local field potential and mass effect or inflammation

(A) Representative brain sections affected by metastases from different models (Breast, cell line E0771-BrM; melanoma, B16/F10-BrM; lung, 482N1). Scale

bar: 1mm.

(B) Quantification of tumor area. Values are shown in box-and-whisker plots where every dot represents a different brain and the line in the box corresponds to the

median. The boxes go from the upper to the lower quartiles and the whiskers go from the minimum to the maximum value (B16/F10-BrM n = 7; E0771-BrM n = 7;

482N1 n = 8 mice per experimental condition). One-way ANOVA (F(2,19) = 1.884, p = 0.1793).

(C) Representative images of immunofluorescence staining labeling GFAP+ cells, Olig2+ cells, Iba1+ cells, and NeuN+ cells in the peritumoral areas (dotted line) of

brains from mice inoculated with B16/F10-BrM, E0771-BrM, 482N1, or saline (sham). Blue channel is DAPI. Scale bar, 50mm.

(D) Quantification of the relative GFAP+ area, number of Olig2+ cells, relative Iba1+ area, and number of NeuN+ cells. Values are shown in box-and-whisker plots

where every dot represents a different brain and the line in the box corresponds to themedian. The boxes go from the upper to the lower quartiles andwhiskers go

from the minimum to the maximum value (Sham n = 4; B16/F10-BrM n = 5; E0771-BrM n = 4; 482N1 n = 5 mice per experimental condition). One-way ANOVA

(relative GFAP+ area: F(3,14) = 1.015, p = 0.4155/number of Olig2+ cells: F(3,14) = 0.9241, p = 0.4547/relative Iba1+ area: F(3,14) = 1.556, p = 0.2442/number of

NeuN+ cells: F(3,14) = 0.5621, p = 0.6488).

(E) Bar plot of the relative proportion of astrocytes (left), metastasis-associated macrophages Apoe+ (center), and metastasis-associated macrophages ex-

pressing S100a8 (right) against the rest of the cell types identified by CIBERSORTx from different mouse models (B16/F10-BrM n = 6; E0771-BrM n = 6 and

482N1 n = 6mice). One-way ANOVA (astrocytes: F(2,15) = 0.03133, p = 0.9692). One-way ANOVA (metastasis-associated macrophages Apoe+: F(2,15) = 15,92,

p = 0.0002) with a Tukey post hoc test (E0771-BrM Vs. B16/F10-BrMp = 0.0004; B16/F10-BrMVs. 482N1 p = 0.0007; E0771-BrM Vs. 482N1 p = 0.9499). Kruskal-

Wallis test (metastasis-associated macrophages expressing S100a8: H = 10.87, p = 0.0012) with a Dunn’s post hoc test (E0771-BrM Vs. B16/F10-BrM

p = 0.0044; B16/F10-BrM Vs. 482N1 p = 0.0573; E0771-BrM Vs. 482N1 p > 0.9999). See also Figure S2 and Table S1.
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Figure 3. Correlation between electrophysiological impact and the transcriptomic profile of brain metastases

(A) Electronmicroscopy images at the interface between themetastasis and the neuropile. Some synapses could be observed (red arrowheads). Green/red/blue:

tumor cell (E0771-BrM/B16/F10-BrM/482N1, respectively); yellow: pre-synaptic terminal; purple: post-synaptic terminal. Scale bar: 0.4 mm.

(legend continued on next page)
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(Figures S2E and S2F), and the electrophysiology patterns, as

they do in response to the procedure (i.e., sham versus control)

(Figures S2A and S2B). In order to go beyond specific markers,

we applied CIBERSORTX15–17 on bulk RNA sequencing (RNA-

seq) from established brain metastases. None of the thirteen

cell types identified from the brain metastasis microenviron-

ment18 after deconvolution of the transcriptomic data were

differentially enriched in the 482N1 model with respect to B16/

F10-BrM and E0771-BrM (Figures 2E, S2G and Table S1).

Of note, the total number of peritumoral neurons was not

affected either, reflecting a limited impact of the tumor on their

cell density (Figures 2C, 2D, S2A and S2B). Indeed, we

confirmed with electron microscopy that the immediate vicinity

of the tumor was densely populated by well-preserved neuronal

dendritic and axonal processes, which might suggest that me-

tastases do not massively destruct the neuropile (Figure 3A),

which is a prerequisite to study a potential crosstalk with neural

circuits.

Thus, we addressed and clarified that the two more evident

potential causes of neural circuit impairment (i.e., mass effect

of the growing tumor and the induction of an inflammatory peri-

tumoral milieu) are not responsible for the inter-model heteroge-

neity observed among brain metastasis models under this

specific experimental setting. Interestingly, the maintenance of

a well-conserved neuropile is highly suggestive on the possibility

that metastases could influence neural communication.

Correlation between electrophysiological impact and
the transcriptomic profile of brain metastases
A closer look to the peritumoral area on the three experimental

models demonstrates intact peritumoral synapses in the imme-
(B) Representative images of pre-synaptic (V-GAT1) and post-synaptic (Gephyri

synapsis. Scale bar: 15 mm.

(C) Quantification of mature inhibitory synapses in the peritumoral area associated

plots where every dot represents a different field of view and the line in the box cor

the whiskers go from the minimum to the maximum (E0771-BrM n = 12 field of vie

field of view from 5 brains). One-way ANOVA (F(2,36) = 4.889, p = 0.0132) with a T

482N1 p = 0.0751; E0771-BrM Vs. 482N1 p = 0.0153).

(D) Representative images of organotypic cultures established from the genetica

brain metastases at the experimental endpoint after being stimulated with approp

(E) Quantification of microenvironment-derived calcium-dependent bioluminesce

box-and-whisker plots where every dot represents a different organotypic culture

to the lower quartiles and the whiskers go from the minimum to the maximum (E07

from four animals each group, and two independent experiments). Kruskal-Wallis

F10-BrM p > 0.9999; B16/F10-BrM Vs. 482N1 p = 0.006; E0771-BrM Vs. 482N1

(F) RNA-seq from the three different brain metastasis models where genes prev

shown. Scale bar corresponds to Z Score.

(G) Validation of increased levels of EGR1 in 482N1 compared to E0771-BrM an

(H) Quantification of EGR1 levels in metastatic cells in situ. Every dot represents an

mean and the error bars the sem. (n = 3 brains). p value was calculated using un

(I) Representative images of human brain metastases showing EGR1 levels. Selec

tumor source (colored squares in the lower right corner). Blue square: lung cancer

cancer brain metastasis. Scale bar: 50 mm.

(J) Quantification of EGR1 levels in metastatic cells in situ. Every dot represents a

according to the primary source of the brain metastasis. Other: additional prima

(K) Uniform manifold approximation and projection (UMAP) labeling clusters ident

represented by a different color. Clusters labeled in bold correspond to the Egr1

(L) Dotplot showing Egr1 enriched cells, split by cluster. Average expression is

percentage of cells with Egr1 expression by cluster.

(M) Projection of Egr1 gene expression of 481N1 cancer cells. Pre-defined Egr1-

(N) Venn diagram of gene hallmarks significantly upregulated in Egr1-positive cells
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diate vicinity (<1 mm) of the metastasis, thus susceptible to be

influenced by the cancer cells (Figures 3A and S3A). In order to

evaluate the basic components of neural circuits, we interro-

gated excitatory and inhibitory synapses. Interestingly, the

model with higher degree of alteration in electrophysiology,

482N1, showed a reduced number of inhibitory synapses, which

was not matched by a parallel loss of interneurons, in the peritu-

moral area, (Figures 3B, 3C, S3D and S3E) while no differences

were detected with respect to the excitatory ones (Figures S3B

and S3C). This phenotype affecting interneurons mimics previ-

ous findings in glioma,19 although the underlying mechanism

might be different given the specific effect on synapses but not

in the number of interneurons.

Additionally, we reinforced the superior brain impact imposed

by the 482N1 model by using a genetically engineered mouse

model (GEMM) LSL-CamBI, which reports calcium activity

through bioluminescence in a Cre-dependent manner.20 Brain

organotypic cultures from this GEMM affected with metastases

were established ex vivo; D-luciferin for firefly-expressing

BrM cells was used to identify bioluminescence from tumor

cells (day 0) and discard those without metastasis. Subse-

quently, selected brain slices were infected with adenoviruses

(Ad5-CMV-Cre) to induce Cre-dependent activation of cal-

cium-dependent luciferase in the metastasis-associated micro-

environment (Figure S3F). 3 days post Ad5-CMV-Cre infection,

hydrofluoromizine was used to activate CamBI-expressing

cells from the microenvironment and the bioluminescence

from the non-cancer compartment was registered (Fig-

ure S3F). Microenvironment-derived calcium-dependent biolu-

minescence normalized to the cancer cells-derived biolumines-

cence obtained at day 0, which minimizes any influence of tumor
n) markers of inhibitory synapses and their colocalization indicative of mature

with different brain metastasis models. Values are shown in box-and-whisker

responds to themedian. The boxes go from the upper to the lower quartiles and

w from 4 brains; B16/F10-BrM n = 12 field of view from 4 brains; 482N1 n = 15

ukey post hoc test (E0771-BrM Vs. B16/F10-BrM p = 0.7943; B16/F10-BrM Vs.

lly engineered mice model LSL-CamBI containing firefly luciferase-expressing

riate substrates. Color bars show bioluminescence intensity in p s�1 cm�2 sr�1.

nce normalized for metastasis-derived bioluminescence. Values are shown in

and the line in the box corresponds to themedian. The boxes go from the upper

71-BrM n = 13 slices; B16/F10-BrM n = 14; 482N1 n = 14. Slices were obtained

test (H = 14.09, p = 0.0009) with a Dunn’s post hoc test (E0771-BrM Vs. B16/

p = 0.0022).

iously reported in synaptic signatures significantly upregulated in 482N1 are

d B16/F10-BrM. Scale bar: 50 mm.

individual mouse where 4 fields of view were analyzed. The line represents the

paired t test.

ted samples illustrate the heterogeneity among patients as well as the primary

brainmetastasis; red square: melanoma brainmetastasis; green square: breast

n individual patient where 4 fields of view were analyzed. Samples are grouped

ry tumor types. Kruskal-Wallis test (H = 1.202, p = 0.7526).

ified at 0.75 resolution (clusters 0–7) for the 482N1 cancer cells. Each cluster is

enriched ones.

indicated by a colored scale: low in blue, high in red. Dot size represents the

positive cells are highlighted in red.

within clusters 0, 1, and 3 identified byGSEA. See also Figure S3 and Table S2.
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size, indicates that the 482N1 metastasis has a stronger impact

also influencing calcium activity in the microenvironment

(Figures 3D and 3E).

Given previous findings on specific mutational profiles in gli-

oma and the incidence of epilepsy,21 we performed whole

exome sequencing on the three models. We found 35 specific

genetic alterations in the 482N1 model (Table S2); however,

these remain to be functionally evaluated in the context of their

influence on neuronal impact. Complementarily, we obtained

the individual transcriptomic profiles of the three tested models

and evaluated whether their different impact on brain functional

readouts (i.e., LFP, calcium activity) might have a specific corre-

late on gene expression. First, we focused the analysis on those

genes involved in neuronal communication.5,21–27 Remarkably,

51 genes from these signatures were differentially expressed

by 482N1 compared to the other two brain metastasis models

(Figures 3F and Table S2). In addition, unbiased analysis of dif-

ferential gene expression among the three models identified

additional molecules and signatures (Figures S3G–S3L and

Table S2) specifically enriched in 482N1 that have been also

described to have the potential to modulate neuronal communi-

cation (i.e., ECM) and to be used by cancer cells to communicate

with brain-resident cells (i.e., nanotubes).28 Indeed, the tran-

scription factor Egr1, which was the only gene deregulated

both within the analysis of the top 50 differentially expressed

genes in the 482N1 model and part of the pre-selected 51 genes

from selected signatures, was validated at the protein level in situ

(Figures 3G and 3H). Additionally, EGR1 was also expressed in

brain metastases from patients independently of the primary tu-

mor source and with high interpatient heterogeneity (Figures 3I,

3J and Table S2), whichmight be compatible with the various de-

grees in neurocognitive impact detected in patients. Besides its

role inmodulating synaptic plasticity,29 EGR1 has been shown to

affect angiogenesis,30–34 which might influence neuronal activity

as well. This mechanism might be also present in the 482N1

model where we detected a trend toward increased peritumoral

vascular density (Figures S3M and S3N). In order to characterize

in more detail the Egr1+ cancer cells, we performed single-cell

RNA-seq on establishedmetastases from the 482N1model (Fig-

ure 3K). We detected Egr1+ cells distributed in four major clus-

ters (Figures 3L, 3M and Table S2). Gene signature enrichment

analysis for each Egr1+ cluster identified the tumor necrosis fac-

tor alpha signaling via nuclear factor kB hallmark signature as

commonly enriched in three out of the four Egr1+ clusters (Fig-

ure 3N and Table S2), suggesting a potential mechanistic link be-

tween cytokines and neuronal communication.35

Overall, our data suggest that a molecular program rather than

or in addition to the mass effect caused by brain metastasis

might influence neural communication. Although the molecular

program remains to be functionally evaluated, we wondered

whether the impact on neural circuits could be further globally

exploited computationally.

A generalized linear model identifies key components
defining the diversity of electrophysiological profiles
among brain metastases
The data described previously suggest that the molecular profile

of cancer lines underlies a bidirectional crosstalk that may spe-

cifically affect microcircuit function in colonized brain territories.
We thus applied data science strategies to uncover the complex

contributions underlying the differential effect of eachmetastasis

model in the LFPs.36 To this purpose, we aggregated all spectral

data per session, per mice, per group, resulting into a large data-

set (492 samples). We also included categorical variables, such

as hemisphere (Left/Right), behavioral state (Run/Still), and the

origin of the data according to the electrode location (Cortex/

Hippo) (Table S3).

Principal component (PC) analysis identified 9major directions

explaining 99% of the data variance (Figure 4A). Some compo-

nents mostly discriminated between categorical variables

(e.g., PC2, PC3, PC4), while others better explained changes

of spectral features (e.g., PC1, PC5) and their combination

(e.g., PC7, PC8, PC9). Projecting data from the different experi-

mental groups into the 9-dimensional PC space suggested

segregation between metastasis models (Figure 4B). This

was clearly appreciated in two-dimensional representations for

categorical variables (Figures 4C and S4A–S4C), spectral fea-

tures (Figures 4D and S4D–S4F), and experimental groups

(Figures 4E and S4G). Group distribution suggested different

contribution of spectral features to their separation.

To understand this point, we built a generalized linear model to

test what features had better identified brain metastasis (Fig-

ure S4H). We found that slow oscillations in the delta and theta

range characterized all metastases, while unique signatures

were appreciated for each type separately. For the E0771-BrM

breast model, changes of alpha and gamma activity also contrib-

uted (Figure 4F), while only alpha activity characterized the B16/

F10-BrM melanoma model (Figure 4G). This, together with the

ratio between oscillatory bands (Delta/Theta and Gamma slow/

fast) helped to identify breast and melanoma from the 482N1

lung cancer model (Figure 4H).

Altogether, this analysis suggests that PC analysis of spectral

features should help to discriminate between brain metastasis

subtypes.

Machine learning identifies experimental brain
metastasis subtypes
Based on our findings suggesting that each brain metastasis

model has a different impact on brain microcircuits and their

emerging oscillations, we hypothesized that PC analysis oper-

ating over spectral features could help to classify across metas-

tasis subtypes.

Five different machine learning classifiers were tested: a

Linear Support Vector Classifier, the standard nonlinear Support

Vector Classifier, a Decision Tree (DecisionTree), an Extra-Tree

Decision Tree (ExtraTree), and XGBoost. These models were

based on data projected over the PC space. They were trained

using randomly selected subsets of data recorded 9–10 days

after cancer cell injections, and tested in the remaining subset

(Figure 5A). We trained algorithms independently, and chose

the one showing the best accuracy representativeness

(Figures S5A and S5B). We found that Decision Tree provided

the most accurate and significant performance (Figure 5B; see

non-selected models in Figure S5C).

Four Decision Tree models were selected from the pool and

used to predict group classes. The prediction successfully iden-

tified data coming from the different groups with a mean accu-

racy of 0.77 ± 0.02 (Figure 5C; p < 0.00001 when tested against
Cancer Cell 41, 1–13, September 11, 2023 7
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Figure 4. A generalized linear model identifies key components defining the diversity of electrophysiological profiles among brain

metastases

(A) Weights of the different LFP features contributing to the different principal components (PC). The scale bar indicates PC weights.

(B) Variance of data from different experimental groups as projected over PCs. The scale bar indicates PC weights.

(C–E) 2D projections of data over different PC pairs that illustrate distribution of categorical variables (C), oscillations (D), and metastasis models (E).

(F) Results of a generalized linear model (GLM) analysis fitted to distinguish E0771-BrM in data from all sessions (n = 492). Beta values (bi) shown in magenta to

blue represent theGLMcoefficients. Positive numbers represent a positive correlation and negative numbers represent a negative correlation. P-values represent

the significance of factors explaining the GLM output. The discontinuous line represents the threshold at p < 0.05.

(G) Same as in F for B16/F10-BrM. H. Same as in F for 482N1. See also Figure S4 and Table S3.
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shuffled distribution of model labels; Table S4). Interestingly,

using a random forest approach onDecision Treemodels trained

in the later metastatic stages identified the presence of some

metastatic tumor as early as 7 days post injection (Figure 5D;

mean accuracy 0.73 ± 0.09; p < 0.00001 significantly different

from shuffles; Table S4). The ability of machine learning tools

to predict the presence ofmetastasis early in advancewas better

than relying on standard statistical analysis of individual LFP

spectral signatures (Figures S5D and S5E).

One potential caveat could be related with the ability of the

predictor to generalize beyond data in which they were trained.

To address this issue, we adopted two different strategies. First,

we run a leave-one-out cross-validation test using sessions from

all mice but one per group (sham, B16/F10-BrM, E0771-BrM,

482N1) to train new Decision Trees. Then, sessions from the

mice that were left out were used for testing. We found consis-

tent performance supporting generalizing ability of the prediction

approach (Figures S5F and S5G).

Second, we obtained LFP recordings from mice injected with

two additional brain metastasis cell lines from lung cancer

(393N1 and 2691N1)10 (Figure S5H). Previously, we showed

that these lines, which were derived from the same GEMM

harboring Krasmutation G12D and Trp53 null alleles,37 exhibited
8 Cancer Cell 41, 1–13, September 11, 2023
a range of metastatic power similar to the 482N1.10 We detected

that both 393N1 and 2691N1, which generate tumors of equiva-

lent size to the other models evaluated (Figure S5I), induced

similar electrophysiological properties as the 482N1 model (Fig-

ure S5J). Subsequently, we used data from these mice to test

performance of Decision Trees trained on the original dataset

(Figure 5E). The predictor would thus classify the new data into

one of the original categories. We found that data from lines

393N1 and 2691N1 were more likely to be classified as the

482N1 than to any of the other lines (Figure 5F). Importantly,

we noticed that one of the Decision Trees misclassified 393N1

and 2691N1 as if they were B16/F10-BrM, and so we tested a

most-voted strategy reaching 98% accuracy for the 2691N1

line and 100% for the 393N1 line (Figure 5G).

DISCUSSION

As patients with brain metastasis start to live longer thanks to

recent therapeutic breakthroughs,38–40 the demand to main-

tain organ function is expected to increase. Because the as-

sociation between tumor mass and the degree of organ

compromise is not always well correlated, even metastases

under proliferative control by an effective therapy might
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Figure 5. Machine learning identifies experimental brain metastasis subtypes

(A) Scheme of the training and test approach.

(B) An example of one Decision Tree Classifier trained on data projected in the PC space used to predict the group classes.

(C) Class predictor applied to data generated from sessions 9–10 days post implantation of brain metastatic cells. The model is able to classify the presence of

different metastasis subtypes using PC analysis of LFP spectral features with a p value of 0.00001.

(D) Class predictor applied to early data obtained 7 days post implantation of brain metastatic cells. The model is able to identify the presence of a tumor with a

p value < 0.00001.

(E) Scheme of the prediction strategy. The model (4 Decision Trees) trained with previous data was used to classify new data from the two additional brain

metastasis cell lines from lung cancer 393N1 and 2691N1. Note that new data will be ascribed to one of the four categories resulting from the previous training.

(F) Mean output of all decision trees when data from new lung cancer lines 393N1 (dark blue) and 2691N1 (light blue) were evaluated with the already trained

predictors. Most trees (3 out of 4) correctly classified all samples from both 393N1 and 2691N1 lines as 482N1 (lung), while 1 decision tree misclassified samples

as B16/F10-BrM (melanoma). Local field potential (LFP) data from 22 ipsilateral and 17 contralateral recordings from 3 mice injected with 393N1 cells; 26

ipsilateral and 24 contralateral sessions from 3 mice injected with 2691N1 cells.

(G) Same as in F for themost-voted output of the 4 decision trees. Here, all 393N1 samples and all 2691N1 samples but 1 were correctly classified as 482N1 (lung).

See also Figure S5 and Table S4.
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still give rise to deleterious effects in the brain. Thus, our

research provides a solid proof of concept to study such

phenomena in vivo by exploiting preclinical models with

state-of-the-art techniques. The three models used have

been previously established10–12 and although similar in terms

of their aggressiveness of brain colonization, their impact on

organ function is different, the 482N1 lung adenocarcinoma

model being the most influential one. Our data are not conclu-

sive on the association of different primary tumor sources and

the incidence of neurocognitive impact since we have not

used several individual models representing each primary tu-

mor entity. However, clinical studies do not support such

association41 and we do not find a correlation in human sam-

ple between the primary source of the metastasis and the

expression of our candidate gene. In addition, another limita-

tion of our study is the need to compare our findings with

treatment-induced toxicities that frequently affect the brain.42

The use of electrophysiology to identify brain metastases is

not a novel approach;43 however, its impact in clinical practice

has been minimal, if any, due to the lack of underlying cellular

and molecular mechanisms that preclude any therapeutic trans-

lation. However, emerging data suggest that neuronal activity

can favor the progression of primary brain tumors such as gli-

oma, which integrates into neuronal circuits24,44 or challenges

the interplay among neurons, microglia, and astrocytes.21,45,46

More strikingly, however, is that colonization of the brain by

invading metastatic cancer cells is fueled by neuronal activity

itself.47 Our results of metastasis-dependent functional alter-

ations of LFP oscillatory activity suggest that communication be-

tween different cell entities can uniquely shape the form and

function of the underlying brain circuits, which is in agreement

with recent data in glioblastoma.44 Consistently, we found that

a model trained in LFP signatures surrounding the three different

brain metastasis can help to disambiguate between subtypes

and to anticipate metastasis. Indeed, our findings might also

point out to the possibility that the molecular makeup of the

metastasis could be linked to the impact imposed by the tumor

on neural circuits. Threemodels harboring alterations inKras and

Trp53 generate a similar electrophysiology phenotype involving

a superior impact on neuronal communication. This suggests

there is information that can be integrated across observational

levels from molecules to functional readouts48,49 to guide explo-

ration of the underlying mechanisms.

Our approach is aiming to increase the translational nature of

such associations by adding the molecular signature associated

with neurological impact. This effort has identified Egr1, a tran-

scription factor, that could directly29 and indirectly, through its

role in angiogenesis,30–34 modulate synaptic communication.

Our current efforts are aimed to dissect the functional implication

of the gene signature identified in both preclinical models as well

as patients. Such an approach would not only offer the founda-

tion for using electrophysiology with emerging noninvasivemulti-

modal approaches50 in early diagnosis, which will minimize the

use of surgery to define and characterize brain metastases,

but also the possibility to prevent or minimize impact of metas-

tasis on QoL, since new therapeutic lines could be developed

to target the underlying molecular mediators. Importantly, while

our data reflect results from reduced laboratory models and a

limited sample size, diagnosis of the complexities of human brain
10 Cancer Cell 41, 1–13, September 11, 2023
metastases still requires an advanced approach. To achieve this

goal, it is critical to incorporate systematic neurocognitive

assessment with available objective and validated tests51 in

the clinical practice. This effort will provide well-curated clinical

databases of neurocognitive impairment associated with brain

metastases that could be used to validate preclinical findings

and to design potential clinical interventions.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Chicken polyclonal anti-Glial Fibrillary

Acidic Protein(GFAP), Unconjugated

Millipore Cat# AB5541; RRID: AB_177521

Rabbit polyclonal anti-Olig2 Millipore Cat# AB9610; RRID: AB_570666

Rabbit polyclonal anti-Iba1 Wako Cat# 019-19741; RRID: AB_839504

Rabbit monoclonal anti-NeuN Abcam Cat# ab177487; RRID: AB_2532109

Rabbit monoclonal anti-Gephyrin Synaptic systems Cat# 147008; RRID: AB_2619834

Guinea pig polyclonal anti-V-GAT1 Synaptic systems Cat# 131004, RRID: AB_887873

Guinea pig polyclonal Anti-vesicular Glutamate

Transporter 1 (V-GLUT1) Unconjugated

Millipore Cat# AB5905; RRID: AB_2301751

Rabbit polyclonal anti-Homer1 Synaptic systems Cat# 160003; RRID: AB_887730

Chicken polyclonal anti-Vimentin abcam Cat# Ab24525; RRID: AB_778824

Rat monoclonal anti mouse CD68 Biorad Cat# MCA1957T; RRID: AB_2074849

Guinea pig polyclonal anti-Parvalbumin Synaptic systems Cat# 195004; RRID: AB_2156476

Recombinant Rabbit monoclonal

anti- CD31 (clone EPR17259)

Abcam Cat# ab182981; RRID: AB_2920881

Rabbit monoclonal anti- EGR1 (clone 15F7) Cell Signalling Cat# 4153; RRID: AB_2097038

Alexa-Fluor goat anti-chicken 488 Invitrogen Cat# A11039; RRID: AB_2534096

Alexa-Fluor chicken anti-mouse 488 Invitrogen Cat# A21200; RRID: AB_2535786

Alexa-Fluor goat anti-rabbit 555 Invitrogen Cat# A21428; RRID: AB_141784

Alexa-Fluor goat Anti-rabbit 488 Invitrogen Cat# A32731; RRID: AB_2633280

Alexa-Fluor goat Anti-rabbit 633 Invitrogen Cat# A21070; RRID: AB_2535731

Alexa-Fluor goat Anti-Guinea pig 647 Invitrogen Cat# A21450; RRID: AB_141882

Alexa-Fluor goat Anti-Guinea pig 555 Invitrogen Cat# A21435; RRID: AB_1500610

Alexa-Fluor goat Anti rat 555 Invitrogen A21434; RRID: AB_2535855

OmniMap anti-Rabbit HRP Ventana-Roche Cat# 760-4311 ; RRID: AB_2811043

Bacterial and virus strains

Ad5-CMV-Cre University of Iowa, Gene

Transfer Core

Cat# VVC-U of Iowa-5

Biological samples

Human samples CNIO Biobank (RENACER) N/A

Chemicals, peptides, and recombinant proteins

RPMI-1640 medium Sigma-Aldrich Cat# R8758

Penicillin/Streptomycin Life Technologies Cat# 15-140-122

DMEM medium Lonza N/A

Trypsin-EDTA (0.05%) Gibco Cat# 25300096

L-Glutamine Gibco Cat# 25030-024

Amphotericin B Fisher Scientific Cat# 15290018

Fetal bovine serum (FBS) Life Technologies Cat# 10500064

Nusieve GTG Agarose Lonza Cat# 50080

Hepes Sigma-Aldrich Cat# H3375-100G

D-Glucose Sigma-Aldrich Cat# G7528

CaCl2 Merck Cat# 102382

MgCl2 Sigma-Aldrich Cat# M2670

NaHCO3 Sigma-Aldrich Cat# S6297

10X HBSS Gibco Cat# 4185052
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Dulbecco’s Phosphate Buffered Saline (PBS) Sigma-Aldrich Cat# D8537-500ML

Hydrofluoromizine (HFz) Su et al.52 N/A

D-Luciferine Syd Labs Cat# MB000102-R70170

Isoflurane Isoflo� Cat# 571329.8

UltraPure� BSA Thermo Fisher Scientific Cat# AM2616

20 % Paraformaldehyde Aname Cat# 15713

Normal Goat Serum (NGS) Abcam Cat# AB7481

Bovine Serum Albumin (BSA) (IGG-Free, protease) Vitro – Jackson Immunoresearch Cat# 001-000-162

Triton X-100 Merck Cat# T9284-500ML

bisBenzimide H 33258 Sigma-Aldrich Cat# B2883

Hematoxylin II Ventana, Roche Cat# 790-2208

2.5 % glutaraldehyde Merck Cat# 104239.0250

Paraformaldehyde Sigma-Aldrich Cat# P6148

Osmium tetroxide Sigma-Aldrich Cat# 201030

Durcupan� ACM Sigma-Aldrich Cat# 44611-14

OptiBondTM Universal light-curing glue Kerr dental Cat# 36517

UnifastTM LC light-curing acrylic GC America Inc Cat# 338006

Kwik-CastTM silicone sealant World Precision Instruments Cat# KWIK-CAST

VybrantTM DiI cell-labeling solution ThermoFisher Scientific, Waltham Cat# V22885

Dolethal 200 mg/ml, Sodium pentobarbital Vetoquinol Cat# 07400060

Critical commercial assays

Brain Tumor Dissociation Kit Miltenyi Biotec Cat# 130-095-942

SureSelectXT Mouse All Exon kit Agilent Cat# G7550

DNAeasy Blood & Tissue Kit Qiagen Cat# 69504

Adult Brain Dissociation Kit Miltenyi Biotec Cat# 130-107-677

Chromium Single Cell 30GEM,

Library & Gel Bead Kit v3

10X Genomics Cat# PN-1000075

RNAeasy Mini Kit Qiagen Cat# 50974104

QIAshredder Kit Qiagen Cat# 79656

QuantSeq FWD 3‘ mRNA-Seq

Library Prep Kit

Lexogen Cat# 015

DISCOVERY RUO Purple kit Ventana, Roche Cat# No. 760–229

EnVision+/HRP, Rabbit, HRP Dako Cat# k400311-2

Target Retrival Solution, High pH Agilent-Dako Cat# k8004

EnVision FLEX HRP Magenta Chromogen

system (Dako omnis)

Dako/Agilent N/A

NEBNext Ultra II Directional RNA Library

Prep Kit for Illumina" ().

New England Biolabs Cat# NEB #E7760

ChromoMap DAB Ventana, Roche Cat# 760-159

Deposited data

Bulk RNA-Seq data of mice tumours This paper GEO: GSE63473

WES data of cancer cell lines This paper BioProject: PRJNA975092

Bulk RNA-Seq data of cell lines This paper GEO: GSE218071

scRNA-seq data of brain metastases This paper GEO: GSE233366

Experimental models: Cell lines

B16/F10-BrM murine melanoma cell line Priego et al.12 N/A

482N1 murine lung cell line Valiente et al.10 N/A

E0771-BrM murine breast cell line Monteiro et al.11 N/A

393N1 murine lung cell line Valiente et al.10 Winslow et al.37 N/A

2691N1 murine lung cell line Valiente et al.10 Winslow et al.37 N/A
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Experimental models: Organisms/strains

Male and Female mice: LSL-CamBI:

double hemizygous for CAG-LSL-

OrangeCaMBI110

Su et al.52 N/A

Mouse: Thy1.2-G-CaMP7-DsRed2 RIKEN Bioresources Center stock RBRCO6579

Software and algorithms

Living Image software, v4.5 Perkin-Elmer https://www.perkinelmer.com/de/

lab-products-and-services/resources/

in-vivo-imaging-software-downloads.

html#LivingImage

Prism, v8 GraphPad https://www.graphpad.com/

scientificsoftware/prism/

Image J NIH Image https://imagej.nih.gov/ij/index.html

Synapse Counter plugin for imageJ Dzyubenko et al.53 N/A

MATLAB 2019a Mathworks https://www.mathworks.com

Binary decision tree for multiclass

clasification (fictree)

MathWorks https://es.mathworks.com/help/

stats/fitctree.html

Principal Component Analysis (PCA) MathWorks https://es.mathworks.com/help/

stats/pca.html

R v4.1.1 R Foundation for Statistical

Computing

https://www.R-project.org/

RStudio PBC https://www.rstudio.com/

FastQC v0.11.0 and v.0.11.9 Simon Andrews https://www.bioinformatics.babraham.

ac.uk/projects/fastqc

TopHat-2.0.10 Trapnell et al.54 https://ccb.jhu.edu/software/

tophat/downloads/

Bowtie 1.0.0 Langmead et al.55 https://anaconda.org/bioconda/

bowtie/files?version=1.0.0

Seurat Stuart et al.56 http://satijalab.org/seurat/

Nextpresso Graña et al.57 https://github.com/osvaldogc/

nextpresso1.9.2

mouse genome (GRCm39) GENCODE release 26 The Gencode Project

(Frankish et al.58)

https://www.gencodegenes.org/

mouse/release_M26.html

mouse genome (GRCm39) GENCODE release 28 The Gencode Project https://www.gencodegenes.org/

mouse/release_M28.html

Bollito Garcı́a-Jimeno et al.59 https://github.com/cnio-bu/bollito

DESeq2 Love et al.60 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

Gene Set Enrichment Analysis (GSEA) Subramanian et al.61 https://www.gsea-msigdb.org/gsea/

doc/GSEAUserGuideFrame.html

varca (v.pre_semver) GitHub https://github.com/cnio_bu/varca

Ensembl Vep Predictor v.108 McLaren et al.62 Conda package

SIFT Ng et al.63 Conda package

COSMIC’s Cancer Gene Census Sondka et al.64 https://cancer.sanger.ac.uk/census

cluster_rnaseq GitHub https://github.com/cnio-bu/

cluster_rnaseq

bbduk (bbmap v.39.01) Bushnell et al. Conda package

STAR v2.7.8a Dobin et al.65 https://code.google.com/archive/

p/rna-star

samtools v1.14 and 0.1.19 Li et al.66 Conda package

featureCounts (subread v.2.0.3) Liao et al.67 Conda package

CIBERSORTx Newman et al.15 https://cibersortx.stanford.edu/

edgeR’s v3.40 Robinson et al.68 Conda package
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Additional code for variant calling of whole

exome sequencing reads

Zenodo https://doi.org/10.5281/zenodo.7957550

Additional code for bulk RNA-Seq

deconvolution of cell types

Zenodo https://doi.org/10.5281/zenodo.7957334

Zen Blue Software Zeiss https://www.zeiss.com/microscopy/

en/products/software/zeiss-zen.html

DigitalMicrograph software package Gatan https://www.gatan.com/products/

tem-analysis/gatan-microscopy-

suite-software

Adobe Photoshop CS6 (13.0.1) Adobe Systems www.adobe.com

Other

Silver wires A-M Systems N/A

Implants Cibertec N/A

Head-fixed apparatus Cibertec N/A

A1x16-5mm-100-413-A16, 16-channel

silicon probes

Neuronexus N/A

USB-ME16-FAI AC amplifier Multichannel Systems N/A

Digidata 1440 Molecular Devices N/A

Stereotaxic frame N/A N/A

Hamilton�TLC syringe Merck Cat# HAM7653-01-1EA

Needle RN for Hamilton syringe VWR Cat# HAMI7803-07

0.8 mm Whatman Nuclepore TrackEtched

Membranes

Sigma-Aldrich Cat# WHA110409

Automated immunostaining platform

(AutostainerLink48 (IHQ)

Dako/Agilent N/A

Automated immunostaining platform

(Discovery XT) (IHQ)

Ventana-Roche N/A

Slide scanner (AxioScan Z1) Zeiss N/A

Sliding microtome Thermo Fisher Scientific N/A

Leica VT1000 S Vibratome Leica Cat# 1404723512

IVIS Xenogen machine Caliper Life Sciences N/A

BD FACSAria� Cell Sorter BD biosciences N/A

FastPrep-24� 5G lysis system MPBiomedical N/A

Agilent 2100 Bioanalyzer Agilent Technologies N/A

NextSeq 550 Illumina N/A

gentleMACS Octo Dissociator Miltenyi Biotec Cat# 130-096-427

gentleMACS� C Tubes Miltenyi Biotec Cat# 130-093-237

Covaris LE220 focused-ultrasonicator Covaris N/A

TapeStation DNA screentape D1000 Agilent N/A

NovaSeq platform Illumina N/A

UltraCut UC7 ultramicrotome Leica Microsystems N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Manuel

Valiente (mvaliente@cnio.es).

Materials availability
This study did not generate new unique reagents.
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Data and code availability
d Raw sequencing reads from whole exome sequencing data of each of the models described in the paper have been deposited

at SRA (BioProject ID: PRJNA975092) and are publicly available as of the date of publication. Accession numbers are listed in

the key resources table. Likewise, bulk RNA-Seq samples from mice models have also been deposited at GEO (GSE231646)

and also listed in the key resources table.

d Both of the pipelines used to preprocess whole exome data and RNA-Seq data are available at GitHub: https://github.com/

cnio_bu/varca and https://github.com/cnio_bu/cluster_rnaseq Additional DOIs for code used in this study are listed in the

key resources table.

d Raw sequencing reads from single-cell RNA-seq data of each of the models described in the paper have been deposited at

GEO (GSE233366) and are publicly available as of the date of publication. Accession numbers are listed in the key resources

table.

d Original code for scRNA-seq analysis has been deposited at Zenodo. DOI https://doi.org/10.5281/zenodo.7963303.

d Raw sequencing reads from bulk RNA-sequencing data of each cell line described in the paper have been deposited at GEO

(GSE218071) and are publicly available as of the date of publication. Accession numbers are listed in the key resources table.

d Pipeline used to preprocess RNA-Seq data is available at GitHub:https://github.com/osvaldogc/nextpresso1.9.2This section

does not report original code.

d Data and code from classification algorithms can be found in: https://github.com/PridaLab/metast-tree

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mice
Male and Female adult C57BL6 mice were obtained from the CNIO animal facility. For electrophysiological experiments, male and

female adult Thy1.2-G-CaMP7-DFsRed2 mice initially obtained from the RIKEN Bioresources Center (stock RBRCO6579) were

maintained at the Instituto Cajal animal faccility. Male and female double hemizygous for CAG-LSL-OrangeCaMBI110 (LSL-

CamBI) mice52 (10-12 weeks old) were obtained from the CNIO animal facility after receiving the colony from the original

source (M.Z.L.).

All animal experiments were performed in accordance with a protocol approved by the Instituto Cajal CSIC, the CNIO, Instituto de

Salud Carlos III and Comunidad de Madrid Institutional Animal Care and Use Committee (PROEX135/19 and PROEX 162/19). All

protocols and procedures were performed according to the Spanish legislation (R.D. 1201/2005 and L.32/2007) and the European

Communities Council Directive 2003 (2003/65/CE). Experiments were approved by the Ethics Committee of the Instituto Cajal and

the Spanish Research Council.

Cell culture
Murine B16/F10-BrM (brain metastatic), 482N1, 393N1 and 2691N1 cells were all cultured in DMEMmedium supplemented with 10

% FBS, 100 IU.ml–1 penicillin/streptomycin, and 1 mg.ml–1 amphotericin B. Murine E0771-BrM cells were cultured in RPMI 1640me-

dium supplemented with 10% FBS, 100 IU.ml–1 penicillin/streptomycin, 1 mg.ml–1 amphotericin B, and 1%hepes. All cell lines were

tested negative for Mycoplasma. We did not do cell authentification beyond visual morphological and growth rate analyses.

Human samples
All human brain metastases samples were acquired from the CNIO Biobank following protocols approved by the CEI (CEI PI 25_2020

and CEI PI46_2022) and after patients signed the RENACER informed consent.

METHOD DETAILS

Mouse preparation for head-fixed electrophysiological experiments
Wild-type males and females adult mice were implanted with fixation head bars under isofluorane anesthesia (1.5-2 %mixed in ox-

ygen 0.4-0.6 l/min). Two silver wires previously chlorinated were inserted over the cerebellum for reference/ground connections

required for electrophysiological experiments. Implant and wires were fixed to skull with light-cured glue (OptibondTM Universal,

Kerr dental, Bioggio, Switzerland) and secured with dental cement (UnifastTM LC, GC America Inc, Chicago, IL, USA). Once mice

recovered from anesthesia, they were returned to their home cages.

Few days after surgery, mice were habituated to the head-fixed apparatus, consisting on a wheel (20 cm radius) coupled to a ste-

reotactic frame. Habituation sessions (5-7 days, 2 sessions per day) included handling and mounting/dismounting the head for

increasing periods of time (from 5-10 min to more than 1 hour). Habituated head-fixed mice typically alternated periods of running

and immobility.
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Injection of brain metastatic cell lines
Habituatedmice were injected intracranially with B16/F10-BrM, 482N1, E0771-BrM, 393N1 and 2691N1 cell lines (40000 cells in 2 ml)

in the right hemisphere (1.5 mm lateral and 1 mm caudal from bregma, and to a depth of 1 mm) and with saline (2 ml) in the left

hemisphere by using a gas-tight Hamilton syringe and a stereotactic apparatus. Sham animals were injected intracranially with

2 ml of saline in both hemispheres.

Electrophysiological recordings from awake head-fixed mice
Six days after cancer cells injection, habituated mice were anesthetized and a cranial window was opened at -2 mm posterior from

Bregma and 1.25 mm lateral from midline in each hemisphere. Afterwards, the craniotomy was covered with low toxicity silicone

elastomer (Kwik-SilTM, World Precision Instruments, Sarasota, FL, USA). Recordings were performed on days 7, 9 and 10 after

the cells/saline injection.

For recordings, we used 16-channel silicon probes consisting in a linear electrode array with 100 mm separation and 413 mm2

electrode area (Neuronexus). Extracellular signals were pre-amplified (4x gain) and recorded with a 16-channel AC amplifier

(100x, Multichannel Systems, Reutlingen, Germany), and sampled at 20 kHz/channel (Digidata 1440, Molecular Devices, San

Jose, CA, USA). For simultaneous bilateral recordings, we used two different silicon probes and recorded 8 channels per probe

with 200 mm separation. Silicon probes were inserted up to 200-300 mm below CA1 stratum pyramidale of the dorsal hippocampus

to get simultaneous hippocampal and cortical recordings. The stratum radiatum and stratum pyramidale were identified using char-

acteristic physiological events, including sharp-wave ripples and the reversal of theta oscillations. The position of the animal in the

wheel was stored to evaluate periods of running and immobility.

Spectral analysis of LFP activity
Analysis of electrophysiological signals was implemented in MATLAB 2019a (MathWorks). For analysis of the entire frequency band

(1–1000 Hz), a Hamming window and the fast Fourier transform (FFT) at 0.5 Hz resolution were used. For spectral analysis, the con-

tributions of 50 Hz and harmonics were filtered out, and data between the filter limits were interpolated. Analysis of the spectral power

was estimated from the FFT for delta (1-4 Hz), theta (4-12 Hz), alpha (8-14 Hz), slow gamma (40-60 Hz), fast gamma (70-90 Hz), ripple

(100-200 Hz) and HFOs (>200 Hz) bands. For a more standardized comparison, data was transformed to decibels by applying

10$log10(x) (where x is spectral power), and normalizing power spectrum tail to zero. One dimensional current-source density

(CSD) signals were calculated from the second spatial derivative of laminar LFPs (100 mm resolution). Smoothing was applied to

CSD signals for visualization purposes only. Spectral analysis of the CSD signals was similar to that of the LFP. Multiple probe pen-

etrations were made per animal and hemisphere (typically 2 to 5), resulting in 109 ipsilateral (sham 17; E0771-BrM 12, B16/F10-BrM

17, 482N1 15, 393N1 22 and 2691N1 26) and 103 contralateral penetrations (sham 16, E0771-BrM 12, B16/F10-BrM 17, 482N1 17,

393N1 17 and 2691N1 24) from 26 mice).

After last LFP recordings, the probes were stained with DiI to label the tracks (ThermoFisher Scientific, Waltham, MA USA), and

animals transcardially perfused for posterior histological analysis.

RNA-seq extraction and transcriptomic analysis
RNA was obtained from mouse B16/F10-BrM, 482N1 and E0771-BrM cell lines from a confluent well from a 6-well plate. The whole

RNA was isolated using RNAeasy Mini Kit (Qiagen). 500ng of total RNA samples were used. Sample RNA Integrity numbers were 9.8

on average (range 9,7-10) when assayed on an Agilent 2100 Bioanalyzer. Sequencing libraries were prepared with the QuantSeq 3‘

mRNA-Seq Library Prep Kit (FWD) for Illumina (Lexogen, Cat.No. 015) by following manufacturer’s instructions. Library generation

was initiated by reverse transcription with oligodT priming, and a second strand synthesis was performed from random primers

by a DNA polymerase. Primers from both steps contained Illumina-compatible sequences. Libraries were completed by PCR

{This kit generates directional libraries stranded in the sense orientation: the read1, the only read in single read format, has the sense

orientation (–library-type fr-secondstrand in TopHat, –stranded=yes in HTSeq)}. cDNA libraries were purified, applied to an Illumina

flow cell for cluster generation and sequenced on an Illumina NextSeq 550 (with v2.5 reagent kits) by following manufacturer’s pro-

tocols. Eightysix-base-pair single-end sequenced reads followed adapter and polyA tail removal as indicated by Lexogen. Mouse

reads were analysed with the Nextpresso57 pipeline as follows: sequencing quality was checked with FastQC v0.11.0 (https://

www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were aligned to the mouse genome (GRCm39) with TopHat-

2.0.1054 using Bowtie 1.0.055 and Samtools 0.1.19,66 allowing 3 mismatches and 20 multihits. The Gencode vM26 gene annotation

for GRCm39 was used. Read counts were obtained with HTSeq.69 Differential expression and normalization were performed with

DESeq2,60 filtering out those genes where the normalized count value was lower than 2 in more than 50 % of the samples. From

the remaining genes, those that had an adjusted p-value below 0.05 FDR were selected. GSEAPreranked61 was used to perform

gene set enrichment analysis for several gene signatures on a pre-ranked gene list, setting 1000 gene set permutations. Only those

gene sets with significant enrichment levels (FDR q-value < 0.25) were considered. Access to RNA-seq data is provided from the

Gene Expression Omnibus, under the ID GSE231646.

scRNA-seq
Ten days after intracranial injection of different 481N1cell lines, the presence of established brain metastases was confirmed by BLI.

Mice were sacrificed and brains were extracted in precooled D-PBS 1x and a pool of three dissected established metastatic lesions
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from different brains were processed with the Brain Tumor Dissociation Kit (130-095-942, Miltenyi) using gentleMACS C Tubes (130-

093-237, Miltenyi) and the gentleMACS Octo Dissociator (130-096-427, Miltenyi). Briefly, dissected lesions were transferred into a

gentleMACS C Tub and digested with the enzymatic mixed provided by the kit with the gentleMACS Program 37C_BTDK_01 using

the gentleMACS Octo Dissociator with heaters. Resulting cell suspension was filtered with a 70 mm strainer and centrifuged at 3003

g for 10 min at 4�C. For myelin and red blood cell removal, debris removal solution and red blood cell removal solution, included in the

Adult Brain Dissociation Kit (130-107-677, Miltenyi), were applied. Single cell suspensión was subjected to fluorescence-activated

cell sorting using the BD FACSAria�Cell Sorter to isolate cancer cells according toGFP expression. Cell suspensionwas centrifuged

at 3003 g for 10 min, and the pellet was resuspended in 0.04% ultrapure BSA (AM2616, Thermo Fisher Scientific) PBS 1x at a con-

centration of 106 cells/ml. Cells placed on ice, were tested for the optimal viability and free of debris and aggregates. Cell sample was

loaded onto a 10x Chromium Single Cell controller chip B (10x Genomics) as described in the manufacturer’s protocol (Chromium

Single Cell 3’GEM, Library & Gel Bead Kit v3, ref. PN-1000075). Intended targeted cell recovery of �10000 cells. Generation of gel

beads in emulsion (GEMs), barcoding, GEM-RT clean-up, cDNA amplification and library construction were all performed as recom-

mended by the manufacturer. scRNA-seq libraries were sequenced with an Illumina NextSeq 550 (using v2.5 reagent kits) in paired-

end fashion (28bp + 56bp bases). The bollito59 pipeline was used to perform read analysis, as follows: Sequencing quality was

checked with FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were aligned to the mouse reference

genome (GRCm39, vM28 gene annotation fromGENCODE58with STARsolo (STAR 2.7.8a).65 Each dataset was processed for quality

control, normalization, anchoring, integration, dimension reduction, clustering, annotation, and marker identification.

Normalization, integration, and dimension reduction Functions in the Seurat (v3.2.2) package were used for the following ana-

lyses.56 Data were log normalized, and the top 2,000 variable features were identified. After scaling the data, linear and non-linear

dimension reduction was performed by Principal Component Analysis of variable features and Uniform Manifold Approximation

and Progression (UMAP) analysis, respectively, using the top 40 principle components. The number of dimensions used for dimen-

sional reduction analyses was determined based on the inflection point on an Elbow plot. Clustering, annotation, and marker iden-

tification Clustering was calculated using the functions FindNeighbors and FindClusters, with a range in resolution between 0.1 and 1.

Ultimately, a resolution of 0.75 was used for initial clustering. To identify major sub-states present, the FindAllMarkers function (log2

fold change > 0, usingWilcoxon rank sum test, adjusted p-value < 0.05 using the Bonferroni correction) was used to determine unique

and/or highly enriched DEGs in one cluster compared to all other clusters. Data were visualized using Seurat package functions,

including DimPlot, FeaturePlot, DotPlot and VlnPlot. For Egr1-positive sorted data, the function Seurat::subset was used

(Egr1 > 2). Additionally, DEGs for Egr1-positive sorted were evaluated by pathway analysis in a within cluster mode. In brief, DEG

gene IDs were converted to Ensembl IDs (using AnnotationDbi package org.Hs.eg.db::mapIDs) and then to Entrez IDs (using bio-

maRt::getBM). For each individual cluster in each cell sorted type, Entrez IDs were analyzed using clusterProfiler::enrichGO, and

GO terms were identified (adjusted p-values < 0.05 using the Benjamini-Hochberg method, false discovery rate < 0.1).

Whole exome sequencing and somatic variant calling
DNA was obtained from mouse B16/F10-BrM, 482N1 and E0771-BrM cell lines from a confluent well from a 6-well plate. The whole

DNA was isolated using DNAeasy Blood & Tissue Kit (Qiagen) and was sent to Macrogen Company in Seoul, South Korea. For the

generation of standard exome capture libraries, the Agilent SureSelect Target Enrichment protocol for Illumina paired-end

sequencing library (Version C2, December 2018) was used together with 1 mg input gDNA. In all cases, the SureSelectXT Mouse

All Exon probe set was used. The quantification of DNA and the DNA quality was measured by PicoGreen and agarose gel electro-

phoresis. 1 mg of each cell line’s genomic DNA diluted in EB Buffer was used and sheared to a target peak size of 150–200 bp using

the Covaris LE220 focused-ultrasonicator (Covaris, Woburn, MA) according to the manufacturer’s recommendations. 8 microTUBE

Strip were loaded into the tube holder of the ultrasonicator and the DNA was sheared using the following settings: mode, frequency

sweeping; duty cycle, 10 %; intensity, 5; cycles per burst, 200; duration, 60 sec 3 6 cycles; temperature, 4�C–7�C. The fragmented

DNA was repaired, an ‘A’ was ligated to the 30 end, and agilent adapters were then ligated to the fragments. Once ligation had been

assessed, the adapter ligated product was PCR amplified. For exome capture, 250 ng of DNA library was mixed with hybridization

buffers, blocking mixes, RNase block and 5 ml of SureSelect all exon capture library, according to the standard Agilent SureSelect

Target Enrichment protocol. Hybridization to the capture baits was conducted at 65�C using heated thermal cycler lid option at 105
�C for 24 hours on PCR machine. The captured DNA was then washed and amplified. The final purified product was then quantified

using qPCR according to the qPCR Quantification Protocol Guide (KAPA Library Quantification kits for Illumina Sequencing plat-

forms) and qualified using the TapeStation DNA screentape D1000 (Agilent). Finally, sequencing was performed using the

NovaSeq platform (Illumina, San Diego, USA).

Somatic variant calling was performed using varca (https://github.com/cnio_bu/varca), a snakemake workflow which implements

the GATK best-practices guidelines for calling small variants. Due to missing healthy controls and to mitigate the calling of potential

germline variants, we included a panel of common single nucleotide variants from the Mouse Genome Project.70 The resulting set of

variants was further refined by excluding alterations in intergenic or intronic regions, those at a depth of 50 or less, synonymous var-

iants, thosewith a low predicted impact by the Ensembl Vep Predictor v.10862 and those annotated as tolerated by SIFT.63 Finally, we

summarized each model’s alteration profile as a set of variants spanning known cancer genes present in COSMIC’s Cancer Gene

Census.64

Access to WES data is provided from the BioProject database, under the ID PRJNA975092.
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Bulk RNA-seq analysis and cell type deconvolution
Ten days after intracranial injection of different cell lines (481N1, B16/F10-BrM, and E0771-BrM), the presence of established brain

metastases was confirmed by BLI. Mice were sacrificed and brain tumor and peritumoral area were microdissected and mechani-

cally disgreggated with the FastPrep-24� 5G lysis system (MPBiomedical) by using zirconium beads at 6.0 m/s for 15 s followed by

10 min incubation on ice. QIAshredder columns (Qiagen,79656) were used to homogenize the preparation and whole RNA was

isolated using the RNAeasy Mini Kit (Qiagen).

Total RNA samples [1 mg] were converted into sequencing libraries with the "NEBNext Ultra II Directional RNA Library Prep Kit for

Illumina" (NEB #E7760). Briefly, polyA+ fraction is purified and randomly fragmented, converted to double stranded cDNA and

processed through subsequent enzymatic treatments of end-repair, dA-tailing, and ligation to adapters. Adapter-ligated library is

completed by PCR with Illumina PE primers. The resulting purified cDNA libraries were applied to an Illumina flow cell for cluster

generation and sequenced on an Illumina NextSeq 550 (with v2.5 reagent kits) by following manufacturer’s protocols.

The raw sequencing reads from the bulk RNAseq samples were processed using cluster_rnaseq (https://github.com/cnio-bu/

cluster_rnaseq). Briefly, FastQC (v.0.11.9) was used to generate QC reports of the sequencing reads. Raw reads were then trimmed

with bbduk (bbmap v.39.01) to remove the adapter sequences. Trimmed reads were aligned with STAR v2.7.8a65 to the GRCm39

reference and indexed with samtools v1.14.66 Finally, mapped reads were counted and aggregated to a matrix of gene-level counts

with featureCounts (subread v.2.0.3).67

Cell type deconvolution from bulk RNAseq samples was performed with CIBERSORTx.15 First, we normalized the gene-level

counts matrix using edgeR’s68 TMM normalization and then transformed the normalized matrix to counts per million with the cpm

function. Then, we generated a reference expression profile for each cell type. To do so, we downloaded normalized and annotated

single cell RNA-Seq data from brain metastases published by Gonzalez H and colleagues.18 CIBERSORTx was used to generate the

reference matrix of expression profiles. The parameters used for this job were the following: disabled quantile normalization,

kappa=0.999, q-value=0.01, number of barcode genes between 300 and 500 and a minimum of 5 samples. The rest of the settings

were left as default.

Immunofluorescence
After performing the LFP recordings, at day 10,micewere anesthetizedwith sodium pentobarbital and perfusedwith 4%PFA.Whole

brains were dissected and postfixed in the same fixative overnight at 4�C. Slicing of the brain was done by using a sliding microtome

(Thermo Fisher Scientific). 80 mm slices were blocked in 10 % NGS, 2 % BSA and 0.25 % Triton X-100 in PBS for 2 h at room

temperature (RT). Primary antibodies were incubated overnight at 4�C in the blocking solution and the following day for 30 min at

RT. After extensive washing in PBS-Triton 0.25 %, the secondary antibody was added in the blocking solution and incubated for

2h. After extensive washing in PBS-Triton 0.25 %, nuclei were stained with bis-benzamide (1 mg/mL; Sigma-Aldrich) for 7 min at

RT. Primary antibodies: GFAP (Millipore, AB5541, dilution 1:700); Olig2 (Millipore, AB9610, dilution 1:500); Iba1 (Wako, 019-

19741, dilution 1:500); NeuN (Abcam, ab177487, dilution 1:200)); Gephyrin (Synaptic systems, 147008, dilution 1:1000); V-GAT1

(Synaptic systems, 131004, dilution 1:500); V-GLUT1 (Millipore, AB5905, dilution 1:2000), Homer1 (Synaptic systems, 160003, dilu-

tion 1:200); Vimentin (Abcam, ab24525, dilution 1:300); CD68 (Biorad, MCA1957T, dilution 1:1000) and Parvalbumin (Synaptic sys-

tems, 195004, dilution 1:500) . Secondary antibodies: Alexa-Fluor goat anti-chicken 488 (Invitrogen, A11039, dilution 1:500); Alexa-

Fluor chicken anti-mouse 488 (Invitrogen, A21200, dilution 1:300); Alexa-Fluor goat anti-rabbit 555 (Invitrogen, A21428, dilution

1:300); Alexa-Fluor goat Anti-rabbit 488 (Invitrogen, A32731, dilution 1:300); Alexa-Fluor goat Anti-rabbit 633 (Invitrogen, A21070,

dilution 1:300); Alexa-Fluor goat Anti-Guinea pig 647 (Invitrogen, A21450, dilution 1:300); Alexa-Fluor goat Anti-rat 555 (Invitrogen,

A-21434, dilution 1:300) and Alexa-Fluor goat Anti-Guinea pig 555 (Invitrogen, A21435, dilution 1:300).

Immunohistochemistry
Whole brains from the brain metastasis models (B16/F10-BrM, E0771-BrM, 482N1, 393N1, 2691N1, H2030-BrM, HCC1954-BrM

and MDA231-BrM) were dissected and postfixed in 4 % PFA overnight at 4�C and then stored at PBS. Brains were cut at 3 mm,

mounted on SuperFrost Plus� and TOMO� slides and dried overnight. Immunohistochemical reactions were performed on an

automated immunostaining platform (AutostainerLink48 (Dako/Agilent and Discovery XT, Ventana-Roche) for CD31 and EGR1

respectively. After antigen retrieval was performed on the PT Link, with target retrieval solution, high pH (k8004, Agilent) for CD31

and with pH buffer (CC1 Ventana, Roche) for EGR1, endogenous peroxidase was blocked (peroxide hydrogen at 3%). The slides

were then incubated with the appropriate primary antibody: Rabbit monoclonal anti- CD31 (clone EPR17259, dilution 1/2000,

35 min, Abcam, ab182981) and/or rabbit monoclonal anti- EGR1 (clone 15F7, dilution 1/50, 32 min, Cell Signalling, 4153). After

the primary antibody incubation, the slides were incubated with a horseradish peroxidase-conjugated anti-rabbit secondary anti-

body: i). CD31 with EnVision Rabbit visualisation systems (Dako, k400311-2). The immunohistochemical reaction was developed

with EnVision FLEX HRP Magenta Chromogen (Dako/Agilent); ii). ERG1 with visualisation systems (OmniMap anti-Rabbit, 760-

4311, Ventana, Roche) and the immunohistochemical reaction was developed with purple (DISCOVERY RUO Purple kit, Cat. No.

760–229, Ventana, Roche).

Finally, nuclei were counterstained with Carazzi’s hematoxylin and slides were dehydrated, rinsed and mounted with permanent

mounting medium for microscopic evaluation.

Positive control sections known to be positive for the primary antibody were included in each staining series.
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Image acquisition
Immunofluorescence whole slides images were acquired with a Thunder Imaging System (Leica-Microsystems) equipped with a 10X

dry objective with a NA of 0.45, led excitation, a DFC9000GTC camera and LAS X v3.5 software. Glial cells and neurons images were

acquiredwith a Leica SP5 up-right confocal microscope equippedwith a 20X dry objective with aNA of 0.7 and analysedwith ImageJ

software.

Excitatory and inhibitory synapses images were acquired with a SP8 up-right confocal microscope equipped with a 63X oil immer-

sion objective with a NA of 1.4. Images were taken as z-stacks (five slices, 0,2 mm intervals) with a scan zoom of 2,78X and an image

size of 1024 x 1024 pixels (66,38 x 66,38 mm). Synapses quantification was performed in maximal, intensity projection using Synapse

Counter plugin for imageJ.53

Immunohistochemistry whole slides images were acquired with a slide scanner (AxioScan Z1, Zeiss), with a 20X objective and

images captured with the Zen Blue Software (Zeiss). An appropriate script was created using Zen Blue Software (additional module

for analysis, Zeiss) to analyse each antibody. After training and script optimization, the quantification was run on each image manu-

ally, in order to select areas and results exported as excel files with scoring data for each file.

Calcium imaging in organotypic cultures
Adult double hemizygous for CAG-LSL-OrangeCaMBI110 (LSL-CamBI) mice52 were intracranially injected with each BrM cell line

(B16/F10-BrM, 482N1 or E0771-BrM). 10 d after intracranial injection of cancer cells, animals were sacrificed and brains with

established metastases were processed into organotypic cultures as previously described.10 In brief, brains were dissected in

HBSS supplemented with HEPES (pH 7.4, 2.5 mM), D-glucose (30 mM), CaCl2 (1 mM), MgCl2(1 mM), and NaHCO3 (4 mM) and

embedded in 4 % low-melting agarose (Lonza) preheated at 42�C. The embedded brains were cut into 300 mm slices using a

vibratome (Leica). Brain slices were divided into two halves. Slices were placed with flat spatulas on top of 0.8 mm pore membranes

(Sigma-Aldrich) floating on slice culture media (DMEM, supplemented HBSS, FBS 5%, L-glutamine (1 mM), and 100 IU/ml penicillin/

streptomycin).

Brain slices were imaged to identify cancer cells-derived bioluminescence by adding D-Luciferin for firefly-expressing cancer cells

using BLI (day 0). Then 20 ml of Ad5-CMV-Cre (103 pfu / ml, University of Iowa) were added to each brain slice to allow CamBI

expression.

Brain slices were imaged 3 days after the addition of the AAV-Cre to identify microenvironment derived calcium-dependent biolu-

minescence by adding Hydrofluoromizine52 using BLI (day 3). Microenvironment derived calcium-dependent bioluminescence (day

3) was then normalized to the cancer cells-derived bioluminescence (day 0) to avoid any variable related to the tumor size. Hydro-

fluoromizine was synthesized following the synthetic protocols published,52 to afford desired compound as a brown solid. 1H NMR

(300MHz, CDCl3) d ppm 9.80 (broad s, 1H), 9.43 (br s, 1H), 7.38 (m, 2H), 7.22 (m, 2H), 7.02 (m, 2H), 6.79 (m, 1H), 6.60 (m, 1H), 6.40 (m,

1H), 6.18 (m, 2H), 4.41 (s, 2H), 4.22 (s, 2H). LCMS (ESI, Gemini-NX C18, 100 x 2.0 mm; 5 mm particle size. Eluent A, water with 0.1 %

formic acid; eluent B: acetonitrile with 0.1% formic acid. Gradient 5% to 100%of Bwithin 8min at 50�C, DAD): Rt = 4.667min, m/z =

398.10 [M+ H]+ (calculated for C24H19N3O3 [M + H]+ m/z 398.1505).

Electron microscopy
Mice bearing brain metastases formed by the intracranial injection of E0771-BrM cells, B16/F10-BrM and 482N1 cells (10 days after

the injection) were euthanized by CO2 and perfused with 2.5% glutaraldehyde and 2% paraformaldehyde in buffer phosphate 0.1 M

(pH 7.2-7.4). Whole brains were dissected and postfixed in the same fixative at room temperature for 6-8 h in slow shaking. Coronal

sections (500 mm thick) were obtained with a vibratome (Leica). Slices containingmetastases were washed in buffer phosphate 0.1M

(pH7.2-7.4) at room temperature and were then further cut in small pieces of 1 mm x 1.5 mm containing the interface metastasis-

neuropil and stored in buffer phosphate 0.1 M (pH7.2-7.4). Samples were then washed in iso-osmolar Sorensen (0.1 M) / Sucrose

(4-8%) buffer and fixed in 1% (w/v) osmium tetroxide in Sorensen buffer during 2 h in darkness at 4�C. After repeated washes, sam-

ples were dehydrated in increasing concentrations of acetone (30, 50, 70, 90, 99 and 100 %) and embedded in epoxi resin in

ascending steps of acetone:resin (2:1, 1:1 and 1:2) and then pure resin. Samples were included in a new epoxy resin and were poly-

merized for 48 h at 55�C. Hardened blocks were cut with a 35� diamond knife (Diatome, USA) using the UltraCut UC7 ultramicrotome

(Leica Microsystems, Germany). Ultrathin sections (50-60 nm) were collected on formvar/carbon-coated copper grids and contrast

stained with 2% uranyl acetate and lead citrate. Section were then examined with the JEM 1011 (JEOL, Japan) electron microscope,

operating at 80 kV. Micrographs were taken with a camera (Orius 1200A; Gatan, USA) using the DigitalMicrograph software package

(Gatan, USA). Electron micrographs were processed using Adobe Photoshop CS6 (13.0.1) (Adobe Systems).

Human sample processing and immunohistochemistry
Human tissue samples were cut at 4 mm, mounted on Thermo Fisher Scientific Gerhard Menzel (Superfrost� Plus) slides and dried

overnight. Immunohistochemical reactions were performed on an automated immunostaining platform (Discovery XT, Ventana-

Roche). First, antigen retrieval was performed with the appropriate pH buffer (CC1 Ventana, Roche) and endogenous peroxidase

was blocked (3% hydrogen peroxide). Slides were then incubated with the primary antibody: rabbit monoclonal anti-EGR1 antibody

(clone: 15F7, dilution 1/50, 32 min, Cell Signaling, 4153). After the primary antibody, slides were incubated with a horse peroxidase-

conjugated anti-rabbit secondary antibody with visualization systems (OmniMap anti-rabbit, 760-4311, Ventana, Roche). The immu-

nohistochemical reaction was developed using 3, 30-diaminobenzidine tetrahydrochloride (ChromoMap DAB, 760-159, Ventana,
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Roche) and nuclei were counterstained with hematoxylin II (modified Mayer’s hematoxylin, 790-2208, Ventana, Roche). Finally, the

slides were dehydrated, rinsed andmounted with permanent mountingmedium for microscopic evaluation. Positive control sections

known to be positive for the primary antibody were included in each staining series.

Principal Component Analysis (PCA)
We performed a Principal Component (PC) analysis of an input data matrix that consisted on 492 samples obtained from 123

recording sessions from 20 different animals (control: n=6, breast metastasis: n=4, melanoma metastasis: n=5, lung metastasis:

n=5). Each sample data was classified as coming from periods of Run (speed>2 m/s) and Still (speed<2 m/s) and from different

recording channels which were separated according to their location (Cortex/Hippo and Ipsi/Contra). Apart from these categorical

variables, several spectral features were evaluated for each sample. The mean power (in decibels) for each oscillatory band was

computed and reported as: delta (delta_db; 1-4 Hz), theta (theta_db; 4-12 Hz), alfa (alfa_db; 9-14 Hz), slow gamma (gammaS_db;

40-60 Hz), fast gamma (gammaF_db; 70-90 Hz), ripple (ripple_db; 100-200 Hz), high frequency oscillations or HFO (HFO_db; 200-

1000 Hz). Ratios between some band were also included, such as delta over theta (delta_over_theta, delta_db/theta_db), and

slow over fast gamma (gammaS_over_gammaF; gammaS_db/gammaF_db).

The input datamatrix (492 samples x 12 features including categorical variables) was z-scored by column, and PCAwas performed

over the resulting matrix, using pca MATLAB implementation. We worked with 9 principal components, which were the number of

principal components that explained 99% of variance.

Generalized Linear Model (GLM)
Three different Generalized Linear Models (GLMs) were implemented to distinguish a particular brain metastasis from the others.

Input data to inform the GLM were the following z-scored variables: delta_db, theta_db, alfa_db, gammaS_db, gammaF_db, rip-

ple_db, HFO_db, delta_over_theta, gammaS_over_gammaF. To compute the GLM, the fitglm function from MATLAB was used

with a linear fit, a binomial distribution and logit link.

Comparative between machine learning classifiers
We compared different machine learning classifiers, including several types of decision trees and support vector machines. In partic-

ular, standard decision trees (DecisionTreeClassifier from sklearn.tree python package), a random forest that fits several randomized

trees (ExtraTreeClassifier from sklearn.tree), XGBoost (xgboost python package), a linear support vector classifier (LinearSVC from

sklearn.svm) and a standard non-linear support vector classifier (SVC from sklearn.svm). All methods were tested using default

hyperparameters, in python 3.8.5, with sklearn 0.23.2, xgboost 1.6.1. In order to test which classifier was more accurate, we built

a pool of 600 different instances of each classifier. Each instance was trained using a different randomized subset of data recorded

at late stages (9-10 days after cancer cells injection) projected over the PCA space (60%), and evaluated computing the accuracy

over the remaining 40%. Accuracy was defined as:

accuracy =
1

N

X

N

�
ytrue = ypred

�
;N˛ testsamples

Models that did not achieved a significant accuracy (tested against 100 shuffled samples, p-value<0.05) for every class (control or

breast/melanoma/lung metastasis) were discarded, and only significant models were considered. Accuracies of these instances

were compared using the number of significant models, and the mean accuracy of the significant models.

Decision trees for predictive modeling
Final classification of input data between control or breast/melanoma/lung metastasis classes was performed using decision trees.

First, we trained classifiers using four randomly selected subsets of data (60%) recorded at late stages (9-10 days after cancer cells

injection) projected over the PCA space, resulting in four different decision trees. Each decision tree model was tested over the re-

maining subset of late data (40%). Decision trees were trained using fitctree from MATLAB R2019b, choosing MaxNumCategories

parameter that better optimized accuracy.

Accuracies were reported as the mean of the four decision trees and tested against shuffled samples (p-value<0.05).

To evaluate the capability to predict the presence of metastasis in advance, we trained a random forest classifier using all late data

projected over the PCA space, and test it over data obtained at early stages (7 days after cancer cells injection). The random forest

consisted on six decision trees defined using the fitctreeMATLAB function with MaxNumCategories = 4, and MaxNumSplits ranging

from 2 to 9. Predictionsmade over the early data were then transformed into control or metastasis (no distinction betweenmetastasis

subtypes). The final decision was taken as the most voted of the six decision trees, following a random forest strategy.

Confusion matrices
Predictions were represented using confusion matrices. Each row of the matrix represents the number of predictions of each class,

while each column represents the number of instances on the real class. The diagonal therefore contains the number of true positives

(or true negatives depending on the visualization), and the off-diagonal elements false positives and false negatives. In order to

compensate for imbalances, we divided each column by the total number of instances of the real class.
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The confusion matrix is, then:
T R U E

Control (C) Breast (B) Melanoma (M) Lung (L)

P C (#Cp + #Ct) / (#Ct) (#Cp + #Bt) / (#Bt) (#Cp + #Mt) / (#Mt) (#Cp + #Lt) / (#Lt)

R B (#Bp + #Ct) / (#Ct) (#Bp + #Bt) / (#Bt) (#Bp + #Mt) / (#Mt) (#Bp + #Lt) / (#Lt)

E M (#Mp + #Ct) / (#Ct) (#Mp + #Bt) / (#Bt) (#Mp + #Mt) / (#Mt) (#Mp + #Lt) / (#Lt)

D L (#Lp + #Ct) / (#Ct) (#Lp + #Bt) / (#Bt) (#Lp + #Mt) / (#Mt) (#Lp + #Lt) / (#Lt)
where # means number of, C denotes control, B breast, M melanoma and L lung, t means ‘‘true’’ and p means ‘‘predicted’’

Testing generalizing capability
We evaluated generalizability of the prediction approach using two strategies. First, a leave-one-out cross validation (LOOCV) test

was implemented. To this purpose, we re-trained classifiers using sessions from all mice but one and then tested the predictor in

sessions from the remaining mice. We quantified the ability of the predictor to generalize by estimating the mean squared error

(MSE). Second, new experiments were obtained using mice from different experimental cancer cell lines to test the generalization

capability of the already trained classifiers. New data was z-scored using the mean and SD of the training dataset, and projected

into the same PC axes.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyzes were run on GraphPad Prism.

Data are represented as the mean or median ± s.e.m. Comparisons between two experimental groups were analysed with

unpaired, two-tailed Student’s t-test. Non-parametrical analysis between two experimental groups were performed with Wilcoxon

rank sum test and Wilcoxon signed rank test. Analysis between more than two groups with homogenous variances were performed

by a one-way ANOVA followed by a post-hoc Tukey test. Non-parametrical multivariate analysis betweenmore than two groupswere

performed by a Kruskal-Wallis test followed by a post-hoc Tukey test or a Dunn’s test. Statistical analysis of machine learningmodels

was implemented in Matlab.

Statistical details of experiments can be found in the figure legends and include the statistical tests used, exact value of n and what

n represents.
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