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y práctica)

Trabajo de fin de Grado

para acceder al

GRADO EN MATEMÁTICAS
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Abstract

In this paper we study support vector machines (SVM) for binary classification.
We will start with the case where the data set of the classification problem is linearly
separable, for which we will consider hard margin SVM. We will continue with the
case where the data set is not necessarily linearly separable, for which we will use
soft margin SVM. In both cases we will formulate a quadratic optimization problem
and we will obtain an alternative formulation using Wolfe duality.

The final theoretical part of this paper consists in using kernel functions to
improve the versatility of support vector machines for the case where the data set
is not linearly separable.

Finally, we have done an experimental part applying the Scikit-learn library in
Python to ”Breast Cancer Wisconsin (Diagnostic) Data Set”. Moreover, Matlab
has been used for some illustrative examples.

Key words: support vector machine (SVM), binary classification, hard margin
SVM, soft margin SVM, Wolfe duality, Kernel function.

Resumen

En este trabajo estudiamos las máquinas de vector soporte (SVM por sus siglas en
inglés) para clasificación binaria. Comenzaremos con el caso en el que el conjunto de
datos del problema de clasificación es linealmente separable, para el cuál considera-
remos las SVM con margen duro. Continuaremos con el caso en el que el conjunto
de datos no es necesariamente linealmente separable, para el que usaremos las SVM
con margen blando. En ambos casos formularemos un problema de optimización
cuadrática y obtendremos una formulación alternativa mediante la dualidad de
Wolfe.

La última parte teórica de este trabajo consiste en utilizar las funciones kernel
para potenciar la versatilidad de las máquinas de vector soporte para el caso en que
los datos no sean separables linealmente.

Por último, hemos realizado una parte experimental utilizando la libreŕıa Scikit-
learn de Python y la base de datos “Breast Cancer Wisconsin (Diagnostic) Data
Set”. Además, Matlab ha sido usado para algunos ejemplos ilustrativos.

Palabras clave: máquina de vector soporte, clasificación binaria, SVM con margen
duro, SVM con margen blando, dualidad de Wolfe, función kernel.
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Chapter 1

Introduction

Support Vector Machines (SVM) achieved greater popularity and recognition in
the 1990s when V. Vapnik and his co-workers used kernel functions to enhance the
versatility of SVM, see [5] and references therein. This supervised machine learning
method has been used in several fields such as text categorization, image recognition,
digit recognition, or non-stationary signal classification.

Although SVM were originally created to solve binary classification problems,
they were reformulated to solve other kind of problems, not discussed in this paper,
such us regression (see Chapter 9 of [12]) or multiclassification (see Section 7.6 of
[12]).

Mathematical perspective

Before explaining and formalizing the general idea, let us consider an application of
SVM to illustrate the objective of this paper. Let us suppose that we have a set
of m tumors and for each of them we have measured n certain characteristics and
we know whether they are benign or malignant. The problem we pose is: Can we
find a function that helps us to predict if a new tumor is benign or malignant by
measuring the same characteristics as the ones we already have? This is what we
will discuss throughout this paper. That is, we will try to find a function that helps
us to classify new tumors.

Now, let us consider a general case. Let us suppose that we have a finite set of
data points {x1, x2, ..., xm} ⊂ Rn, which can be divided into two classes depending
on whether they have a certain property or not. It is clear that we can represent
the data set as follows

S = {(xi, yi) : xi ∈ Rn, yi ∈ {−1, 1}, i = 1, ...,m}.

We will named it as binary data set and xi as data points. If we use the previous
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2 CHAPTER 1. INTRODUCTION

notation, we can also consider that the classes are

S1 = {xi : (xi, 1) ∈ S} and S−1 = {xi : (xi,−1) ∈ S}.

We obviously assume that S1 ̸= ∅, S−1 ̸= ∅ and S1 ∩ S−1 = ∅.
The first approach to the problem consists in assuming that the binary data set

is linearly separable. So, we can find a hyperplane that completely separates the
classes S1 and S−1 and, then we can define a classification function. In the next step
we will adapt the results obtained for the previous case to general binary data sets.

Structure of the paper

Now, we will briefly summarize each chapter.

• Chapter 2. We will consider the case in which the classes S1 and S−1 are
linearly separable by a hyperplane. Of the innumerable hyperplanes, we will
consider which of them best separates the classes S1 and S−1, in some way.
For this purpose we will construct a convex quadratic optimization problem
that is known as hard margin SVM problem. We will denote it as (PHM). We
will prove the existence and uniqueness of a global solution for (PHM). Then,
we will define a classification function, which as its name suggests, it will help
us to classify new points.

Then, we will use Wolfe duality to obtain an alternative formulation of (PHM),
which we will denote as (DHM). The objective is to find a problem (DHM) that
will be less expensive to solve than (PHM). We will prove the non-uniqueness
of solution.

We will also define support vectors, which give name to the SVM method, and
they are those that mainly define the classification function (”machine”).

• Chapter 3. In this chapter, we will assume that the classes S1 and S−1 are
not necessarily linearly separable. That is why, we will adapt the constraints
of (PHM) to allow some points to be misclassified. This new problem is known
as soft margin SVM problem and we will denote it by (PSM). We will prove
the existence of a global solution for this problem and give an example for the
non uniqueness of global solution. Finally, we will obtain the dual problem of
(PSM), which we will denote by (DSM).

• Chapter 4. As in the previous chapter we will assume that the classes are
not necessarily linearly separable. The idea of this chapter is to transform
the data set in such a way that when solving the dual problem (DSM) with
the transformed data set we may obtain fewer misclassified points than using
the initial data set. After giving an illustrative example we will introduce the
kernel functions, which will be of great help in this framework.



3

• Chapter 5. We will use functions from Scikit-learn library in Python, which
internally solve the dual problem presented in Chapter 4. We will use the
”Breast Cancer Wisconsin (Diagnostic) Data Set” from [7].

Although the main experimental part is covered in Chapter 5, in the previous
chapters we will work with some numerical examples using Matlab.

Throughout this paper the author has tried to formulate the problems in a clear
way from the mathematical point of view, as well as to prove theoretical results in
a rigorous but readable way.
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Chapter 2

Hard Margin SVM

2.1 Linearly Separable Data Set

Figure 2.1: Linearly separable data set concept. Class S1 is represented by ◦ and class S−1 by ×.

Consider a binary data set S = {(xi, yi) : xi ∈ Rn, yi ∈ {−1, 1}, i = 1, ...,m} and
the classes

S1 = {xi : (xi, 1) ∈ S} and S−1 = {xi : (xi,−1) ∈ S}.

Remember that we assume that S1 ∩ S−1 = ∅, S1 ̸= ∅ and S−1 ̸= ∅. Then, S1 and
S−1 are linearly separable if there are w ∈ Rn and b ∈ R such the linear classifier
H : Rn → R defined by H(x) = wTx+ b verifies:

H(xi) > 0,∀ xi ∈ S1 and H(xj) < 0, ∀ xj ∈ S−1. (2.1)

The hyperplane wTx+ b = 0 is known as separating hyperplane.
We will need the concept of distance between a hyperplane and a point. The

following theorem states the well known formula to calculate this value. We present
a proof using some optimization results that we have studied last year in the
Mathematics Degree.

5



6 CHAPTER 2. HARD MARGIN SVM

Theorem 2.1.1. Given x̂ ∈ Rn and the hyperplane π defined by wTx+ b = 0, then
the distance between them is:

dist(x̂, π) =
|wT x̂+ b|
∥w∥2

,

where ∥w∥2 :=
√
wTw represents the 2-norm.

Proof. The distance between x̂ and π can be computed using the following nonlinear
optimization problem: 

min
√

(x− x̂)T (x− x̂)

subject to x ∈ Rn,
wTx+ b = 0.

Notice that we can consider the following equivalent quadratic optimization
problem: 

min 1
2
xT (2Idn)x− 2x̂Tx+ x̂T x̂

subject to x ∈ Rn,
wTx+ b = 0.

Now, we will use some results from the Appendix. Theorem A.1.2 guarantees
the existence of solution for the last problem. Using the Lagrange multipliers rule
(Theorem A.1.4) and Corollary A.1.1 it is obtained that:

(i) 2x− 2x̂+ λw = 0,
(ii) wTx+ b = 0.

}
Multiplying equation (i) by wT , and using (ii) it is obtained that λ = 2wT x̂+b

wTw
.

Using now this value of λ and (i) we get x − x̂ = −wT x̂+b
wTw

w and, substituting
that value in the objective function of the first optimization problem, the proof is
completed.

In computational practice, we want a separation between the two classes S1 and
S−1 sharper than the one represented in (2.1). Therefore, we propose the following
theorem.

Theorem 2.1.2. Given S = {(xi, yi) : xi ∈ Rn, yi ∈ {−1, 1}, i = 1, ...,m} a
separable binary data set and a hyperplane wTx + b = 0 that separates S1 and
S−1, i.e.

wTxi + b > 0 if xi ∈ S1 and wTxj + b < 0 if xj ∈ S−1,
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then there are ŵ ∈ Rn and b̂ ∈ R such that:

ŵTxi + b̂ ≥ 1, ∀ xi ∈ S1, (2.2)

ŵTxj + b̂ ≤ −1, ∀ xj ∈ S−1. (2.3)

Proof. Let be x1 ∈ S1 and x−1 ∈ S−1 points with minimum distance to the hyper-
plane. Notice that d1 = wTx1 + b > 0, d−1 = wTx−1 + b < 0, so it is clear that
d = min{d1,−d−1} > 0. Let see us that ŵ = w/d and b̂ = b/d verify (2.2) and (2.3)

• If xi ∈ S1, then ŵTxi + b̂ =
wTxi + b

d
≥ wTx1 + b

d
=

d1
d

≥ 1.

• If xj ∈ S−1, then ŵTxj + b̂ = −|wTxj + b|
d

≤ −|wTx−1 + b|
d

=
d−1

d
≤ −1.

Definition 1 (Separation margin). Given a binary data set and a separating
hyperplane wTx+ b = 0, then the separation margin is the distance between the two
hyperplanes defined by wTx+ b = 1 and wTx+ b = −1.

Proposition 2.1.1. The value of the separation margin is 2/∥w∥2.

Proof. It follows from Theorem 2.1.1.

Remark 2.1.1. The purpose is to develop a procedure that can be used in practice to
find hyperplanes that separates our data set. So, we need to impose some constraints,
known as separability constraints, that arise from inequalities (2.2) and (2.3),
and they are (wTxi + b)yi ≥ 1, where w and b are variables.

2.2 Hard Margin SVM Problem

2.2.1 Constructing the Problem

As we can see in Figure 2.1, if the binary data set is linearly separable there are
many hyperplane separating the classes S1 and S−1. The criteria to determine the
best hyperplanes will be the one that maximize the separation margin, and taking
into acount Remark 2.1.1, the resultant optimization problem is

max f̂HM(w, b) =
2

∥w∥2

subject to w ∈ Rn, b ∈ R,
(wTxi + b)yi ≥ 1, for i = 1, ...,m.

(2.4)
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We can reformulate the previous non-linear optimization problem to get a convex
quadratic optimization problem, that is more convenient to solve,

(PHM)


min fHM(w, b) =

1
2
wTw

subject to w ∈ Rn, b ∈ R,
(wTxi + b)yi ≥ 1, for i = 1, ...,m.

Notice that
(
w
b

)
is solution of problem (2.4) if and only if it is solution of (PHM).

Problem (PHM) is known as hard margin SVM problem, and it is the optimization
problem that determines the parameters w, b from the separation hyperplanes 1 for
a separable binary data set.

2.2.2 Existence and Uniqueness of Solution

Notation: from now on, to simplify notation, in the rest of the paper, only when
we will refer to problem solutions, we will write (w, b) with the meaning of

(
w
b

)
.

Theorem 2.2.1 (Existence of solution for (PHM)). There is at least one solution
(w, b) for hard margin SVM problem.

Proof. Let {(wn, bn)}n∈N be a minimizing sequence, that is to say

{(wn, bn)}n∈N ⊂ K and lim
n→∞

fHM(wn, bn) = inf{fHM(w, b) : (w, b) ∈ K}, (2.5)

where K represents the feasible set of problem (PHM). To simplify the notation,
we define γ := inf{fHM(w, b) : (w, b) ∈ K}.

We can consider two cases:

• CASE I. The sequence {(wn, bn)}n∈N is bounded. So, there is a convergent

subsequence {(wn′ , bn′)}n′∈N ⊂ {(wn, bn)}n∈N, and (wn′ , bn′)
n′→+∞−−−−→ (w, b).

As K is a closed set, (w, b) ∈ K. Since fHM is continuous, fHM(w, b) =
lim

n′→+∞
fHM(wn′ , bn′). Moreover, lim

n′→+∞
fHM(wn′ , bn′) = lim

n→+∞
fHM(wn, bn) = γ.

Then, fHM(w, b) = γ, and it follows that (w, b), is a global solution for (PHM).

• CASE II. The sequence {(wn, bn)}n∈N is not bounded. Therefore, there is a

subsequence {(wn′ , bn′)}n′∈N ⊂ {(wn, bn)}n∈N that ∥(wn′ , bn′)∥ n′→+∞−−−−→ +∞.
We distinguish the following two cases:

1Some authors refer to these hyperplanes as maximal margin hyperplanes.



2.2. HARD MARGIN SVM PROBLEM 9

– CASE II.a. The subsequence {bn′}n′∈N is bounded, therefore we get that

∥wn′∥ n′→+∞−−−−→ +∞. Taking the 2-norm, we get that ∥wn′∥22
n′→+∞−−−−→ +∞,

and then fHM(wn′ , bn′) = 1
2
∥wn′∥22

n′→+∞−−−−→ +∞, but this is an absurd

conclusion, because using (2.5) it follows that fHM(wn′ , bn′)
n′→+∞−−−−→ γ,

but γ < +∞ because K ̸= ∅.
– CASE II.b. The subsequence {bn′}n′∈N is not bounded. So, there is

a subsequence {bn′′}n′′∈N ⊂ {bn′}n′∈N that |bn′′ | n′′→+∞−−−−−→ +∞. Let us
suppose that there is a subsequence {bn′′′}n′′′∈N ⊂ {bn′′}n′′∈N verifying
bn′′′ > 0, ∀n′′′ ∈ N. We can choose xi ∈ S−1, and then using the
separability constraints and the Cauchy-Schwartz inequality

|bn′′′ | = bn′′′ ≤ −1− (wn′′′)Txi ≤ −1 + ∥ − wn′′′∥∥xi∥.

Since |bn′′′ | n′′′→+∞−−−−−→ +∞, then ∥wn′′′∥ n′′→+∞−−−−−→ +∞, but that is absurd
(using the same argument as in CASE II.a). Analogously, we obtain an
absurd result if the subsequence {bn′′′}n′′′∈N verifies bn′′′ < 0, ∀n′′′ ∈ N,
but in this case we must take xi ∈ S1.

Therefore, only CASE I can occur.

Remark 2.2.1. Let us know that (PHM) is a convex problem, so each local solution
for (PHM) is also a global solution (Theorem A.1.3).

Remark 2.2.2. If (w, b) is a global solution for (PHM), it is obvious that w ̸= 0.
Otherwise, using the separability constraints with one element of each class, we would
obtain that b ≥ 1 and b ≤ −1, which is impossible.

Definition 2 (Boundary hyperplanes). Let (w, b) be a global solution for (PHM),
then the hyperplanes wTx + b = 1 and wTx + b = −1 are known as boundary
hyperplanes.

Definition 3 (Boundary vector). Let (w, b) be a global solution for (PHM), the
vector xi ∈ S1 ∪ S−1 that satisfies wTxi + b = 1 or wTxi + b = −1 is known as
boundary vector.

The following proposition states that there is always at least one boundary vector
of each class. This result will be fundamental in proving the uniqueness of solution
for hard margin SVM problem.

Proposition 2.2.1. For each solution of Problem (PHM) there is at least one
boundary vector for each class S1 and S−1.
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Proof. Proof by reduction to the absurd. Let (w, b) be a global solution of Problem
(PHM) and, let us suppose that there are not boundary vectors of at least one class.

Let be x1 ∈ S1 and x−1 ∈ S−1 points with minimum distance to the hyperplane
wTx + b = 0. We can define d1 = wTx1 + b and d−1 = wTx−1 + b, notice that
d1 ≥ 1 and d−1 ≤ −1. Since there are not boundary vectors of at least one class, it

follows that at least one of the previous inequalities is strict, so d =
d1 − d−1

2
> 1.

Let see that ŵ = w/d and b̂ =
(
b+ d− d1

)
/d is a new feasible point of (PHM):

• If xi ∈ S1, then

ŵTxi + b̂ =
wTxi + b+ d− d1

d
≥ wTx1 + b+ d− d1

d
=

d1 + d− d1
d

= 1.

• If xj ∈ S−1, then

ŵTxj + b̂ ≤ wTx−1 + b+ d− d1
d

=
d−1 + d− d1

d
= −1,

where in the last equality we have used the relation d−1 = −2d+ d1.

And fHM(ŵ, b̂) = 1
2
ŵT ŵ = 1

2d2
wTw < 1

2
wTw = fHM(w, b), but this is absurd

because (w, b) is a global solution for (PHM).

Theorem 2.2.2 (Uniqueness of solution for (PHM)). Hard margin SVM problem
has an unique solution.

Proof. Let (w1, b1) and (w2, b2) be two global solutions for (PHM). The proof is
divided in two parts, first we will prove that w1 = w2, and then we will see that
b1 = b2.

1. Let us suppose that w1 ̸= w2. We define ŵ = 1
2
(w1 + w2) and b̂ = 1

2
(b1 + b2),

notice that (ŵ, b̂) is a feasible point due to the convexity of the feasible set.

Moreover, due to fHM is a strictly convex function, and two global solutions
have the same objective function value, it follows that

fHM(ŵ, b̂) =
1

2
ŵT ŵ =

1

2

∥∥∥∥12(w1 + w2)

∥∥∥∥2
2

<
1

2

(
1

2

(
∥w1∥22 + ∥w2∥22

))
=

=
1

2
(fHM(w1, b1) + fHM(w2, b2)) = fHM(w1, b1).

We have obtained an absurd, because (w1, b1) is a global solution for (PHM).

Then, w1 = w2 and, therefore, the solutions must be (w1, b1) and (w1, b2).
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2. Without loss of generality let us suppose that b1 ≥ b2. Then, there is δ ∈ R,
δ ≥ 0, such that b2 = b1 − δ. Due to (w1, b2) is a solution of (PHM), if xi ∈ S1

then wT
1 xi + b2 ≥ 1, ergo wT

1 xi + b1 ≥ 1 + δ.

As (w1, b1) is a global solution for (PHM), applying Proposition 2.2.1, there
must be x̂ ∈ S1 verifying wT

1 x̂+ b1 = 1. Also x̂ must satisfy the last inequality,
that is to say wT

1 x̂ + b1 ≥ 1 + δ. Combining the two expressions (relative to
x̂) we get that δ = 0, so b1 = b2.

Remark 2.2.3 (Classifying new points). The objective of finding the best hyperplane
is to be able to predict if a new point, xnew, belongs to S1 or S−1 through the
classification function, defined as:

class : Rn → {−1, 1}, where class(x) := sign
(
wTx+ b

)
. 2 (2.6)

If class(xnew) = 1 then xnew ∈ S1 and, if class(xnew) = −1 then xnew ∈ S−1.

2.3 Duality for Hard Margin SVM Problem

The main objective of this section is to obtain the dual problem of (PHM). For
this purpose we will use Wolfe duality (Theorem A.2.1), but instead of applying it
directly, a proposition will be introduced.

Proposition 2.3.1. Consider the following quadratic optimization problem:
min 1

2
xTHx+ pTx

subject to x ∈ Rn,
ATx ≤ v,

(2.7)

where H ∈ Rn×n is a positive semidefinite symmetric matrix, A ∈ Rn×nD and v ∈
RnD . Then:

1. If x ∈ Rn is a global solution of problem (2.7), then there is µ ∈ Rm such that
(x, µ) is solution of the Wolfe dual problem:

max −1
2
xTHx− vTµ

subject to (x, µ) ∈ Rn × RnD ,
Hx+ Aµ = −p,
µ ≥ 0.

(2.8)

Also, primal and dual optimal function values are equal.

2 If z ∈ R, then sign(z) =

{
1 if z ≥ 0
−1 if z < 0

.
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2. The dual problem of (2.8) is

max 1
2
xTHx+ vTµ+ (Hx+ Aµ+ p)Tλ− µTγ

subject to (x, µ, λ, γ) ∈ Rn × RnD × Rn × RnD ,
Hx+Hλ = 0,
v + ATλ− γ = 0,
γ ≥ 0,

(2.9)

which is equivalent to problem (2.7).

Proof. 1. The Lagrangian function of problem (2.7) is:

L(x, µ) =
1

2
xTHx+ pTx+ µT (ATx− v).

Then, ∇xL(x, λ, µ) = Hx+p+Aµ. To conclude, let us notice that the expression
of the Lagrangian function is reduced using the constraint ∇xL(x, λ, µ) = 0.

Also, Theorem A.2.1 guarantees that the optimal function values are equal. see
Theorem A.1.3.

2. Problem (2.8) is equivalent to:
min 1

2
xTHx+ vTµ

subject to (x, µ) ∈ Rn × RnD ,
Hx+ Aµ = −p,
µ ≥ 0.

.

Its Lagrangian function is

L̂(x, µ, λ, γ) =
1

2
xTHx+ vTµ+ (Hx+ Aµ+ p)Tλ− µTγ.

Applying Wolfe Duality (Theorem A.2.1), using ∇xL̂(x, µ, λ, γ) = Hx+Hλ and
∇µL̂(x, µ, λ, γ) = v + ATλ− γ, we get problem (2.9).

As in the previous case, we can reduce the formula of the Lagrangian function
using the constraints, and the resultant problem is:

max −1
2
λTHλ+ pTλ

subject to (λ, γ) ∈ Rn × RnD ,
−ATλ+ γ = v,
γ ≥ 0.



2.3. DUALITY FOR HARD MARGIN SVM PROBLEM 13

And, using the fact that γ ≥ 0, we get that
max −1

2
λTHλ+ pTλ

subject to λ ∈ Rn,
−ATλ ≤ v.

Which is equivalent to problem (2.7) using the change of variable x = −λ.

Remark 2.3.1 (Matrix formulation of (PHM)). In order to apply the previous
proposition, notice that (PHM) can be rewritten as:

min fHM(w, b) =
1
2
wTw

subject to w ∈ Rn, b ∈ R,
−Y XTw − yb ≤ −e,

(2.10)

where y = (y1, ..., ym)
T , e =

(
1 · · · 1

)T ∈ Rm, Y = diag(y) ∈ Rm×m 3 and
X ∈ Rn×m is the matrix whose columns are the vectors xi.

Proposition 2.3.2. The Wolfe dual problem of (2.10) is:

(D̂HM)



max ĝHM(w, µ) = −1
2
wTw + eTµ

subject to (w, µ) ∈ Rn × Rm,
yTµ = 0,
w = XY µ,
µ ≥ 0.

Or, equivalently

(DHM)


min gHM(µ) =

1
2
µTY XTXY µ− eTµ

subject to µ ∈ Rm,
yTµ = 0,
µ ≥ 0.

Proof. Using in Proposition (2.3.1):

x =

(
w
b

)
∈ Rn+1, A =

(
−XY
−yT

)
∈ R(n+1)×m,

3Y = diag(y) means a diagonal matrix whose diagonal is the vector y.
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v =

−1
...
−1

 ∈ Rn+1, p =

0
...
0

 ∈ Rn+1 and H =


0

Idn
...
0

0 · · · 0 0

 ∈ R(n+1)×(n+1),

we obtain that the dual problem of (PHM) is (D̂HM). Moreover, notice that we can
rewrite that problem using the constraint

w = XY µ (2.11)

in the objective function, and therefore we get (DHM).

Remark 2.3.2. Notice that (DHM) is a convex optimization problem, because it is
a quadratic programming problem whose Hessian matrix can be seen as MTM , being
M a matrix, so this Hessian matrix is a positive semidefinite symmetric matrix.

Primal problem (PHM) has m general constraints (separability constraints) while
the dual problem (DHM) has m bound constraints and one equality constraint,
therefore in practice it is easier to solve (DHM) than (PHM).

In contrast to (PHM), we are not assured of the uniqueness of the solution for
(DHM), as we can see in the following example. It is based on a problem presented
in [13], but we have adapted it to the hard margin dual case.

Example 2.3.1 (Non uniqueness of solution for (DHM)). We consider in R2 the
data points:

x1 = (1, 1)T , x2 = (1, 0)T , x3 = (0, 1)T and x4 = (0, 0)T ,

with the classification x1, x3 ∈ S1 and x2, x4 ∈ S−1. With these data points (DHM)
becomes

min gHM(µ) =
1

2
(2µ2

1 + µ2
2 + µ2

3 − 2µ1µ2 + 2µ1µ3)−
4∑

i=1

µi

subject to µi ∈ R,∀i = 1, ..., 4,
µ1 − µ2 + µ3 − µ4 = 0,
−µ1 ≤ 0, −µ2 ≤ 0, −µ3 ≤ 0, −µ4 ≤ 0.

As the previous problem is convex (Remark 2.3.2), every Kuhn-Tucker point is
a global solution (Theorem A.1.5). The Kuhn-Tucker points (see Appendix A.1.1)
must verify the constraints of the problem and also the equations:(

2µ1 − µ2 + µ3 − 1
µ2 − µ1 − 1
µ3 + µ1 − 1

−1

)
+ λ

(
1
−1
1
−1

)
+ γ1

(−1
0
0
0

)
+ γ2

(
0
−1
0
0

)
+ γ3

(
0
0
−1
0

)
+ γ4

(
0
0
0
−1

)
=

(
0
0
0
0

)
,

γ1(−µ1) = 0, γ2(−µ2) = 0, γ3(−µ3) = 0, γ4(−µ4) = 0,
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where λ ∈ R and γi ∈ R, γi ≥ 0, ∀ i = 1, ..., 4.
It is easy to prove that µ = (1, 1, 1, 1)T satisfies the constraints of the problem,

and it also verifies the previous equations with the Lagrange multipliers λ = −1,
γ1 = 0, γ2 = 0, γ3 = 0 and γ4 = 0. So, µ is a global solution whose objective
function value is gHM(µ) = −2.

Furthermore, gHM(t, t, 2− t, 2− t) = −2, ∀t ∈ [0, 2], and therefore, we get that
the feasible vectors (t, t, 2− t, 2− t)T , ∀t ∈ [0, 2], are also global solutions.

Notice, that every global solution of the dual problem (DHM) will generate the
first n components of the unique solution of the primal problem (PHM). This is
guaranteed by the following proposition.

Proposition 2.3.3. Let µ be a global solution for (DHM), then the coordinates of
w = XY µ are the first n components of the unique solution of the primal problem
(PHM).

Proof. If µ is a global solution for (DHM), we can consider (w, µ) as a solution

of (D̂HM). Due to the proof of Proposition 2.3.1, there is λ∗ ∈ Rn+1 such that
−λ∗ is the solution of the primal problem (PHM). Moreover, using the constraint
Hx+Hλ = 0 from (2.8), where H and x are the same as in the proof of Proposition
2.3.2, it follows that −λ∗

i = wi for i = 1, ..., n.

Definition 4 (Support vector). Let µ be a global solution for (DHM), then the
data point xi ∈ S1 ∪ S−1 for which µi > 0 is known as support vector.

Notice that w is written as a lineal combination of support vectors (remember
formula (2.11)), therefore, they influence the classification of new points. And this is
why this machine learning procedure for data classification is called Support Vector
Machine, because it only relies on support vectors the classification of new points.

Proposition 2.3.4. Let µ be a solution of the dual problem (DHM). If µi > 0,
then the corresponding separability constraint is active at (w, b), i.e.(

wTxi + b
)
yi = 1, (2.12)

where (w, b) is the solution of the primal problem (PHM).

Proof. Let us suppose that there is i0 ∈ {1, ...,m} such that(
wTxi0 + b

)
yi0 > 1 and µi0 > 0.

So, we get µi0

(
wTxi0 + b

)
yi0 > µi0 . Moreover, taking into account the constraints

of (PHM) and (DHM):

(wTxi + b)yi ≥ 1,∀i = 1, ...,m,



16 CHAPTER 2. HARD MARGIN SVM

yTµ = 0, w = XY µ and µ ≥ 0,

we obtain that
∑
µi>0

µi

(
wTxi + b

)
yi >

∑
µi>0

µi. Furthermore, as yTµ = 0, we get that∑
µi>0

µiw
Txiyi > eTµ, and using that w = XY µ, it follows that wTXY µ > eTµ,

which is equivalent to

1
2
wTw > −1

2
µTY XTXY µ+ eTµ.

We have obtained that the optimal function value of the dual problem is strictly
less than the primal one, which is absurd by Wolfe Duality (Theorem A.2.1).

The previous proposition states that all support vectors are boundary vectors,
but the other implication is not true, see Example 2.3.3. But first, we must consider
the following remark.

Remark 2.3.3 (Calculating the hyperplane after solving (DHM)). Let µ be a global
solution for (DHM), due to Proposition 2.3.3 we have that w = XY µ. Notice that b
can be found using the constraints of (PHM), with one of the following strategies:

1. Using the formula (2.12), with a support vector xi, i.e.

b = yi − wTxi. (2.13)

2. Using in the previous item a support vector whose corresponding µp is sufficiently
dominant over the rest of µi.

3. As (w, b) is the solution for (PHM), it must verify the separability constraints
constraints, ergo

• b ≥ 1− wTxi ∀xi ∈ S1, then

b ≥ max
xi∈S1

(1− wTxi) = 1− min
xi∈S1

(wTxi).

• b ≤ −1− wTxj ∀xj ∈ S−1, then

b ≤ min
xj∈S−1

(−1− wTxj) = −1− max
xj∈S−1

(wTxj).

Then, we can choose the medium point of the interval defined by the above
bounds (see [6])

b = −
min
xi∈S1

(wTxi) + max
xj∈S−1

(wTxj)

2
. (2.14)
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Notice that we can also calculate b with the formula (2.13) for each support vector
and then compute the mean, but we will have to choose a tolerance to decide which
vectors are support vectors and which are not. This is why we propose the formula
(2.14), in order not to use tolerances.

Example 2.3.2 (Numerical experiments, strategies for calculating b). We consider
in R2 the data points in Table 2.1, with the classification x1, x4, x5, x6, x7 ∈ S1 and
x2, x3, x8, x9 ∈ S−1.

x1 = (2, 2)T

x2 = (−1, 1)T

x3 = (1, 4)T

x4 = (4, 1)T

x5 = (6, 1)T

x6 = (1, 0)T

x7 = (5, 4)T

x8 = (2, 5)T

x9 = (−2, 3)T

Table 2.1: Data set of Example 2.3.2. Figure 2.2: Data representation of Example 2.3.2.

Using quadprog, a quadratic programming solver provided in Matlab’s Optimiza-
tion Toolbox, a numerical solution for (DHM) with the previous data is represented
in the first column of Table 2.2, therefore w = XY µ = (8.8889e − 01, −6.6667e −
01)T . The second column of Table 2.2 represents the value of b for each data point
calculated using the formula bxi

= yi − wTxi.

µi bxi

6.1728e-01 5.5556e-01
2.9630e-01 5.5556e-01
3.9324e-09 7.7778e-01
5.3683e-11 -1.8889e+00
3.5211e-11 -3.6667e+00
5.0960e-10 1.1111e-01
7.2310e-11 -7.7778e-01
3.2099e-01 5.5556e-01
6.8335e-11 2.7778e+00

Table 2.2: µ and b of Example 2.3.2.
Figure 2.3: Different hyperplanes according to the
value of b chosen.
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Figure 2.3 shows the different hyperplanes according to the value of b chosen,
where bm = −1.1111e−01 represents the mean of the values bxi

, and bf = 5.5556e−01
is the value computed using the formula (2.14).

Notice that if we take as tolerance 1.0e− 12 all the data points will be support
vectors. And, if we use the first strategy of Remark 2.3.3, depending on which one
we choose to compute b the resulting hyperplane may not separate the data set, see
Figure 2.3. If we use the same tolerance, and calculate the average of the values bxi

,
i.e. bm, we can observe how the resultant hyperplane is not at the same distance
from the class S1 to the class S−1, which is not the case if we use the value bf .

We conclude this section by showing an example that demonstrates that not
every boundary vector is a support vector, and therefore it makes sense to define
both concepts. The idea of the following example has been extracted from [1].

Example 2.3.3. We consider in R2 the data points: x1 = (0, 0)T , x2 = (1, 0)T and
x3 = (0, 1)T , with the classification x1, x2 ∈ S1 and x3 ∈ S−1. (DHM) with this data
is equivalent to

min gHM(µ) =
1

2
(µ2

2 + µ2
3)− µ1 − µ2 − µ3

subject to µ1, µ2, µ3 ∈ R,
µ1 + µ2 − µ3 = 0,
−µ1 ≤ 0,
−µ2 ≤ 0,
−µ3 ≤ 0.

A Kuhn-Tucker point of the previous problem is µ = (2, 0, 2)T , whose Lagrange
multiplier associated with the equality constraint is λ = 1, and to the bound ones
are γ1 = 0, γ2 = 0 and γ3 = 0. Since the problem is convex (Remark 2.3.2), every
Kuhn-Tucker point is a global solution (Theorem A.1.5).

Moreover, using Remark 2.3.3, we obtain w = ( 0 1 0
0 0 1 )

(
1 0 0
0 1 0
0 0 −1

)(
2
0
2

)
= ( 0

−2 ) and

b = 1. And therefore, x2 is a boundary vector (because it verifies (wTx2 + b)y2 = 1)
but not a support vector since µ2 = 0.



Chapter 3

Soft Margin SVM

The aim of this chapter is to consider binary data sets

S = {(xi, yi) : xi ∈ Rn, yi ∈ {−1, 1}, i = 1, ...,m}

that are not necessarily linearly separable.

3.1 Soft Margin SVM Problem

3.1.1 Constructing the Problem

Figure 3.1: Soft margin concept. Class S1 is represented by ⃝ and class S−1 by ×. The data
points x1 and x2 are missclasified.

When dealing with real-world data, it is common that the data set is not linearly
separable, so hard margin SVM problems are not able to handle it. Therefore, we

19
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should relax the separability constraints by adding positive slack variables ξi, i.e.

wTxi + b ≥ 1− ξi, for xi ∈ S1,

wTxj + b ≤ −1 + ξj, for xj ∈ S−1.

The consequence of relaxing the constraints is to have some data to be misclassified,
as is the case of x1 and x2 in Figure 3.1.

In order to control the relaxation of the separability constraints, we add a penalty
term to the objective function. So, the quadratic optimization problem, known as
soft margin SVM problem, becomes

(PSM)



min fSM(w, b, ξ) =
1
2
wTw + C

m∑
i=1

ξi

subject to w ∈ Rn, b ∈ R, ξ ∈ Rm,
(wTxi + b)yi ≥ 1− ξi, for i = 1, ...,m,
ξi ≥ 0, for i = 1, ...,m,

where C > 0 is known as the regularization parameter. Obviously, the higher C
is, the more the violation of the constraints will be penalized.

Therefore, the goal of (PSM) is to find the parameters w, b of some hyperplanes
that maximizes the separation margin between the two classes S1 and S−1 while
controlling the violation of the separability constraints.

3.1.2 Existence and Non-Uniqueness of Solution

Theorem 3.1.1 (Existence of solution for (PSM)). There is at least one global
solution

(
w, b, ξ

)
for the soft margin SVM problem.

Proof. It is analogous to the proof of Theorem 2.2.1, which we have done in the

previous chapter for (PHM), but taking wξ =

(
w

ξ

)
and, instead of the 2-norm using

the following fact

fSM(w, b, ξ) =
1

2
wTw + CeT ξ =

1

2
∥w∥22 + C∥ξ∥1 ≥ M∥w∥21 + C∥ξ∥1 ≥

≥ min{M∥w∥1, C}(∥w∥1 + ∥ξ∥1) = min{M∥w∥1, C}
∥∥∥∥(wξ

)∥∥∥∥
1

,

where M ∈ R,M > 0 (we have used the fact that all norms in Rn are equivalent)

and ∥ξ∥1 =
m∑
i=1

|ξi| represents the 1-norm.
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Let
(
w, b, ξ

)
be a solution of (PHM), it is clear that if ξi = 0, ∀i = 1, ...,m,

the data set is linearly separable. But if this is not the case, the following remark
will help us to understand how to interpret the separability of our data set from the
values taken by the slack variables.

Remark 3.1.1 (Interpreting the values ξi). Let
(
w, b, ξ

)
be a global solution for

(PSM). Notice that the values ξi provide some information about how separable our
data set is in relation to the hyperplane wTx + b = 0. Consider xi ∈ S1 ∪ S−1, we
distinguish four cases:

• If ξi = 0, then xi satisfies (w
Txi + b)yi ≥ 1, therefore class(xi) = yi, and it is

well classified.

• If 0 < ξi < 1, then xi is between the hyperplanes wTx+b = 0 and wTx+b = yi,
therefore class(xi) = yi, so it is well classified.

• If ξi = 1, then xi verifies wTxi + b = 0, therefore class(xi) = 1 and it may be
misclassified.

• If ξi > 1, it follows that class(xi) = −yi, so it is misclassified. And, we can
interpret this fact as the point xi is not separable with respect to the hyperplane.

Clearly, the more ξi > 1 cases there are, the less effectively the hyperplane will
separate the data, resulting in a greater number of misclassified data points and
therefore a poorer quality of the hyperplane.

In practice, it is common to try different values of C until the desired result is
obtained, i.e. the hyperplane with the lowest number of misclassified points. So,
we present an example in which we can see how the missclasified points and the
expression of the hyperplane varies depending on the value of the regularization
parameter.

Example 3.1.1 (Experimenting with C). Consider in R2 the non linearly separable
data points:

x1 = (1, 1)T , x2 = (1.5, 2)T , x3 = (3, 4)T , x4 = (4, 4)T , x5 = (2, 1)T ,

x6 = (3, 2)T , x7 = (4, 1)T , x8 = (0.7, 3)T , x9 = (2.5, 3)T and x10 = (3.5, 3)T ,

with the classification: x1, x2, x3, x4, x9 ∈ S1 and x5, x6, x7, x8, x10 ∈ S−1.
In Table 3.1 values of the slack variables are shown (rounded to 2 decimal digits

and we have written 0 in the case that ξi is less than 10−10) for some values of C
after solving (PSM) with the solver quadprog from Matlab.
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ξ C = 0.1 C = 0.5 C = 2 C = 10

ξ1 1.40 1.58 1.20 0.67

ξ2 1.06 1.03 0.40 0

ξ3 0.44 0 0 0

ξ4 0.56 0.14 0 0.67

ξ5 0.48 0.28 0 0

ξ C = 0.1 C = 0.5 C = 2 C = 10

ξ6 0.76 0.76 0.40 0

ξ7 0.24 0 0 0

ξ8 1.43 1.70 3.44 4.40

ξ9 0.78 0.55 0 0

ξ10 1.10 1.31 1.20 0.67

Table 3.1: Example 3.1.1, values of ξ depending on C.

Figure 3.2: Results of Example 3.1.1.

Also, we can see in Table 3.1 that as C gets bigger the number of ξi verifying
ξi = 0 increases, and that is because bigger values of C penalize the violation of the
constraints.

In the graphs of Figure 3.2, we can observe how the hyperplane considerably
changes and the variation of missclasified points as the value of C varies. We get the
best result with C = 10, and for larger values of C we still get the same hyperplane.
Additionally, in the upper left graph of Figure 3.2, we can see that there are not
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boundary vectors for either of the two classes, something that did not occur with
Hard-Margin SVM problems.

Remark 3.1.2. By generalising the Hard-Margin SVM problem, we have preserved
the convexity of the problem, but not the uniqueness of solution.

Example 3.1.2 (Non uniqueness of solution for (PSM), based on [3]). We consider
in R the data points x1 = 1 and x2 = −1, with the classification x1 ∈ S1 and
x2 ∈ S−1. If the regularization parameter is C = 0.25, then (PSM) with this data
set is equivalent to

min fSM(w, b, ξ) =
1
2
w2 + 0.25(ξ1 + ξ2)

subject to w ∈ R, b ∈ R, , ξ1 ∈ R, ξ2 ∈ R,
−w − b+ 1− ξ1 ≤ 0,
−w + b+ 1− ξ2 ≤ 0,
−ξ1 ≤ 0,
−ξ2 ≤ 0.

Any Kuhn-Tucker point (see Section A.1.1) of the previous problem must verify
its constraints and also the following equations:

w
0

0.25
0.25

+ µ1


−1
−1
−1
0

+ µ2


−1
1
0
−1

+ µ3


0
0
−1
0

+ µ4


0
0
0
−1

 =


0
0
0
0

 ,

µ1(−w − b+ 1− ξ1) = 0, µ2(−w + b+ 1− ξ2) = 0, µ3(−ξ1) = 0, µ4(−ξ2) = 0,

where µi ∈ R, µi ≥ 0, ∀ i = 1, ..., 4.
It is easy to prove that the feasible point w = 0.5, b = 0, ξ1 = 0.5 and ξ2 = 0.5

verifies the previous equations with the Lagrange multipliers µ1 = µ2 = 0.25 and
µ3 = µ4 = 0. Therefore, as the problem is convex (Remark 3.1.2) we get that(
w, b, ξ

)
is a global solution (Theorem A.1.5), whose optimal objective function

value is fSM

(
w, b, ξ

)
= 3/8.

By the other hand, the feasible points ŵ = 0.5, b̂ ∈ [−0.5, 0.5], ξ̂1 = 0.5− b̂ and

ξ̂2 = 0.5 + b̂ verifies that fSM(ŵ, b̂, ξ̂ ) = 3/8, so they are also global solutions.

As we have just seen in the previous example, we have not guaranteed the
uniqueness of the solution for (PSM). But we have that all the solution hyperplanes
of (PSM) will be parallel, and this is given by the following proposition.

Proposition 3.1.1. If (w, b, ξ ) and (ŵ, b̂, ξ̂ ) are two different global solutions for
(PSM), then w = ŵ.
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Proof. Let us suppose that w ̸= ŵ. We define w∗ = 1
2
(w + ŵ), b∗ = 1

2

(
b+ b̂

)
and

ξ∗ = 1
2

(
ξ + ξ̂

)
, and notice that (w∗, b∗, ξ∗) is a feasible point for (PSM) due to the

convexity of the feasible set.
By the other hand, we have that

fSM(w
∗, b∗, ξ∗) =

1

2

∥∥∥∥12(w + ŵ)

∥∥∥∥2
2

+
C

2

m∑
i=1

(
ξi + ξ̂i

)
<

1

2

(
1

2

(
∥w∥22 + ∥ŵ∥22

))
+

+
C

2

m∑
i=1

(
ξi + ξ̂i

)
=

1

2

(
fSM(w, b, ξ ) + fSM(ŵ, b̂, ξ̂ )

)
= fSM(ŵ, b̂, ξ̂ ),

in the last equality we have used that both solutions are global. Therefore, we have
obtained that fSM(w

∗, b∗, ξ∗) < fSM(ŵ, b̂, ξ̂ ), and this is absurd, because (ŵ, b̂, ξ̂ ) is
a global solution.

3.2 Degeneracy

Curiously, in contrast to what happened in Hard-Margin SVM problems, the case
where w = 0 is now possible. This is known as degeneracy, and the consequence
is that all points will be classified into one class. In principle, it does not matter in
which class all the data will be classified, because the idea of this method is to find a
hyperplane that separates the classes while minimizing the number of misclassified
points, and this is not achieved in this way.

Example 3.2.1 (Degeneracy example, based on [1]). We consider in R the points:
x1 = −1, x2 = 0 and x3 = 1, with the classification x1, x3 ∈ S1 and x2 ∈ s−1. With
this data set, problem (PSM) becomes

min fSM(w, b, ξ) =
1
2
w2 + C (ξ1 + ξ2 + ξ3)

subject to w ∈ R, b ∈ R, ξ ∈ R3,
w − b+ 1− ξ1 ≤ 0,
b+ 1− ξ2 ≤ 0,
−w − b+ 1− ξ3 ≤ 0,
−ξ1 ≤ 0,
−ξ2 ≤ 0,
−ξ3 ≤ 0.

(3.1)

A Kuhn-Tucker point of the previous problem is

w = 0, b = 1, ξ1 = 0, ξ2 = 2, ξ3 = 0, ∀ C > 0,
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whose Lagrange multipliers associated with the general constraints are µ1 = C/2,
µ2 = C, µ3 = C/2 and µ4 = C/2, µ5 = 0, µ6 = C/2 to the bound ones. As
the problem is convex (Remark 3.1.2), the previous Kuhn-Tucker point is a global
solution. Therefore, using the classification function (Remark 2.2.3) any point will
be classified into S1.

For more information on degeneracy and when it occurs see [11].

3.3 Duality for Soft Margin SVM Problem

Remark 3.3.1 (Matrix formulation of (PSM)). Notice that we can rewrite (PSM)
as follows 

min fSM(w, b, ξ) =
1
2
wTw + Cetξ

subject to w ∈ Rn, b ∈ R, ξ ∈ Rm,
−Y XTw − yb− ξ ≤ −e,
−ξ ≤ 0,

(3.2)

where, y = (y1, ..., ym)
T , e =

(
1 · · · 1

)T ∈ Rm, Y = diag(y) ∈ Rm×m and
X ∈ Rn×m the matrix whose columns are the vectors xi .

Proposition 3.3.1. The Wolfe dual problem of (3.2) is

(D̂SM)



max ĝSM(w, η, ν) = −1
2
wTw + eTη

subject to (w, η, ν) ∈ Rn × Rm × Rm,
w = XY η,
yTη = 0,
ηi + νi = C, for i = 1, ...,m,
η ≥ 0,
ν ≥ 0,

which is equivalent to

(DSM)


min gSM(η) =

1
2
ηTY XTXY η − eTη

subject to η ∈ Rm,
yTη = 0,
0 ≤ η ≤ C.
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Proof. Let us use in Proposition 2.3.1 the following expressions

x =
(
wT , b, ξT

)T ∈ Rn+1+m, p =
(
0, (n+1)..... , 0, C, (m)....., C

)T ∈ Rn+1+m,

v =
(
−1, (m)....., −1, 0, (m)....., 0

)T ∈ R2m, µ =
(
η1, ..., ηm, ν1, ..., νm

)T ∈ R2m,

A =


−XY
−yT

0n+1,m

−Idm −Idm

 and H =



0

Idn
...
0

0 · · · 0 0

0n+1,m

0m,n+1 0m,m


.

Now, working with the constraint Hx+ Aµ = −p, we obtain:

• w −XY η +0m,m ν = 0, so w = XY η.

• 0 · b− yTη = 0, so yTη = 0.

•
(
−Idm −Idm

)
µ = −C

(
1, (m)....., 1

)T
, so ηi + νi = C for i = 1, ...,m.

Proposition 2.3.1 gives also the constraints η ≥ 0 and ν ≥ 0. The objective
function is −1

2
xTHx − vTµ = −1

2
wTw + eTη. And, therefore the dual problem is

(D̂SM).
In order to get (DSM), we have to combine the constraints η ≥ 0, ν ≥ 0 and

ηi + νi = C to get 0 ≤ η ≤ C. And, the objective function is reformulated using the
constraint w = XY η.

It is remarkable the similarity between (DSM) and (DHM). The only difference
between them are the upper bound constraints. And, due to this resemblance, we
know that (DSM) is a convex optimization problem, and furthermore, the uniqueness
of solution for (DSM) is not guaranteed (to verify this fact, it is enough to take C = 2
and the data set of the Example 2.3.1).

Remark 3.3.2. In Table 3.2 we can see the substantial difference between (D̂SM)
and (DSM), in terms of the number of variables and constraints. Therefore, in

practice, we solve (DSM) and not (D̂SM). Also, in Table 3.2, if we take into account
the types of constraints and the number of variables, we can observe the profit of
solving (DSM) instead of (PSM).

Also, notice that if η is a global solution for (DSM), then (w∗, η, ν∗) is a global

solution for (D̂SM), where ν∗
i = C − ηi for i = 1, ...,m, and w∗ = XY η. And,

obviously ĝSM(w
∗, η, ν∗) = gSM(η).
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(PSM) (D̂SM) (DSM)

Variables w, b, ξ w, η, ν η
Number of variables n+ 1 +m n+ 2m m
Number of equality constraints − n+ 1 +m 1
Number of general constraints m − −
Number of bound constraints m 2m 2m

Table 3.2: Comparison between (PSM ), (D̂SM ) and (DSM ).

Proposition 3.3.2. Let η be a global solution for the dual problem (DSM), then:

1. η ̸= 0.

2. The coordinates of w = XY η are the first n components of a solution for
(PSM).

3. (Complementary conditions). For i = 1, ...,m, it is verified that

ηi
[
yi
(
wTxi + b

)
− 1 + ξi

]
= 0,

ξi (C − ηi) = 0,

where
(
w, b, ξ

)
is a global solution for (PSM) and w = XY η.

Proof. Let us prove the proposition item by item.

1. Let us suppose that η = 0, so the dual optimal function value is gSM(η) = 0.
Due to Wolfe Duality (Theorem A.2.1), primal and dual optimal function
values are equal, ergo fSM(w, b, ξ) = 0 for all global solution

(
w, b, ξ

)
of the

primal problem (PSM). It is obvious that fSM(w, b, ξ) = 0 implies that w = 0
and ξ = 0, which is absurd, because using the constraints of (PSM) we obtain
that b ≥ 1 and b ≤ −1.

2. Analogous to the proof of Proposition 2.3.3.

3. Due to Remark 3.3.2, we can consider (w, η, ν) a solution for (D̂SM), where
νi = C − ηi, for i = 1, ...,m. Due to Wolfe Duality (Theorem A.2.1) we have
that primal and dual optimal function values are equal, ergo

fSM(w, b, ξ)− ĝSM(w, η, ν) = 0 ⇐⇒ wTw + C

m∑
i=1

ξi −
m∑
i=1

ηi = 0.
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Using in the previous formula the equalities w =
m∑
i=1

ηiyixi and
m∑
i=1

yiηi = 0,

it follows that

m∑
i=1

ηiyiw
Txi + C

m∑
i=1

ξi −
m∑
i=1

ηi + b

m∑
i=1

yiηi +
m∑
i=1

ηiξi −
m∑
i=1

ηiξi = 0,

which is the same as

m∑
i=1

ηi
[
yi
(
wTxi + b

)
− 1 + ξi

]
+

m∑
i=1

ξi (C − ηi) = 0,

and, due to the admissibility of the primal and dual problem, we know that
all terms are positive, therefore the result is concluded.

Remark 3.3.3 (Calculating the hyperplane after solving (DSM)). Let η be a global
solution for (DSM). Due to Proposition 3.3.2 we have that w = XY η.

On the other hand, let us suppose that there is i ∈ {1, ...,m} verifying that
0 < ηi < C 1, by the second complementary condition we get that ξi = 0, and using
the first complementary condition it follows that

b = yi − wTxi.

In order to avoid errors and to have a higher accuracy, as in [9], we propose to
take the average of all possible values of b, i.e. if Ω = {i : 0 < ηi < C}, then

b =
1

#Ω

( ∑
i ∈ Ω

yi − wTxi

)
,

where #Ω means the cardinal of the set Ω.
In order to know the quality of the hyperplane we have obtained, we must calculate

ξ to determine how many points it misclassifies, but instead of computing these values
the classification function is usually used in practice. If we do not obtain good results,
a useful option in practice is to vary the values of C as we did for (PSM).

1If there is not ηi such that 0 < ηi < C, then we have a degenerate solution, see [11].



Chapter 4

Non linear SVM

There is a rather extensive theory about what is presented in this chapter, but we
have decided to explain the basic theory that allows us to have some mathematical
background of the concepts behind the software that we will use in Chapter 5. The
main reference is [12].

4.1 Duality with Nonlinear SVM

In the previous chapter we have seen how to find hyperplanes that try to separate
binary data sets. These hyperplanes may not be very accurate, so we wonder: Can
we use a transformation function Φ : Rn → H, where H is a Hilbert space, to map
our data set

S = {(xi, yi) : xi ∈ Rn, yi ∈ {−1, 1}, i = 1, ...,m},

to a new data set Ŝ = {(Φ(xi), yi) : Φ(xi) ∈ H, yi ∈ {−1, 1}, i = 1, ...,m}, in order
to obtain, maybe, a better decision boundary than the linear one (hyperplane)
associated with the initial data set 1? The answer is affirmative. Let us see an
example.

Example 4.1.1. We consider in R2 the non linearly separable data points

x1 = (0, 0)T , x2 = (3, 0)T , x3 = (0, 2)T , x4 = (−2, 0)T and x5 = (0, −3)T ,

with the classification x1 ∈ S−1 and x2, x3, x4, x5 ∈ S1, which represented in the left
graph of Figure 4.1.

It is clear that the data can be separated by an ellipse, centered at the origin. So,
let us consider a quadratic equation instead of a linear equation for separating the
data of this example. For every point x = (x1, x2)

T ∈ R2, the quadratic equation

1In the sense that the new decision boundary is related to a lower number of misclassified points
than the one formed by the hyperplane.

29
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Figure 4.1: Graphs of Example 4.1.1. Class S1 is represented by ⃝ and class S−1 by ×.

involves some linear combination of the terms x2
1, x

2
2 and x1x2. So, we will work

with an expression with the form wTΦ(x) + b with the function Φ : R2 → R3, given
by Φ(x) = (x2

1, x2
2,

√
2x1x2)

T . If we apply Φ to each data point xi, we obtain the
new data set

Φ(x1) = (0, 0, 0)T , Φ(x2) = (9, 0, 0)T ,

Φ(x3) = (0, 4, 0)T , Φ(x4) = (4, 0, 0)T and Φ(x5) = (0, 9, 0)T ,

we will name it Ŝ, and it is shown in the right graph of Figure 4.1. As we can see, in
this case the transformed data set is in R3 and linearly separable and , therefore, if
we work with Ŝ we will obtain a better classification function than the one obtained
using S, because it will missclasified less points.

Now, let us make some considerations about the transformation function Φ.

1. Let us work with the objective function of the dual problem (DSM) (see

Proposition 3.3.1) for Ŝ. If X̂ is the matrix whose columns are Φ(xi), with
xi ∈ S1 ∪ S−1, then

gSM(η) =
1

2
ηTY X̂T X̂Y η − eTη =

1

2

3∑
i,j=1

ηiηjyiyjΦ(xi)
TΦ(xj)− eTη.

2. Notice that X̂T X̂ can be computed without using the explicit formula of Φ
because

Φ(xi)
TΦ(xj) = (xT

i xj)
2.

So, we will be more efficient if we compute directly the values (xT
i xj)

2 (notice
they are computed in R2 and the products Φ(xi)

TΦ(xj) are computed in R3),
without using the explicit formula of Φ.



4.1. DUALITY WITH NONLINEAR SVM 31

Figure 4.2: Plot of Ŝ and the hyperplane from
Example 4.1.1. Class S1 is represented by ⃝

and class S−1 by ×.

Figure 4.3: Plot of S and the decision boundary
(dash line) from Example 4.1.1. Class S1 is
represented by ⃝ and class S−1 by ×.

Finally, notice that the coefficients of the hyperplane obtained after solving
(DSM) with Ŝ ⊂ R3 will be the coefficients of an ellipse that separates the original
data in R2. Let us explain it. If we use the solver quadprog from Matlab to
solve (DSM) with C = 1 and Ŝ and then we apply Remark 3.3.3, we get that
w = (0.5, 0.5, 0)T and b = −1. In Figure 4.2 we can see the plot of the data set

Ŝ and the hyperplane whose coefficients are w and b. If we consider the expression
wTΦ(x) + b = 0 where x ∈ R2, we have that the decision boundary of S becomes
0.5x2

1 + 0.5x2
2 − 1 = 0, for x = (x1, x2)

T ∈ R2, see Figure 4.3. So, we have got the
nonlinear classification function defined by class(x) = 0.5x2

1 + 0.5x2
2 − 1 in R2.

Following the idea of the above procedure we can define other nonlinear classifica-
tion functions, and that is why this method is named nonlinear SVM.

Let us formulate the optimization problem related to the transformation function,
if we have a binary data set

S = {(xi, yi) : xi ∈ Rn, yi ∈ {−1, 1}, i = 1, ...,m},

we are interested in dual optimization problems with the form

(DΦ)


min gΦ(η) =

1
2
ηTY

(
Φ(X)TΦ(X)

)
Y η − eTη

subject to η ∈ Rm,
yTη = 0,
0 ≤ η ≤ C.

where Φ : S1 ∪ S−1 → H, is the function that transforms the data set into a new
one, and Φ(X) is the matrix whose columns are Φ(xi).
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Remark 4.1.1. Let us know that (DΦ) is a convex quadratic optimization problem.
Moreover, the results that have been seen in the previous chapter, for (DSM), are
also valid for (DΦ).

Remark 4.1.2 (About the classification function). Let η be a global solution for
(DΦ) and SV = {i : ηi > 0}, i.e. the set of indexes of the support vectors. Then

w = Φ(X)Y η =
∑
i∈SV

ηiyiΦ(xi)

is the vector of the associated hyperplane and b can be computed as

b =
1

#Ω

(∑
j∈Ω

yj − wTΦ(xj)

)
=

1

#Ω

(∑
j∈Ω

(
yj −

∑
i∈SV

ηiyiΦ(xi)
TΦ(xj)

))
,

where Ω = {i : 0 < ηi < C}.
Therefore, the classification function becomes

class(x) = sign

(∑
i∈SV

ηiyiΦ(xi)
TΦ(x) + b

)
.

Notice that neither in (DΦ) nor in the classification function we have needed
an explicit formula of the transformation function Φ. We have only required the
values Φ(xi)

TΦ(xj). That is why, in the following section we will present a type of
functions that has a characterization that will be useful.

4.2 Kernel Functions

There are several definitions of kernel functions, all of them are equivalent. We opt
to do something similar to what [12] does on page 30, although we have adapted
their definition because they consider more general cases and sets that in principle
do not need to be finite.

Definition 5 (Gram Matrix). Given a symmetric function 2 K : Rn × Rn → R
and x1, x2, ..., xr ∈ Rn, then the r × r matrix

GK [x1, ..., xr] :=


K(x1, x1) K(x1, x2) · · · K(x1, xr)
K(x2, x1) K(x2, x2) · · · K(x2, xr)

...
...

. . .
...

K(xr, x1) K(xr, x2) · · · K(xr, xr)


is called the Gram matrix of K respect to x1, x2, ..., xr.

2A function h : Rn × Rn → R is symmetric if it verifies h(x, y) = h(y, x), ∀x, y ∈ Rn.
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Remark 4.2.1. It is clear that GK [x1, ..., xr] is a symmetric matrix, because K is
a symmetric function.

Definition 6 ((Positive Semidefinite) Kernel). Let be X = {x1, x2, ..., xm} =
S1 ∪S−1. A symmetric function K : X ×X → R whose Gram matrix GK [x1, ..., xm]
is a positive semidefinite matrix is called a positive semidefinite kernel (kernel for
short).

Now, we present the result that will be key to connect nonlinear SVM problems
with kernels. That is to say the result that ensures us that behind every kernel there
is a transformation function, [12].

Proposition 4.2.1 (Characterization of kernels). Consider X = S1 ∪ S−1, and
a symmetric function K : X × X → R. Then K is a kernel if an only if there
is a transformation function Φ : X → H, where H is a Hilbert space, such that
K(xi, xj) = Φ(xi)

TΦ(xj), for all i, j ∈ {1, 2, ...,m}.

Proof. Fist, let us assume that K is a kernel. As K is a symmetric function over
x1, ..., xm, it follows that the matrix GK [x1, ..., xm] is symmetric. As GK [x1, ..., xm]
is a real symmetric matrix we have that GK [x1, ..., xm] = V ΣV T where Σ ∈ Rm is
the diagonal matrix whose diagonal values are the real eigenvalues of GK [x1, ..., xm]
and V ∈ Rm×m is an orthogonal matrix. Also, we know that the eigenvalues are
nonnegative because GK [x1, ..., xm] is a positive semidefinite matrix.

To simplify the notation we consider L = V
√
Σ 3, ergo GK [x1, ..., xm] = LLT .

Then, if we consider the mapping Φ(xi) = (Li,1, Li,2, ..., Li,m)
T ∈ Rm, it follows

that

Φ(xi)
TΦ(xj) = (LLT )i,j = (V ΣV T )i,j = (GK [x1, ..., xm])i,j = K(xi, xj).

Now, let us assume that there is a mapping Φ such thatK(xi, xj) = Φ(xi)
TΦ(xj).

It is enough to check if the matrix GK [x1, ..., xm], whose elements are K(xi, xj), is
positive semidefinite, which is true because for all u ∈ Rm it is verified that

uTGK [x1, ..., xm]u =
m∑

i,j=1

uiujK(xi, xj) =
m∑

i,j=1

uiujΦ(xi)
TΦ(xj) =

∥∥∥∥∥
m∑
i=1

uiΦ(xi)

∥∥∥∥∥
2

2

≥ 0.

Remark 4.2.2. The previous proposition helps us to reformulate the optimization
problem (DΦ) in terms of kernels: instead of Φ(X)TΦ(X) we can use the matrix
GK [x1, ..., xm]. We are interested in kernel functions that can be computed efficiently

3
√
Σ means the diagonal matrix whose diagonal elements are the roots of the eigenvalues of

GK [x1, ..., xm].
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without using the transformation function Φ, which would imply working in a higher
dimensional space than the original one.

Let us note that, using the notation from Remark 4.1.2, the classification function
becomes

class(x) = sign

(∑
i∈SV

ηiyiK(xi, x) + b

)
,

where b =
1

#Ω

(∑
j∈Ω

(
yj −

∑
i∈SV

ηiyiK(xi, xj)

))
.

Therefore, we can avoid the use of the transformation function Φ for the resolu-
tion of (DΦ) and the computation of the classification function, and we can see that
K is the kernel the SVM method.

The process of incorporating kernels into soft margin SVM is commonly known
as the kernel trick. This technique allows SVM to handle nonlinear relationships
between data points and improve their classification capabilities.

Remark 4.2.3. It is obvious that K is not uniquely defined in terms of one Φ.
For example, if x = (x1, x2)

T ∈ R2, notice that Φ1(x) = (x2
1, x2

2,
√
2x1x2)

T and
Φ2(x) = (x2

1,
√
2x1x2, x2

2)
T produce the same kernel. It can even happen the case

where Φ’s in different dimensions produce the same kernel, for example notice that
Φ3(x) = (x2

1, x
2
2, x1x2, x2x1), leads to the same kernel as Φ1 or Φ2.

The following proposition is useful, since it allows us to create admissible kernels
from other kernels.

Proposition 4.2.2 (References [6] and [12]). Given a ∈ R, a ≥ 0, the binary data
set S = {(xi, yi) : xi ∈ Rn, yi ∈ {−1, 1}, i = 1, ...,m}, X = S1 ∪ S−1, the sequence of
kernels {Kt}t∈N , Kt : X ×X → R, and the function f : Rn → R, then the following
expression also define kernels

1. K(xi, xj) = Kt1(xi, xj) +Kt2(xi, xj), with t1, t2 ∈ N.

2. K(xi, xj) = Kt1(xi, xj)Kt2(xi, xj), with t1, t2 ∈ N.

3. K(xi, xj) = aKt1(xi, xj).

4. If lim
t→∞

Kt(xi, xj) exits ∀xi, xj ∈ X , then K(xi, xj) = lim
t→∞

Kt(xi, xj) is a kernel.

5. K(xi, xj) = exp (Kt1(xi, xj)).

6. K(xi, xj) = f(xi)f(xj).

Proof. 1. It is obvious because the sum of positive semidefinite matrices is also
positive semidefinite.
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2. In order to simplify the notation let us define A = GKt1
[x1, ..., xm] and B =

GKt2
[x1, ..., xm]. Analogous to what happend in the proof of Proposition 4.2.1

we have that A = V AΣA(V A)T =
m∑
i=1

λA
i v

A
i (v

A
i )

T , where λA
i are the eigenvalues

of A (remember that they are non negative because they are the eigenvalues
of positive semidefinte matrix) and vAi the columns of V A and analogously

B = V BΣB(V B)T =
m∑
i=1

λB
i v

B
i (v

B
i )

T , notice that we use the hyperindexes to

differentiate the decompositions of the matrices A and B.

Let us recapitulate, we have to prove that the matrix whose elements are
Kt1(xi, xj)Kt2(xi, xj) is semidefinite positive. So, let us compute the Hadamard

product4 of the matrices A and B, that is A◦B =
m∑

i,j=1

λA
i λ

B
i (v

A
i ◦vBj )(vAi ◦vBj )T .

Let us now prove that A◦B is a positive semidefinite matrix, so let be u ∈ Rm,
then

uT (A ◦B)u =
m∑

i,j=1

λA
i λ

B
i u

T (vAi ◦ vBj )(vAi ◦ vBj )Tu =

=
m∑

i,j=1

λA
i λ

B
i

(
(vAi ◦ vBj )Tu

)T (
(vAi ◦ vBj )Tu

)
=

m∑
i,j=1

λA
i λ

B
i

(
(vAi ◦ vBj )Tu

)2 ≥ 0.

3. It is obvious because the multiplication of a positive semidefinite matrix by a
strictly positive number it is still a positive semidefinite matrix.

4. As Kt is a kernel for all t ∈ N we have that uTGKt [x1, ..., xm]u ≥ 0,∀u ∈ Rn.
So, if u ∈ Rn, we have that 0 ≤ lim

t→∞
uTGKt [x1, ..., xm]u = uTGK [x1, ..., xm]u,

where in the last equality we have used that fact of being pointwise limit.

5. It follows from the Taylor expansion of exp (K1(xi, xj)) and the previous items
of this proposition.

6. It follows from considering f as the mapping in Proposition 4.2.1.

There are many examples of kernels, but we will only mention the ones that we
will use for our numerical results (Chapter 5).

4Given the matrices P = (pij) ∈ Rs×t and Q = (qij) ∈ Rs×t, then the Hadamard product of P
and Q is the matrix P ◦Q = (pijqij) ∈ Rs×t. It is also known as element-wise product.
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• Linear kernel KL(xi, xj) := xT
i xj.

It is obvious that KL is a kernel, just take Φ as the identity function.

Notice that the linear kernel leads to the dual problem (DSM).

• Polynomial kernel KP (xi, xj) :=
(
xT
i xj + r

)d
, where d is a non-negative

integer and r ∈ R, r ≥ 0.

To justify that it is a kernel, it is enough to use Newton’s Binomial Theorem
and items (1), (2), (3) and (6) of Proposition 4.2.2.

• Gaussian kernel 5 KG(xi, xj) := exp (−γ∥xi − xj∥22) where γ > 0.

To justify that it is a kernel, notice that we can reformulate KG as follows

exp
(
−γ∥xi∥22

)
exp

(
−γ∥xj∥22

)
exp

(
2γxT

i xj

)
.

The factor exp (−γ∥xi∥22) exp (−γ∥xj∥22) is a kernel due to item (6) of Proposition
4.2.2 and using item (5) of the same proposition we have that exp

(
2γxT

i xj

)
is

a kernel. So, using item (2) of Proposition 4.2.2 the result follows.

The values d, r, γ are known as the kernel parameters.

5It is also named as RBF kernel, where RBF means Radial Basis Function.



Chapter 5

Numerical practice

The objective of this chapter is to experiment with some software that internally
uses what was described in Chapters 3 and 4. We will use Scikit-learn (shortly
Sklearn), see [10]. It is a free software machine learning library for the programming
language Python. Although Sklearn is mostly written in Python, it incorporates the
C++ libraries LIBSVM (see [4]) and LIBLINEAR (see [8]) that provide reference
implementations of SVM.

We will use the Breast Cancer Wisconsin (Diagnostic) Data Set. It was created
by Dr. William H. Wolberg, W. Nick Street and Olvi L. Mangasarian in 1995, from
the University of Wisconsin. The data were collected in order to perform a study
in which the type of breast tumor (benign or malignant) could be diagnosed using
different techniques depending on a series of characteristics extracted from some cell
nucleus.

We want to compute some classifier models that helps us to decide to which class
a new tumor will belong to, i.e. if it is a benign or malignant tumor. We will use a
technique widely used in Machine Learning. First, we will divide the data set into
the groups: train data (70% of the data set) and test data (30% of the data set).
Then, we will compute the SVM model using the train data. And finally, in order
to evaluate the model, we will predict the membership class of each tumor from the
test data, and then compare it with the actual belonging class.

In order to compare the models, all of them will be computed using the same
partition of the data set.

5.1 Analyzing Classification Models

In this section we will consider methods provided in the library Sklearn that we will
use to evaluate the quality of the models.

37
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Confusion Matrix

After predicting the membership class of the test data, we will construct the confu-
sion matrix, which is represented in Table 5.1. As we can see in it, the actual
classification values are compared with those predicted by the model. Therefore, we
want large values in the main diagonal and small values in the antidiagonal to get
good models.

Predicted Negative Predicted Positive

Actual Negative
True Negative

(TN)
False Positive

(FP)

Actual Positive
False Negative

(FN)
True Positive

(TP)

Table 5.1: Confusion matrix.

Metrics

From the values obtained in the confusion matrix, we will calculate the following
metrics:

• The proportion between the correct predictions and total of predictions:

Accuracy =
TP + TN

TP + TN + FP + FN
.

• The proportion between the true positive samples and the actual positive
samples

Recall =
TP

TP + FN
.

• The proportion between the true positive samples and the predicted positive
samples

Precision =
TP

TP + FP
.

If the division is not well defined, we will will take 0 as value.

We will use accuracy as the principal metric. Also, we will measure the time needed
to construct and evaluate the models.
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Feature Minimum Maximum
Radius (mean) 6.981 28.11
Texture (mean) 9.71 39.28
Perimeter (mean) 43.79 188.5
Area (mean) 143.5 2501.0
Smoothness (mean) 0.053 0.163
Compactness (mean) 0.019 0.345
Concavity (mean) 0.0 0.427
Concave points (mean) 0.0 0.201
Symmetry (mean) 0.106 0.304
Fractal dimension (mean) 0.05 0.097
Radius (standard error) 0.112 2.873
Texture (standard error) 0.36 4.885
Perimeter (standard error) 0.757 21.98
Area (standard error) 6.802 542.2
Smoothness (standard error) 0.002 0.031
Compactness (standard error) 0.002 0.135
Concavity (standard error) 0.0 0.396
Concave points (standard error) 0.0 0.053
Symmetry (standard error) 0.008 0.079
Fractal dimension (standard error) 0.001 0.03
Radius (worst) 7.93 36.04
Texture (worst) 12.02 49.54
Perimeter (worst) 50.41 251.2
Area (worst) 185.2 4254.0
Smoothness (worst) 0.071 0.223
Compactness (worst) 0.027 1.058
Concavity (worst) 0.0 1.252
Concave points (worst) 0.0 0.291
Symmetry (worst) 0.156 0.664
Fractal dimension (worst) 0.055 0.208

Table 5.2: Data set features and the minimum and maximum value of each feature. Mean represents
the mean of the values measured for the cells nucleus of the image. Worst means the mean of the
three worst/largest values of the cells nucleus of the image.
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5.2 Breast Cancer Wisconsin (Diagnostic) Data

Set

5.2.1 About the Data Set

The Breast Cancer Wisconsin (Diagnostic) Data Set has 569 samples (212 malignant
tumors and 357 benign tumors) with 30 features each. We have taken it from [7].
As we have said before, we will divide the data set into two groups. In Table 5.3 we
can see the partition of the data set 1.

train data test data
Number of benign tumors 252 105
Number of malignant tumors 146 66

Table 5.3: Size of the train data and test data.

Let us see, as a general idea, how the data set is formed. Given a digitized image
of a fine needle aspirate (FNA) of a breast mass, then for each cell nucleus was
measured the following attributes:

• Radius (mean of distances from center to points on the perimeter).

• Texture (standard deviation of gray-scale values).

• Perimeter.

• Area.

• Smoothness (local variation in radius lengths).

• Compactness (perimeter2 / area - 1.0).

• Concavity (severity of concave portions of the contour).

• Concave points (number of concave portions of the contour).

• Symmetry.

• Fractal dimension (”coastline approximation” - 1).

1To do the partition we use the Sklearn´s function sklearn.model selection.train test split.
In order to always obtain the same results, we have set the random seed as 101, although we have
obtained similar models if we vary the seed.
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From the attributes measured for some cell nucleus, of each breast mass, there are
computed the features shown in Table 5.2. The second and third columns of Table
5.2 represents the minimum and maximum value of each feature of the data set.
Notice that in some features there is a substantial difference between the minimum
and maximum value, so scaling the data will be something to consider when using
the numerical computation.

5.2.2 Numerical Results

For the numerical experiments we have used the function sklearn.svm.SVC, which
internally solves the dual problem (DΦ), see Section 4.1.

Linear Kernel

Remember that the linear kernel is defined by

KL(xi, xj) = xT
i xj.

As we can see it does not depend on any parameters, ergo this type of kernel does
not give us much room for maneuver. In Table 5.4 we can see the confusion matrix
and metrics of the linear kernel model for some values of the upper bound C and
the original data (without any manipulation).

Confusion matrix
Metrics

Actual benign Actual malignant
Predicted
benign
(TN)

Predicted
malignant

(FP)

Predicted
benign
(FN)

Predicted
malignant

(TP)
Acuracy Recall Precision Time

C = 0.1 101 4 8 58 0.9298 0.8788 0.9355 0.6s
C = 1 102 3 7 59 0.9415 0.8939 0.9516 2.4s
C = 10 102 3 6 60 0.9474 0.9091 0.9524 3.2s
C = 102 104 1 8 58 0.9474 0.8788 0.9831 9.7s
C = 103 102 3 7 59 0.9415 0.8939 0.9516 4.5s

Table 5.4: Confusion matrix and metrics: linear kernel with non standardized data.

On the other hand, if we standardize2 the data set before doing the partition,
we obtain the results represented in Table 5.5. As we can see, there are significant
differences between the computation times if we standardize the data or not. In
addition, by standardizing the data we have reduced the number of false negatives,
i.e. the actual malignant tumors that the model classifies as benign.

2Remember that standardizing a sample z = {zi}pi=1 ⊂ R, p ∈ N, means to compute the values{
zi − z

var(z)

}p

i=1

⊂ R if var(z) ̸= 0, where var(z) means the variance of the sample and z the

mean. To do it, we use the Sklearn’s function sklearn.preprocessing.StandardScaler, which
standardizes each feature.
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Confusion matrix
Metrics

Actual benign Actual malignant
Predicted
benign
(TN)

Predicted
malignant

(FP)

Predicted
benign
(FN)

Predicted
malignant

(TP)
Acuracy Recall Precision Time

C = 0.1 105 0 4 62 0.9766 0.9394 1.0000 0.1s
C = 1 103 2 2 64 0.9766 0.9697 0.9697 0.1s
C = 10 105 0 5 61 0.9708 0.9242 1.0000 0.1s
C = 102 102 3 4 62 0.9591 0.9394 0.9538 0.1s
C = 103 102 3 4 62 0.9591 0.9394 0.9538 0.1s

Table 5.5: Confusion matrix and metrics: linear kernel varing C.

As we have just seen, standardizing the data has improved the quality of our
models. If we consider the computational time, we see that they are reduced by at
least 5 times, but in other cases we have experimented with it has meant going from
several minutes to tenths of seconds.

From now on, we will work with the standardized the data set.

Polynomial Kernel

Remember that the formula of the polynomial kernel is

KP (xi, xj) =
(
xT
i xj + r

)d
,

where d is a non-negative integer and r ∈ R, r ≥ 0. Notice that in this case we can
vary the kernel parameters, r and d, and the regularization term, C.

Let us take C = 0.1. First of all let us have a look at the influence that the
parameter d can have, therefore we will consider r = 0. The results for some values
of d and the standardized data are represented in Table 5.6 3.

Confusion matrix
Metrics

Actual benign Actual malignant
Predicted
benign
(TN)

Predicted
malignant

(FP)

Predicted
benign
(FN)

Predicted
malignant

(TP)
Acuracy Recall Precision Time

d = 1 105 0 4 62 0.9766 0.9394 1.0000 0.1s
d = 2 101 4 17 49 0.8772 0.7424 0.9245 0.1s
d = 3 101 4 5 61 0.9474 0.9242 0.9385 0.1s
d = 4 91 14 21 45 0.7953 0.6818 0.7627 0.1s

Table 5.6: Confusion matrix and metrics: polynomial kernel with C = 0.1, r = 0 and varying d.

Since the best model we have in Table 5.6 is the one generated with d = 1,
the natural thing now would be to see what happens if we keep d = 1 and vary r.

3It is clear that linear kernel is a particular case of polynomial kernel, ergo the first row of Table
5.6 is the same as the first row of Table 5.5. But, we have decided to include this row again so
that the results on the influence of d become easier to compare at a look.
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However, for r ∈ {0.01, 0.01, 0.5, 1, 5, 10} we have obtained models with the same
metrics.

Let us now see what happens if we take the worst model shown in Table 5.6, i.e.
d = 4, and we try to vary r. As we can see in Table 5.7, all the models are better
than the one with r = 0, and the best classifier model is the one that arises from
taking r = 5.

Confusion matrix
Metrics

Actual benign Actual malignant
Predicted
benign
(TN)

Predicted
malignant

(FP)

Predicted
benign
(FN)

Predicted
malignant

(TP)
Acuracy Recall Precision Time

r = 0.1 94 11 15 51 0.8480 0.7727 0.8226 0.1
r = 0.5 98 7 11 55 0.8947 0.8333 0.8871 0.1
r = 1 96 9 8 58 0.9006 0.8788 0.8657 0.1s
r = 5 101 4 3 63 0.9591 0.9545 0.9403 0.1s

Table 5.7: Confusion matrix and metrics: polynomial kernel with C = 0.1, d = 4 and varying r.

Now, let us take C = 1. As we have done before, let us see the influence of
d while r = 0. In Table 5.8 are represented the results for some vales of d. As
we can see, the best model arises from taking d = 1. Moreover, in Table 5.8 are
contained the values obtained if we use the default parameters of the algorithm for
the polynomial kernel, which are C = 1, r = 0 and d = 3.

Confusion matrix
Metrics

Actual benign Actual malignant
Predicted
benign
(TN)

Predicted
malignant

(FP)

Predicted
benign
(FN)

Predicted
malignant

(TP)
Acuracy Recall Precision Time

d = 1 103 2 2 64 0.9766 0.9697 0.9697 0.1s
d = 2 90 15 19 47 0.8012 0.7121 0.7581 0.1s
d = 3 101 4 5 61 0.9474 0.9242 0.9385 0.1s
d = 4 91 14 21 45 0.7953 0.6818 0.7627 0.1s
d = 5 101 4 12 54 0.9064 0.8182 0.9310 0.1s

Table 5.8: Confusion matrix and metrics: polynomial kernel with C = 1, r = 0 and varying d.

As a general comment we can say that the computational time required for the
different values of the polynomial kernel parameters and the regularization term are
negligible. Regarding the best models among all those presented in this part:

• One is formed by by taking C = 0.1, r = 0 and d = 1 (first row of Table 5.6).

• And the other, it is generated by C = 1, r = 0 and d = 1 (first row of Table
5.8).

The difference between the models is that the first model predicts 100% of benign
tumors and 93.94% of malignant tumors, and the second model loses quality in the
detection of benign tumors (96.97%) but gains quality in the prediction of malignant
tumors (96.97%).
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Gaussian Kernel

Remember that the Gaussian kernel is

KG(xi, xj) = exp
(
−γ∥xi − xj∥22

)
, where γ > 0.

Let us start taking γ as the value used by the algorithm by default if we choose
the Gaussian kernel in Sklearn, that value is γ

d
:= 1

#(features)·var(all data)
≈ 0.0328,

i.e. it is inversely proportional to the product of the number of features and the
variance of the entire data set. As we can see in Table 5.9 with γ

d
the best model

arises from taking C = 1, which are also the default parameters chosen for this
kernel in Sklearn.

Confusion matrix
Metrics

Actual benign Actual malignant
Predicted
benign
(TN)

Predicted
malignant

(FP)

Predicted
benign
(FN)

Predicted
malignant

(TP)
Acuracy Recall Precision Time

C = 0.1 103 2 10 56 0.9298 0.8485 0.9655 0.1s
C = 1 104 1 3 63 0.9766 0.9545 0.9844 0.1s
C = 10 103 2 3 63 0.9708 0.9545 0.9692 0.1s
C = 102 100 5 6 60 0.9357 0.9091 0.9231 0.1s
C = 103 100 5 6 60 0.9357 0.9091 0.9231 0.1s

Table 5.9: Confusion matrix and metrics: Gaussian kernel with γ = γ
d
and varying C.

Now, let us take C = 0.1, and let us try some values for γ. As we can see in
Table 5.10 we require low values of γ to obtain good models. Moreover, notice that
the models with γ = 0.2 and γ = 0.3 obtain numerous false negatives, so they are
not effective models.

Confusion matrix
Metrics

Actual benign Actual malignant
Predicted
benign
(TN)

Predicted
malignant

(FP)

Predicted
benign
(FN)

Predicted
malignant

(TP)
Acuracy Recall Precision Time

γ = 0.01 104 1 11 55 0.9298 0.8333 0.9821 0.1s
γ = 0.1 101 4 8 58 0.9298 0.8788 0.9355 0.1s
γ = 0.2 105 0 62 4 0.6374 0.0606 1.0000 0.1s
γ = 0.3 105 0 66 0 0.6140 0.0000 0.0000 0.1s

Table 5.10: Confusion matrix and metrics: Gaussian kernel with C = 0.1 and varying γ.

Let us now examine what happens if we take the regularization term greater
than the previous one, for example C = 1. As we can see in Table 5.11 we need
small values of γ for the models to have satisfactory quality, as before.

It is clear that the best model using the Gaussian kernel, of those presented
previously, arises from taking C = 0.1 and γ = γ

d
.
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Confusion matrix
Metrics

Actual benign Actual malignant
Predicted
benign
(TN)

Predicted
malignant

(FP)

Predicted
benign
(FN)

Predicted
malignant

(TP)
Acuracy Recall Precision Time

γ = 0.01 104 1 8 58 0.9532 0.9697 0.9143 0.1s
γ = 0.1 99 6 2 64 0.9532 0.9697 0.9143 0.1s
γ = 0.2
and γ = 3

97 8 3 63 0.9357 0.9545 0.8873 0.1s

γ = 0.4 103 2 22 44 0.8596 0.6667 0.9565 0.1s

Table 5.11: Confusion matrix and metrics: Gaussian kernel with C = 1 and varying γ.

Sklearn Selection of Parameter Values and Conclusions

It is obvious that we cannot check by hand a large number of values for the kernel
parameters and the regularization parameter. In practice it is usually used the
Sklearn function sklearn.model selection.GridSearchCV (GridSearchCV shortly),
which using multiple values for the kernel parameters and C it performs a grid 4

and, with the help of a 5-fold cross-validation 5, it looks for the best values from the
supplied ones. The problem with this function is that it requires a high computation
time, which is obviously influenced by the number of grid points and the size of the
data set.

For the linear kernel, we are going to look for the best model with the penalization
term C taking one of the values of the set {0.1, 1, 2, ..., 1000}, ergo we have 1001
candidates for C and, as with each candidate five models are fitted using 5-fold
cross-validation, we have to compute 5005 models. After 63 seconds, we obtain that
the best model arises from taking C = 0.1. It is redundant to write the confusion
matrix and metrics for this model since it is already included in Table 5.5. Let us
remember that we had previously obtained, see 5.5, the same accuracy value for the
linear kernel with C = 0.1 as with C = 1. At that time we did not say which was
the best, but GridSearchCV has helped us to decide that if we use a 5-fold cross
validation it is better to use C = 0.1.

Regarding the polynomial kernel, we want to find the model with the best metrics
verifying d ∈ {1, 2, ..., 5} and r ∈ {0, 0.2, 0.4, ..., 9.8, 10}, and penalization term
C ∈ {1, 5, 10, ..., 995, 1000}, which results in 40200 combinations and therefore
201000 models to compute and compare. After 67 minutes and 53 seconds, we
obtain that the combination d = 1, r = 0 and C = 1 is the best option, and it
is redundant to write the confusion matrix and metrics for this model since it is
already included in Table 5.8.

Finally, for the Gaussian kernel, we are going to look for the best model that has

4That is to say that it makes all possible combinations of the different supplied values.
5This means that it divides the train data into 5 groups. From these groups, it computes 5

models, using in each of them 4 of the groups and evaluating it using the remaining one. It does
this process for each combination of the grid.
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as the kernel parameter γ ∈ {γ
d
, 0.01, 0.06, ..., 0.96} and the penalization term C ∈

{1, 2, ..., 1000}, wich results in 20979 combinations and therefore 104895 models.
After 35 minutes, we obtain that the best model rises from taking γ = 0.01 and
C = 3. In Table 5.12 are represented the confusion matrix and the metrics of this
model.

Predicted
benign

Predicted
malignant

Actual benign 105 0
Actual malignant 3 63

Metrics
Accuracy 0.9825
Recall 0.9545
Precision 1.0000

Table 5.12: Confusion matrix and metrics: Gaussian kernel with γ = 0.01 and C = 3.

Let us make the final conclusions about our models. In this section we have
obtained classifier models with very good accuracies for different kernels, and in
some cases with similar results. Taking into account the accuracy, among all the
models the slightly better one is the one generated by the Gaussian kernel with
γ = 0.01 and C = 3.

Model Accuracy Precission
Lineal kernel with C = 0.1 0.9766 1
Polynomial kernel with C = 1, d = 1 and r = 0 0.9766 0.9697
Gaussian kernel with C = 1 and γ = γd 0.9766 0.9844
Gaussian kernel with C = 3 and γ = 0.01 0.9825 1
Range of metrics in [7] using SVM 0.9021-0.9790 0.9041-0.9818

Table 5.13: Baseline Model Performance

Finally, in [7] we can see a range of values obtained for accuracy and precision
using SVM. They are shown in the last row of Table 5.13. Moreover in this table
we present our best values of accuracy and precision obtained. As we can see, the
model that arises from taking the Gaussian kernel with C = 3 and γ = 0.01 has
slightly better metrics than the ones presented in [7].

5.2.3 Decision Boundaries. Some Examples.

The objective of this section is to see how the decision boundary varies according
to the kernel we use and, we are not going to worry about finding the best kernel
parameters and regularization parameter. In order to plot the results, we will only
use the first two features of the data set to compute the models, i.e. ”Radius
(mean)” and ”Texture (mean)”. We will also use the standardized data and the
same partition of the data set.
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For the plots of this section we will use the following scheme: Empty circles
represent malignant tumors and filled circles benign tumors. The exterior circles
represent the points of the test data. The gray part corresponds to the area of
malignant tumors 6, the white part corresponds to area of benign tumors, and the
dash lines represents the boundary hyperplanes.

In Figure 5.1 we can see the plot for the linear kernel with C = 1, and in Figure
5.2 the linear kernel for C = 1.As we can see, the main difference between both
figures is the separation margin.

Figure 5.1: Decision boundary: linear kernel with C = 0.1.

In Figure 5.3 we can see the representation of the polynomial kernel for d = 3,
r = 0 and C = 0.1, and in Figure 5.4 the polynomial kernel for d = 3, r = 0 and
C = 1. As we can see, the main difference of both figures is in the curvature of the
decision boundary in the central cloud of points.

Finally, in Figure 5.5 we can see the representation of the Gaussian kernel for
γ = 1 and C = 0.1, and in Figure 5.6 the Gaussian kernel for γ = 1 and C = 0.1.
As we can see there is a significant difference in the size and shape of the two areas
between the figures.

As we have just seen, we can have several different decision boundaries, depending
on what kernel we choose.

6This means the space in which a point will be classified as malignant tumor.
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Figure 5.2: Decision boundary: linear kernel with C = 1.

Figure 5.3: Decision boundary: polynomial kernel with d = 3, r = 0 and C = 0.1.
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Figure 5.4: Decision boundary: polynomial kernel with d = 3, r = 0 and C = 1.

Figure 5.5: Decision boundary: Gaussian kernel with γ = 1 and C = 0.1.
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Figure 5.6: Decision boundary: Gaussian kernel with γ = 1 and C = 1.



Appendix A

Optimization theory

This appendix is written in order to introduce some concepts that will be necessary
in the optimization theory used in this work, for more details and proofs see [2].

A.1 Basic concepts and results

Theorem A.1.1. Given the open set Ω ⊂ Rn, the C2 function f : Ω −→ R and the
convex set K ⊂ Ω, then f is a convex function over K if and only if

(y − x)T∇2f(x)(y − x) ≥ 0, ∀x, y ∈ K.

Remark A.1.1. For function f(x) = 1
2
xTHx + pTx, the previous theorem states

that the it is convex if the matrix H is positive or positive semidefinite.

Definition 7 (Coercive function). Given f : K ⊂ Rn −→ R, then it is said that
f is a coercive function if it verifies

f(xn)
n→+∞−−−−→ +∞, ∀ {xn}n∈N ⊂ K verifying ∥xn∥

n→+∞−−−−→ +∞.

From now on, to write the following results of this section we will consider the
following general optimization problem

min f(x)

subject to x ∈ K,
(A.1)

where K ⊂ Rn, K ̸= ∅, and f : K −→ R.

Definition 8 (Feasible point). Consider problem (A.1), if x ∈ Rn verifies that
x ∈ K, then it is said that x is a feasible point.

51
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Definition 9 (Feasible set). Consider problem (A.1), the set of all feasible points
of the problem is known as feasible set.

Definition 10 (Convex optimization problem). Problem (A.1) is known as a
convex optimization problem if K is a convex set and f ∈ C1 is a convex function
over K.

Definition 11 (Quadratic optimization problem). Problem (A.1) is known as
quadratic optimization problem if f(x) = 1

2
xTHx + pTx, where H ∈ Rn×n is a

symmetric matrix, p ∈ Rn and K is a set of linear constraints.

Theorem A.1.2. Given problem (A.1), if K is a closed set and f is a coercive
continuous function over K, then there is at least one global solution for problem
(A.1).

Theorem A.1.3. Given problem (A.1), if K is a convex set and f is convex function
over K (i.e. the problem is convex), then each local solution for the problem it is
also a global solution.

A.1.1 Lagrange Multipliers

In this section we will consider the following optimization problem
min f(x)

subject to x ∈ Ω ⊂ Rn,
hi(x) = 0, for i = 1, ..., nI ,
gj(x) ≤ 0, for j = 1, ..., nD,

(A.2)

where f, hi, gj : Ω −→ R, and Ω ⊂ Rn is an open subset.

Theorem A.1.4 (Lagrange multipliers rule). Let f, hi, gj : Ω −→ R be C1 functions,
for i = 1, ..., nI and for i = 1, ..., nD. If there is x ∈ Ω solution for problem (A.2),
then there are 1 + nI + nD numbers that: α ∈ R+, {λi}nI

i=1 ⊂ R and {µj}
nD
j=1 ⊂ R+

verifying:

α +

nI∑
i=1

|λi|+
nD∑
j=1

µj > 0, (A.3)

α∇f(x) +

nI∑
i=1

λi∇hi(x) +

nD∑
j=1

µj∇gj(x) = 0, (A.4)

µj ≥ 0 and µjgj(x) = 0, for i = 1, ..., nD, (A.5)

hi(x) = 0, for i = 1, ..., nI and gj(x) ≥ 0, for i = 1, ..., nD. (A.6)
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Corollary A.1.1. α = 1 can be taken in Theorem A.1.4 if the constraints of problem
(A.2) are linear.

The inequality constraints verifying g(x) = 0 are known as active constraints
at x. The four conditions (A.3)-(A.6) are named as Fritz John conditions. But in
the case that α = 1 are known as Kuhn-Tucker conditions. Also if x verifies the
Kuhn-Tucker conditions it is said that x is a Kuhn-Tucker point.

The numbers {λi}nI
i=1 and {µj}

nD
j=1 are known as Lagrange multipliers. Also,

the condition on the right of (A.5) is known as complementary condition, and
conditions (A.6) as feasibility conditions.

Theorem A.1.5 (First-order sufficient conditions). Consider problem (A.2), where
f, hi, gj : Ω −→ R are C1 functions, for i = 1, ..., nI and for i = 1, ..., nD, such that:

• The feasible set is a convex set, i.e.

K = {x ∈ Ω : hi(x) = 0 for i = 1, ..., nI and gj(x) ≤ 0 for j = 1, ..., nD}

is a convex set.

• f is a convex function over K.

If x is a Kuhn-Tucker point, then x is a global solution for problem (A.2).

A.2 Wolfe Duality

The objective of this section is to obtain an alternative formulation to a given
optimization problem. The original problem is known as primal problem and the
other as dual problem.

Theorem A.2.1 (Wolfe Duality). Let x be a global solution for the following optimization
problem 

min f(x)

subject to x ∈ Rn,
aTi x = bi , for i = 1, ..., nI ,
gj(x) ≤ 0 , for j = 1, ..., nD,

where f, gi : Rn −→ R are C1 and convex functions. If (λ, µ) are Lagrange multipliers
associated with x, then (x, λ, µ) is a global solution for the problem
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

min L(x, λ, µ) = f(x) +

nI∑
i=1

λi(a
T
i x− bi) +

nD∑
j=1

µjgj(x)

subject to (x, λ, µ) ∈ Rn × RnI × RnD ,
∇xL(x, λ, µ) = 0,
µj ≥ 0 , for j = 1, ..., nD.

Also, it is verify that L(x, λ, µ) = f(x).

The function L(x, λ, µ) is named Lagrangian function.
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