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RESUMEN
En la actualidad existen numerosos problemas de gran escala computacional, que

no son capaces de resolverse utilizando un único computador. Para hacer frente a este
problema se ha desarrollado la computación con clústeres.

Un clúster es un conjunto de computadores o nodos que están conectados entre śı
y trabajan juntos de manera coordinada para resolver un problema. Cada nodo o com-
putador de un clúster se corresponde con una máquina distinta con unas determinadas
prestaciones y que, por lo tanto, se comporta de manera diferente. Este conjunto de
máquinas se conoce como clúster heterogéneo. Para la coordinación de los nodos, es nece-
sario un software que distribuya toda la carga de trabajo entre los distintos computadores
de la forma más eficiente posible.

El software encargado de distribuir el trabajo entre los nodos del clúster se llama
planificador, y tomando como referencia un algoritmo de planificación, determina que
trabajo es destinado a cada nodo y lo planifica. Existen una gran multitud de algoritmos
de planificación que toman decisiones en función de distintas poĺıticas y heuŕısticos.

El objetivo es elegir una serie de algoritmos de planificación e implementarlos en
IRMaSim, un simulador desarrollado por la Universidad de Cantabria que es capaz de
imitar el comportamiento de un clúster cuando le llega una carga de trabajo. Tras imple-
mentarlos, se llevarán a cabo simulaciones reales con cada uno de los planificadores y se
compararán y evaluarán los resultados.

Palabras Clave: Clúster, nodo, heterogéneo, planificador, algoritmo de planifi-
cación, heuŕıstico, simulador.
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SUMMARY
Nowadays, there are numerous computationally intensive problems that cannot be

faced using a single computer. To solve this issue, cluster computing has been developed.

A cluster is a set of computers or nodes that are connected and work together in
a coordinate way in order to solve a problem. The majority of the real clusters are
heterogeneous because each of the nodes or computers is a different machine with different
features and level of performance. In order to coordinate properly all nodes, a piece of
software that distributes all workload into the nodes in the most efficient way is needed.

This piece of software is known as workload Manager. It distributes the workload
into the selected nodes by taking the results of a scheduling algorithm. It is not easy to
decide which algorithm to use in order to schedule, as there is a wide variety of scheduling
algorithms, each one based on a policy or heuristic.

The main purpose is to make a selection of different scheduling algorithms based on
previous results and implement them in IRMaSim, a simulator developed by Universi-
dad de Cantabria that imitates the behaviour of a cluster. Then execute some realistic
simulations and finally, compare and evaluate the results obtained.

Keywords: Cluster, node, heterogeneous, workload manager, scheduling algorithm,
heuristic, simulator.

3



Contents

1 Introduction 5

2 Fundamentals 6
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 IRMaSim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Workload Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Other Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Design 10
3.1 Mathematical Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Time Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Min-Min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.2 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Max-Min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4.2 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Duplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5.2 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 A* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6.2 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Implementation 19
4.1 Implementation of Common Sections . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Common Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Common Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Min-Min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Max-Min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Duplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 A* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Evaluation 23
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.1 Heterogeneity Evaluation Environment . . . . . . . . . . . . . . . . . 23
5.1.2 Realistic Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Evaluated Time Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Graphs Description and Results Analysis . . . . . . . . . . . . . . . . . . . 25

5.3.1 Low Heterogeneity Simulation . . . . . . . . . . . . . . . . . . . . . . 25
5.3.2 High Heterogeneity Simulation . . . . . . . . . . . . . . . . . . . . . 28
5.3.3 Comparison of Heterogeneity Results . . . . . . . . . . . . . . . . . . 30
5.3.4 Real Workload With First Distributed Heterogeneity Platform . . . 31
5.3.5 Real Workload With Second Distributed Heterogeneity Platform . . 34
5.3.6 Comparison of Real Platform Results . . . . . . . . . . . . . . . . . 36

5.4 Overall Result Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Conclusions 37

4



1 Introduction

Cluster computing is a revolutionary approach in the field of computer science, that
has transformed how large-scale computational problems are executed. They appeared
due to the necessity of having more computing power than a single machine. So that more
complex problems could be resolved in time. Nowadays, cluster computing is used in a
wide variety of fields.

In the science and engineering environment, cluster computing is being used to per-
form complex simulations [9], like data analysis or computational modelling. In meteorol-
ogy, clusters are used to execute high-resolution weather models and predict atmospheric
behaviour with greater precision [2].

In the business realm, clusters take part in analysing big volumes of data, such as
real-time transactions, big data or even business intelligence applications. For instance,
electronic commerce companies use clustering in order to analyse client preferences and
buying patterns in order to optimize customers’ experience.

In the field of entertainment, clusters are used for rendering graphics and special
effects in the film and video game industry. These applications require high computational
performance to generate high-quality images and realistic visual effects. Clusters allow the
graphics to be distributed among multiple nodes, speeding up the rendering process and
significantly reducing the time required to complete complex audiovisual projects.

To sum up, cluster computing has revolutionized the way we approach large-scale
computational problems. Its capabilities for parallel processing, scalability, and handling
large volumes of data have driven significant advancements in various fields, from scientific
research to entertainment and business decision-making. With ongoing technological ad-
vancements, clusters are expected to continue playing a crucial role in driving innovation
and achieving more efficient and faster computational solutions.

Modern computer clusters are operated by research entities and serve a multitude
of users. The users submit jobs to the cluster with the tasks they want to execute.
A very important application in the cluster is the workload manager. It is in charge
of receiving the jobs from the users and scheduling them to the appropriate computing
resources in the cluster. This is a complex task in itself, as it is an instance of the job shop
problem, which is a np-hard problem. To reach an acceptable solution to this problem,
workload manager developers have resorted to heuristic algorithms. Through the use
of different estimations, they are capable to reach suboptimal solutions in a reasonable
amount of time. Furthermore, modern clusters are usually composed by computers of
different performance, making them heterogeneous. Thus, the scheduling problem of the
workload manager becomes significantly more complex in heterogeneous clusters.

The group of Computer Technology and Architecture of the Universidad de Cantabria
has developed a simulator to study the workload manager algorithms in heterogeneous
clusters. But this lacks the implementation of well known heuristic algorithms that would
improve the scientific value of their research contributions. Therefore, in this work, several
algorithms specific to scheduling jobs in heterogeneous clusters have been selected and
implemented in the simulator.

The objectives of this work are:

• Review well known heuristic scheduling algorithms for heterogeneous clusters.

• Select a sample of relevant algorithms.

• Implement the selected algorithms in the simulator.

• Test and compare the performance of the implemented algorithms.
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The remainder of this document is structured as follows. Chapter 2 covers some
introductory concepts needed in the development of the document. Chapter 3 explains
the new algorithms implemented in the simulator, and Chapter 4 sets some explanations
referred to the implementation decisions. All the results and tests are in Chapter 5.
Finally, Chapter 6 summarizes all work done and give some conclusions based on the
experiments in 5.

2 Fundamentals

A computer cluster is basically a set of computers that work together as a single
system in order to achieve a common objective. Clusters were created to reduce the
execution time of large scientific applications. A key aspect in the operation of these
systems is the adequate division of the workload into manageable portions that can be
sent to each computer in the cluster. A piece of software, called the workload manager
[7], is used to provide this important functionality of computer clusters.

However, it is common in modern clusters that not all the computers are equal
in performance and speed. Such clusters are called heterogeneous, and the goal of the
workload manager is more challenging than in homogeneous clusters. In general, the
objective of the workload manager is to finish all the work in the shortest possible time.

2.1 Definitions

It is important to state some definitions for concepts that will be used throughout
this work.

• Node refers to each of the computers that form a computing cluster. In the con-
text of this work, each node has different performance, leading into heterogeneous
clusters. Each node has a set of computing elements that are called cores.

• Core is a processing unit within a node that can independently execute instructions.
Multiple cores in a node enable parallel processing, which can improve overall system
performance by allowing simultaneous execution of different parts of a problem.

• Job is the way a user has to submit a computing problem to the cluster. It consists
of a command line that launches the execution of the application, and some meta-
data. The latter can include, requested time, referring to the estimated execution
time of the task, the requested number of cores, memory, etc. A job can launch one
or more tasks.

• Task is a part of a job that can be executed on a separate core. In this work, all the
tasks of a job must execute simultaneously and in the same node. Each task must
execute in a single core on its own.

Even though clusters may consist of heterogeneous nodes, the nodes themselves are consid-
ered homogeneous. It is assumed that all cores within a node exhibit uniform performance.
This assumption is based on the prevalence of modern machines that typically have pro-
cessors operated for high performance across all cores. Situations involving architectures
like ARM big.LITTLE [6] are not taken into account.

2.2 IRMaSim

The group of Computer Technology and Architecture of the Universidad de Cantabria
has developed IRMaSim [1]. It is a simulator capable of simulating the behaviour of a
heterogeneous cluster at a very high level of abstraction. This simulator can be used to
study and evaluate the performance of scheduling algorithms. As this is a simulator, the
goal is to predict the execution time of numerous jobs, that if run in a real system would
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require a long time, in a few seconds. This simulator considers that each task has a number
of instructions that a processor will execute at a rate determined by its clock frequency and
a few other factors. This way eliminating the overhead of modelling complex structures of
the architecture of the processor, like speculative execution or cache memory. This level
of abstraction is suitable for the study of scheduling algorithms.

It is important to describe how the simulator defines the workload, the cluster archi-
tecture and the workload manager, as the development of this work is heavily based upon
them.

2.2.1 Workload

A workload refers to a JSON file in which a user specifies a set of jobs to be exe-
cuted within a cluster, commonly named workload.json. Each job is defined by various
parameters. It is noteworthy that IRMaSim allows the workload manager to see some of
these parameters, while others are used exclusively for simulation purposes.

• ID is the identifier of a job. It must be unique in other to distinguish it from other
jobs.

• submit time is the time when the job is supposed to enter the cluster. Before this
time, the workload manager does not know this job exists.

• ntasks corresponds to the number of tasks of a job.

• req timeis the maximum time a node can be executing the job. This value is used
by the workload manager to improve the scheduling behaviour.

• req ops as the number of instructions of each task.

• opc refers to the number of instructions of a job that a node can execute in one
cycle.

2.2.2 Platform

The cluster architecture is known in IRMaSim as the platform. Like the workload,
the platform is defined in a file, usually named platform.json, that enumerates all the
parts and properties of the cluster. It is based on a dictionary structure. The three basic
components that are defined are: processor, node and cluster.

• Processor refers to each type of processor that can be found in the nodes of the
platform. They are defined by a name and ID. Their main parameters are: the num-
ber of cores, cores; the frequency, clock rate; and the number of operations per cycle,
flops per cycle. With these parameters, and knowing the number of instructions in
a task, the simulator is capable of estimating the execution time.

• node is identified by its ID and contains a list of processors. In order to select a
processor from the ones defined, its name and the number of units within the node
must be specified. Nodes are homogeneous, meaning that there will not be different
types of processors within the same node.

• cluster also has an ID and a list of nodes that, as it happens with the processors,
have been defined. For each node included in the cluster, its name and the number
of these type of nodes must be set. IRMaSim allows defining heterogeneous clusters
by using different types of nodes in the same cluster.

The simulator takes all the resources in the platform.json file and builds the structure
where the different jobs from the workload manager will be allocated.
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2.2.3 Workload Manager

As mentioned in Chapter 1 a workload manager is a piece of software that distributes
all work into the cluster. To be more precise, it takes all incoming jobs and distributes
them among all nodes of the cluster, following a scheduling algorithm.

IRMaSim has already some workload managers with the implementation of some
basic algorithms. The simplest algorithm is calledMinimal and is based on the scheduling
algorithm OLB [8]. From the entering jobs, Minimal takes the first one in the list and
allocates it to the first node available to execute it.

Table 1: Classic policies exposed through the Action Space
Job Selection Policies

random Any job scheduling

first Job with the earliest submit
time

shortest Job with the shortest user re-
quested time

longest Job with the highest user re-
quested time

smallest Job with the lowest user re-
quested cores

low mem Job with the lowest user re-
quested memory

low mem bw Job with the lowest user re-
quested memory bandwidth

Resource Selection Policies

random Any resource

high gflops Resource with the highest cur-
rent FLOPS

high core Resource with most available
cores

high mem Resource associated to the
node with most memory

high mem bw Resource associated to the
processor with most memory
bandwidth

low power Resource with the lowest cur-
rent Watts

Heuristic is an implementation of various simple scheduling algorithms based on how
jobs and nodes are ordered. In essence, the heuristic scheduler employs various approaches
to order the list of incoming jobs and the list of nodes within a cluster. By combining
these approaches, several basic schedulers can be implemented. Table 1 enumerates the
these sorting policies. One such example is the random scheduler, which randomly selects
a job and assigns it to a randomly chosen node within the cluster that can accommodate
its execution.

Another scheduler that can be implemented is the MCT (Minimum Completion Time)
scheduler [8]. In this approach, the jobs are ordered based on their submitting time with
the first option, and nodes are ordered based on their number of FLOPS, high gflops in
descending order. The first job is assigned to the first available node, which is the fastest
available one, resulting in the least Completion Time (CT). Subsequently, both the job
and the node are removed, and the process is repeated with the next pair. Once all nodes

8



all filled with jobs, the nodes list is filled again and the process is repeated.

Other meaningful algorithm will be the one that combine the shortest with the
high gflops policy. This algorithm is very similar to the min-min algorithm explained
in Chapter 3. It orders jobs by their requested time in ascending order and allocates each
job into the node that has the minimum completion time for that node. Once it is allo-
cated, the job is removed from the incoming list and the node is removed from the available
nodes. In case there are more jobs than nodes, the list of available nodes is refilled when
it is empty. This algorithm will be called shortest fastest.

Very similar to the previous one will be the one resulting of combining the longest
with the high gflops policy. This algorithm behaves the same as shortest fastest, but
it orders the incoming jobs by its requested time in descending order. It will be called
longest fastest, and it will schedule first the apparently longest job instead of the shortest
one.

By employing these different ordering strategies, the heuristic scheduler allows for the
implementation of diverse scheduling algorithms that can optimize job allocation within
the cluster.

2.3 Execution

When the three main structures are generated, IRMaSim simulates the execution
of the workload on the platform by advancing a variable amount of time and executes
scheduling and allocating according to the workload manager.

The code in charge of all the simulation is simulation.py and implements all process
in a while loop. This loop is controlled by delta-time, a variable that keeps track of the
advanced time in the simulation. When the simulation time matches the submitting time
of the next set of incoming jobs, the simulator calls the function on job submission of the
workload manager that schedules all incoming jobs. When the simulation time reaches
the finishing time of a job, on job completion of the workload manager is called, and the
job is deallocated. This loop finishes properly when there are no more sets of incoming
jobs and all incoming jobs have been executed.

However, there might be situations where the simulations will be finished without
executing all jobs, so When IRMaSim is executed the state of the jobs is displayed.

- A job is in a future state when the job has not even arrived to the cluster. When
simulation time < submit time(job).

- A job is in the queued state when it has been already scheduled, but the node where
it is allocated has not started its execution yet.

- A job is in executing state when the node where it is allocated has already started
but have not finished its execution yet.

- A job is in finished state when it finishes its execution.

Other parameters are also displayed, however, as they are more related to the performance
of each scheduling algorithm, they will be explained in Chapter 5.

2.4 Other Software

In addition to IRMaSim, this project utilized other software tools. Python open-
source libraries such as NumPy and pyplot were employed to generate the graphs presented
in Chapter 3 and 5. GitHub was utilized to manage and track the progress of the project.
The IRMaSim software can be accessed at https://github.com/Pepetillo300/IRMaSim.
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3 Design

The main objective of this work is to implement a variety of scheduling algorithms
for heterogeneous clusters with different strategies and heuristics. For the research of the
heterogenous cluster workload manager algorithms, the article by Tracy D. Braun, Howard
Jay Siegel, and Noah Beck [8] has been studied. In it, the author describes the state of
the art in terms of these algorithms. After seeing the results of the experiments presented
there, it was decided to implement four algorithms. min-min, max-Min, duplex and A*.

These algorithms will be compared using various workloads on different platforms
to determine their performance in both general and specialized scenarios. The newly
introduced algorithms are more complex and rely on more precise heuristics compared to
the existing ones in IRMaSim.

3.1 Mathematical Definitions

• Node: From a set of nodes inside a cluster N of length m(N), each node {nk | 0 ≤
k < m(N)} constitutes a homogeneous structure where a job can be planned. It is
homogeneous because all the cores that belong to a node {ck,p | 0 ≤ k < m(N), 0 ≤
p < m(nk)} perform in the same way.

• Job: From a list of jobs J of length m(J), each job {ji | 0 ≤ i < m(J)} must
be executed by a single node nk. Additionally, their scheduling can be statically
performed in various ways, allowing different mappings of the set of jobs J .

• Task: From a list of tasks per job Ti, of length m(ji), each task {ti,l | 0 ≤ i <
m(J)) , 0 ≤ l < m(ji)} must be executed in the same node at the same time. As,
there are some pieces of data or code shared by all tasks. So that each task is
allocated into a core.

3.2 Time Metrics

These definitions are base on the ones given in [8].

• Expected Time to Compute (ETC(ji, nk)) is defined as the time a job ji is
executed by a node nk, without considering previous or following executions of other
jobs. As nodes are homogeneous, the ETC of a job j1 is the same as the ETC of its
tasks.

{ETC(ti,0, nk)} = {ETC(ti,1, nk)} = {ETC(ji, nk)}.

• Machine availability time Mat(nk) is defined as the the earliest time that a node
nk can complete the execution of all the jobs that have previously been assigned to
it. As nodes in the platform contain different times, the Machine availability time
of a node nk is equal to the maximum Mat of its cores:

mat(nk) = {max0≤p<m(nk)(mat(ck,p))}

• Completion Time ct(ji, nk) is the Machine availability time of the selected node
added to the Expected Time to Compute of job ji when scheduled to the node nk

[8].

ct(ji, nk) = mat(nk) + ETC(ji, nk)

3.3 Min-Min

Themin-min algorithm schedules jobs based on their anticipated execution time. The
job with the shortest expected execution time is assigned to the node that can execute it
first. This process is repeated for all incoming jobs.
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3.3.1 Definition

Min-min is a heuristic algorithm that takes as a parameter the set of all incoming
jobs. J = {j0, ..., ji, ..., jm(J)−1}. For each job {ji ∈ J} its completion time for each one
of the nodes in the cluster is estimated (ct(ji, nk | 0 ≤ k < m(N)) and its minimum value
is selected.

Mji = {min0≤k<m(N))(ct(ji, nk))}.

Afterwards, the job with the minimum completion time M is selected and assigned to its
corresponding machine. This process is repeated with all the jobs until there are no jobs
to be scheduled. After scheduling a job to a node n, the machine availability time of the
node is updated with the execution time of the job j.

mat(nk) = mat(nk) + ETC(ji, nk)

3.3.2 Pseudocode

A pseudocode has been developed by taking inspiration of algorithm E in [5].

Algorithm 1 Min-Min

1: Order jobs by their requested time
2: for job = j0, j1, j2, . . . jm(J)−1 do
3: for node = n0, n1, n2, . . . nm(N)−1 do
4: if ji does not enter nk: then
5: Jump to next iteration
6: end if
7: ct(ji, nk) = mat(nk) + ETC(ji, nk)
8: end for
9: Mji = {min0≤k<m(N))(ct(ji, nk))}

10: n = {n0≤k<m(N)) | ct(ji, nk) = Mji}
11: mat(n) = mat(n) + ETC(ji, n)
12: schedule ji in node n
13: end for
14: Return Scheduling

The definition of min-min suggests that, for each job, its Mji must be computed,
then, the job is assigned to its node and then, it is removed from its list. However, if
nodes have enough cores, there may be cases where more than one job is assigned to the
same node. Moreover, assigning a job to a node may not update the machine availability
time of that node. So that, the heuristic M should be computed differently.

Min-min knows what is the requested time of a job so in pseudocode 3.3.2, all the
jobs are ordered by this parameter, which is proportional to the number of operations and
to the ETC of the slowest node.

req time(ji) = ETC(ji, nk | min0≤k<m(N))mops per core(nk))

Then, min-Min iterates over all the jobs, and for each job iterates over all the nodes
and computes, if possible, each value of completion time. The completion time of a node
is the maximum value of the completion time of its cores.

ct(ji, nk) = {max0≤l<m(n)(ct(ti,k, cj,l)}

Once the iteration over all the nodes is finished, its M is computed. Afterwards, n, which
is the node whose completion time for ji is equal to M is obtained, and its machine
availability time is updated. Finally, the job is scheduled.
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Min-min finds the lowest M of all the jobs and allocates it dynamically, as well as
letting other jobs to be executed in the same node, if it continues to have the minimum
machine availability time.

Figure 1: Comparison between the heuristic shortest jobs selection with high gflops node
selection and the Min-Min algorithm.

Figure 1 illustrates the distinction between the min-min and the shortest fastest
algorithms. Both algorithms start in the same way. They have their list of jobs ordered,
and start by scheduling job 0, which is the shortest one. Node 1 and 2 are the fastest
ones, and they perform the same, so, as there are no previous jobs scheduled, job 0 could
be scheduled in any of them. In both cases, node 1 is selected. Then job 1 is scheduled
in node 2 because, as it was established, it performs the same as node 1. There is not
any difference between the two algorithms so far. However, in the heuristic algorithm, the
job with ID 3 is assigned to node 0 based on the anticipation that this node will be the
quickest since the other nodes already have scheduled jobs. On the other hand, min-min
examines the completion times across all three nodes and determines that node 1 will be
the swiftest for executing the job, so min-min schedules it there. Despite job 3 having
to wait to commence its execution, it concludes earlier on node 1, suggesting that min-
min provides a more accurate estimation. The same process occurs when scheduling job
2. Both schedule it in the node with the minimum completion time. As the nodes have
already been selected, the possible nodes list in heuristic has been restarted. Min-min
does not take into account which nodes have already been used, job 2 is simply scheduled
in the node with the minimum completion time, in this case node 1.
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3.4 Max-Min

The max-min algorithm arranges jobs according to their predicted execution time.
It assigns the job with the longest estimated execution time to the node that is capable
of executing it first. This procedure is iterated for all incoming jobs. Furthermore, the
max-min algorithm takes into account both the jobs presently being executed on nodes
and the jobs that are yet to be executed.

3.4.1 Definition

Max-min is a heuristic algorithm that takes as a parameter the set of all unmapped
jobs. J = {j0, ..., ji, ..., jm(J)−1 | 0 ≤ i < m(J)}. For each job, {ji ∈ J} its completion
time for each one of the nodes in the cluster is estimated ct(ji, nk | 0 ≤ k < m(N)) and
its minimum value is selected.

Mi = {min0≤k<m(N)(ct(ji, nk))}.

Afterwards, the job with the maximum completion time M is selected and assigned to its
corresponding machine. This process is repeated with all the jobs until there are no jobs
to be scheduled.

After scheduling a job into a node, the machine availability time of the node is
updated with the execution time of the job ji in the node nk.

mat(nk) = mat(nk) + ETC(ji, nk)

3.4.2 Pseudocode

Pseudocode 3.4.2 has been developed by taking inspiration of algorithm D in [5].
However, due to the resources IRMaSim offers, there are some changes that will be ex-
plained.

Algorithm 2 Max-Min

1: Order jobs by their requested time
2: for job = jm(J)−1, jm(J)−2, jm(J)−3, . . . j0 do
3: for node = n0, n1, n2, . . . nm(N)−1 do
4: if ji does not enter nk: then
5: Depreciate nk

6: Jump to next iteration
7: end if
8: ct(ji, nk) = mat(nk) + ETC(ji, nk)
9: end for

10: Mji = {min0≤k<m(N)(ct(ji, nk))}
11: n = {n0≤k<m(N) | ct(ji, nk) = Mji}
12: mat(n) = mat(n) + ETC(ji, n)
13: schedule ji in node n
14: end for
15: Return Scheduling

The explanations and pseudocodes for both the min-min and max-min algorithms
share similarities. However, the key distinction lies in the selection of jobs. While the min-
min algorithm chooses the job with the minimum completion time, the max-min algorithm
selects the job with the maximum completion time.

As it was done with the min-min algorithm, max-min firstly orders the jobs by their
requested time. However, the list of incoming jobs is iterated backwards. For each job, all
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the possible nodes where it can be allocated are iterated and its M is computed. Then,
the machine availability time of the selected node is updated, and the job is scheduled.

Figure 2: Comparison between the heuristic longest jobs selection with high gflops node
selection and the max-min algorithm

In Figure 2, the max-min algorithm is compared with the heuristic longest high gflops
algorithm. Both algorithms start by taking the heaviest job, job 2, and they schedule it
in the fastest node, which is node 1. The workload and the platform are the same as
the example in max-min so both node 2 and node 1 perform the same. The next job to
schedule is job 3, both algorithms determine that node 2 will be the one with the lowest
completion time, so job 3 is scheduled in node one in both cases. There are no differences
so far, however, when scheduling job 1, the list of available node is the heuristic algorithm
only contains node 0, as node 1 and 2 have already been used. That is why job 1 is
scheduled in node 0. max-min schedules in the node with the least completion time, which
is node 2. Finally, job 0 must be scheduled, in both the algorithms will be scheduled in
the node with the least completion time, however considering that in max-min node 0 has
not been used yet with the addition that job 0 is short enough to avoid increasing the
completion time of the cluster, allows max-min to schedule job 0 in node 0. The heuristic
algorithm has already used all nodes, so the one with the minimum completion time is
node 0.
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3.5 Duplex

3.5.1 Definition

Duplex is based on the combination of the min-min and max-min algorithms. For a
list of jobs J that arrive to the cluster at a certain time, duplex estimates ct(J,N), which
is the completion time of the set of jobs in the cluster for min-min and max-min. This
value is computed by taking the maximum machine availability time of the nodes in the
cluster when all jobs are executed.

ct(J,N) = {max0≤k<m(N)mat(nk)}

Then duplex uses the better solution by taking the minimum completion time to
schedule the jobs.

3.5.2 Pseudocode

Algorithm 3 Duplex

1: ct(MinMin)←MinMin()
2: ct(MaxMin)←MaxMin()
3: if ct(MinMin) ≤ ct(MaxMin) then
4: Schedule as indicated in Min-Min
5: else
6: Schedule as indicated in Max-Min.
7: end if

The pseudocode for the duplex algorithm is straightforward. It essentially implements
the scheduling strategy of the algorithm that returns the minimum completion time. Du-
plex can effectively leverage the efficiency of both min-min and max-min under specific
conditions. One advantage is that it can adapt its behaviour for each set of jobs J within
the same simulation. For instance, for jobs entering at time 0, scheduling can be based on
min-min, while for jobs arriving at time 10, scheduling can be based on max-min. How-
ever, a notable drawback is the overhead it introduces during execution. As mentioned in
[3], both min-min and max-min have a temporal complexity of O(mn2).

Figure 3: Comparison between Min-Min, Max-Min and Duplex algorithms

In the simulation shown in Figure 3, two queues of jobs have been launched to the
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cluster. One at time 0 and the other one at time four. For the first queue, the same jobs
as the previous examples have been used. As max-min scheduling is better, duplex also
uses it. Then the second query of jobs arrives. However, min-min is now better. So duplex
takes its implementation.

3.6 A*

A* is a complex heuristic based on an u-nary tree [8]. The tree represents the possible
mappings of the set of jobs J in the cluster N .

A tree graph is an undirected, connected, acyclic graph consisting of vertices and
edges. Trees are often represented visually with a diagram that branches out from a single
vertex called the root. The remaining vertices are connected to the root and each other
through edges, forming a hierarchical structure

3.6.1 Definition

The algorithm starts by defining the root vertex as an empty mapping, where no job
has been assigned to any node yet.

It continues by adding children to the root vertex. The new vertices are marked as
active, while their parent, the root, is marked as inactive. Each of these child vertices
represents a mapping of the first job to each node in the cluster.

In order to go over the tree, the next vertex will be selected by comparing the values
of f(v) of each leave vertex. F (v) is a lower bound estimation on the ct(J,N) and the
partial mapping that the vertex represents [3]. So that:

f(v) = g(v) + h(v)

On the one hand, g(v) represents the completion time of the partial mapping of the vertex.
ct({j0, j1, j2, . . . , ji}, N). As defined in duplex, the completion time of a set of jobs is the
value of the maximum machine availability time from all the nodes so that.

ct({j0, j1, j2, . . . , ji}, N) = {max0≤k<m(N)mat(nk), when executed ji}

On the other hand, h(v) is a heuristic estimation on the difference between g(v) and the
completion time of the set of jobs J . The function h(v) is defined with the use of two
different functions, h1(v) and h2(v).

Let’s define h1(v) as the maximum possible value between the current machine avail-
ability time and the minimum completion time for all the jobs that have not been mapped
yet. So that h1(v) can be formulated as:

h1(v) = max(0, (mmct(v)− g(v)))

With mmct being the maximum minimum completion time (the same value as the chosen
in max-min algorithm), and with the assumption every node can allocate every job, an
estimation of the completion time until all remaining jobs from J are executed.

The function h2(v) calculates the projected increase in the completion time for the
set of jobs J. It provides an estimate of the additional time needed for achieving the best
possible solution for the remaining unmapped jobs, based on the current partial solution.
This estimation assumes an ideal scenario where every job can be assigned to any node
without any limitations or conflicts, resulting in an optimal outcome.

h2(v) = max(0, (smet(v)− sdma(v))/µ)

Once defined h2(v), smet(v) and sdma(v) will be defined too. The function sdma(v)
is defined as the best expected time to compute for the remaining jobs in the cluster N .
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smet(v) =

m(J)∑
j=ji

(min0≤k<m(N)(ETC(j, nk)))

The function sdma(v) quantifies the time available across all nodes that can be uti-
lized for scheduling the remaining jobs without extending the machine availability time of
the partial solution.

sdma(v) =

m(N)∑
k=0

(g(v)−mat(ni))

When f(v) has been computed for every children vertex, the leave node of the tree
with the minimum f(v) value is selected, m(N) new vertexes are generated, and the
process is repeated. However, there are cases where the selected vertex represents a less
advanced mapping than the one from the current one. This factor combined with the
explanation given before that every vertex can generate m(N) children leads into pruning
the tree when this is big enough. Pruning will be performed when adding a new vertex by
selecting the leave node with the maximum f(v) and deactivating it. Otherwise, A* will
lead into an exhaustive search.

3.6.2 Pseudocode

Algorithm 4 A*

1: tree← new Tree()
2: root← new Tree node()
3: f(root) = 0
4: tree = tree+ root
5: parent = root
6: while parent mapping ̸= total mapping do
7: j ← next job to map
8: for node = n0, n1, n2, . . . , nk, . . . , nm(N)−1 do
9: if j does not enter nk: then

10: Jump to next iteration
11: end if
12: if tree nodes ≥ max tree nodes then
13: tree node← {leave node | max(f(v))}
14: prune(tree node)
15: end if
16: new tree node← new Tree node()
17: f(new tree node) = compute fv(new tree node)
18: parent.children() += new tree node
19: tree nodes += 1
20: end for
21: parent← {leave node | min(f(v))}
22: end while
23: scheduling ← scheduling(parent)
24: return Scheduling

The pseudocode 3.6.2 follows closely the given explanation of the algorithm. Firstly,
the tree structure is created and the root vertex, whose f(v) is equal to 0 in order to
be initialized to some value, is added. The f(v) value of the root vertex is not relevant
because it is the only possible vertex to choose in the first iteration because no other ones
have been created yet.

Once root is added to the tree, the current job that A* is going to map is selected in
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random order. For each job all the nodes in the cluster are iterated and firstly A* checks
if the job j can be allocated in node nk. If it is not possible, the algorithm jumps to
the next iteration, so that, no child for that possible mapping is created, being m(N) the
maximum number of children vertexes that can be generated by the same parent.

If the mapping is possible, A* checks if it has to start pruning. As explained before,
the vertex with the maximum value of f(v) is pruned. Then, the vertex representing the
current mapping is created and its f(v) is computed. Afterwards, it is added to the tree.
Once a vertex with the mapping of all jobs is obtained, the algorithm returns a scheduling
following that mapping.

Figure 4: Example of execution of A*Algorithm

In order to show how A* algorithm works, both the workload and the platform used
in this example are smaller. The platform has only 2 nodes, node 1, which is the fastest one
and node 0, which is the slowest. On the other hand, the workload has also been reduced
from four jobs to three. In Figure 4 A* starts in the root vertex and then computes its
two children. Job: 0, Node: 0 with f(v) = 2.5 has the smallest value, so this will be the
next parent. Job: 0, Node: 0 generates its children and A* compares all f(v) of all leaves
of the tree so Job: 0 Node: 1 with f(v) = 2.67 is chosen. This process is repeated until
Job: 2 Node: 1 with f(v) = 3 is chosen, as this node represents a complete allocation of
the jobs the algorithm stops, and schedules them as indicated.

Figure 5: A*Algorithm Results

Once they have been simulated, it is seen in Figure 5 that the completion time of the
workload J and the f(v) estimated happen to be the same. To finish with, as the given
example is actually small, there are not many vertexes generated, so that the tree has not
been pruned.
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4 Implementation

The main objective of this work was to implement the previous algorithms in IR-
MaSim., which is written in Python. This section covers the technical decisions and
implementation details of the four algorithms

4.1 Implementation of Common Sections

Firstly, the two main aspects that are shared by all algorithms in IRMaSim will be
commented. These are the structure of the functions of the workload manager as well as
the global variables.

4.1.1 Common Variables

• self.speedup defines in a list each value of the speed-up of each node in relation to
the slowest one. In order to compute it, the operations per second of each node is
taken.

• self.base sp time is the number of operations per second the slowest node in the
platform has.

• self.scheduling is a data structure made up by a list of lists of jobs. The bigger
list contains smaller ones that represent each of the nodes in the platform. These
smaller lists are filled up with the jobs that must be scheduled in that node. The
attribute self.scheduling does not indicate the scheduling of the set of entering jobs
J , but the scheduling of the simulation, self.scheduling = scheduling(S).

• self.cores times is a data structure that, as self.scheduling, consists of a list of lists
where each small list represents a node. However, they are filled by float values that
represent the mat(ck,p from 0 ≤ p < m(nk)), the maximum availability time of each
core.

• self.running jobs is a list that contains all jobs that are being executed at a certain
moment.

• self.idle cores defines a list with the number of cores that are not being used by a
node. It is updated when scheduling a job or when it finishes its execution, and the
goal of this global variable is to keep track of the unused cores to check if a job can
be scheduled in a node at a certain time.

4.1.2 Common Functions

Every implemented algorithm derives from the WorkloadManager class already im-
plemented in IRMaSim. WorkloadManager defines some methods shared by all scheduling
algorithms. These are on job submission, on job completion and schedule next job.

• on job submission is called when a new set of jobs enters the platform. This
function takes as a parameter the list of the entering jobs ordered by their ID. With
this list, the function that plans the jobs is called, and then the scheduling of the set of
entering jobs is added to the global scheduling. self.scheduling += scheduling(J).
Finally, the jobs are scheduled following self.scheduling.

• on job completion is called when a job or a set of jobs finish its execution,
on job completion takes the list of finishing jobs and iterates over all lists that rep-
resent nodes in self.scheduling. When a job finds itself in the list, self.scheduling and
self.running jobs get updated by removing the job from both the lists. The variable
self.idle cores gets updated too by adding the number of cores, (which is the same
as the number of tasks of the job) that have been unoccupied.
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• schedule next jobis a function called by on job submission and on job completion.
It takes as a parameter the index of the node where the next job or jobs will be
scheduled. Firstly, it iterates over all the jobs in self.scheduling[n]. If it is not
running, checks if it enters the node by comparing its number of tasks with the idle
cores of the node (self.idle cores[n]). If the scheduling is possible, schedule next job
updates self.idle cores and self.running jobs before allocating each task into a core.

• scheduleri a function that, although it is not defined by WorkloadManager, all
algorithms described in Chapter 3 implement it. This function takes, at least, the
list of entering jobs. It is called by on job submission, and schedules all entering
jobs into the selected nodes. Then the scheduling of the set is returned in a variable
called scheduling.

scheduling(j) = scheduling ̸= self.scheduling

Starvation is a phenomenon that occurs when a job submitted to the platform is overtaken
by another job that was submitted later, both of which are executed on the same node.
This can result in the first job never being executed or in poor user-level efficiency. To
prevent starvation, queued jobs can not be scheduled again and jobs are allocated following
temporal and space guideline retrieved by the workload manager. To avoid starvation in
IRMaSim, on job submission, schedule next job and scheduler functions only take the list
of the lastly submitted jobs, without considering the ones that are in queued state.

4.2 Min-Min

Let’s start by explaining the implementation of the min-min pseudocode 3.3.2 in
IRMaSim. More precisely, the scheduler function.

The scheduler function of min-min takes two parameters. The first one is the list of
entering jobs ordered by their requested time and the second one is the reference to the
empty list scheduling. So that the first step of the pseudocode 3.3.2 is implemented in the
on job submission function.

scheduler starts by making a copy of self.cores times called cores times. As well as the
global variable, cores times stores the machine availability time of all the cores grouped
by their corresponding node. Then it appends a list for each existing node in scheduling,
so that the two main structures are both initialized.

Afterwards, as indicated in the pseudocode 3.3.2, the list of jobs is iterated, however,
instead of using the job itself, its index is used in order to access to the positions in
cores times and scheduling more easily.

For each job, a copy of cores times is created, cores temporal times will be used to
keep the results of the completion times of each task of the job in the cores of each node.

If m(ji) > m(nk), the node is considered less favourable and is disregarded. This
is achieved by assigning the maximum float value to the machine availability time of all
cores in nk.

On the other hand, if m(ji) ≤ m(nk), the estimation of the completion time is
calculated by dividing the requested time by the speed-up of the node and distributing it
evenly among the cores associated with the minimum completion time. The number of
cores allocated matches the number of tasks with the minimum completion time.

Once all the machine availability times are stored in cores temporal times, Mj is
taken and compared to the maximum float value. If they are both the same, no node can
allocate ji, so min-min continues with ji+1. Otherwise, the machine availability time of
the cores of the node n (cores times) is updated with the values of cores temporal times
and ji is appended to scheduling in the node n.
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Finally, cores times is returned by copy and, as explained before, scheduling by ref-
erence

4.3 Max-Min

As explained in Chapter 3, the max-min algorithm has the same structure as min-
min. So that scheduler is the same for both algorithms. The difference is indeed when
calling the function. It is called with a list of jobs ordered by the longest to the shortest.

4.4 Duplex

In design, duplex was defined as an algorithm that implements the best solution be-
tween min-min and max-min. That is why the scheduler code from the min-min and
max-min algorithm is shared. Actually, in order to avoid repeated code, the three algo-
rithms share the same code. This is possible thanks to IRMaSim, which allows executing
itself with certain options. So the same workload manager can be selected with the option
to execute min-min max-min or duplex.

These options are handled in the on job submission function. If the selected option
is min-min or duplex the scheduler function is called with the list of jobs ordered by the
requested time as explained in design, and min min scheduling, that sets how all jobs from
j should be scheduled. The returned value of scheduler is stored in min min times, which
stores the final machine availability times of the nodes after the scheduling is done.

The same process is done with the Max-min or duplex option. However, the jobs are
ordered by the inverse requested time and the variables that store the scheduling and the
machine availability times are max min scheduling and max min times respectively.

As indicated in the pseudocode 3.5.2, both maximum times in min min times and
max min times are compared if the option is duplex and the option is changed into the
one that implements the minimum time, so that the duplex option disappears. Finally,
self.scheduling is updated with the values of min min scheduling or max min scheduling
and the jobs of are scheduled.

4.5 A*

Finally, the implementation of A*, will be explained, but firstly let’s introduce a new
global variable self.init cores times. This will substitute self.cores times in order to store
the relative machine availability times of nodes in relation to the previous set of jobs.

In scheduler, the first thing to do is initialize the tree. It is created by using the library
treelib. This library provides an intuitive creation and manipulation of non-binary trees,
allowing vertexes to have a non-binary number of children, as well as being implemented
in python with minimum dependencies, and, the most important setting, it allows the
visualization of the built tree.

Once the tree is created, the root vertex is generated. Treelib allows creating a vertex
by setting a name and an identifier. Moreover, a field of data is provided in order to assign
some value to each of the vertexes. To generate the structure and the mappings of all the
nodes, various data needs to be stored in each vertex. So that, the data value is defined
as a dictionary with several fields.

• job: The last job in the mapping representation of the current vertex. Notice is the
whole job what is being stored and not its ID. This will lead into more temporal
efficiency because the is no need to look for the job in the set J .

• node: The current node where the last job is being mapped. As well as it happens
with the job, all the node is stored and not only its ID.
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• cores times: As defined in the previous algorithms, a data structure with the make
span of the cores of the nodes. However, this make span is in relation to the previous
set of jobs.

• nodes: A list with the identifier of the nodes where all the previous jobs in the
partial mapping have been mapped.

• fv: A lower bound estimation on the ct(J, N) and the partial mapping that the
vertex x represents.

As root represent an empty mapping, no job or node fields are in its data. Its
cores times field is computed by taking the maximum between 0 and the subtraction of
the machine availability time for each core and the time elapsed between two sets of jobs
enter the system. The vertex is added as indicated in the pseudocode 3.6.2, and the parent
vertex is set as root.

In order to check if the mapping of parent contains all the possible schedulable jobs
in J , the length of nodes plus the number of non schedulable jobs is compared to m(J)).
If they are not the same, the next job is taken, and it is checked if it can be scheduled.
This checking is made by comparing m(ji) with self.max cores.

If the job is schedulable in any node A* iterates over all nodes and after comparing if
ji is schedulable in nk, if the tree has more than an established value of vertexes, pruning
is performed. This number will be chosen by taking into account the results retrieved
in a reasonable execution time. This pruning is done b selecting the maximum value of
layer nodes, a dictionary of leave vertexes where the keys are the identifiers and the values
the f(v) values. Then the vertex is located by its ID and extracted from layer nodes, so
that it will be never chosen to be the parent.

The next vertex is created with the current job and node, and its cores times is
initialized to its parent one. Afterwards, its fv is computed by calling a specific function
compute fv and the data is updated.

The selection of the next parent is similar to the pruning process, with little differ-
ences. Firstly, the value selected is not the maximum from the f(v) in layer nodes but
the minimum. Finally, besides taking the vertex from layer nodes, the parent variable is
set to this node.

When a vertex with the mapping of all schedulable jobs is found, scheduling is updated
by appending each schedulable job in the list with the index of each nodes values. Then
self.init cores times and self.prev sim time are both updated too.

The function compute fv calculates the f(v) of the current vertex. This is done
by computing the formulas in Chapter 3. In order to compute the values of g(v) and
mmct other two functions are used. compute gv and compute mmct. compute gv takes
the current job and node of the current mapping and uploads the values of cores times in
the data of the current vertex (they were initialized to the values of its parent). Then the
g(v) value is returned by taking the maximum value.

The compute mmct function computes the minimum completion time for each job in
each node. This is done in the same way as in compute gv and the scheduler function in
min-min, max-min and duplex. However, the machine availability times of the cores must
not be updated, so a temporal list for each node that is restarted in every job iteration
is used (cores temporal times). These Mi values are stored in a list, so the algorithm can
return its maximum value.
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5 Evaluation

In this chapter, a comparison between the performance of all the implemented al-
gorithms will be performed. In addition, the performance of some already implemented
algorithms such as shortest fastest, longest fastest, OLB and random, explained in Chap-
ter 2, will be evaluated and compared to the implemented ones. In order to perform the
simulations, all algorithms will be tested in a range of workloads and platforms, so that
different scenarios can be evaluated.

5.1 Experimental Setup

To test how the algorithms perform, two sets of experiments will be conducted. In
the first one, the proper functioning of the algorithms will be verified. For this purpose,
an environment similar to the one used in [8] will be simulated, and the obtained results
will be compared to those in the document. For the second set, a workload extracted from
a real machine will be used, and the the behaviour of the algorithms will be evaluated on
different platforms.

5.1.1 Heterogeneity Evaluation Environment

In [8] simulations are performed in an environment with a workload of 512 jobs
composed by a unique task and a platform with 16 single-core nodes. In this environment,
each node is capable of allocating any job. In [8] the expected time to compute for each
job on each node is specified in a J × N matrix. These values are chosen through a
random process. Even if these values make some sense, they are ultimately random.
However, IRMaSim calculates the completion time of the jobs through with the number
of instructions and the frequency of the processor. Thus, replicating these experiments is
not entirely possible.

Due to the random nature of the setup used in [8], the platforms are not guaranteed to
be consistent. Meaning that shorter jobs allocated on the same node may not necessarily
take less time to execute than longer ones. This is shown in the ETC matrices in Table
2 and 3 in [8]. Fortunately, [8] does have some experiments that are consistent and these
can be reproduced in IRMaSim.

A set of five different workloads have been generated. In order to imitate the original
environment, each workload contains 512 single-task jobs. The requested time of the jobs
in the set varies from 100 to 3000 seconds.

These workloads will be executed in two different platforms with different level of
heterogeneity between their nodes. Table 2 shows the details of the low heterogeneity
platform, and Table 3 shows the nodes of the high heterogeneity one.

Table 2: Platform With Low Heterogeneity
Low Heterogeneity Platform

Number Cores Clock Rate

6 1 1-5 GHz

5 1 5.01-7.5 GHz

3 1 7.51-10 GHz

2 1 >10 GHz
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Table 3: Platform With High Heterogeneity
High Heterogeneity Platform

Number Cores Clock Rate

4 1 1-10 GHz

4 1 10.01-20 GHz

4 1 20-30 GHz

4 1 >30 GHz

5.1.2 Realistic Environment

KIT ForHLR II log is the workload used to perform realistic simulations. It is com-
posed of 114355 jobs distributed in a time-lapse of a year and a half in a system located
at the Karlsruhe Institute of Technology in Germany. After observing the workload, the
period of time with most consistency of jobs submitted goes from the fourth month to the
fifth one. So the workload has been reduced to consider only these count of jobs.

As explained in Chapter 4, the workload manager does not schedule jobs until they
are submitted. And in order to prevent starvation, once they are scheduled, they can not
be rescheduled. However, the workload KIT ForHLR II log only submits one job at a
time, making the job of the workload manager trivial. Because of this, the submit time of
the jobs has been rounded to 105. Jobs are now grouped by their submission day, allowing
the algorithms to make more interesting scheduling decisions. These groups are composed
of sets from 100 jobs to 300.

The number of jobs submitted to the platform in the selected time-lapse is close
to 1500. So five different simulations with 500 jobs will be performed in two different
platforms with 32 nodes. These are an approach to realistic platforms with nodes that
could be found in a modern computer cluster. These platforms details are showed in Table
4 and Table 5.

Table 4: Distributed Heterogeneity Platform 0
High Heterogeneity Platform

Number Cores Clock Rate

13 32 4.6 GHz

11 20 10.2 GHz

4 8 6.4 GHz

4 8 15.2 GHz

Table 5: Distributed Heterogeneity Platform 1
High Heterogeneity Platform

Number Cores Clock Rate

4 32 2.6 GHz

4 20 5.2 GHz

4 8 3.4 GHz

4 8 7.2 GHz

5.2 Evaluated Time Metrics

The results of the experiments are evaluated through several metrics, which are de-
fined as follows:

• Total time corresponds to the completion time of the workload ct(J,N).
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• Average waiting time refers to the average time jobs have being waiting to be
executed. It is computed by taking the simulation time of the job in queued state
and calculate its average.

• Average slowdown is the relation between the execution time of a job after being
scheduled in a node and its completion time. It is computed by dividing these
metrics. Then the average is calculated.

• Average bounded slowdown is computed by taking the slowdown of all jobs and
exclude those under or over a certain value. This removes the negative effect of failed
tasks that have short execution time and therefore very high slowdown. This metric
is more stable than the slowdown.

5.3 Graphs Description and Results Analysis

For each different simulation, four bar graphs corresponding to each of the parame-
ters previously described will be displayed. Algorithms are displayed horizontally, being
the first four, the previously implemented ones. The four below correspond to the new
implemented algorithms.

5.3.1 Low Heterogeneity Simulation

Figure 6: Total average time in a low heterogeneity platform

Figure 6 displays the average total time for the five workloads on the low heterogeneity
platform for each algorithm. The total time of the simulation varies from the 8500 seconds
to more than 10000. So there are noticeable differences between the performance. Simplest
algorithms tend to perform worse, excepting the longest fastest one, that gets better results
than min-min and similar results to A*. The best performing algorithm is duplex, tied
with max-min. As jobs are only submitted in time 0, duplex only decides once which
algorithm to use, choosing min-min and getting the same results. Both longest fastest
and shortest fastest perform worse than max-min and min-min respectively. Finally, the

25



performance of A* is almost quite as good as the duplex and max-min algorithms, despite
using a pruning factor of 128 vertices.

Figure 7: Mean waiting time in a low heterogeneity platform

The results of the average waiting time displayed in Figure 7 show a tendency for jobs
in the longest fastest, max-min, duplex and A* algorithms to wait more. Apparently, the
longest jobs are executed first, so the following ones must wait to start their execution. The
opposite occurs in shortest fastest and min-min, where jobs with shorter requested times
are executed first, and longer jobs may start without waiting as long. Finally, max-min
obtains better results than its counterpart longest fastest.

26



Figure 8: Average slowdown in a low heterogeneity platform

Figure 9: Average bounded slowdown in a low heterogeneity platform

Figure 8 and Figure 9 will be explained simultaneously, as although the results of
bounded slowdown are better, tendencies of all algorithms remain the same. The best
slowdown results are given by the shortest fastest and min-min algorithms and being their
standard derivation low too. On the other hand, longest fastest, max-min and duplex get
the highest values of slowdown, being six times the values of shortest fastest and min-min.
Finally, first-first, full-random and A* retrieve slowdown values between 40 and 50.
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When analysing all the results together, the conclusion is that there is not much
correlation between the total time and the waiting time or slowdown is reached. Indeed,
it is shown that algorithms with shorter waiting times achieve worse results (excluding
the simplest heuristics). On the other hand, the newly implemented algorithms surpass
the existing ones in all aspects in IRMaSim. Min-min matches shortest fastest in terms of
waiting time, slowdown, and bounded slowdown, while having a lower total time. However,
min-minand duplex improve all the metrics compared to longest fastest. Finally, A* proves
to be the most balanced, not achieving the best results in total time but obtaining good
metrics in waiting time, slowdown, and bounded slowdown.

5.3.2 High Heterogeneity Simulation

Figure 10: Total average time in a high heterogeneity platform

The total of the simulation shown in Figure 11 ranges from, 2100 to 3500 seconds.
The simpler algorithms tend to exhibit poorer performance. Notably, the top-performing
algorithm is duplex, tied with max-min. Both longest fastest and shortest fastest perform
far worse compared to min-min and max-min, respectively. Additionally, A* performs
as the second-best algorithm, almost on par with duplex and min-min. Finally, the two
simplest algorithms, first-first and full random, exhibit the worst average performance and
a high deviation, resulting in simulations lasting over 3000 seconds.
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Figure 11: Mean waiting time in a high heterogeneity platform

The results of the average waiting time displayed in Figure 11 show poorer results
longest fastest, max-min, and duplex. This may happen for the reason explained in the
low heterogeneity platform. Additionally, max-min performs better than its counterpart
longest fastest. Finally, A*, first-first, and full random get similar results.

Figure 12: Average slowdown in a high heterogeneity platform

In Figure 12 the average of the slowdown of the jobs for all simulations is displayed.
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Shortest fastest is the algorithm with minimum slowdown, followed closely by min-min,
with values between 10 and twenty. Then, A*, first-first and random retrieve values from
40 to fifty units. Finally, longest fastest, max-min and duplex jobs’ average completion
time has been over 65 times their execution time.

Figure 13: Average bounded slowdown in a high heterogeneity platform

Figure 12 presents the average bounded slowdown of jobs across all simulations. The
shortest fastest and min-min algorithms exhibit the lowest bounded slowdown. A*, first-
first and random yield bounded slowdown values ranging from 40 to 50 units. Lastly,
longest fastest, max-min and duplex surpass the 50 units of bounded slowdown.

Analysing all the metrics together, a trend is observed in the jobs of the longest fastest,
max-min, and duplex algorithms to wait longer before execution. Indeed, while the graphs
of slowdown and bounded slowdown may not show the same numerical results, there is
a strong correlation between the trends of each algorithm. This may be due to the nor-
malization of jobs with execution time less than 10, resulting in lower values for bounded
slowdown. Finally, it is observed that the average waiting time, slowdown, and bounded
slowdown do not affect the total time, and as mentioned earlier, the newly implemented
algorithms yield better results.

5.3.3 Comparison of Heterogeneity Results

Taking into account that the high heterogeneity platform is composed of faster nodes,
it is observed in the graphs that the total time is lower. However, despite varying the
heterogeneity, there are no significant changes in how the algorithms behave compared to
the others. In both simulations, max-min and duplex exhibit better scheduling, followed by
A*. Shortest fastest, first-first, and full random yield poorer results. The only noticeable
difference is that in the low heterogeneity platform, the average of the longest fastest
algorithm is lower than that of min-min. In the high heterogeneity platform, this is
reversed. For the rest of the graphs, the results are similar, with the same trends for
all algorithms, although with better values in the high heterogeneity platform since, as
mentioned, it is faster.
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After comparing the results with those obtained in Figure 3 and Figure 4 of [8],
similar performance among the algorithms can be observed. OLB, which is analogous
to first-first, exhibits the poorest results. A* does not achieve the best times but yields
the worst outcomes, while duplex attains the best average total time by selecting the
optimal option. However, the results for max-min and min-min are reversed. In [8],
min-min achieves the best execution time, whereas in our simulations, it is max-min that
exhibits better scheduling. Lastly, it is worth noting that changing the heterogeneity in
the platforms does not lead to any significant shifts in the trends of the algorithms.

5.3.4 Real Workload With First Distributed Heterogeneity Platform

Figure 14: Average total time in the first platform with a real workload

In Figure 14 the average total time of the simulations is displayed, in hours. Small
differences between the performance of the algorithms are shown, where all algorithms
have an average total time close to 120 hours. However, there is some deviation between
simulations with the same algorithm. A* performs the best overall, with a minimum
value of less than 80 hours. On the other hand, full-random performs the worst by almost
reaching 160 hours in its longest simulation.
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Figure 15: Average Waiting time in the first platform with a real workload

Figure 16: Average slowdown in the first platform with a real workload
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Figure 17: Average bounded slowdown in the first platform with a real workload

As similar results are obtained in Figures 15, 16 and 17, they will be compared to-
gether. The simplest algorithms are the ones where jobs have to wait the less time. There
exists a relationship among the metrics for algorithms that prioritize shorter jobs, such as
shortest fastest and min-min, and those that prioritize longer jobs, such as longest fastest
and max-min. In both cases, the newly implemented algorithms yield inferior results com-
pared to the existing heuristics in IRMaSim. Due to the varying arrival times of jobs, the
duplex algorithm must make multiple decisions, resulting in intermediate outcomes be-
tween max-min and min-min. Ultimately, A* algorithm exhibits the poorest performance
in terms of average waiting time and slowdown. However, it demonstrates a significant
improvement in bounded slowdown, which could be attributed to the presence of multiple
jobs with very short execution times but high waiting times.

Upon analysing the collective results, it becomes apparent that while there may not
be a significant distinction in total time, substantial variations exist in waiting time, slow-
down, and bounded slowdown. These discrepancies can result in seemingly insignificant
jobs, submitted at a particular time, taking an unexpectedly long duration to complete,
which is suboptimal from the perspective of a user. Consequently, in these simulations,
it appears that the shortest fastest algorithm emerges as the optimal choice, as it not
only achieves a favourable total time result but also boasts the lowest values among all
algorithms for waiting time, slowdown, and bounded slowdown.
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5.3.5 Real Workload With Second Distributed Heterogeneity Platform

Figure 18: Average total time in the second platform with a real workload

Figure 18 shows differences between the performance of the algorithms in all simula-
tions. Min-min obtains the worst result, with a mean value over 130 hours and a worse
case over 160 hours. This approached is followed by the full random one. Another intrigu-
ing observation is that both the min-min and max-min algorithms outperform the duplex
algorithm. Finally, the best perform is given by A* with a simulation of under 90 hours.

Figure 19: Average Waiting time in the second platform with a real workload
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Figure 19 illustrates the waiting time for jobs in the simulation, revealing that the
first-first, full-random, and shortest fastest algorithms yield the least waiting time. The
min-min and longest fastest algorithms produce similar results, but the minimum value
of longest fastest is significantly lower than that of min-min, while the maximum values
remain comparable. Therefore, on average, longest fastest achieves better results. Max-
min and duplex exhibit comparable performance, but the minimum value of duplex is on
par with the minimum value of min-min. Finally, A* outperforms duplex as its worst-case
scenario is around 4000 seconds, whereas duplex approaches 7000 seconds.

Figure 20: Average slowdown in the second platform with a real workload
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Figure 21: Average bounded slowdown in the second platform with a real workload

In 20 and 21 is shown how the first-first, full-random and shortest fastest give the
least waiting time for jobs in the simulation. Min-min and longest fastest retrieve similar
results, however the maximum value of longest fastest is much higher than the min-min
one. Max-min and duplex perform quite similar, but the minimum value of duplex is
comparable to the minimum ones of longest fastest and min-min. A* gets high deviation
results, which leads into the worst performance. However, the gap between max-min and
A* is reduced in the bounded slowdown. As the deviation is standardized, the simulation
with the worst simulation slowdown, upgrades its value from over 250 to 140.

Upon examining all the obtained results in this platform, a notable trend is observed
among the newly implemented algorithms, whereby they achieve better simulation times
but experience an increase in jobs’ slowdown. However, an exception to this trend is the
min-min algorithm, which, due to its underperforming simulation, exhibits increased total
time, slowdown, bounded slowdown, and waiting time. Moreover, the duplex algorithm
yields results that fall between those of max-min and min-min. Finally, the A* algorithm
attains the best outcome in terms of total time, but it performs poorly in terms of slowdown
and average slowdown.

5.3.6 Comparison of Real Platform Results

Both experiments have in common the similarity in results for the mean time. This
may be caused by the time-lapse between the submitted time of the different groups of
jobs. It can be possible that, for the platform 0, which is composed of faster nodes, the
execution of all jobs in a certain submit time finishes before the new ones are submitted,
so that the total time of the simulation is reduced to the last set of nodes. As nodes in
platform 1 are slower, this more complicated for this scenario to take place. So the results
from all algorithms differ more.

In terms of waiting time, there is a tendency of the simplest algorithms, being first-
first and random-random, to perform worse. max-min tends to perform better than
longest-shortest and, as there are multiple algorithm selections by duplex, its performance
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in between the min-min and max-min ones. Finally, A* performs satisfactory for both
platforms.

When evaluating the remaining metrics, it is seen that the more complex is the
algorithm, the more time jobs are tended to be waiting. For both platforms first-first and
full-random get optimal values of slowdown, bounded slowdown, and waiting time, only
surpassed by shortest fastest, as it schedules first the shortest jobs. Duplex gets metrics
between the min-min and max-min values. Finally, A* tends to get the worst slowdown,
for both platforms, in spite of retrieving the best average total time results.

5.4 Overall Result Discussion

From a global perspective, the results provided by the simulations evaluating platform
heterogeneity exhibit greater variance in the performance of the algorithms in terms of
the average total simulation time. With few exceptions, the algorithms described in this
work consistently yield the best results in terms of total time. In fact, this difference is
most pronounced in slower platforms. Regarding the other evaluated metrics, it has been
observed that they are not necessarily proportional to the total time. Shortest fastest
consistently achieves the best values in terms of average waiting time, slowdown, and
bounded slowdown, partly because it prioritizes jobs that are expected to take less time,
as mentioned earlier. On the other hand, min-min, which follows the same philosophy,
does not perform as well in real-world simulations. The opposite is true for max-min,
which prioritizes longer jobs and significantly increases waiting time. Finally, the A*
algorithm, despite employing a small pruning factor, attains very good temporal results
while sacrificing a significant amount of job waiting time.

6 Conclusions

In this chapter, a brief summary of the work carried out during the development of
the project will be provided, and an attempt will be made to address or analyse the final
status of the objectives set at the beginning of this document. Furthermore, the main
conclusions drawn by the author after completing this project will be discussed, as well
as the major challenges encountered. Finally, a list of potential future work that could be
interesting to engage to further enhance the project will be presented.

In Chapter 1 a set of objectives were defined. The first was to review some well
known heuristic scheduling algorithms for heterogeneous clusters. A set of algorithms was
selected after analysing several articles [4], [8], [5]. Then, their performance was compared
by analysing the results given in [8], and the most efficient ones, min-min, max-min, duplex
and A* were selected.

After selecting the algorithms, their implementation in the IRMaSim simulator was
initiated. This involved a software analysis and the implementation of these algorithms in
the most efficient way. The result was the creation of two new workload managers. The
first one that integrates the functionality of min-min, max-min, and duplex by choosing an
option in its execution. The second one incorporates the functionality of the A* algorithm.

Once the algorithms were implemented, some testing was performed. Three different
results have been displayed throughout this document. A first set of simple simulations
that provide an example of the behaviour of each algorithm. Then, in order to prove
they work correctly, there has been provided a set of simulations in two different scenarios
similar to the one in [8]. Both of them with similar results to the ones in the document.
Finally, simulations with a real workload with two separate platforms have been executed,
and their metrics have been evaluated. The results were optimal, as they present an overall
upgrade in the completion time of the workload for the implemented algorithms.
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For the author, though being harsh to implement both the algorithms and the real
simulations, the completion of this project has been very rewarding, as it has provided
a way to apply many of the theoretical knowledge acquired during the course of their
studies, especially in the area of scheduling and algorithmic design.

Finally, a set of purposes of further investigation will be enumerated:

• An upgrade in the execution of the A* algorithm. Although it retrieves good results,
it takes a large time when the pruning factor increases over 128.

• Starvation prevention. As explained in Chapter 4, the implemented algorithms only
schedule the newly submitted jobs. In Chapter 5, the real workload was edited in
order to simulate a realistic but also a proper scenario to the simulations. To avoid
this problem, the algorithms could take for the next scheduling the list of entering
jobs plus the ones scheduled after some time ago. For instance, all jobs submitted
last day.
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