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Abstract

In this work, we study the properties of electric (or electrostatic) potentials and fields
generated by a finite number of point charges in the Euclidean space Rn. In particular,
we focus our study on the behavior of the equilibrium points of such electric fields. We
use tools from Morse theory, real analytic geometry and partial differential equations to
investigate, among other things, the location of the equilibrium points, their degeneracy,
when there are finitely many of them and whether they form a “big” set when there are
infinitely many. Finally, motivated by Maxwell’s conjecture and using tools from real
algebraic geometry, we obtain some upper bounds for the number of equilibrium points
of the electric fields, depending on n and on the number of charges that generate them.
We obtain several bounds since certain features of the charges modify the situation, such
as the parity of n, whether all the charges have the same sign, or the dimension of the
smallest affine set that contains the them.

Key words: electric potential, electric field, equilibrium point, Maxwell’s conjecture.

Resumen

En este trabajo, estudiamos las propiedades de potenciales y campos eléctricos (o electros-
táticos) generados por un número finito de cargas puntuales en el espacio Euclídeo Rn. En
particular, centramos nuestro estudio en el comportamiento de los puntos de equilibrio de
tales campos eléctricos. Usamos herramientas de teoría de Morse, geometria analítica real
y ecuaciones en derivadas parciales para investigar, entre otras cosas, la ubicación de los
puntos de equilibrio, su degeneración, cuándo hay una cantida finita de ellos y si forman
un conjunto “grande” cuando hay infinitos. Finalmente, motivados por la conjuetura de
Maxwell y usando herramientas de geometría algebraica real, obtenemos algunas cotas
superiores para el número de puntos de equilibrio de los campos eléctricos, dependientes
de n y del número de cargas que los generan. Obtenemos varias cotas porque algunas ca-
racterísticas de las cargas modifican la situacion, como la paridad de n, si todas las cargas
tienen el mismo signo, o la dimensión del menor conjunto afín que las contiene.

Palabras clave: potencial eléctrico, campo eléctrico, punto de equilibrio, conjetura de
Maxwell.
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Introduction

Around the year 1785, Coulomb showed experimentally that the force between two small charged bodies
separated by a big distance compared to their size depended directly on the magnitude of each charge,
inversely on the square of the distance between them, was directed along the line joining the charges and
was attractive if the bodies had opposite charges and repulsive if they had the same type of charge (positive
or negative). In particular, if there are two charges with values q1 ∈ R and q2 ∈ R located at p1 ∈ R3 and
p2 ∈ R3, in the vacuum, the electric force experimented by the first charge is

E1 = q1q2
4πε0

p̂12
|p1 − p2|2

= q1q2
4πε0

p1 − p2
|p1 − p2|3

,

where p̂12 = p1 − p2
|p1 − p2|

is a unit vector pointing from p2 to p1 and ε0 is the permittivity of vacuum. The force
experimented by the second charge, according to Newton’s third law, is E2 = −E1 . This discovery, together
with the similar inverse-square law for gravity due to Newton, represented a significant breakthrough in the
Physics of the XVII and XVIII centuries. The law of superposition allows this interaction to be extended to
the case where there is any finite number of charges. In this case, we get that the electric force experimented
by a test particle located at some point x ∈ R3, due to a set of N point charges in the vacuum, is

E(x) = 1
4πε0

N∑
i=1

qi(x− pi)
|x− pi|3

,

where p1, . . . , pN are the positions of the charges and q1, . . . , qN are their values. The study of the electric
field E has become a classical problem in mathematics and physics.

Given some electric field E, we can define the electric potential at some point x by

VE(x) = −
∫

C
E · dl,

where C is a path from a fixed point to x. The electric field E is conservative, that is, there exists some C1

scalar field ϕ such that E = ∇ϕ. Therefore, the previous integral does not depend on the chosen path C,
only on the endpoints, so VE is well-defined. By the gradient theorem, we have that

E = −∇VE .

In particular, the electric potential created at a point x ∈ R3 by N charges located at the points p1, . . . , pN

with values q1, . . . , qN is

V (x) = 1
4πϵ0

N∑
k=1

qk

|x− pk|
.

We can easily see that, indeed,

1
4πε0

N∑
i=1

qi(x− pi)
|x− pi|3

= −∇V (x).
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In this text we will work with electric potentials and fields defined in Euclidean spaces of dimension
n ≥ 2, generalizing the previous discussion for n ̸= 3. We will start by defining the electric potential V
generated by a finite set of point charges in Rn by an expression analogous to the one we just saw, but
depending on n. Then, we will define E = −∇V . The modulus of the electric field generated by a single
charge at some point, will depend inversely on the distance between the point and the charge to the power
of n− 1. For more than one charge, we can use again the superposition principle. As a useful fact, we can
see, since E = −∇V , that the zeros of E are precisely the critical points of V . This will allow us to study
the equilibrium points of E by dealing with the critical points of V , for which study there exist more tools.

In his great Treatise [10], Maxwell made the following claim about the number of equilibrium points of
electric fields generated by a finite set of point charges in dimension 3:

Conjecture ([10], p.136). The number of points of equilibrium (assumed to be finitely many) of an electric
field generated by N point charges in R3 is at most (N − 1)2.

It is an open problem to know if the number of equilibrium points is finite when all the charges have the
same sign. For charges with different signs, as we will see later, there can be infinitely many. It has been
done very little work concerning this conjecture. In fact, it was ignored for many years. However, in [4] they
did some development on the matter that we will compare with our results. In particular, they obtained the
upper bound 4N2(3N)2N for the number of equilibrium points, which is not dependent on the dimension,
only on the number of charges.

Our purpose in this work is to investigate the behavior of the equilibrium points of electric fields generated
by finitely many charges in Rn. In particular, we will study their location in relation to the charges, we
will discuss “how many” electric fields have only non-degenerate equilibrium points and prove that if there
are infinitely many equilibrium points, there can not be too many (in terms of an upper bound for the
dimension of the set they form), among other things. The last part will be dedicated to obtaining different
upper bounds for the number of equilibrium points depending on the dimension and the number of charges,
which we will compare with each other and with the one from [4]. In most of the text, we will divide our
discussions between the general case and the situation where all the charges have the same sign (positive or
negative), since we will be able to get stronger results in the second setting. We now give a brief description
of the contents in each chapter, focusing on the main results. Some of them are original and some of them
are hard to find in the literature.

In Chapter 1, we introduce some notions from several branches of mathematics. In the first section,
about Morse Theory, we introduce the definitions of smooth manifold and map, non-degenerate critical
point, index of a critical point and Morse function. Also, we state the Morse Lemma, which shows that the
behavior of a function around a non-degenerate critical point depends only on its index and will be useful
in our study. In the second Section, we deal with real analytic geometry. We begin defining the notions
of power series, real analytic function and analytic submanifold and we state some basic properties about
them. Then, we define the concept of analytic set as the zero set of a real analytic function and see how these
sets can be decomposed as a finite union of analytic submanifolds. The third and last Section is dedicated
to a brief discussion about the some properties of harmonic functions. In particular, we prove they are real
analytic functions and that, if a function is harmonic and non-constant, it can not have a relative maximum
or minimum. We also talk a little about the Laplace operator and prove that is elliptic, a result that we use
to prove Theorem 3.2.4 later.

In Chapter 2, we present the concepts that constitute our object of study. Specifically, in the first section,
we define the concept of a configuration of charges {(pk, qk)}N

k=1, where p1, . . . , pN ∈ Rn are the different
locations of N charges, and q1, . . . , qN are their values, and the electric potential created by it. Then, we
introduce the electric field E = −∇V associated to an electric potential V , whose equilibrium points (critical
points of V ) represent the subject of study of this text. In the second section, we explore the simpler case
of dimension two and prove the following result:



ix

Theorem. Let {(pk, qk)}N
k=1 be a configuration of N point charges in R2. Then, the electric potential V has

at most N − 1 critical points.

Lastly, we study the family of configurations in R2 formed by placing N ≥ 3 equal charges in the vertices of
a regular N -sided polygon.

In Chapter 3 we prove some results about the behavior of the critical points of electric potentials
generated by arbitrary configurations of charges. The chapter is divided into three sections. In the first
one, we prove some characteristics concerning the location of critical points. First, we obtain some general
properties, like the fact that, if the sum of the charges q1, . . . , qN of a configuration is nonzero there can not
be critical points of V too close to the charges or too far from them. From this, we are able to deduce that
Morse electric potentials with nonzero total charge (the sum of the qi) have finitely many critical points. In
the second part of this first section, we restrict our study to the case where all the charges have the same
sign and prove that, for any such configuration, all the critical points of V are contained in the interior of
the convex hull of the charges (the smallest convex set that contains them).

In the second section, we prove that there can not exist a submanifold of dimension n or n − 1 of critical
points of V , if V is nonzero, with the help of Cauchy-Kovalevskaya Theorem (Theorem A.9). This establishes
an upper bound for the dimension of Cr(V ), the set of critical points of V , which tells us that there can not
be “too many” critical points:

Theorem. Let V be the electric potential generated by some configuration of charges in Rn. Then, the
critical set Cr(V ) satisfies that dim(Cr(V )) ≤ n−2. In particular, if it is nonempty, Cr(V ) is a finite union
of analytic submanifolds of Rn of dimensions between 0 and n− 2.

In the third section, we show that most configurations generate Morse electric potentials in the following
sense:

Theorem. The set of configurations of N charges in Rn with nonzero total charge that are Morse is dense
and open in the set of all configurations of N charges in Rn (with certain topology).

This result for n = 3 can be found in [14] and we proved it in the general case with a similar method. To
finish the section and the chapter, we get a stronger result for configurations with the same sign, which is
original:

Theorem. For n ≥ m ≥ 1, the set of m−dimensional configurations of N charges in Rn with the same sign
that are Morse is open and dense in the set of all m−dimensional configurations of N charges in Rn with
the same sign (with certain topology).

In this last result, we call a configuration m−dimensional if all its charges are contained in an affine set of
dimension m and not in one of dimension m− 1. Therefore, we see that the case m = n corresponds to the
previously mentioned result for configurations with the same sign.

In chapter 4 we use tools from real algebraic geometry to obtain upper bounds for the number of critical
points of V , when there are finitely many. All the results in this chapter are original. As usual, we divide
our study between the general case and the equal-sign case. Also, by the definition of electric field, it is
useful to distinguish between even and odd n, since in the first case we can work directly with polynomials
while in the second we need more work. We obtain, with help of some bounds for the sum of the Betti
numbers of algebraic and semi-algebraic sets, the following results for arbitrary configurations:

Theorem. Assume that Cr(V ) is a finite set (V has finitely many critical points). Then,

If n is even, # Cr(V ) ≤ (n(N − 1) + 1) (2n(N − 1) + 1)n−1 −N .
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If n is odd,

# Cr(V ) ≤ min
®

2n(N − 1) (4n(N − 1) − 1)n+2N−1 −N,
1
2 [2n(N − 1)(2n+ 3N) + 2] [2n(N − 1)(2n+ 3N) + 1]n+N−1

´
We see that there are two different bounds for odd n. It is interesting to see, as we prove later, that there are
infinitely many pairs (n,N) for which the first is better (smaller) and infinitely many for which the second
is better, so they are both relevant.

Finally, for configurations with the same sign, we use a version of Bézout’s Theorem for Nash functions [15]
to give an upper bound for # Cr(V ), when V is Morse, depending also on the dimension of the configuration
that generates it:

Theorem. If {(pk, qk)}N
k=1 is an m-dimensional Morse configuration in Rn whose charges have the same

sign, then V has finitely many critical points and

# Cr(V ) ≤ (n(N − 1) + 1)m if n is even.

# Cr(V ) ≤ 2Nm(n(N − 1) + 1)m if n is odd.



Chapter 1

Preliminary Material

In this first part of the text we introduce some important concepts and results from different parts of
mathematics, which will be useful in order to prove the main results in the rest of the work.

1.1. Morse Theory

As it is said in [9],

The primary concern of Morse theory is the relation between spaces and functions. The center
of interest lies in how the critical points of a function defined on a space affect the topological
shape of the space, and conversely, how the shape of a space controls the distribution of the
critical points of a function.
Morse theory of finite-dimensional manifolds is a powerful tool for the topology of manifolds, and
offers a unified method to “visualize” manifolds with theoretical eyes. On the other hand, Morse
theory for infinite-dimensional spaces clarifies the deep relations between variational problems
and geometry, and is one of the basic principles of modern mathematics.

In this section, we introduce the basic concepts and results of Morse theory for finite-dimensional manifolds,
that are the kind of objects which we will work with (in particular, we are going to deal with open subsets
of Rn). The contents are almost entirely extracted from the books [8], [9] and [13].

1.1.1. Smooth Manifolds and Smooth Maps

Definition 1.1.1 (Topological Manifold and Coordinate Chart). Suppose that M is a topological space.
We say that M is a topological manifold (without boundary) of dimension n or a topological n−manifold if
it has the following properties:

(i) M is a Hausdorff space: for every pair of points p, q ∈ M , there are disjoint open neighborhoods
U, V ⊆ M of p and q, respectively.

(ii) M is second-countable: there exists a countable basis for the topology of M .

(iii) M is locally Euclidean of dimension n: for each point p ∈ M there is an open neighborhood U ⊆ M
of p, an open subset Û ⊂ Rn and a homeomorphism φ : U → Û . The pair (U,φ) is called a coordinate
chart (or just chart) on M .

Definition 1.1.2 (Transition Map and Smooth Atlas). Let M be a topological n−manifold. If (U,φ), (V, ψ)
are two charts such that U ∩ V ̸= ∅, the composite map

ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V )

is called the transition map from φ to ψ. It is a homeomorphism. The two charts (U,φ) and (V, ψ) are said
to be smoothly compatible if either U ∩ V = ∅ or ψ ◦ φ−1 is a smooth (C∞) diffeomorphism. We define an

1
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atlas A for M to be a collection of charts whose domains cover M . An atlas A is called smooth if any two
charts in A are smoothly compatible with each other.

Definition 1.1.3. A smooth atlas A on M is said to be maximal if it is not properly contained in any
larger smooth atlas.

Proposition 1.1.4 ([8], Proposition 1.17). Let M be a topological manifold.

(i) Every smooth atlas A of M is contained in a unique maximal smooth atlas, called the smooth structure
determined by A .

(ii) Two smooth atlases for M determine the same smooth structure if and only if their union is a smooth
atlas too.

Definition 1.1.5 (Smooth Manifold). A pair (M,A ) where M is topological manifold and A is a maximal
smooth atlas of M is called a smooth manifold. Throughout the text we will simply say that M is a smooth
manifold, assuming that it is endowed with some maximal atlas.

Definition 1.1.6 (Smooth Map Between Manifolds). Let N and M be smooth manifolds of dimensions n
and m respectively, and let f : M → N a map. We say that f is a smooth (or of class C∞) map if for every
p ∈ M , there exist smooth charts (U, x) containing p an (V, y) containing f(p) such that f(U) ⊆ V and the
composition y ◦ f ◦ x−1 is smooth from x(U) ⊆ Rn to y(V ) ⊆ Rm.

1.1.2. Critical Points

Notation 1.1.7. We will denote the tangent space of a manifold M at a point p by TpM . If f : M → N
is a smooth map with f(p) = q, the induced linear map between the tangent spaces will be denoted by
(f∗)p : TpM → TqN .

Definition 1.1.8 (Critical Point and Critical Value). Let f be a smooth real valued function on a manifold
M . A point p ∈ M is called a critical point of f if the following two equivalent conditions are satisfied:

(i) The induced map (f∗)p : TpM → Tf(p)R is zero.

(ii) If we choose a smooth chart (U, x) containing p, then

∂f

∂x1
(p) = . . . = ∂f

∂xn
(p) = 0.

Otherwise, p is said to be a regular point. We denote by Cr(f) the set of critical points of f and call it the
critical set of f . A real number c is said to be a critical value of f if there exists some p ∈ Cr(f) such that
f(p) = c. If c is not a critical value, it is called a regular value of f .

Remark 1.1.9. The previous definition makes sense, because p being a critical point does not depend on
which chart we choose. This property is a consequence of the following results:

Proposition 1.1.10. Let f be a smooth real valued function on a manifold M and p ∈ M . If (U, x) and
(V, y) are two charts containing p, then

∂f

∂yi
(p) =

n∑
j=1

∂f

∂xj
(p)∂xj

∂yi
(p), i = 1, . . . , n.

Corollary 1.1.11. In the context of the previous proposition, we have that

∂f

∂x1
(p) = . . . = ∂f

∂xn
(p) = 0 ⇐⇒ ∂f

∂y1
(p) = . . . = ∂f

∂yn
(p) = 0.



3 1.1. Morse Theory

Definition 1.1.12 (Hessian Matrix). Let M be an n-manifold, p a critical point of a real smooth function
f : M → R and (U, x) a smooth chart containing p. We define the Hessian of the function f at the critical
point p to be the n× n matrix

Hf (p) =



∂2f
∂x2

1
(p) · · · ∂2f

∂x1∂xn
(p)

. . .
... ∂2f

∂xi∂xj
(p)

...
. . .

∂2f
∂xn∂x1

(p) · · · ∂2f
∂x2

n
(p)


=
Å

∂2f

∂xi∂xj
(p)
ã

1≤i,j≤n

.

As f is smooth, ∂2f
∂xi∂xj

(p) = ∂2f
∂xj∂xi

(p), and the matrix Hf (p) is symmetric.

We now have the following lemma, that relates the Hessians of f at p ∈ M in two local coordinate
systems of p (smooth charts containing p).

Lemma 1.1.13. In the same conditions as in the previous definition, let (U, x) and (V, y) be two local
coordinate systems of p and Hf (p), Hf (p) their respective Hessian matrices. Then they are related by

Hf (p) = J t(p)Hf (p)J(p),

where J(p) is the Jacobian matrix of the function x : U → Rn with respect to the coordinate system
(y1, . . . , yn) evaluated at the point p:

J(p) =



∂x1
∂y1

(p) · · · ∂x1
∂yn

(p)
. . .

... ∂xi
∂yj

(p)
...

. . .
∂xn
∂y1

(p) · · · ∂xn
∂yn

(p)


Definition 1.1.14 (Non-degenerate & Degenerate Critical Point). A critical point p of a function f : M → R
is called non-degenerate if the matrix

Hf (p) =
Å

∂2f

∂xi∂xj
(p)
ã

is non-singular, i.e., has non-zero determinant. Otherwise, the critical point is said to be degenerate.

Proposition 1.1.15 (Non-degeneracy is Independent of Coordinate System). The property of a critical
point of a function f : M → R being non-degenerate or degenerate does not depend on the choice of the local
coordinate system at p.

Proof. We deduce from Lemma 1.1.13 that

det Hf (p) = det J t(p) detHf (p) detJ(p).

Since x and y are diffeomorphisms, the Jacobian J(p) has non-zero determinant. Then, we have that

det Hf (p) = 0 ⇐⇒ detHf (p) = 0,

as we wanted.

Definition 1.1.16 (Index of a Non-Degenerate Critical Point). Let p be a non-degenerate critical point of
a function f : M → R. The matrix Hf (p) defines a symmetric and bilinear form f∗∗ : TpM × TpM → R
with respect to the basis

¶
∂

∂x1

∣∣
p
, . . . , ∂

∂xn

∣∣
p

©
. The index of a bilinear form H on a vector space V is defined

to be the maximal dimension of a subspace of V on which H is negative definite. The index of f∗∗ will be
referred to as the index of f at p. This does not depend on the choice of local coordinate system (smooth
chart).
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Definition 1.1.17 (Morse Function). We say that a function f : M → R is a Morse function if every critical
point of f is non-degenerate.

Next, we state one of the fundamental results in Morse theory, the Morse Lemma, which shows that the
behavior of a function f around a non-degenerate critical point can be completely described by its index.

Theorem 1.1.18 (Morse Lemma). Let p be a non-degenerate critical point of a function f : M → R. Then,
there is a local coordinate system (U, y) of p with yi(p) = 0 for all i and such that

f = f(p) − (y1)2 − . . .− (yλ)2 + (yλ+1)2 + . . .+ (yn)2

in U , where λ is the index of f at p.

Corollary 1.1.19. A non-degenerate critical point of a function f : M → R is isolated (from other critical
points of f).

Corollary 1.1.20. Let f : M → R be a Morse function on a manifold M and let K be a compact subset
(compact space with the subspace topology) of M . Then, f has only finitely many critical points in K.

Proof. If f had infinitely many critical points in K, we could form a sequence {pi}∞
i=1 ⊆ Cr(f) ∩ K of

different points. Since K is compact, there must be a subsequence {pki
}∞

i=1 that converges to some p0 ∈ K.
Now, as the function f is smooth in M , all its partial derivatives are continuous, so

∂f

∂xj
(p0) = ∂f

∂xj

(
lim

i→∞
pki

)
= lim

i→∞

∂f

∂xj
(pki

) = lim
i→∞

0 = 0

for all j. Thus, p0 is a critical point of f so, as f is a Morse function, by Corollary 1.1.19, p0 must be
isolated from other ones. However, we have constructed a sequence of critical points (different from p0) that
converges to p0, which is a contradiction. Therefore, there cannot be infinitely many critical points of f
contained in K.

Remark 1.1.21 (Types of Non-degenerate Critical Points). Let p be a non-degenerate critical point of a
function f : M → R and let λ be the index of f at p. Then,

(i) If λ = 0, f has a local minimum at p.

(ii) If λ = n, f has a local maximum at p.

(iii) If 0 < λ < n, p is said to be a saddle critical point of f .

1.2. Real Analytic Geometry

In this section, we briefly introduce the theory of real analytic functions defined in open subsets of
Rn, with a small background on power series, and the definition and some properties of analytic sets (or
analytic varieties) in Rn. The properties that we describe here can be generalized by considering abstract
real analytic manifolds instead of just open subsets of Rn, but we will not need such a general setting. The
part about power series and real analytic functions has been extracted from [6], and the one about analytic
sets, from [17]. We will only include the proofs of a few results, because the study of real analytic functions
is not the main topic of the text and a lot of them are not elementary. Still, the proofs of the results can be
found in the previously mentioned books.
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1.2.1. Power Series

Definition 1.2.1 (Multiindices). Let Z+ be the set {0, 1, 2, . . .}. A multiindex µ is an element of (Z+)n,
with n ≥ 1. We will write Λ(n) = (Z+)n. It is the set of all multiindices of size n.

Definition 1.2.2. If

µ = (µ1, . . . , µn) ∈ Λ(n) and x = (x1, . . . , xn) ∈ Rn,

we define

µ! = µ1! . . . µn! , |µ| = µ1 + · · · + µn,

xµ = xµ1
1 . . . xµn

n , |x|µ = |x1|µ1 . . . |xn|µn ,

∂µ = ∂µ

∂xµ
= ∂µ1

∂xµ1
1
. . .

∂µn

∂xµn
n
,

(x)µ =
n∏

i=1
(xi)µi =

n∏
i=1

[xi(xi − 1) . . . (xi − µi + 1)] .

Definition 1.2.3 (Power Series). A formal expression∑
µ∈Λ(n)

aµ(x− α)µ =
∑

(µ1,...,µn)∈Λ(n)
a(µ1,...,µn)(x1 − α1)µ1 . . . (xn − αn)µn

with α ∈ Rn and aµ ∈ R for each µ, is called a power series in n variables. It is said to converge at x ∈ Rn if
some rearrangement of the series converges. More precisely, the series converges if there is a bijective map
ϕ : Z+ → Λ(n) such that the series

∞∑
j=0

aϕ(j)(x− α)ϕ(j)

converges.

Proposition 1.2.4. Let
∑

µ aµ(x−α)µ be a power series and define the set B = {x ∈ Rn : |aµ||x− α|µ is bounded}.
If the power series converges at x, then x ∈ B.

The series does not necessarily converge for every point of B, but we will determine a subset of B for
which it does.

Definition 1.2.5 (Domain of Convergence). For a fixed power series
∑

µ aµ(x− α)µ, we set

C =
⋃
r>0

x ∈ Rn :
∑

µ∈Λ(n)
|aµ(y − α)µ| < +∞ for all |y − x| < r

 .

The set C is called the domain of convergence of the power series.

This set is open. In fact, we have the following result:

Proposition 1.2.6. A power series converges at every point of its domain of convergence and C = int B.

Then, the set of points for which the series converges is “between” int B and B. For n = 1, we know
that the domain of convergence of a power series is an open interval centered at α (or just α). In several
variables, the structure of C is not that simple, but we can can say something about its the shape:

Definition 1.2.7 (Logarithmically Convex). For a set S ⊆ Rn, we define log ||S|| by

log ||S|| = {(log |s1|, . . . , log |sn|) : (s1, . . . , sn) ∈ S} .

The set S is said to be logarithmically convex if log ||S|| is a convex subset of Rn.

Proposition 1.2.8. The domain of convergence C of a power series is logarithmically convex.
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1.2.2. Analytic Functions

Now, we can proceed to define the concept of real analytic function. These functions are, so to speak,
locally equal to convergent power series.

Definition 1.2.9 (Real Analytic Function). A real-valued function f , with domain an open subset U ⊂ Rn,
is called real analytic on U , written f ∈ Cω(U), if for each α ∈ U the function f may be represented by a
convergent power series in some neighborhood of α. A map f : U → Rk given by f = (f1, . . . , fk) is said to
be real analytic on U if each fi is real analytic on U . As we will always work here with R, when referring
to real analytic functions, we can omit the word “real” and just say that they are analytic.

Proposition 1.2.10 (Derivatives of Analytic Functions). Let U be an open subset of Rn and let f : U → R
be an analytic function. Then, f is continuous and has continuous, real analytic partial derivatives of all
orders. In fact, if f can be represented by the power series∑

µ∈Λ(n)
aµ(x− α)µ

around α ∈ U , then, for each ν ∈ Λ(n), the partial derivative ∂νf of f is given by the following convergent
power series around α ∈ U : ∑

µ∈Λ(n)
(µ+ ν)νaµ+ν(x− α)µ.

It is, in fact, the expression that is obtained by differentiating each term of the power series. We deduce that
Cω(U) ⊆ C∞(U).

Remark 1.2.11. We can relate the coefficients of the power series representing f around α to the partial
derivatives of the function at α. Concretely,

aµ = 1
µ!
∂µf

∂xµ
(α).

It is interesting to verify that power series define analytic functions in their domain of convergence.
Concretely, we have the following result:

Proposition 1.2.12. Let ∑
µ∈Λ(n)

aµ(x− α)µ

be a power series and C its (nonempty) domain of convergence. If f : C → R is defined by

f(x) =
∑

µ∈Λ(n)
aµ(x− α)µ,

then f is real analytic.

Example 1.2.13. Some examples of real analytic functions are:

(i) Every polynomial in R[X1, . . . , Xn], as they are power series around (0, . . . , 0) ∈ Rn with aµ = 0 for
all µ except a finite number of them.

(ii) For n = 1, the functions
x 7→ ex , x 7→ sin(x) , x 7→ cos(x).

In fact, they can be represented by a power series centered at the origin, that converges in all Rn, in
the following way:

ex =
∞∑

k=0

xk

k! = 1 + x+ x2

2 + x3

6 + x3

24 + . . .
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sin(x) =
∞∑

k=0

(−1)k

(2k + 1)!x
2k+1 = x− x3

6 + x5

120 − x7

5040 + . . .

cos(x) =
∞∑

k=0

(−1)k

(2k)! x
2k = 1 − x2

2 + x4

24 − x6

720 + . . .

It is easy to see that if we differentiate termwise the series for sin(x), we get the one for cos(x), as we
expected from Proposition 1.2.10.

Example 1.2.14. We can find examples of functions of class C∞ that are not analytic, which means that
the inclusion in 1.2.10 can be proper. For example, take the function

f : R −→ R

x 7−→
®
e− 1

x if x > 0
0 if x ≤ 0

It can be verified that f has continuous derivatives of all orders, so f ∈ C∞(R). However, it satisfies that

f(0) = 0 and f (k)(0) = 0 for all k ≥ 1,

where f (k)(0) denotes the k-th derivative of f at 0. Therefore, if f were analytic at 0, we would have that

f(x) =
∞∑

k=0

f (k)(0)
k! xk =

∞∑
k=0

0
k!x

k = 0

in a neighborhood of 0. But f(x) > for x > 0, so this is not possible. We deduce that f /∈ Cω(R).

Definition 1.2.15 (Analytic Submanifold). A nonempty subset S ⊂ Rn is called an m-dimensional real
analytic submanifold (or submanifold of class Cω) of Rn if, for each p ∈ S, there exists an open subset
U ⊂ Rm and a real analytic function f : U → Rn which maps open subsets of U onto relatively open subsets
of S and which is such that

p ∈ f(U) and rank [Df(u)] = m, ∀u ∈ U,

where Df(u) is the Jacobian matrix of f at u. Submanifolds of dimension n of Rn coincide with non-empty
open subsets of Rn. Replacing “real analytic” by Ck (1 ≤ k ≤ ∞), we get the definition of m-dimensional
submanifold of class Ck.

Remark 1.2.16. By the explanation given in Remark A.2, we see that (n − 1)-dimensional submanifolds
of class Ck are the same as hypersurfaces of class Ck (cf. Definition A.1), for 1 ≤ k ≤ ∞ or k = ω.

We can extend the definition of real analytic function to analytic submanifolds. We will not need that
here, as was said in the beginning of the section, but it is included anyway.

Definition 1.2.17. Let S be a real analytic submanifold of Rn, and let h : S → R. We say that h is real
analytic at p ∈ S if, for f as in Definition 1.2.15 and for a point u0 such that f(u0) = p, the function h ◦ f
is real analytic at u0.

1.2.3. Analytic Sets

Definition 1.2.18 (Analytic Subset). Let U be an open subset of Rn. A (globally) analytic subset (also
called analytic space or analytic variety) of U is a set of the form

ZU (f1, . . . , fk) = {(x1, . . . , xn) ∈ U : f1(x1, . . . , xn) = . . . = fk(x1, . . . , xn) = 0},

where f1, . . . , fk : U → R are real analytic functions. When the set U is clear by the context, we will simply
write Z(f1, . . . , fk). We will say that some E ⊆ Rn is an analytic set if it is an analytic subset of some U .
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Remark 1.2.19. By the properties of the field R, we can see that every analytic set can be described by a
single analytic function. In fact, if we define

f = f2
1 + . . .+ f2

k ,

then f is analytic too and we have that

ZU (f1, . . . , fk) = ZU (f).

Proposition 1.2.20. Let U be a connected open subset of Rn and let f : U → R be a real analytic function.
If intZU (f) ̸= ∅, then f ≡ 0.

Proof. Call E = ZU (f). Now, let (αk) be a sequence in intE that converges to some α ∈ U . As f is
analytic, we know that there is some neighborhood N ⊂ U of α such that

f(x) =
∑

µ∈Λ(m)

1
µ!
∂µf

∂xµ
(α)(x− α)µ

in N . Also, again for being analytic, all the partial derivatives of f are continuous in U (by Proposition
1.2.10). Then,

∂µf

∂xµ
(α) = ∂µf

∂xµ

(
lim

k→∞
αk

)
= lim

k→∞

∂µf

∂xµ
(αk) = lim

k→∞
0 = 0,

because f = 0 in some neighborhood of αk for each k. Consequently, f = 0 in N . This means that α ∈ intE,
concluding that intE is closed. As it is nonempty by hypothesis and clearly open, and U is connected, intE
has to be equal to U , so

U = intE ⊆ E ⊆ U.

The result follows.

Corollary 1.2.21. A nonzero analytic function defined on a connected set cannot have an open set of zeros.

Definition 1.2.22 (Dimension of a Set). Let E be a nonempty subset of Rn. Then, the dimension of E is
defined by

dimE = sup{dim Γ : Γ is a real analytic submanifold contained in E}.

For the empty set, we assume that dim ∅ = −∞.

Proposition 1.2.23. The dimension of any countable non-empty set is equal to 0. If E ⊆ F , then dimE ≤
dimF . Also, if {Ei}i∈I is a family of sets such that each Ei is open in

⋃
i∈I Ei, then

dim
(⋃

i∈I

Ei

)
= max

i∈I
dimEi.

Definition 1.2.24 (F-sigma Set). A subset of a topological space is said to be an Fσ set if it is a countable
union of closed sets.

Proposition 1.2.25. Let (X, d) be a metric space and let U be a nonempty open subset of X. Then, U is
an Fσ set in the topology induced by the metric d.

Proof. We define the set
Fi = {x ∈ U : d(x,X \ U) ≥ 2−n}

for each i ∈ N, where d(x,X \ U) is the distance from the point x to the set X \ U , that is,

d(x,X \ U) := inf {d(x, y) : y ∈ X \ U} .

Since the mapping x 7→ d(x,X \U) is continuous, every Fi is closed. We have that U =
⋃∞

i=1 Fi, so U is an
Fσ set.
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Proposition 1.2.26. If {Ei}∞
i=1 is a countable family of Fσ subsets of Rn, then

dim
Ç ∞⋃

i=1
Ei

å
= max

i∈N
dimEi.

Definition 1.2.27 (Nowhere Dense Set). Let U be a subset of a topological space. Then, U is said to be
nowhere dense if

int(U) = ∅.

Proposition 1.2.28. Let U be a connected open subset of Rn and let E be a proper analytic subset of U .
Then, E is nowhere dense in U .

Proof. As E is the zero set of some analytic function in U , it is closed in U . If intU E ̸= ∅, by Proposition
1.2.20, we know that E = U . But intU E = intU (E), as E is closed. This means that if E is not nowhere
dense, then E = U , and the result follows.

Proposition 1.2.29. For a nonempty subset E ⊆ Rn,

0 ≤ dimE ≤ n.

Also,
dimE = n ⇐⇒ intE ̸= ∅.

Consequently, if E is nowhere dense, then dimE ≤ n− 1.

Analytic sets have an interesting structure. We describe it below:

Theorem 1.2.30. Let E be a nonempty analytic set. The points of E at which E is an analytic submanifold
(of dimension m), i.e. the points p ∈ E that satisfy the properties mentioned in Definition 1.2.15, are called
the regular points (of dimension m) of E. The remaining points of E are said to be its singular points. We
denote by E∗, E0, E(m) the set of singular points (or singular locus), the set of regular points, and the set of
regular points of dimension m, respectively, of E. Thus we have the decompositions

E = E∗ ∪ E0 and E0 = E(0) ∪ · · · ∪ E(n).

The set E(m) is an m−dimensional analytic submanifold and is open in E. Therefore, E0 is open in E,
while E∗ is closed. Moreover, the submanifolds E(m) are open and closed subsets of E0.

Theorem 1.2.31. In the context of the previous theorem,

(i) The set E0 of regular points is open and dense in E, whereas the set E∗ of singular points is closed
and nowhere dense.

(ii) E∗ is itself an analytic subset of U and dimE∗ ≤ dimE − 1.

As a direct consequence of Theorems 1.2.30 and 1.2.31(ii), we have the following:

Corollary 1.2.32. Every analytic set is a finite union of analytic submanifolds.

We can figure out the dimension of an analytic set if we know the dimensions of the analytic submanifolds
that form its set of regular points.

Proposition 1.2.33. Let E = E∗ ∪ E0 = E∗ ∪ E(0) ∪ · · · ∪ E(n) be a nonempty analytic set. Then,

dimE = max
¶

dimE(0), dimE(1), . . . ,dimE(n)
©
,
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Proof. We know that E is a metric space with the Euclidean distance in Rn restricted to E. Also, E∗ is
closed in E and E0 is open (cf. Theorem 1.2.30). Then, by Proposition 1.2.25, both E∗ and E0 are Fσ sets.
We deduce from Proposition 1.2.26 that

dimE = max
{

dimE∗, dimE0} .
But we know that dimE∗ < dimE (cf. Theorem 1.2.31(ii)), so dimE = dimE0. Now, as each E(i) is open
in E0, we have, by Proposition 1.2.23, that

dimE = dimE0 = max
¶

dimE(0),dimE(1), . . . ,dimE(n)
©
,

as we wanted.

Remark 1.2.34. We can see that dimE(i) = i if and only if E(i) ̸= ∅, as E(i) is an i−dimensional analytic
submanifold (if it is nonempty). Otherwise, by definition, dimE(i) = −∞. Thus, we have that

dimE = max
¶
i ∈ {0, 1, . . . , n} : E(i) ̸= ∅

©
,

because E is nonempty.

1.3. Laplace Operator and Harmonic Functions
In this section we explore briefly some features of what is, perhaps, one of the most important partial

differential operators, the Laplace operator or Laplacian ∆ (or ∇2), and of harmonic functions, which are
defined by that operator. These properties will help us investigate the behavior of electric potentials and
their critical points in the following chapters because potentials are harmonic, as we will prove later.

Definition 1.3.1 (Laplace Operator). The Laplace operator on Rn is defined by

∆ = ∇2 = ∂2

∂x2
1

+ . . .+ ∂2

∂x2
n

=
n∑

i=1

∂2

∂x2
i

.

Proposition 1.3.2 (Laplace Operator is Elliptic). The operator ∆ is elliptic in all Rn (see Appendix A).
In particular, every analytic hypersurface in Rn is characteristic for the operator ∆.

Proof. Take any point x ∈ Rn and some nonzero vector ξ ∈ Rn. Then,

χ∆(x, ξ) =
n∑

i=1
ξ2

i ̸= 0.

We deduce that charx(∆) = ∅ for all x ∈ Rn, and the result follows.

Definition 1.3.3 (Harmonic Function). Let U be an open subset of Rn and let f : U → R be a function of
class C2. Then, f is said to be a harmonic function if it satisfies Laplace equation in U , that is, if

∆f(x) = ∂2f

∂x2
1
(x) + . . .+ ∂2f

∂x2
n

(x) = 0

for all x ∈ U .

The following proposition will allow us to apply the results from the previous section to harmonic
functions:

Proposition 1.3.4 (Harmonic Functions are Real Analytic ([2], Theorem 10 on p. 31)). Let U be an open
subset of Rn and f : U → R a harmonic function. Then, f is real analytic in U .
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Proposition 1.3.5 (Maximum Principle ([3], Theorem 2.13)). Let U be a connected open subset of Rn and
f : U → R a harmonic function. If supx∈U f(x) = A < ∞, then either f(x) < A for all x ∈ U or f(x) = A
for all x ∈ U . That is, if f is non-constant, it cannot have a (global) maximum in U .

Corollary 1.3.6 ([3], Corollary 2.14). If U is compact and f is continuous on U , then the maximum of f
on U is achieved in ∂U .

Proposition 1.3.7 (Liouville’s Theorem([3], Theorem 2.16)). If f is bounded and harmonic in all Rn, then
f is constant.

Propositions 1.2.20, 1.3.4, and 1.3.5 allows us to restrict the types of non-degenerate critical points
harmonic functions can have.

Proposition 1.3.8 (Critical Points in Harmonic Functions). If f is harmonic and non-constant, it cannot
have a relative maximum or a relative minimum in U . Thus, all non-degenerate critical points of f are
saddle points (cf. Remark 1.1.21).

Proof. Suppose x0 ∈ U is a relative maximum of f and let M = f(x0). As f is analytic by Proposition
1.3.4, so is g = f −M . Since x0 is a relative maximum, there exists some ε > 0 such that

f(x) ≤ M for every x ∈ Bε(x0).

In that case, we can apply the Maximum Principle (Proposition 1.3.5) to the restriction

f
∣∣
Bε(x0) : Bε(x0) → R,

which is clearly harmonic, and get that

f(x) = M for every x ∈ Bε(x0).

Therefore, the set

S = f−1({M}) = {x ∈ U : f(x) = M} = VU (g)

has nonempty interior. Thus, from Proposition 1.2.20, we deduce that g ≡ 0, what means that

{x ∈ U : f(x) = M} = VU (g) = U,

so f is constantly equal to M , a contradiction. Consequently, f cannot have a relative maximum in U . To
prove the result for relative minimums, we notice that −f is harmonic and non-constant, and that

x0 is a relative minimum of f ⇐⇒ x0 is a relative maximum of − f,

so we can follow the previous reasoning with −f .





Chapter 2

Electrostatics

In this chapter, we introduce the concepts that make up the core of this work. Specifically, we start
defining the electric potential created when a finite number of point charges are located in different points
of the Euclidean space Rn, with n ≥ 2. Then, we talk about the electric field E = −∇V associated to each
potential, whose zeros (critical points of V ) represent the subject of study of this text, and next we explore
the simpler case of dimension two.

2.1. Basic Definitions

Definition 2.1.1 (Configuration of Charges). Let n,N ∈ N be natural numbers such that n ≥ 2 and N ≥ 1.
A finite set {(pk, qk)}N

k=1 with pk ∈ Rn (pi ̸= pj if i ̸= j), qk ∈ R (qk ̸= 0) is called a configuration of N
point charges in the Euclidean space Rn. The points pk ∈ Rn are called electric charges and qk ∈ R are the
respective values of the charges.

Definition 2.1.2 (Electric Potential). Let {(pk, qk)}N
k=1 be a configuration of point charges as in the previous

definition. We define the electric potential generated by the configuration as

V{(pk,qk)}N
k=1

: Rn \ {p1, . . . , pN } −→ R

p 7−→


− 1

4πϵ0

N∑
k=1

qk ln |p− pk|, if n = 2,

1
4πϵ0

N∑
k=1

qk

|p− pk|n−2 , if n ≥ 3,

where the constant ϵ0 is the permittivity of vacuum, 1
4πϵ0

is called the Coulomb constant and |p− pk| is the
Euclidean distance between the points p and pk in Rn. As this text focuses on the study of critical points
of the electric potential, multiplication by a constant is irrelevant. Therefore, we will omit it and define the
potential by

p 7−→


−

N∑
k=1

qk ln |p− pk|, if n = 2,

N∑
k=1

qk

|p− pk|n−2 , if n ≥ 3,

When the configuration is clear by the context or is not important, we will simply write V when talking
about the function V{(pk,qk)}N

k=1
.

Definition 2.1.3 (Total Charge). Let {(pk, qk)}N
k=1 be a configuration of charges. Its total charge is just

the sum of its charges, i.e.,
∑N

k=1 qk.

13



Remark 2.1.4. The definition of electric potential for dimension 2 can look strange compared the rest,
which have a similar description. The reason for this difference will be clear in a moment, when we see the
definition of electric field E, which is what we care about, as −∇V . In fact, we will see that the gradient of
V has a very similar structure for each n.
Definition 2.1.5 (Electric Field). Given an electric potential V for some configuration of charges, its
associated electric field is defined by

E = −∇V =
Å

− ∂V

∂x1
, . . . ,− ∂V

∂xn

ã
Concretely, for each point p ∈ Rn \ {p1, . . . , pN },

E(p) =


N∑

k=1
qk

p− pk

|p− pk|2
, if n = 2,

N∑
k=1

(n− 2)qk
p− pk

|p− pk|n
, if n ≥ 3.

As we have previously said, some p ∈ Rn \ {p1, . . . , pN } is a critical point of V (∇V (p) = 0) if and only if
E(p) = 0. Then, all the results about critical points of V throughout the text will talk about equilibrium
points of the electric field E as well.
Remark 2.1.6. From now on, we will consider the constants

C2 = 1, Cn = (n− 2) for n ≥ 3,

so we can write

∇V (p) = −Cn

N∑
k=1

qk
p− pk

|p− pk|n

instead of distinguishing by cases.
Definition 2.1.7 (Morse configuration). Let {(pk, qk)}N

k=1 be a configuration of charges in Rn for some n.
We say that it is a Morse configuration if the electric potential V they generate is a Morse function.
Remark 2.1.8. We are always going to consider configurations with more than one point, i.e., N ≥ 2. The
reason for this is the fact that the electric potential created by a single charge configuration has no critical
points (and therefore it is of no interest to us). Actually, the electric field generated by (p1, q1) ∈ Rn×(R\{0})
in a point p ∈ Rn \ {p1} is given by

E(p) = Cnq1
p− p1

|p− p1|n
.

As p ̸= p1 and q1 ̸= 0, we have two possibilities:
(i) If q1 > 0, then E(p) = Cnq1

|p−p1|n (p − p1) with Cnq1
|p−p1|n > 0, so it is a nonzero vector pointing outwards

from the charge at p1.

(ii) If q1 < 0, then E(p) = Cnq1
|p−p1|n (p − p1) with Cnq1

|p−p1|n < 0, so it is a nonzero vector pointing inwards to
the charge at p1.

In both cases, V has no critical points and the integral curves of the field E are radial centered at p1.
Remark 2.1.9. In some parts of this text, we will need to use the expressions of the second order partial
derivatives of V . For this reason, it is convenient to compute them all now. First of all, let {(pk, qk)}N

k=1 be
a configuration of point charges in Rn, and V its corresponding potential. Also, denote pk = (xk,1, . . . , xk,n)
for each k and let p = (x1, . . . , xn) be some point in Rn \ {p1, . . . , pN }. Then,

∂2V

∂x2
i

(p) = Cn

N∑
k=1

qk
n(xi − xk,i)2 − |p− pk|2

|p− pk|n+2

∂2V

∂xi∂xj
(p) = ∂2V

∂xj∂xi
(p) = Cn

N∑
k=1

qk
n(xi − xk,i)(xj − xk,j)

|p− pk|n+2 if i ̸= j
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2.2. Simple Case: Electric Potentials in Dimension 2
In this section, we begin investigating the behavior of critical points of electric potentials by restricting

our view to the case of dimension 2. The expression of the electric field for N charges is similar in all
cases (depending on n), as we saw in Definition 2.1.5. Consequently, it is reasonable to think that electric
potentials in all dimensions share some properties concerning their critical points. This general properties
will be explored in Chapter 3. However, the case of dimension 2 has some interesting features, like the
possibility of identifying R2 with the field of complex numbers C in a convenient way. This allows us to
establish an upper bound for the number of critical points, depending on the number of charges, by relating
the critical points of V to the roots of a complex polynomial and using the Fundamental Theorem of Algebra.
In fact, we will see later that this bound is sharp, i.e., we can find examples at which it is reached.

Throughout this part of the text, we will view points of R2 as complex numbers in C by means of the
correspondence (x, y) 7→ x+ iy. Also, given a configuration of charges {(pk, qk)}N

k=1 in R2, we are going to
consider the electric field generated by that configuration at some z ∈ C \ {z1, . . . , zN } to be

Ẽ{(zk,qk)}N
k=1

(z) =
N∑

k=1
qk

z − zk

|z − zk|2
,

where pk 7→ zk. We are able to work with C to investigate the critical points of electric potentials in
dimension 2 because some (x, y) ∈ R2 is a critical point of the potential V{(pk,qk)}N

k=1
if and only if

Ẽ{(zk,qk)}N
k=1

(x+ iy) = 0.

2.2.1. Upper Bound for the Number of Critical Points

Having made this clear, we can proceed to prove the upper bound for the number of critical points of V
that we mentioned. This result can be considered “folk wisdom”, but it is not easy to find a reference where
it is proven. We start by stating a well known and important theorem about roots of complex polynomials
in one variable:

Lemma 2.2.1 (Fundamental Theorem of Algebra). Let f = anX
n+, . . .+, a1X + a0 be a polynomial in

C[X] of degree n ≥ 1. Then, f has n roots in C, counting their multiplicity.

A direct consequence of this theorem is the fact that a polynomial in one variable, with complex coeffi-
cients, of degree n ≥ 1, has at most n different roots in C. We can now prove the following:

Theorem 2.2.2 (Upper Bound for the Number of Critical Points). Let {(pk, qk)}N
k=1 be a configuration of

N point charges in R2. Then, the electric potential has at most N − 1 critical points.

Proof. As was said before, a point p = (x, y) ∈ R2 \ {p1, . . . , pN } is a critical point of V if and only if
Ẽ(z) = 0, being z = x+ iy. That is,

p ∈ Cr(V ) ⇐⇒
N∑

k=1
qk

z − zk

|z − zk|2
= 0 ⇐⇒

N∑
k=1

Å
qk

1
z − zk

ã
= 0 ⇐⇒

N∑
k=1

qk
1

z − zk
= 0

Now, as z ̸= zk for all k,

N∑
k=1

qk
1

z − zk
= 0 ⇐⇒

N∏
k=1

(z − zk)
N∑

k=1
qk

1
z − zk

= 0 ⇐⇒
N∑

j=1
qk

∏
k ̸=j

(z − zk) = 0,

because
N∑

j=1
qk

∏
k ̸=j

(zi − zk) ̸= 0 , ∀i ∈ {1, . . . , N} .
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Finally, as the expression

f =
N∑

j=1
qk

∏
k ̸=j

(X − zk)

is a polynomial with complex coefficients of degree N − 1, by Lemma 2.2.1, it has at most N − 1 different
roots. And, as the roots of f are the zeros of Ẽ, and these correspond to the critical points of V , the result
follows.

It is interesting to note, as we mentioned at the beginning of this section, that this bound is reached for
some configurations of charges, which means that it is the lowest possible. A simple case is the potential
generated by a configuration of N equal charges located in a line, which has a critical point between each
pair of adjacent charges:

Example 2.2.3. Let {(pk, qk)}N
k=1 be a configuration of charges located in a line with all qk equal to some

q ̸= 0. Also, we are going to consider the case were pk ∈ R × {0} ⊂ R2 for all k. That is, zk ∈ R ⊂ C. In
the next chapter, we will see that studying this case is enough to know the properties of all configurations
of N charges contained in a line.

We know, form the proof of Theorem 2.2.2, that the critical points of the potential V correspond to the
roots of the polynomial

f =
N∑

j=1
qk

∏
k ̸=j

(X − zk) = q
N∑

j=1

∏
k ̸=j

(X − zk) ∈ R[X].

We can consider f as a continuous function f : R → R. Besides, if we define

g = q
N∏

k=1
(X − zk) ∈ R[X],

whose roots are z1, . . . , zN , we have that f = g′. By the Mean Value Theorem, we know that there is a root
of f between each pair of adjacent points of the set {z1, . . . , zN } ⊂ R. Thus, as they have to be different, f
has at least N − 1 roots, so it has exactly N − 1, by Theorem 2.2.2. We deduce that V has N − 1 critical
points, reaching the bound.

2.2.2. Example: Configurations of Equal Charges Forming Regular Polygons

In this section, we are going to consider the example of a family of configurations of charges that generate
electric potentials with a single critical point, which is degenerate. Let N ≥ 3 and let {(zk, qk)}N

k=1 be a
configuration of equal charges in R2 located at the vertices of an N -sided regular polygon. As before, we
identify R2 with the complex plane C and consider zk = xk + iyk. Without loss of generality, we may assume
that zk = e

2πk
N

i and that qk = 1. To avoid being repetitive, we will say that some z = x+ iy ∈ C is a critical
point of V when referring to the fact that p = (x, y) is a critical point of V .

We have that

Ẽ(0) =
N∑

k=1
qk

zk

|zk|2
=

N∑
k=1

e
2πk
N

i = 0,

because −
∑N

k=1 e
2πk
N

i is the coefficient of XN−1 in the polynomial

N∏
k=1

(X − e
2πk
N

i) = XN − 1.
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Then, z = 0 is a critical point of V . If there were some other critical point z′ ̸= 0, all the N different points
in the set {

z′e
2π
N

i, z′e
2π2
N

i, . . . , z′e
2π(N−1)

N
i
}

should be too. As this would contradict Theorem 2.2.2, z = 0 is the only critical point of V . We may now
check if it is degenerate or not. We will use the following lemma.

Lemma 2.2.4. Let N be a natural number such that N ≥ 2. Then,

N∑
k=1

cos
Å2πk
N

ã
=

N∑
k=1

sin
Å2πk
N

ã
= 0.

Proof. By what we previously proved,

0 =
N∑

k=1
e

2πk
N

i =
N∑

k=1
cos
Å2πk
N

ã
+ i sin

Å2πk
N

ã
=

N∑
k=1

cos
Å2πk
N

ã
+ i

N∑
k=1

sin
Å2πk
N

ã
.

The result follows.

Now, by Remark 2.1.9 and Lemma 2.2.4, we can compute the following:

∂2V

∂x2 (0) =
N∑

k=1

|zk|2 − 2(xk)2

|zk|4
=

N∑
k=1

1 − 2(xk)2 =
N∑

k=1
1 − 2

Å
cos
Å2πk
N

ãã2
= −

N∑
k=1

cos
Å4πk
N

ã
=

=


−2

N/2∑
k=1

cos
Å 2πk
N/2

ã
= 0 if N is even

−
N∑

k=1
cos
Å2πk
N

ã
= 0 if N is odd

∂2V

∂y2 (0) =
N∑

k=1

|zk|2 − 2(yk)2

|zk|4
=

N∑
k=1

1 − 2(yk)2 =
N∑

k=1
1 − 2

Å
sin
Å2πk
N

ãã2
=

N∑
k=1

sin
Å4πk
N

ã
=

=


2

N/2∑
k=1

sin
Å 2πk
N/2

ã
= 0 if N is even

N∑
k=1

sin
Å2πk
N

ã
= 0 if N is odd

∂2V

∂x∂y
(0) = ∂2V

∂y∂x
(0) = −

N∑
k=1

2xkyk = −
N∑

k=1
2 cos

Å2πk
N

ã
sin
Å2πk
N

ã
= −

N∑
k=1

sin
Å4πk
N

ã
= 0.

Then, the Hessian of V at the point 0 corresponds to the zero matrix, so it is singular, that is, the critical
point is degenerate.





Chapter 3

General Results about the Critical Points
of Electric Potentials

In this chapter we proceed to prove some results about the behavior of the critical points of electric
potentials generated by arbitrary configurations of charges. These properties will help us understand the
nature of electric potentials. The chapter is divided into three sections. In the first one we prove some
properties concerning the location of critical points, first some general features and then some that are
satisfied for configurations of charges with the same sign. Then, in the second section, we give an upper
bound for the dimension of the set of critical points of any nonzero electric potential (in the sense of Definition
1.2.22). Lastly, we show that most configurations generate Morse electric potentials, in the sense that they
form an open and dense subset of the set of all configurations with certain topology.

We start with some particularly important properties about electric potentials that will allow us to prove
others later.

Proposition 3.0.1 (Electric Potentials are Harmonic). If V is the electric potential generated by some
configuration of charges {(pk, qk)}N

k=1 in Rn, then V is a harmonic function in Rn \ {p1, . . . , pN }.

Proof. The potential V is clearly of class C2 by Remark 2.1.9. Now, take any p ∈ Rn \ {p1, . . . , pN }. Then,

∆V (p) = ∂2V

∂x2
1

(p) + . . .+ ∂2V

∂x2
n

(p) = Cn

N∑
k=1

n∑
i=1

qk
n(xi − xki

)2 − |p− pk|2

|p− pk|n+2 =

= Cn

N∑
k=1

qk
n

∑n
i=1(xi − xki

)2 − n|p− pk|2

|p− pk|n+2 = Cn

N∑
k=1

qk
n|p− pk|2 − n|p− pk|2

|p− pk|n+2 = 0.

The result follows.

From this and Proposition 1.3.4, we deduce the following:

Corollary 3.0.2 (Electric Potentials are Real Analytic). If V is the electric potential generated by some
configuration of charges {(pk, qk)}N

k=1 in Rn, then V is a real analytic function in Rn \ {p1, . . . , pN }.

Remark 3.0.3. Since the electric potential

V : Rn \ {p1, . . . , pN } → R

is real analytic, it is in particular, by Proposition 1.2.10, a function of class C∞ in Rn \ {p1, . . . , pN }, which
is a smooth manifold (without boundary). Therefore, we can use the tools introduced in Chapter 1 to
investigate its properties.
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3.1. Location of the Critical Points
As was said at the beginning of the present chapter, we will devote this first section to the study of the

location of the critical points of electric potentials. To begin with, we will prove some results for arbitrary
configurations. Later, we will restrict ourselves to the situation of equal-sign configurations in order to
obtain a considerably stronger result.

3.1.1. Arbitrary Configurations

The following result for the case of n = 3 corresponds to Lemma 32.1 of [14]. We can adapt the proof in
that book to show it for the general case:

Proposition 3.1.1. Let V be the electric potential generated by a configuration of charges in Rn with
nonzero total charge. Then, Cr(V ) ⊂ Rn is a bounded set.

Proof. Take some M0 > 0 such that

|pk| < B0 for all k ∈ {1, . . . , N}.

Then, ∇V (p) is defined for |p| ≥ M0. For every such p we have that

p · ∇V (p) = Cn

N∑
k=1

qk
p · (p− pk)
|p− pk|n

= Cn

N∑
k=1

n∑
i=1

qk
xi(xi − xk,i)

|p− pk|n
,

where C2 = 1 and Cn = n− 2 for n ≥ 3. Therefore,

|p|n−2 (p · ∇V (p)) = Cn

N∑
k=1

n∑
i=1

qk|p|n−2xi(xi − xk,i)
|p− pk|n

= Cn

N∑
k=1

qk
|p|n−2 ∑n

i=1 xi(xi − xk,i)
|p− pk|n

.

Now, we see that
lim

|p|→∞

|p|
|p− pk|

≤ lim
|p|→∞

|p| + |pk|
|p− pk|

≤ lim
|p|→∞

|p| + |pk|
|p| − |pk|

= 1,

lim
|p|→∞

|p|
|p− pk|

≥ lim
|p|→∞

|p| − |pk|
|p− pk|

≥ lim
|p|→∞

|p| − |pk|
|p| + |pk|

= 1,

so lim
|p|→∞

|p|
|p−pk| = 1. Also,

lim
|p|→∞

∑n
i=1 xi(xi − xk,i)

|p− pk|2
= lim

|p|→∞

∑n
i=1 x

2
i − xixk,i

|p− pk|2
= lim

|p|→∞

|p|2 − p · pk

|p− pk|2
= 1 − lim

|p|→∞

p · pk

|p− pk|2
,

0 ≤ lim
|p|→∞

|p · pk|
|p− pk|2

≤ lim
|p|→∞

|p||pk|
|p− pk|2

= lim
|p|→∞

|pk|
|p− pk|

≤ lim
|p|→∞

|pk|
|p| − |pk|

= 0,

so lim
|p|→∞

∑n

i=1 xi(xi−xk,i)
|p−pk|2 = 1. Then, we can see that

lim
|p|→∞

|p|n−2 (p · ∇V (p)) = lim
|p|→∞

Cn

N∑
k=1

qk
|p|n−2 ∑n

i=1 xi(xi − xk,i)
|p− pk|n

=

= lim
|p|→∞

Cn

N∑
k=1

qk

∑n
i=1 xi(xi − xk,i)

|p− pk|2
= lim

|p|→∞
Cn

N∑
k=1

qk

∑n
i=1 x

2
i

|p|2
= Cn

N∑
k=1

qk ̸= 0.
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We deduce from this that there exists some M > M0 such that if |p| > M , then |p|n−2 (p · ∇V (p)) ̸= 0, which
in turn implies that ∇V (p) ̸= 0. Thus, Cr(V ) is contained in the open ball BM (0) of radius M centered at
the origin, so it is bounded.

Remark 3.1.2. The result of the previous proposition relies on the property that, at great distance, the
electric potential generated by a finite set of charges behaves like if it were just one, with charge equal to the
total charge of the configuration. And, as seen in Remark 2.1.8, this generates a potential with no critical
points if it is nonzero.

Proposition 3.1.3. Let V be the electric potential generated by a configuration {(pk, qk)}N
i=1. Then,

lim
p→pi

|∇V (p)| = ∞

for every i.

Proof. As the charges are different and isolated, there is some ε > 0 small enough such that the function∣∣∣∣∣∣∑k ̸=i

qk
p− pk

|p− pk|n

∣∣∣∣∣∣
is defined and continuous in the closed ball Bε(pi), so |∇V (p)| has some maximum M in Bε(pi). Therefore,
we have that

|∇V (p)| =
∣∣∣∣∣ N∑
k=1

qk
p− pk

|p− pk|n

∣∣∣∣∣ ≥ |qi|
|p− pi|n−1 −

∣∣∣∣∣∣∑k ̸=i

qk
p− pk

|p− pk|n

∣∣∣∣∣∣ ≥ |qi|
|p− pi|n−1 −M

in Bε(pi). But
|qi|

|p− pi|n−1 → ∞ if |p− pi| → 0,

because we work with n ≥ 2. The result follows.

Corollary 3.1.4. Given any configuration, there exist neighborhoods around the charges that do not contain
any critical points of the potential it generates. In other words, there are no critical points near the charges.

This last results allow us to prove that certain configurations of charges generate electric potentials with
only finitely many critical points. We will later see that these configurations constitute the “majority” of
them.

Proposition 3.1.5. Let {(pk, qk)}N
k=1 be a Morse configuration with nonzero total charge. Then, V has

finitely many critical points.

Proof. By Proposition 3.1.1, there is some M > 0 such that Cr(V ) ⊆ BM (0). Besides, by Proposition 3.1.3,
there exist open balls B1, . . . , BN centered at p1, . . . , pN , respectively, such that Cr(V ) ∩ (B1 ∪ · · · ∪BN ) is
empty. Therefore, we have that

Cr(V ) ⊆ BM (0) ∩ (Rn \ (B1 ∪ · · · ∪BN )) = BM (0) \ (B1 ∪ · · · ∪BN ) ,

which is a compact set, call it K. On the other hand, by Corollary 1.1.2, we know that there are finitely
many critical points of V contained in K. Then, as Cr(V ) ⊆ K, we deduce that V has finitely many critical
points.
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3.1.2. Configurations with the Same Sign

Now, we restrict ourselves to configurations whose charges have the same sign. First, we introduce some
concepts.

Definition 3.1.6 (Convex Set). A subset C ⊆ Rn is said to be convex if, for all x, y ∈ C, the set

[x, y] := {tx+ (1 − t)y : t ∈ [0, 1]}

is contained in S.

Proposition 3.1.7 (Convex Hull). Let {Ci : i ∈ I} be a family of convex subsets of Rn. Then, their inter-
section ∩i∈ICi is convex too. We define the convex hull of a subset X ⊆ Rn by

conv(X) :=
⋂

{C ⊆ Rn : X ⊆ C and C is convex} .

This set is the same as {
k∑

i=1
αixi : k ≥ 1, xi ∈ X, αi ≥ 0, α1 + . . . αk = 1

}
We say that the convex hull of X is the “smallest” convex set that contains X.

Proposition 3.1.8 ([5], Theorem 1.4.3 of Chapter III). If X ⊆ Rn is bounded (resp. compact), then
conv(X) is also bounded (resp. compact).

Definition 3.1.9 (Affine Set). A subset A ⊆ Rn is said to be affine if, for all x, y ∈ A, the line though x
and y, that is, the set

{tx+ (1 − t)y : t ∈ R} ,

is contained in A.

Proposition 3.1.10 (Dimension of Affine Set). Consider Rn as an n−dimensional real vector space and let
A ⊆ Rn be a nonempty affine set. There exists a unique linear subspace U of Rn such that A is the translate
of U . That is, there exists a unique subspace U such that there is some w ∈ Rn for which

A = w + U := {w + u : u ∈ U} .

In fact, any point in A can be chosen as w. We define the dimension of A as the dimension of that unique
subspace U that satisfies the condition.

Proposition 3.1.11 (Affine Hull). Let {Ai : i ∈ I} be a family of affine subsets of Rn. Then, their inter-
section ∩i∈IAi is affine too. We define the affine hull of a subset X ⊆ Rn by

aff(X) =
⋂

{A ⊆ Rn : X ⊆ A and C is affine} .

This set is the same as {
k∑

i=1
αixi : k ≥ 1, xi ∈ X, αi ∈ R, α1 + . . . αk = 1

}
.

We say that the affine hull of X is the “smallest” affine set that contains X.

Definition 3.1.12 (Relative Interior). Consider Rn with the euclidean topology and let X be a subset of
Rn. The relative interior of X, denoted relint(X), is defined as the interior of X in aff(X) with the subspace
topology. It can be expressed as the set

{x ∈ X : there exists some ϵ > 0 such that Bϵ(x) ∩ aff(X) ⊂ X} .

If X is not contained in some hyperplane of Rn, then relint(X) = int(X), the interior of X in Rn with the
euclidean topology.
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Lemma 3.1.13 (Separating Hyperplane Theorem, Corollary 4.1.3 of [5]). Let A and B be two closed convex
subsets of Rn, with at least one of them bounded and such that A∩B = ∅. Then, there exists some nonzero
a ∈ Rn and some b ∈ R such that

a · x > b ∀x ∈ A and a · x < b ∀x ∈ B,

where · is the dot product in Rn. In this case, it is said that the hyperplane {x ∈ Rn : a · x = b} strictly
separates the sets A and B.

Lemma 3.1.14 (Supporting Hyperplane Theorem, Lemma 4.2.1 of [5]). Let X be a convex subset of Rn

and x0 a point in ∂X := X \ int(X). Then, there exists some a ∈ Rn, a ̸= 0, such that

a · x ≤ a · x0 ∀x ∈ X.

The hyperplane {a · x = a · x0} is called a supporting hyperplane to X at the point x0.

Proposition 3.1.15. Let {(pk, qk)}N
k=1 be a subset of Rm ×R (n ≥ 1), such that pi ̸= pj if i ̸= j and qk ̸= 0,

and such that the pk do not all lie in the same hyperplane, i.e., dim(aff({p1, . . . , pN })) = m. Let En be the
function

En : Rm \ {p1, . . . , pN } −→ Rm

p 7−→
N∑

k=1
qk

p− pk

|p− pk|n

for n ≥ 1. Then, if qk > 0 for all k, the zeros of En are in int(conv({p1, . . . , pN })).

Proof. Take p /∈ int(conv({p1, . . . , pN })). There are two possibilities:

(i) If p /∈ conv({p1, . . . , pN }), by Lemma 3.1.13, as that set is closed (Proposition 3.1.8), there is some
a ∈ Rm, a ̸= 0, and some b ∈ R such that

a · p > b and a · x < b ∀x ∈ conv({p1, . . . , pN }).

We deduce that

En(p) · a =
N∑

k=1
qk

(p− pk) · a
|p− pk|n

=
N∑

k=1
qk
p · a− pk · a

|p− pk|n
>

N∑
k=1

qk
b− b

|p− pk|n
= 0,

because qk
|p−pk|n > 0. Then, En(p) ̸= 0.

(ii) If p ∈ conv({p1, . . . , pN }) \ int(conv({p1, . . . , pN })), by Lemma 3.1.14, there is some a ∈ Rm, a ̸= 0,
such that

a · x ≤ a · p ∀x ∈ conv({p1, . . . , pN }).

Now, by hypothesis, there is some pk such that a · pk < a · p because, otherwise, they all would lie in
the hyperplane {x ∈ Rm : a · p = a · x}. Again,

a · En(p) =
N∑

k=1
qk
a · (p− pk)
|p− pk|n

> 0.

Then, En(p) ̸= 0 in this case too.

Combining the two cases, we deduce that there are no zeros of En outside int(conv({p1, . . . , pN })), as we
wanted.

Now we can prove the following result about the location of the critical points:
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Theorem 3.1.16. Let {(pk, qk)}N
k=1 be a configuration of N charges in Rn, n ≥ 2. If all the charges have

the same sign, then

Cr(V ) ⊆ relint(conv({p1, . . . , pN })).

Proof. Without loss of generality, we assume that all the charges are positive. If dim(aff({p1, . . . , pN })) = n,
the result follows from Proposition 3.1.15. Therefore, we shall consider that dim(aff({p1, . . . , pN })) = m
for some 1 ≤ m ≤ n − 1. In this situation there is no problem in assuming that the set aff({p1, . . . , pN })
is just Πn

m = {xm+1 = . . . = xn = 0} ⊂ Rn, as we can construct an isometry of Rn onto itself that sends
aff({p1, . . . , pN }) to Πn

m, while preserving the properties of the electric potential. There are two different
possibilities:

(i) If p /∈ {xm+1 = . . . = xn = 0} there is some i ∈ {m + 1, . . . , n} such that ⟨ei, p⟩ ≠ 0, where ei is the
i-th vector of the canonical basis of Rn. Moreover, ei · pk = 0 for each k. Then, we have that

ei · E(p) =


N∑

k=1
qk
ei · (p− pk)

|p− pk|2
=

N∑
k=1

qk
ei · p

|p− pk|2
̸= 0, if n = 2,

N∑
k=1

(n− 2)qk
ei · (p− pk)

|p− pk|n
=

N∑
k=1

(n− 2)qk
ei · p

|p− pk|n
̸= 0, if n ≥ 3,

so p is not a critical point of V .

(ii) If p ∈ {xm+1 = . . . = xn = 0} and π is the map

π : Rn −→ Rm

(x1, . . . , xm, . . . , xn) 7−→ (x1, . . . , xm),
then

p ∈ Cr(V ) ⇐⇒ Ẽ(π(p)) = 0,

where the function Ẽ : Rm \ {π(p1), . . . , π(pN )} −→ Rm is defined by

Ẽ(p) =
N∑

k=1
qk

p− π(pk)
|p− π(pk)|n .

By Proposition 3.1.15, the zeros of Ẽ are in I = int(conv({π(p1), . . . , π(pN )})) ⊂ Rm. Additionally,

π(p) ∈ I ⇐⇒ p ∈ π−1(I),

but π−1(I) ∩ {xm+1 = . . . = xn = 0} is just relint(conv({p1, . . . , pN })), and the theorem follows.

The condition in Theorem 3.1.16 that all the charges have equal sign is necessary for the statement to
be true. In fact, there exist configurations, without all signs equal, that do not satisfy Theorem 3.1.16. We
have the following example:

Example 3.1.17. Let V be the electric potential generated by the configuration formed by the following
charges in R3:

p1 = (1, 0, 0), q1 = 1
p2 = (−1, 0, 0), q2 = 1
p3 = (0, 1, 0), q3 = −1
p4 = (0,−1, 0), q4 = −1.
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Then, if p = (x, y, z),

p ∈ Cr(V ) ⇐⇒ q1
p− p1

|p− p1|3
+ q2

p− p2
|p− p2|3

+ q3
p− p3

|p− p3|3
+ q4

p− p4
|p− p4|3

= 0

⇐⇒



x− 1
|p− p1|3

+ x+ 1
|p− p2|3

− x

|p− p3|3
− x

|p− p4|3
= 0

y

|p− p1|3
+ y

|p− p2|3
− y − 1

|p− p3|3
− y + 1

|p− p4|3
= 0

z

|p− p1|3
+ z

|p− p2|3
− z

|p− p3|3
− z

|p− p4|3
= 0.

It is easy to see that {(x, y, x) ∈ R3 : x = y = 0} ⊂ Cr(V ). Then, Cr(V ) cannot be contained in
conv({p1, p2, p3, p4}), because conv({p1, p2, p3, p4}) is a subset of {z = 0}. In particular, this is an example
of an electric potential with infinitely many critical points.

3.2. Upper Bound for the Dimension of the Critical Set

In this section, we establish an upper bound for the dimension (in the sense of Definition 1.2.22) of the
critical set of the electric potential V generated by any configuration of charges in Rn. In fact, we are going
to prove, with the help of Cauchy-Kovalevskaya Theorem (Theorem A.9), that Cr(V ) cannot contain any
n−dimensional or (n− 1)−dimensional real analytic submanifold of Rn, deducing that dim(Cr(V )) ≤ n− 2.
We begin by stating the following well known theorem by Sard, whose proof can be found, for example, in
[12] pp. 16-19:

Lemma 3.2.1 (Sard’s Theorem). Let M be a manifold and f : M → R a smooth map. Then, the set of
critical values of f has (Lebesgue) measure zero in R.

Proposition 3.2.2. If f : X → Y is a continuous function and E is a connected subset of X, then f(E) is
a connected subset of Y .

As a direct consequence of the previous results, we can prove the following:

Proposition 3.2.3. Let U be an open subset of Rn and f : U → R a smooth map. Then, f is constant in
every connected subset of Cr(f).

Proof. Let E ⊆ Cr(f) be connected. If f is not constant in E, then, by Proposition 3.2.2, f(E) is some
nontrivial interval I ⊆ R. But, as I = f(E) ⊆ f(Cr(f)), this means that 0 < m(I) ≤ m(f(Cr(f))), which
contradicts Lemma 3.2.1 because f(Cr(f)) is precisely the set of critical values of f . Then f must be
constant in the set E.

Theorem 3.2.4. Let V be the electric potential generated by some configuration of charges in Rn. Then,
the critical set Cr(V ) satisfies that dim(Cr(V )) ≤ n − 2. In particular, if it is nonempty, Cr(V ) is a finite
union of analytic submanifolds of Rn of dimensions between 0 and n− 2.

Proof. We may assume that Cr(V ) is nonempty, because otherwise dim(Cr(V )) = −∞ which is obviously
smaller than n− 2. In Corollary 3.0.2 we saw that V is a real analytic function away from the charges, that
is, in the open subset Rn \ {p1, . . . , pN } of Rn. Then, by Proposition 1.2.10, the functions

∂V

∂xi
: Rn \ {p1, . . . , pN } → R , i = 1, . . . , n

are real analytic too. Consequently, Cr(V ) is an analytic subset of Rn \ {p1, . . . , pN } as we have that
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Cr(V ) = ZRn\{p1,...,pN }

Å
∂V

∂x1
, . . . ,

∂V

∂xn

ã
.

We have assumed that Cr(V ) is nonempty, so 0 ≤ dim(Cr(V )) ≤ n. By Corollary 3.1.4, we have that
Cr(V ) ̸= Rn \ {p1, . . . , pN }, because there are no critical points close enough to the charges. Therefore,
we deduce from Proposition 1.2.28, and from the fact that Rn \ {p1, . . . , pN } is connected, that Cr(V ) is
nowhere dense and closed in Rn \ {p1, . . . , pN }. Then, int(Cr(V)) = ∅. By Proposition 1.2.29, this means
that dim(Cr(V )) ̸= n.

By what we discussed in Section 1.2.3, if dim(Cr(V )) = n− 1, the set Cr(V )(n−1) of points where Cr(V )
is an (n − 1)-dimensional analytic submanifold is nonempty. Then, there is some p ∈ Cr(V ), a subset
W ⊆ Rn−1 and a real analytic function f : W → Rn, which maps open subsets of W onto relatively open
subsets of Cr(V ), such that

p ∈ f(W ) and rank [Df(w)] = n− 1, ∀w ∈ W.

We can take an open ball B ⊆ W such that p ∈ f(B) = S. We have that S is a connected (n−1)-dimensional
analytic submanifold. So, by Remark 1.2.16, S is a connected analytic hypersurface. If we now take any
open neighborhood U ⊆ Rn \ {p1, . . . , pN } of p, the following statements are true:

(i) ∆V = 0 in U , because V is harmonic away from the charges.

(ii) ∇V = 0 in S, because S ⊂ Cr(V ).

(iii) V = c0 in S for some constant c0 ∈ R, by Proposition 3.2.3, as S is a connected subset of Cr(V ).

But this is also true for the constant function equal to c0. Now, define the Cauchy problem

∆u = 0,

∂u

∂ν
=

n∑
i=1

∂u

∂xi
νi = 0, u = c0 in S.

From Propositions A.8 and 1.3.2, every hypersurface is non-characteristic for the Laplace operator ∆. Also,
constant functions are trivially analytic everywhere. It is easy to check that both V and the constant
function equal to c0 are two different analytic solutions for the problem in every open neighborhood of the
point p. This contradicts Cauchy-Kovalevskaya Theorem (Theorem A.9). Then, Cr(V ) must have dimension
less than or equal to n− 2.

3.3. Density of Morse Configurations

In this section, we will prove that most configurations, in a certain sense that we will describe later, are
Morse. First, we will do it for all types of configurations. This result for the case of dimension 3 is proven in
[14]. With a little more work, using a similar procedure, we will prove it for every dimension. Later, as we
have seen it is useful, we look at the case of configurations with the same sign and prove a stronger result.
This last result is new and requires additional considerations, but the argumentation we use is similar to
that used in the general case.



27 3.3. Density of Morse Configurations

3.3.1. Arbitrary Configurations

Definition 3.3.1 (Partial Mappings). Let W be a nonempty open subset of Rn × Rm and

U : W −→ R
(x, a) 7−→ U(x, a)

a mapping. Let π1(W ) and π2(W ) be the orthogonal projections of W into Rn and Rm respectively, and
define for each a ∈ π2(W ) the open subset

W (a) = {x ∈ Rn : (x, a) ∈ W}

of π1(W ). Finally, for each a ∈ π2(W ), we define the partial mapping

Ua : W (a) −→ R
x 7−→ U(x, a).

We can see U as defining a family of partial mappings Ua.

Lemma 3.3.2 ([14], Theorem 6.3). In the situation of Definition 3.3.1, let

Ω =
ß

(x, a) ∈ W : ∂U
∂x1

(x, a) = . . . = ∂U

∂xn
(x, a) = 0

™
.

If the matrix

H(U)(x, a) =
ÅÅ

∂2U

∂xi∂xj
(x, a)

ã
,

Å
∂2U

∂xi∂ak
(x, a)

ãã
∈ Mn,n+m(R)

is such that rank H(U) = n for every (x, a) ∈ Ω, then for almost all a ∈ π2(W ) the partial mapping Ua is a
Morse function.

Lemma 3.3.3 (Weinstein–Aronszajn-Sylvester Determinant Identity). If A ∈ Mm,n and B ∈ Mn,m are
two matrices, then

det(Im +AB) = det(In +BA).

Proof. We know that for square matrices M1 and M2 of the same dimension,

det(M1M2) = det(M1) det(M2).

We can apply this to the matricesÅ
Im +AB 0

B In

ã
=
Å
Im A
0 In

ãÅ
Im −A
B In

ã
,Å

Im 0
B In +BA

ã
=
Å
Im −A
B In

ãÅ
Im A
0 In

ã
to get the what we want. In fact,

det
Å
Im +AB 0

B In

ã
= det(In) det(Im +AB) = det(Im +AB),

det
Å
Im 0
B In +BA

ã
= det(Im) det(In +BA) = det(In +BA),

and the result follows.

Proposition 3.3.4. Let q1, . . . , qN ∈ R\{0} such that
∑N

k=1 qk ̸= 0 and p2, . . . , pN ∈ Rn be fixed, with all pi

different. Then, for almost all p1 ∈ Rn \{p2, . . . , pN }, the electric potential V{(pk,qk)}N
k=1

is a Morse function.
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Proof. First of all, we define the open subset

W = {(p, a) ∈ Rn × Rn : p ̸= a, p ̸= pi, a ̸= pi for i = 2, . . . , N}

and the C2-mapping

U : W −→ R

(p, a) 7−→



−q1 ln |p− a| −
N∑

k=2
qk ln |p− pk| if n = 2,

q1
|p− a|n−2 +

N∑
k=2

qk

|p− pk|n−2 if n ≥ 3.

Then, for each (p, a) = (x1, . . . , xn, a1, . . . , an) ∈ W , the function U satisfies the following:

∂2U

∂xi∂ai
(p, a) = Cnq1

|p− a|2 − n(xi − ai)2

|p− a|n+2

∂2U

∂xi∂aj
(p, a) = Cnq1

−n(xi − ai)(xj − aj)
|p− a|n+2 , i ̸= j.

Besides, using the concepts of Definition 3.3.1, we have that

π2(W ) = {a ∈ Rn : a ̸= pi for i = 2, . . . , N} = Rn \ {p2, . . . , pN },

W (a) = Rn \ {a, p2, . . . , pN },

and the partial mapping Ua is just the electric potential generated by the configuration

{(a, q1), (p2, q2), . . . (pN , qN )} .

Next, we define the matrix

H(p, a) =
Å

∂2U

∂xi∂aj
(p, a)

ã
1≤i,j≤n

∈ Mn(R).

Its determinant is

det H(p, a) =
Å

Cnq1
|p− a|n

ãn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|p−a|2−n(x1−a1)2

|p−a|2 · · · −n(x1−a1)(xn−an)
|p−a|2

. . .
... |p−a|2−n(xi−ai)2

|p−a|2
...

. . .
−n(xn−an)(x1−a1)

|p−a|2 · · · |p−a|2−n(xn−an)2

|p−a|2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

=
Å

Cnq1
|p− a|n

ãn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + −n(x1−a1)2

|p−a|2 · · · −n(x1−a1)(xn−an)
|p−a|2

. . .
... 1 + −n(xi−ai)2

|p−a|2
...

. . .
−n(xn−an)(x1−a1)

|p−a|2 · · · 1 + −n(xn−an)2

|p−a|2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Now, let A be the matrix

A =


x1 − a1

...
xi − ai

...
xn − an

 ∈ Mn,1.

We see that
det H(p, a) =

Å
Cnq1

|p− a|n

ãn ∣∣∣∣In + −n
|p− a|2

AAT

∣∣∣∣ .
Then, by Lemma 3.3.3,

det H(p, a) =
Å

Cnq1
|p− a|n

ãn ∣∣∣∣1 + −n
|p− a|2

ATA

∣∣∣∣ =
Å

Cnq1
|p− a|n

ãn ∣∣∣∣1 − n

|p− a|2
|p− a|2

∣∣∣∣ =

=
Å

Cnq1
|p− a|n

ãn

(1 − n) ̸= 0, ∀(p, a) ∈ W.

The theorem follows from Lemma 3.3.2.

Proposition 3.3.5. Let A be a subset of Rn such that m(A) = 0, where m is the Lebesgue measure on Rn.
Then, Ac = Rn \A is dense in Rn.

Proof. If Ac is not dense in Rn, there exists some nonempty open set U such that U ∩Ac = ∅. This means
that U ⊂ A. Then,

0 < m(U) ≤ m(A),

and the result follows.

As a direct consequence of Proposition 3.3.4, using Proposition 3.3.5, we have the following:

Corollary 3.3.6. In the conditions of Proposition 3.3.4, the set of p1 ∈ Rn \ {p2, . . . , pN } for which the
electric potential V{(pk,qk)}N

k=1
is a Morse function is dense in Rn.

Remark 3.3.7. A configuration of N charges in Rn can be represented by a point (p1, . . . , pN , q1, . . . , qN ) ∈
(Rn)N × RN . In fact, each one by N ! different points. But not all points represent a valid configuration.
Concretely, the set of them is

Cn,N = {(p1, . . . , pN , q1, . . . , qN ) ∈ (Rn)N × RN : pi ̸= pj for i ̸= j, qk ̸= 0}.

We do this in order to give the set of configurations a topological structure to prove some results about them.
In fact, we consider Cn,N with the subspace topology induced by (Rn)N × RN with the Euclidean topology,
in which Cn,N is an open and dense subset. We will call elements of Cn,N configurations of charges too, and
denote the potential generated by a configuration c = (p1, . . . , pN , q1, . . . , qN ) ∈ Cn,N by Vc. In what follows,
we will work with configurations whose total charge is nonzero, because it simplifies the arguments and still
represent the majority of configurations. Let us call this set

Tn,N = {(p1, . . . , pN , q1, . . . , qN ) ∈ Cn,N :
∑N

k=1 qk ̸= 0} ⊂ Cn,N ,

that is also open and dense.

Proposition 3.3.8. Let X be a subset of Rm, 0 < k < n and Y a dense subset of Rm−k. If

{(xk+1, . . . , xm) = y} ∩X

is dense in {(xk+1, . . . , xm) = y} ⊂ Rm for each y ∈ Y , then X is dense in Rm.



Chapter 3. General Results about the Critical Points of Electric Potentials 30

Proof. Take some fixed x ∈ Rm and some arbitrary ε > 0. If we find some xε ∈ X such that |x − xε| < ε,
we are done. First, as Y is dense in Rm−k, there exists some y ∈ Y such that

|x− (x1, . . . , xk, y1, . . . , ym−k)| = |(xk+1, . . . , xm) − y| < ε

2 .

Also, as {(xk+1, . . . , xm) = y} ∩ X ⊂ {(xk+1, . . . , xm) = y} is dense , there exists some xε in the set
{(xk+1, . . . , xm) = y} ∩X such that

|xε − (x1, . . . , xk, y1, . . . , ym−k)| < ε

2 .

We conclude that

|x− xε| ≤ |xε − (x1, . . . , xk, y1, . . . , ym−k)| + |x− (x1, . . . , xk, y1, . . . , ym−k)| < ε,

as we wanted.

Proposition 3.3.9. The set of configurations in Tn,N that are Morse is dense in (Rn)N × RN .

Proof. The result follows from Corollary 3.3.6 and Proposition 3.3.8 taking X as the set of Morse configu-
rations in Tn,N , m = nN +N , k = n and

Y = {(p2, . . . , pN , q1, . . . , qN ) ∈ (Rn)N−1 × RN :
N∑

k=1
qk ̸= 0, pi ̸= pj for i ̸= j, qk ̸= 0},

which is dense in (Rn)N−1 × RN as it equals (Rn)N−1 × RN minus a finite number of (proper) linear
subspaces.

In particular, as Tn,N ⊂ Cn,N ⊂ (Rn)N × RN , this last result implies the following:

Corollary 3.3.10. The set of Morse configurations in Tn,N is dense in Cn,N .

We may now prove that the set of Morse configurations in Tn,N is also open.

Lemma 3.3.11 (Implicit Function Theorem). Let V be an open subset of Rn ×Rm and f ∈ Ck(V,Rn) with
1 ≤ k ≤ ∞. Assume that

(x0, y0) ∈ V, f(x0, y0) = 0.

If the matrix

Dxf(x0, y0) =

Ö ∂f1
∂x1

(x0, y0) · · · ∂f1
∂xn

(x0, y0)
... . . . ...

∂fn

∂x1
(x0, y0) · · · ∂fn

∂xn
(x0, y0)

è
is invertible, then there exist open neighborhoods U of x0 in Rn and W of y0 in Rm such that there is a
unique function g : W → U satisfying

g(y0) = x0, f(g(y), y) = 0 for all y ∈ W.

The function g is of class Ck. Furthermore, the derivative Dg(y) ∈ Mm×n (R) of g at y ∈ W is given by

Dg(y) = −Dxf(g(y), y)−1Dyf(g(y), y).

We recall some definitions of types of continuity for real functions.

Definition 3.3.12 (Continuous Function). Let X be a subset of R. A function f : X → R is said to be
continuous at x ∈ X if for every ε > 0 there exists a real number δ > 0 such that for every y ∈ X with
|x− y| < ε, we have that |f(x) − f(y)| < δ.
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Definition 3.3.13 (Uniformly Continuous Function). Let X be a subset of R. A function f : X → R is said
to be uniformly continuous if for every ε > 0 there exists a real number δ > 0 such that for every x, y ∈ X
with |x− y| < ε, we have that |f(x) − f(y)| < δ.

Lemma 3.3.14. Let K be a compact subset of R and f : K → R a continuous function. Then f is also
uniformly continuous on K.

Proof. Let ε > 0. As f is continuous, there is some δx for each x ∈ K such that f(Bδx(x)) ⊂ Bε/2(f(x)).
The family of balls

{
Bδx/2(x)

}
x∈K

forms an open cover of K. Since K is compact, there is some finite
subcover

¶
Bδxi /2(xi)

©n

i=1
of K. Next, we define

δ := min
1≤i≤n

δxi

2 .

Now, we consider two points x, y ∈ K such that |x − y| < δ. As
¶
Bδxi /2(xi)

©k

i=1
covers K, x lies in a ball

Bδxk
/2(xk) for some k. Also, we have that

|y − xk| ≤ |y − x| + |x− xk| < δ + δxk

2 ≤ δxk

2 + δxk

2 = δxk
.

Then, y ∈ Bδxk
/2(xk), so

|f(x) − f(y)| ≤ |f(x) − f(xk)| + |f(xk) − f(y)| < ε

2 + ε

2 = ε.

The result follows.

Theorem 3.3.15. The set of configurations in Tn,N that are Morse is open (in Tn,N ).

Proof. Let c0 = (p1, . . . , pN , q1, . . . , qN ) ∈ Tn,N be a Morse configuration. Now, take some ε0 > 0 small
enough that Bε0(c0) ⊂ Tn,N , where Bε0(c0) is the open ball centered at c of radius ε0. This is possible
because Tn,N is open. For every point c ∈ Bε0(c0), the set Cr(Vc) is bounded. In particular, as Vc0 is Morse,
Cr(Vc0) is a finite set (Proposition 3.1.5). Let m1, . . . ,mk be its critical points. We can apply the Implicit
Function Theorem (Lemma 3.3.11) around each mi to the mapping

(p, c) 7−→ ∇Vc(p).

We get, for each i ∈ {1, . . . , k}, neighborhoods Wi of c0 and Ui of mi, and C∞ mappings gi : Wi → Ui

satisfying
gi(c0) = mi, ∇Vc(gi(c)) = 0 for each c ∈ Wi.

We can find some ε1 < ε0 small enough and some R > 0 big enough that if |c−c0| < ε1, then Cr(Vc) ⊂ BR(0).
This is because all those sets are bounded and ∇Vc is differentiable with respect to c, so a small perturbation
in the configuration has little effect on the critical points.

By Proposition 3.1.3, the norm of the gradient approaches infinity near the charges. Then, again because
∇Vc is differentiable with respect to c, there is some ε2 < ε1 such that, if D1, . . . , DN are the open balls of
radius ε2 around p1, . . . , pN , the electric potential Vc has no critical point in D1 ∪ . . . ∪DN if |c− c0| < ε2.
In this case, Cr(Vc) ⊂ BR(0) \ (D1 ∪ . . . ∪DN ) if |c− c0| < ε2.

Now, if Hf (p) is the Hessian matrix of a function f at a point p, we define

H(p, c) = det HVc(p).

This function is continuous as the determinant and the second partial derivatives of Vc are. Also, we have
that H(m1, c0), . . . ,H(mN , c0) ̸= 0, as the mi are non-degenerate. Then, there is some ε3 < ε2 such that if
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|(p, c) − (mi, c0)| < ε3 for any i, then |H(p, c)| > 0. We recall that each Ui is a neighborhood of mi. Then,
there is some ε′

4 < ε3/2 such that Bε′
4
(mi) ⊆ Ui for every i. Also, as the gi are continuous, we can find some

ε4 < ε3/2 such that
gi(Bε4(c0)) ⊆ Bε′

4
(mi) for every i.

Therefore, we have the following chain of implications for every i:

|c− c0| < ε4 =⇒ |gi(c) −mi| < ε′
4 =⇒ |(gi(c), c) − (mi, c0)| < ε4 + ε′

4 < ε3 =⇒ H(gi(c), c) ̸= 0.

Then, the critical points g1(c), . . . , gk(c) are all non-degenerate and, by the Implicit Function Theorem, each
gi(c) is the only critical point of Vc in Bε′

4
(mi). We know that in our situation, i.e., when |c − c0| < ε4,

Cr(Vc) ⊂ BR(0) \ (D1 ∪ . . . ∪DN ). To finish the proof, we will show that if we take a configuration close
enough to c0, there are no more critical points than the perturbed of the original ones, i.e., the set

BR(0) \
Ä
D1 ∪ . . . ∪DN ∪Bε′

4
(m1) ∪ . . . ∪Bε′

4
(mk)

ä
does not contain any critical point. This set, let us call it K to simplify things, is clearly compact. We know
that |∇Vc0 | is continuous and nonzero in K, so it has a nonzero minimum, call it l. Recall that we took the
ε0 such that Bε0(c0) ⊂ Tn,N . Then, we can define the function

(p, c) 7−→ |∇Vc(p)|

in the compact set K×Bε4(c0). It is continuous, so it is uniformly continuous (Lemma 3.3.14). Thus, there
is some ε < ε4 such that

|(p, c) − (p, c) | < ε =⇒ ||∇Vc(p)| − |∇Vc(p)|| < l.

In particular, this means that if |c− c0| < ε, then

|Vc(p)| = |Vc(p)| − |Vc0(p)| + |Vc0(p)| > |Vc0(p)| − ||Vc(p)| − |Vc0(p)|| > l − l = 0

for every p ∈ K. We have proven that if |c− c0| < ε, the potential Vc is Morse, and the result follows.

From the previous result, as Tn,N is open in Cn,N , we deduce the following:

Corollary 3.3.16. The set of Morse configurations with nonzero total charge is open in Cn,N .

Definition 3.3.17 (Generic Set and Property). Let X be a topological space. A subset U ⊆ X is said to
be generic if it is open and dense. We say that a property of points in X is generic if it is satisfied by a
generic subset.

Putting the previous results together, we have the following:

Theorem 3.3.18. The set of configurations of N charges in Rn with nonzero total charge that are Morse
is generic in Cn,N .

Remark 3.3.19. This result means that the property of being Morse is generic among the electric con-
figurations of N charges in Rn. We will refer to this fact saying that generic configurations in Rn are
Morse.
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3.3.2. Configurations with the Same Sign

Throughout this section, we assume that the configurations we work with are composed of charges with
the same sign. Without loss of generality, we will consider that they are all positive, since the arguments
do not vary. We are going to use Lemma 3.3.2 again to prove, in this scenario of equal-sign configurations,
a stronger result about “how many” configurations are Morse. In particular, we will prove that, for each
affine subset A of Rn, the set of configurations whose charges lie in A contains a generic subset (in certain
topology) of Morse configurations (notice that the previous section corresponds to the case A = Rn). Thus,
we obtain a stronger result in this situation, as could be expected. One of the keys to do so will be Theorem
3.1.16, which restricts considerably the location of the critical points of V for this kind of configurations.
Proving this result is not idle. In fact, it will allow us to show in Section 4.2 that, for each affine set A,
most configurations such that their charges lie in A satisfy certain upper bound, depending on dimA, for
the number of critical points of V .

Definition 3.3.20 (m-dimensional Configuration). Let {(pk, qk)}N
k=1 be a configuration of charges in Rn.

If m = dim(aff({p1, . . . , pN })), we say that {(pk, qk)}N
k=1 is an m−dimensional configuration.

Remark 3.3.21. Since we are working with N ≥ 2, we have that 1 ≤ dim(aff({p1, . . . , pN })) ≤ n for any
configuration in Rn.

Remark 3.3.22. As we discussed in the proof of Theorem 3.1.16, to study the behavior of m−dimensional
configurations, it is enough to restrict ourselves to the case where

aff({p1, . . . , pN }) = Πn
m = {x ∈ Rn : xm+1 = · · · = xn = 0} .

This simplifies considerably the arguments while preserving generality. For this reason, throughout the rest
of this section, when we say that some configuration {(pk, qk)}N

k=1 is an m−dimensional configuration, we
will be referring to the case in which aff({p1, . . . , pN }) = Πm.

Let 1 ≤ m ≤ n. It will be helpful in some cases to consider elements of Πn
m as points in Rm or the other

way around. In fact, we can define the inclusion

ιnm : Rm −→ Πn
m

(x1, . . . , xm) 7−→ (x1, . . . , xm, 0, . . . , 0)

and the projection
πn

m : Πm −→ Rm

(x1, . . . , xm, 0, . . . , 0) 7−→ (x1, . . . , xm) ,

which are both homeomorphisms, inverse of each other.

Remark 3.3.23. Similarly to the general case explained in Remark 3.3.7, it will be useful to use points
from an open subset of (Rm)N × RN to represent m−dimensional configurations of N charges. Concretely,
we use the set

Cm
n,N =

¶
(p1, . . . , pN , q1, . . . , qN ) ∈ (Rm)N × RN : pi ̸= pj for i ̸= j, and qk > 0 for all k

©
,

where each (p1, . . . , pN , q1, . . . , qN ) represents the configuration {(ιnm(pk), qk)}N
k=1 ⊂ Rn × R.

We can now see, with a method similar to the one we used in Section 3.3.1, “how many” m−dimensional
configurations are Morse. The idea is to use Lemma 3.3.2 restricted to the m-dimensional plane were the
charges are:

Proposition 3.3.24. For 1 ≤ m ≤ n, let p2, . . . , pN ∈ Rm and q1, . . . , qN > 0 be fixed with the pk

different. Then, for almost all p1 ∈ Rm \ {p2, . . . , pN }, the electric potential generated by the configuration
{(ιnm(pk), qk)}N

k=1 is a Morse function.
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Proof. First of all, we define the open set

W = {(p, a) ∈ Rn × Rm : p ̸= ιnm(a), p ̸= ιnm(pi), a ̸= pi for i = 2, . . . , N)} ,

and the C2-mapping

U : W −→ R

(p, a) 7−→



−q1 ln |p− ιnm(a)| −
N∑

k=2
qk ln |p− ιnm(pk)| if n = 2

q1
|p− ιnm(a)|n−2 +

N∑
k=2

qk

|p− ιnm(pk)|n−2 if n ≥ 3

.

Then, for each (p, a) = (x1, . . . , xn, a1, . . . , am) ∈ W , the function U satisfies the following:

∂2U

∂xi∂ai
(p, a) = Cnq1

|p− a|2 − n(xi − ai)2

|p− ιnm(a)|n+2

∂2U

∂xi∂aj
(p, a) = Cnq1

−n(xi − ai)(xj − aj)
|p− ιnm(a)|n+2 if i ̸= j

∂2U

∂x2
i

(p, a) = Cnq1
n(xi − ai)2 − |p− ιnm(a)|2

|p− ιnm(a)|n+2 + Cn

N∑
k=2

qk
n(xi − xk,i)2 − |p− ιnm(pk)|2

|p− ιnm(pk)|n+2

∂2U

∂xi∂xj
(p, a) = Cnq1

n(xi − ai)(xi − aj)
|p− ιnm(a)|n+2 + Cn

N∑
k=2

qk
n(xi − xk,i)(xj − xk,j)

|p− ιnm(pk)|n+2 if i ̸= j

where (xk,1, . . . , xk,n) = ιnm(pk), so xk,m+1 = · · · = xk,n = 0 for all k. Besides, using the concepts of
Definition 3.3.1, we have that

π2(W ) = {a ∈ Rm : a ̸= pi for i = 2, . . . , N} = Rm \ {p2, . . . , pN },

W (a) = Rn \ {ιnm(a), ιnm(p2), . . . , ιnm(pN )},

and the partial mapping Ua is just the electric potential generated by the configuration

{(ιnm(a), q1), (ιnm(p2), q2), . . . (ιnm(pN ), qN )} .

Finally, we have the set

Ω =
ß

(p, a) ∈ W : ∂U
∂x1

(p, a) = · · · = ∂U

∂xn
(p, a) = 0

™
of pairs (p, a) ∈ W such that p is a critical point of the function Ua.

Now, we define the matrix

H(p, a) =
Å

∂2U

∂xi∂a1
(p, a), . . . , ∂2U

∂xi∂am
(p, a), ∂2U

∂xi∂xm+1
(p, a) . . . , ∂2U

∂xn∂x3
(p, a)

ã
and take some (p, p1) ∈ Ω. By Theorem 3.1.16, we know that

p ∈ conv ({ιnm(p1), ιnm(p2), . . . , ιnm(pN )}) ⊂ {x ∈ Rn : xm+1 = · · · = xn = 0} = Πn
m.

Therefore, H(p, p1) equals



35 3.3. Density of Morse Configurations

Cn



q1
|p−ιn

m(p1)|2−n(x1−x1,1)2

|p−ιn
m(p1)|n+2 · · · q1

−n(x1−x1,1)(xm−x1,m)
|p−ιn

m(p1)|n+2
∑N

k=1 qk
n(x1−xk,1)(xm+1)

|p−ιn
m(pk)|n+2 · · · ∑N

k=1 qk
n(x1−xk,1)(xn)
|p−ιn

m(pk)|n+2

... . . . ...

q1
−n(xm−x1,m)(x1−x1,1)

|p−ιn
m(p1)|n+2 q1

|p−ιn
m(p1)|2−n(xm−x1,m)2

|p−ιn
m(p1)|n+2

∑N

k=1 qk
n(xm−xk,m)(xm+1)

|p−ιn
m(pk)|n+2

∑N

k=1 qk
n(xm−xk,m)(xn)

|p−ιn
m(pk)|n+2

q1
−n(xm+1)(x1−x1,1)

|p−ιn
m(p1)|n+2 q1

−n(xm+1)(x1−x1,m)
|p−ιn

m(p1)|n+2
∑N

k=1 qk
n(xm+1)2−|p−ιn

m(pk)|2

|p−ιn
m(pk)|n+2

∑N

k=1 qk
n(xm+1)(xn)

|p−ιn
m(pk)|n+2

... . . . ...

q1
−n(xn)(x1−x1,1)

|p−ιn
m(p1)|n+2 · · · q1

−n(xn)(x1−x1,m)
|p−ιn

m(p1)|n+2
∑N

k=1 qk
n(xn)(xm+1)

|p−ιn
m(pk)|n+2 · · · ∑N

k=1 qk
n(xn)2−|p−ιn

m(pk)|2

|p−ιn
m(pk)|n+2


=

Cn



q1
|p−ιn

m(p1)|2−n(x1−x1,1)2

|p−ιn
m(p1)|n+2 · · · q1

−n(x1−p1,1)(xm−x1,m)
|p−ιn

m(p1)|n+2 0 · · · 0

... . . . ...
...

q1
−n(xm−x1,m)(x1−x1,1)

|p−ιn
m(p1)|n+2 · · · q1

|p−ιn
m(p1)|2−n(xm−x1,m)2

|p−ιn
m(p1)|n+2 0 0

0 0
∑N

k=1
−qk|p−ιn

m(pk)|2
|p−ιn

m(pk)|n+2 0

... . . . ...

0 · · · 0 0 · · ·
∑N

k=1
−qk|p−ιn

m(pk)|2
|p−ιn

m(pk)|n+2


Therefore, detH(p, p1) is equal to

(Cn)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q1
|p−ιn

m(p1)|2−n(x1−x1,1)2

|p−ιn
m(p1)|n+2 · · · q1

−n(x1−x1,1)(xm−x1,m)
|p−ιn

m(p1)|n+2 0 · · · 0

... . . . ...
...

q1
−n(xm−x1,m)(x1−x1,1)

|p−ιn
m(p1)|n+2 · · · q1

|p−ιn
m(p1)|2−n(xm−x1,m)2

|p−ιn
m(p1)|n+2 0 0

0 0 −
∑N

k=1
qk

|p−ιn
m(pk)|n 0

... . . . ...

0 · · · 0 0 · · · −
∑N

k=1
qk

|p−ιn
m(pk)|n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (Cn)n (−1)n−m(q1)m

|p− ιnm(p1)|nm

(
N∑

k=1

qk

|p− ιnm(pk)|n

)n−m

D,

where
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D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 − n(x1−x1,1)2

|p−ιn
m(p1)|2 · · · −n(x1−x1,1)(xm−x1,m)

|p−ιn
m(p1)|2 0 · · · 0

... . . . ...
...

−n(xm−x1,m)(x1−x1,1)
|p−ιn

m(p1)|2 · · · 1 − n(xm−x1,m)2

|p−ιn
m(p1)|2 0 0

0 0 1 0
... . . . ...
0 · · · 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Since qk > 0 for all k, we see that

(Cn)n (−1)n−m(q1)m

|p− ιnm(p1)|nm

(
N∑

k=1

qk

|p− ιnm(pk)|n

)n−m

̸= 0.

On the other hand, we have that

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 − n(x1 − x1,1)2

|p− ιnm(p1)|2 · · · −n(x1 − x1,1)(xm − x1,m)
|p− ιnm(p1)|2

... . . . ...

−n(xm − x1,m)(x1 − x1,1)
|p− ιnm(p1)|2 · · · 1 − n(xm − x1,m)2

|p− ιnm(p1)|2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Now, let A be the matrix

A =


x1 − x1,1

...
xi − x1,i

...
xm − x1,m

 ∈ Mm,1.

We can see that

D =
∣∣∣∣Im + −n

|p− ιnm(p1)|2AA
T

∣∣∣∣.
Then, by Lemma 3.3.3,

D =
∣∣∣∣1 + −n

|p− ιnm(p1)|2A
TA

∣∣∣∣ =
∣∣∣∣1 + −n

|p− ιnm(p1)|2 |p− ιnm(p1)|2
∣∣∣∣ = (1 − n) ̸= 0

We deduce that detH(p, p1) ̸= 0, and the result follows from Lemma 3.3.2.

From this proposition, we can follow the same argumentation that we used in Section 3.3.1 to prove an
analogous result:

Theorem 3.3.25. For n ≥ m ≥ 1, the set of m−dimensional configurations of N charges in Rn that are
Morse is generic in Cm

n,N .

Remark 3.3.26. This basically means that, given an affine subset A of Rn, all except a “small” set of
configurations whose charges lie in A are Morse.



Chapter 4

Upper Bounds for the Number of Critical
Points

In this chapter, we will obtain several upper bounds for the number of critical points of V depending on
certain conditions. In the first part, we study the general case and in the second part, as usual, we restrict
ourselves to the equal-sign case. In both parts, we will need to separate our analysis depending on whether
n is even or odd, as in even dimensions we can work with polynomials while in odd dimensions there appear
square roots of polynomials, which are more difficult to work with. From this fact, we can expect that the
bounds for odd dimensions will be worse. It is worth noting that all the results (the upper bounds) obtained
in this chapter are new.

4.1. Arbitrary Configurations

For arbitrary configurations, we can obtain an upper bound for the number of points in Cr(V ) whenever
this set is finite. We know from previous results in the text that most electric potentials have only finitely
many critical points, so this result is relevant. This bound will depend on n and N , that is, the dimension
of the space Rn where the charges are located and the number of them. Before we start our study, we offer
a few comments on a concept that will be important, the connected components of a topological space:

Definition 4.1.1 (Connected Components). Let X be a topological space. Then, the inclusion ⊆ defines a
partial order in X. The maximal connected subsets of X with respect to that order are called the connected
components of X. These sets form a partition of X, that is, they are disjoint, non-empty and their union is
the whole space X.

Proposition 4.1.2. If X is a finite subset of Rn, the number of connected components of X (with respect
to the subspace topology) equals #X, its number of elements.

Proof. The subspace topology of a finite subset of Rn is the discrete topology and a discrete space is
connected if and only if it is a single point. Thus, the connected components of X are the singletons {x},
for each x ∈ X.

The importance of this result is that, if we are able to give an upper bound for the number of connected
components of a subset X of Rn, and we know that this set is finite, we have an upper bound for the number
of points in X. This is precisely the reasoning we will follow in this first part.

4.1.1. Even Dimension

Throughout this section, we assume that n is an even natural number. We start by noticing that, for
each electric potential V , we can find n polynomials in R[X1, . . . , Xn] whose set of common zeros consists
on the set of critical points of V and the set of charges of the configuration that generates V . This will allow
us to use tools from Algebraic Geometry to study the critical points of V .

37
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Proposition 4.1.3. Let {(pk, qk)}N
k=1 be a configuration of N charges in Rn and V the electric potential it

generates. There exist polynomials f1, . . . , fn ∈ R[X1, . . . , Xn], all of them of degree at most n(N − 1) + 1,
such that

Z(fi) = Z
Å
∂V

∂xi

ã
∪ {p1, . . . , pN }

for each i = 1, . . . , n. Consequently, we have that

Z(f1, . . . , fn) = Cr(V ) ∪ {p1, . . . , pN },

and that last union is clearly disjoint.

Proof. Take some p ∈ Rn \ {p1, . . . , pN }. Then, for each i,

∂V

∂xi
(p) = 0 ⇐⇒ −Cn

N∑
k=1

qk
xi − xk,i

|p− pk|n
= 0.

As p ̸= p1, . . . , pN , this happens if and only if

0 = Cn

N∏
j=1

|p− pj |n
(

N∑
k=1

qk
xi − xk,i

|p− pk|n

)
= Cn

N∑
k=1

qk(xi − xk,i)
∏
j ̸=k

|p− pj |n

= Cn

N∑
k=1

qk(xi − xk,i)
∏
j ̸=k

Ç
n∑

s=1
(xs − xj,s)2

ån/2

.

Noticing that n/2 ∈ N, we define, for each i, the polynomial

fi = Cn

N∑
k=1

qk(Xi − xk,i)
∏
j ̸=k

Ç
n∑

s=1
(Xs − xj,s)2

ån/2

∈ R[X1, . . . , Xn].

Each fi is a sum of N polynomials of the form

Cnqk(Xi − xk,i)
∏
j ̸=k

Ç
n∑

s=1
(Xs − xj,s)2

ån/2

.

We see that the polynomial
Ä∑n

s=1 (Xs − xj,s)2
än/2

has degree n, so

∏
j ̸=k

Ç
n∑

s=1
(Xs − xj,s)2

ån/2

has degree n(N − 1). Therefore, fi is a sum of polynomials of degree n(N − 1) + 1, so fi has degree less
than or equal to n(N − 1) + 1.

By our previous discussion, we have that

Z(fi) ∩ (Rn \ {p1, . . . , pN }) = Z
Å
∂V

∂xi

ã
.

Besides, we can see that p1, . . . , pN ∈ Z(fi), so

Z(fi) = (Z(fi) ∩ (Rn \ {p1, . . . , pN })) ∪ {p1, . . . , pN } = Z
Å
∂V

∂xi

ã
∪ {p1, . . . , pN },

as we wanted to prove. The second part follows directly from the fact that
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Z(f1, . . . , fn) =
N⋂

i=1
Z(fi) =

N⋂
i=1

Å
Z
Å
∂V

∂xi

ã
∪ {p1, . . . , pN }

ã
=

(
N⋂

i=1
Z
Å
∂V

∂xi

ã)
∪ {p1, . . . , pN } = Cr(V ) ∪ {p1, . . . , pN }.

Corollary 4.1.4. In the context of the previous proposition, if Cr(V ) is a finite set, then Z(f1, . . . , fn) is
finite too and

# Cr(V ) = #Z(f1, . . . , fn) −N,

where the symbol # denotes the number of elements of a set.

We have the following result due to Milnor [11] about the topology of algebraic sets, whose proof can be
found in [1]:

Proposition 4.1.5 ([1], Theorem 11.5.3). Let Z ⊆ Rn be an algebraic set defined by equations of degree
less than or equal to d. Then, the sum of the Betti numbers of Z is less than or equal to d(2d− 1)n−1.

Remark 4.1.6. We are not going to deal with Homology in this text, but it is well-known that the 0-th Betti
number b0(X) of a topological space X is equal to the number of connected components of X. Therefore,
as all the Betti numbers of a space are non-negative, the bound in Proposition 4.1.5 works for the number
of connected components, which is what we want.

Thus, we have:

Proposition 4.1.7. Let Z ⊆ Rn be an algebraic set defined by equations of degree less than or equal to d.
Then, the number of connected components of Z, b0(Z), is less than or equal to d(2d− 1)n−1.

As a consequence of the previous results and Proposition 4.1.2, we get the following:

Theorem 4.1.8. If Cr(V ) is a finite set, then

# Cr(V ) ≤ (n(N − 1) + 1) (2n(N − 1) + 1)n−1 −N.

Remark 4.1.9. For example, if n = 2, we get the upper bound 8N2 − 11M + 3, which is clearly worse than
N − 1, the one we obtained in Theorem 2.2.2, so the previous bound is not sharp.

4.1.2. Odd Dimension

Now, we assume that n is an odd natural number (n ≥ 2). We will use different procedures in order
to obtain two different upper bounds for # Cr(V ) whenever Cr(V ) is a finite set. For both of them, we
will use a method similar to the one of the previous section, but with some more work, as we do not have
polynomials initially. As we could expect, the bounds for odd dimension will be worse than the one for even
dimension that we obtained in the preceding section.

Remark 4.1.10. In this section we will sometimes write Z(f) to denote the set of zeros of some function
f even when it is not real analytic, which is the type of functions for which we have defined such notation.
This is done in order to facilitate the argumentation.

By what we discussed in the proof of Proposition 4.1.3, we have the following:
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Proposition 4.1.11. If we have some configuration {(pk, qk)}N
k=1, let f1, . . . , fn : Rn → R be the functions

defined by

fi = Cn

N∑
k=1

qk(Xi − xk,i)

Ã∏
j ̸=k

Ç
n∑

s=1
(Xs − xj,s)2

ån

,

Then,
Z(fi) = Z

Å
∂V

∂xi

ã
∪ {p1, . . . , pN }

for each i = 1, . . . , n. Consequently, we have that

Z(f1, . . . , fn) = Cr(V ) ∪ {p1, . . . , pN },

and that last union is clearly disjoint.

Remark 4.1.12. The analogous to Corollary 4.1.4 is also true in this situation. That is, if Cr(V ) is a finite
set, then Z(f1, . . . , fn) is finite too and

# Cr(V ) = #Z(f1, . . . , fn) −N,

Remark 4.1.13. To make things simpler, consider

Qk,i = Cnqk(Xi − xk,i) , Pk =
∏
j ̸=k

Ç
n∑

s=1
(Xs − xj,s)2

ån

,

which are polynomials in R[X1, . . . , Xn], for each i = 1 . . . , n and each k = 1, . . . , N . Then,

fi = Q1,i

√
P1 + · · · +QN,i

√
PN .

The following interaction between projections and connected components will be useful in order to obtain
our upper bounds:

Proposition 4.1.14. Let Π : Rn+m → Rn be the projection on the first n coordinates. If X is a subset
of Rn+m, then b0(Π(X)) ≤ b0(X). That is, the number of connected components does not increase by
projection.

Proof. The result follows from the facts that Π is continuous and that continuous mappings preserve con-
nectedness.

We can now get the first upper bound:

Theorem 4.1.15. If Cr(V ) is a finite set, then

# Cr(V ) ≤ 2n(N − 1) (4n(N − 1) − 1)n+2N−1 −N = M1(n,N).

Proof. First of all, let us define the polynomials

Fi = Q1,iY1 + · · · +QN,iYN 1 ≤ i ≤ n
Gk = Y 2

k − Pk

Hk = Z2
k − Yk 1 ≤ k ≤ N

in R[X1, . . . , Xn, Y1, . . . , YN , Z1, . . . , ZN ] and the analytic sets

Ai = Z (Fi, G1, . . . , GN , H1, . . . ,HN ) ⊂ Rn+2N ,

A =
n⋂

i=1
Ai = Z (F1, . . . , Fn, G1, . . . , GN , H1, . . . ,HN ) .
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If Π : Rn+2N → Rn is the projection on the first n coordinates, then

Z(f1, . . . , fn) = Π(Z(A)),

so

b0(Z(f1, . . . , fn)) ≤ b0(A).

We have that degPk = 2n(N − 1) ≥ 2, so A is an algebraic subset of Rn+2N defined by polynomials of
degree less that or equal to 2n(N − 1). By Proposition 4.1.7, we have that

b0(A) ≤ 2n(N − 1) (4n(N − 1) − 1)n+2N−1 .

By Remark 4.1.12, since Cr(V ) is a finite set, Z(f1, . . . , fn) is a finite set. Therefore, we have that

# Cr(V ) = #Z(f1, . . . , fn) −N = b0(Z(f1, . . . , fn)) −N ≤

b0(A) −N ≤ 2n(N − 1) (4n(N − 1) − 1)n+2N−1 −N.

We have the following result, similar to Proposition 4.1.5 but for basic closed semi-algebraic sets (see
Definition C.11), also due to Milnor [11]:

Proposition 4.1.16 ([1], p. 285). If X ⊆ Rn is a basic closed semi-algebraic set defined by p polynomial
inequalities f1 ≥ 0, . . . , fp ≥ 0 of degree less than or equal to d, then the sum of the Betti numbers of X is
less than or equal to 1

2(dp+ 2)(dp+ 1)n−1.

Again, we can use the bound only for b0(X):

Proposition 4.1.17. If X ⊆ Rn is a basic closed semi-algebraic set defined by p polynomial inequalities
f1 ≥ 0, . . . , fp ≥ 0 of degree less than or equal to d. Then, the number of connected components of X, b0(X),
is less than or equal to 1

2(dp+ 2)(dp+ 1)n−1.

Using this, we can get the second upper bound:

Theorem 4.1.18. If Cr(V ) is a finite set, then

# Cr(V ) ≤ 1
2 [2n(N − 1)(2n+ 3N) + 2] [2n(N − 1)(2n+ 3N) + 1]n+N−1 −N = M2(n,N).

Proof. First of all, let us define the polynomials

Fi = Q1,iY1 + · · · +QN,iYN 1 ≤ i ≤ n
Gk = Y 2

k − Pk 1 ≤ k ≤ N

in R[X1, . . . , Xn, Y1, . . . , YN ] and the closed basic semi-algebraic set

A =
¶
x ∈ Rn+N : F1(x) = 0, . . . , Fn(x) = 0, G1(x) = 0, . . . , GN (x) = 0, Y1(x) ≥ 0, . . . , YN (x) ≥ 0

©
=
Ç

n⋂
i=1

{Fi ≥ 0,−Fi ≥ 0}
å

∩

(
N⋂

k=1
{Gk ≥ 0,−Gk ≥ 0}

)
∩

(
N⋂

k=1
{Yk ≥ 0}

)
If Π : Rn+N → Rn is the projection on the first n coordinates, then

Z(f1, . . . , fn) = Π(Z(A)),
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so

b0(Z(f1, . . . , fn)) ≤ b0(A).

by Proposition 4.1.14. We have that degPk = 2n(N − 1) ≥ 2, so A is a basic closed semi-algebraic subset
of Rn+N defined by 2n+ 3N polynomials of degree less that or equal to 2n(N − 1). By Proposition 4.1.17,
we have that

b0(A) ≤ 1
2 [2n(N − 1)(2n+ 3N) + 2] [(2n(N − 1)(2n+ 3N) + 1)]n+N−1 .

By Remark 4.1.12, since Cr(V ) is a finite set, Z(f1, . . . , fn) is a finite set. Therefore, we have that

# Cr(V ) = #Z(f1, . . . , fn) −N = b0(Z(f1, . . . , fn)) −N ≤ b0(A) −N ≤

1
2 [2n(N − 1)(2n+ 3N) + 2] [(2n(N − 1)(2n+ 3N) + 1)]n+N−1 −N.

Now we can study how M1(n,N) and M2(n,N) are related to see which one is a better bound for
# Cr(V ). We have the following result in this regard:

Theorem 4.1.19. For any natural number N ≥ 2,

lim
n→∞

M1(n,N)
M2(n,N) = 0.

Additionally, if k ≤ 2,

lim
n→∞

M1(n, kn)
M2(n, kn) = ∞.

Proof. First, we have that

0 ≤ lim
n→∞

M1(n,N)
M2(n,N) = lim

n→∞
2n(N − 1) (4n(N − 1) − 1)n+2N−1 −N

1
2 [2n(N − 1)(2n+ 3N) + 2] [2n(N − 1)(2n+ 3N)+]n+N−1 −N

=

lim
n→∞

4n(N − 1) (4n(N − 1) − 1)n+2N−1

[2n(N − 1)(2n+ 3N) + 2] [2n(N − 1)(2n+ 3N) + 1]n+N−1 ≤

lim
n→∞

(4n(N − 1))n+2N

(2n(N − 1)(2n+ 3N))n+N
= lim

n→∞
(2n(N − 1))n+2N 2n+2N

(2n(N − 1))n+N (2n+ 3N)n+N
=

lim
n→∞

(2n(N − 1))N 2n+2N

(2n+ 3N)n+N
≤ lim

n→∞
(2n(N − 1))N 2n+2N

(2n)n+N
=

lim
n→∞

(N − 1)N 2n+2N

(2n)n
= lim

n→∞
(N − 1)N 22N

nn
= 0.

For the second part, we have that

lim
n→∞

M1(n, kn)
M2(n, kn) = lim

n→∞
4n(kn− 1) (4n(kn− 1) − 1)(2k+1)n−1

(2n(kn− 1)(3k + 2)n+ 2) (2n(kn− 1)(3k + 2)n+ 1)(k+1)n−1 ≥

lim
n→∞

4n(kn− n) (4n(kn− n) − 1)(2k+1)n−1

(2n(kn)(3k + 2)n+ 2) (2n(kn)(3k + 2)n+ 1)(k+1)n−1 =

lim
n→∞

4(k − 1)n2 (4(k − 1)n2 − 1
)(2k+1)n−1

(2k(3k + 2)n3 + 2) (2k(3k + 2)n3 + 1)(k+1)n−1 ≥
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lim
n→∞

4(k − 1)n2 (2(k − 1)n2)(2k+1)n−1

(3k(3k + 2)n3) (3k(3k + 2)n3)(k+1)n−1 = lim
n→∞

2
(
2(k − 1)n2)(2k+1)n

(3k(3k + 2)n3)(k+1)n =

lim
n→∞

2 (2(k − 1))(2k+1)n n2(2k+1)n

(3k(3k + 2))(k+1)n n3(k+1)n
= lim

n→∞

Ç
2 (2(k − 1))(2k+1)

(3k(3k + 2))(k+1)n
k−1
ån

= ∞.

Remark 4.1.20. The first limit of the previous result tells us that, for each number of charges N , the
upper bound M1 is increasingly better than M2 for every odd n bigger than some natural number. Also,
notice that the speed at which the limit approaches 0 is very high, so the first bound is much better than
the second for n sufficiently larger than N . The second limit shows that, despite what we have just said
about M1 being better than M2 for infinitely many values of n and N , there are, for each k ≥ 2, infinitely
many values of n such that M2(n, kn) ≤ M1(n, kn). In fact, we can find values of n that have as many
values of N such that M2(n,N) ≤ M1(n,N) as we want.

4.2. Configurations with the Same Sign

Now, we assume that the charges of our configurations have the same sign. Again, we can assume that
they are all positive. In this Section, we are going to obtain different bounds for Cr(V ) depending on the
dimension of the configuration that generates V , that is, the dimension of the affine hull of the set of charges.
As it is reasonable, we will obtain better bounds for configurations of smaller dimensions.

Remark 4.2.1. As we did in previous occasions to simplify things without risking losing generality, we will
restrict ourselves, in order to study m-dimensional configurations, to the case where

aff({p1, . . . , pN }) = Πn
m = {x ∈ Rn : xm+1 = · · · = xn = 0} .

Thus, when we say throughout this section that some configuration of charges is m-dimensional, we will be
referring to the specific case just mentioned.

What will allow us to improve the upper bounds for # Cr(V ) when working with equal-signm-dimensional
configurations is the fact that there are less partial derivatives of V involved in the description of Cr(V ).
Specifically, we have the following:

Proposition 4.2.2. If {(pk, qk)}N
k=1 is an m-dimensional configuration of charges, with 1 ≤ m ≤ n, then

Cr(V ) = Z
Å
∂V

∂x1
, . . . ,

∂V

∂xm

ã
∩ Πn

m.

Proof. We know that aff({p1, . . . , pN }) = Πn
m, so, by Theorem 3.1.16,

Cr(V ) ⊂ conv ({p1, . . . , pN }) ⊂ aff({p1, . . . , pN }) = Πn
m.

Now, take some i such that m+ 1 ≤ i ≤ n. Then, for any p ∈ Πn
m \ {p1, . . . , pN },

∂V

∂xi
(p) = −Cn

N∑
k=1

qk
xi − xk,i

|p− pk|n
= −Cn

N∑
k=1

qk
0 − 0

|p− pk|n
= 0,

so

Z
Å
∂V

∂xi

ã
∩ Πn

m = Πn
m \ {p1, . . . , pN }.
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We deduce that

Cr(V ) = Cr(V ) ∩ Πn
m = Z

Å
∂V

∂x1
, . . . ,

∂V

∂xn

ã
∩ Πn

m =
(

N⋂
k=1

Z
Å
∂V

∂xk

ã)
∩ Πn

m =Ç
m⋂

k=1
Z
Å
∂V

∂xk

ãå
∩
Å

Z
Å

∂V

∂xm+1

ã
∩ Πn

m

ã
∩ · · · ∩

Å
Z
Å
∂V

∂xn

ã
∩ Πn

m

ã
=

Z
Å
∂V

∂x1
, . . . ,

∂V

∂xm

ã
∩ (Πn

m \ {p1, . . . , pN }) = Z
Å
∂V

∂x1
, . . . ,

∂V

∂xm

ã
∩ Πn

m,

as we wanted.

As a direct consequence, we have the following:

Corollary 4.2.3. If {(pk, qk)}N
k=1 is an m-dimensional configuration of charges, with 1 ≤ m ≤ n, then

Cr(V ) = Z
Å
∂V

∂x1
, . . . ,

∂V

∂xm

ã
∩ Z (Xm+1, . . . , Xn) .

Proof. It is straightforward to see that the set Πn
m ⊆ Rn is equal to the algebraic set defined by the

polynomials Xm+1, . . . , Xn ∈ R[X1, . . . , Xn]. The result follows from Proposition 4.2.2.

Definition 4.2.4 (Non-Degenerate Solution). Let f1, . . . , fn : U → R be Nash functions (see Definition
C.14). We say that some x ∈ U is a non-degenerate solution of the system f1 = · · · = fn = 0 if fi(x) = 0
for i = 1, . . . , n and

rank
ñÅ

∂fi

∂xj
(x)
ã

1≤i,j≤n

ô
= n,

that is, the Jacobian matrix of the map (f1, . . . , fn) : U → Rn at x is non-singular.

Lemma 4.2.5 (Bézout’s Theorem for Nash Functions ([15], Theorem 3.1)). Let U be a connected open semi-
algebraic subset of Rn (see Section C.1) and f1, . . . , fn Nash functions of complexities c1, . . . , cn, respectively,
defined on U . Then, the number of non-degenerate solutions of the system f1(x) = · · · = fn(x) = 0 is finite
and less than or equal to

∏n
i=1 ci.

We want to use this result to give an upper bound for # Cr(V ). To do that, we need to prove several
things first.

Proposition 4.2.6. The set Rn \ {p1, . . . , pN } is semi-algebraic.

Proof. We have that

Rn \ {p1, . . . , pN } =
n⋂

i=1
{x ∈ Rn : gi(x) > 0} ,

where
gi =

n∑
j=1

(Xj − xi,j)2 .

Remark 4.2.7. For the rest of this section, if we have a configuration of charges {(pk, qk)}N
k=1, we consider

the functions fi : Rn \ {p1, . . . , pN } → R, i = 1, . . . , n, defined by

fi(p) = ∂V

∂xi
(p)

N∏
j=1

|p− pj |n = Cn

N∑
k=1

qk(xi − xk,i)
∏
j ̸=k

Ç
n∑

s=1
(xs − xj,s)2

ån/2
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Proposition 4.2.8. For any configuration, f1, . . . , fn are Nash functions.

Proof. We know by Proposition 4.2.6 that Rn \ {p1, . . . , pN } is a semi-algebraic set, and it is clearly open. If
n is even, f1, . . . , fn are polynomials, so the result follows. If n is odd, we can see that the functions are of
class C∞, as the square roots in their definition are positive except at some of the points p1, . . . , pN . Now,
we need to prove that they are semi-algebraic functions.

Like before, let us define the polynomials

Fi = Q1,iY1 + · · · +QN,iYN − Y0 1 ≤ i ≤ n
Gk = Y 2

k − Pk

Hk = Yk 1 ≤ k ≤ N

in R[X1, . . . , Xn, Y0, Y1, . . . , YN ] and the semi-analytic sets

Si =
¶
x ∈ Rn+N+1 : Fi(x) = G1(x) = · · · = GN (x) = 0, H1(x) ≥ 0, . . . ,HN (x) ≥ 0

©
.

for each i = 1, . . . , n. If we consider the projection Π : Rn+N+1 → Rn+1 on the first n+ 1 coordinates, then

G(fi) =
{

(x, fi(x)) ∈ Rn+1 : x ∈ Rn \ {p1, . . . , pN }
}

=

Π(Si) ∩ (Rn \ {p1, . . . , pN } × R) .

This last set is semi-algebraic in Rn+1 by Propositions 4.2.6, C.10 and because the product of semi-algebraics
is semi-algebraic, so fi is a semi-algebraic function for each i = 1, . . . , n and the result follows.

Lemma 4.2.9. Let m ≥ 1. Now, consider the polynomial

f = X1 + · · · +Xm+1 ∈ R[X1, . . . , Xm+1].

Next, for each ε ∈ {1,−1}m, define

fε = X1 + ε1X2 + · · · + εmXm+1 = X1 +
m∑

k=1
εkXk+1.

If we call
F =

∏
ε∈{1,−1}m

fε,

then F is a polynomial whose monomials have only even powers of the variables X1, . . . , Xm+1. That is,
every monomial of F is of the form

a
m+1∏
k=1

X
e(k)
k ,

where a ∈ Z and e(k) is an even natural number for each k (can be 0).

Proof. We can write F = Fe + Fo, where Fe is formed by the monomials of F with only even powers of the
variables and Fo is the rest, the monomials that have some variable raised to an odd power. Notice that we
want to prove that Fo = 0. We can see that, for every x ∈ Rm+1 and every k ∈ {1, . . . ,m+ 1},

Fe(x) + Fo(x) = F (x) = F (x1, . . . ,−xk, . . . , xm+1) =

Fe(x1, . . . ,−xk, . . . , xm+1) + Fo(x1, . . . ,−xk, . . . , xm+1) =

Fe(x) + Fo(x1, . . . ,−xk, . . . , xm+1).
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Therefore, we have that

Fo(x) = Fo(x1, . . . ,−xk, . . . , xm+1).

Assume that Fo ̸= 0. Then, there is some k ∈ {1, . . . ,m+ 1} such that there is a nonzero monomial in Fo

with an odd power of Xk. We can write Fo as an element of R[X1, . . . , Xk−1, Xk+1, . . . , Xm+1][Xk] and get
that

Fo =
2m−1∑
i=1

X2i−1
k gi +

2m−1∑
i=0

X2i
k hi,

where gi and hi are polynomials that do not depend on the variable Xk and at least one of the gi is nonzero.
We deduce that

2m−1∑
i=1

x2i−1
k gi(x) +

2m−1∑
i=0

x2i
k hi(x) = Fo(x) = Fo(x1, . . . ,−xk, . . . , xm+1) = −

2m−1∑
i=1

x2i−1
k gi(x) +

2m−1∑
i=0

x2i
k hi(x),

so

2
2m−1∑
i=1

X2i−1
k gi = 0.

Therefore, as
{
Xk, X

2
k , X

3
k , . . .

}
is a basis of R[X1, . . . , Xk−1, Xk+1, . . . , Xm+1][Xk] as a module over the ring

R[X1, . . . , Xk−1, Xk+1, . . . , Xm+1], we have that gi = 0 for all i, contradicting our previous statement. Thus,
Fo = 0 and the result follows.

Proposition 4.2.10. If n is an odd natural number, there exists, for each i = 1, . . . , n, a nonzero polynomial
Fi ∈ R[X1, . . . , Xn, Y ] of degree at most 2N (n(N − 1) + 1) such that

G(fi) ⊂ Z(Fi).

Proof. First of all, we consider the functions gi : (Rn \ {p1, . . . , pN }) × R → R given by

gi = Q1,i

√
P1 + · · · +QN,i

√
PN + Y,

where Y : Rn+1 → R is the projection on the last coordinate. Next, for each ε ∈ {1,−1}N , we define

gi,ε = Q1,i

√
P1 + ε1Q2,i

√
P2 + · · · + εN−1QN,i

√
PN + εNY,

the “conjugates” of gi. Now, we construct the functions

Fi =
∏

ε∈{1,−1}N

gi,ε,

the products, for each i, of all conjugates of gi. We have, by Lemma 4.2.9, that Fi depends on the squares
of the square roots of the polynomials Q2

1,iP1, . . . , Q
2
N,iPN , Y

2, so Fi is a polynomial in R[X1, . . . , Xn, Y ]. It
is clearly nonzero (for example, the coefficient of Y 2N is 1) and has degree at most 2N (n(N − 1) + 1), as
each monomial in Fi is a product of 2N square roots of polynomials of degree at most 2n(N − 1) + 2. Also,
we see that

gi,(1,...,1,−1) = Q1,i

√
P1 + · · · +QN,i

√
PN − Y = fi − Y.

Therefore,

G(fi) = Z(gi,(1,...,1,−1)) ⊂ Z(Fi),

and we have the result.
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Corollary 4.2.11. If c1, . . . , cn are the respective complexities of the Nash functions f1, . . . , fn, we have the
following:

If n is even, ci = n(N − 1) + 1.

If n is odd, ci ≤ 2N (n(N − 1) + 1).

We are now able use Lemma 4.2.5 in order to restrict the number of non-degenerate solutions of the
system defined by the functions f1, . . . , fn. What we want to do next is to establish a relation between the
non-degenerate critical points of V and the non-degenerate solutions of that system.

Proposition 4.2.12. Let {(pk, qk)}N
k=1 be an m-dimensional configuration. If p ∈ Rn \ {p1, . . . , pN } is a

non-degenerate critical point of the electric potential V , then p is a non-degenerate solution of the system
f1(x) = 0, . . . , fm(x) = 0, Xm+1(x) = 0, . . . , Xn(x) = 0 of Nash functions defined on Rn \ {p1, . . . , pN },
where Xk is the projection on the k-th coordinate.

Proof. We have that, for p ∈ Rn \ {p1, . . . , pN },

fi(p) = ∂V

∂xi
(p)

N∏
j=1

|p− pj |n.

If p is a critical point of V , by Corollary 4.2.3, we know that f1(p) = 0, . . . , fm(p) = 0, xm+1 = 0, . . . , xn = 0,
so p is a solution of the system. Besides, we have that

∂fi

∂xl
(p) = ∂2V

∂xi∂xl
(p)

N∏
j=1

|p− pj |n +
N∑

k=1

(
∂V

∂xi
(p)n(xl − xk,l)|p− pk|n−2 ∏

j ̸=k

|p− pj |n
)

= .

∂2V

∂xi∂xl
(p)

N∏
j=1

|p− pj |n,

because p ∈ Cr(V ), so ∂V
∂x1

(p) = · · · = ∂V
∂xn

(p) = 0. If p is non-degenerate, then

0 ̸= detHV (p) = (Cn)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2V

∂x1∂x1
(p) · · · ∂2V

∂x1∂xm
(p) 0 · · · 0

... . . . ...

∂2V

∂xm∂x1
(p) ∂2V

∂xm∂xm
(p) 0 0

0 0 −
N∑

k=1

qk

|p− pk|n
0

... . . . ...

0 · · · 0 0 · · · −
N∑

k=1

qk

|p− pk|n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
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(Cn)n

(
−

N∑
k=1

qk

|p− pk|n

)n−m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2V

∂x1∂x1
(p) · · · ∂2V

∂x1∂xm
(p)

... . . . ...

∂2V

∂xm∂x1
(p) · · · ∂2V

∂xm∂xm
(p)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

This implies that ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2V

∂x1∂x1
(p) · · · ∂2V

∂x1∂xm
(p)

... . . . ...

∂2V

∂xm∂x1
(p) · · · ∂2V

∂xm∂xm
(p)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
̸= 0.

Consequently, we know that

0 ̸=
(

N∏
j=1

|p− pj |n
)m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2V

∂x1∂x1
(p) · · · ∂2V

∂x1∂xm
(p)

... . . . ...

∂2V

∂xm∂x1
(p) · · · ∂2V

∂xm∂xm
(p)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2V

∂x1∂x1
(p)

N∏
j=1

|p− pj |n · · · ∂2V

∂x1∂xm
(p)

N∏
j=1

|p− pj |n

... . . . ...

∂2V

∂xm∂x1
(p)

N∏
j=1

|p− pj |n · · · ∂2V

∂xm∂xm
(p)

N∏
j=1

|p− pj |n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂f1
∂x1

(p) · · · ∂f1
∂xm

(p)

... . . . ...

∂fm

∂x1
(p) · · · ∂fm

∂xm
(p)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂f1
∂x1

(p) · · · ∂f1
∂xm

(p) ∂f1
∂xm+1

(p) · · · ∂f1
∂xn

(p)

... . . . ...
...

∂fm

∂x1
(p) · · · ∂fm

∂xm
(p) ∂fm

∂xm+1
(p) ∂fm

∂xn
(p)

0 0 1 0
... . . . ...

0 · · · 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

This last matrix is precisely the Jacobian matrix of (f1, . . . , fm, Xm+1, . . . , Xn) at p. As it is non-singular,
we deduce that p is a non-degenerate solution of the system, and the result follows.

Finally, from the previous results, we can obtain the following upper bound for the number of non-
degenerate critical points of V depending also on the dimension m of the configuration that generates V :
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Theorem 4.2.13. Let {(pk, qk)}N
k=1 be an m-dimensional configuration of N charges with the same sign in

Rn. Then, the number of non-degenerate critical points of V is less than or equal to

(n(N − 1) + 1)m if n is even.

2Nm(n(N − 1) + 1)m if n is odd.

Proof. By Proposition 4.2.12, we know that every non-degenerate critical point of V is a non-degenerate
solution of the system defined by the Nash functions f1, . . . , fm, Xm+1, . . . , Xn on Rn \ {p1, . . . , pN }. Since
Rn \ {p1, . . . , pN } is a connected open semi-algebraic subset of Rn and Xm+1, . . . , Xn are polynomials of
degree 1, the result follows from Lemma 4.2.5.

We can now obtain our upper bound for # Cr(V ).

Theorem 4.2.14. If {(pk, qk)}N
k=1 is an m-dimensional Morse configuration in Rn, then V has finitely

many critical points and

# Cr(V ) ≤ (n(N − 1) + 1)m if n is even.

# Cr(V ) ≤ 2Nm(n(N − 1) + 1)m if n is odd.

We can notice that, for m = n, the previous upper bounds are valid in the general case discussed in
Section 4.1, not just for configurations of charges with the same sign. In particular, this means that every
Morse configuration generates an electric potential with finitely many critical points, extending Proposition
3.1.5 for configurations with zero total charge.

We see that the upper bound for even n obtained in Theorem 4.2.14 is better than the one from 4.1.8 in
the case of Morse configurations. In fact, we have that

(n(N − 1) + 1)n ≤ (n(N − 1) + 1) (2n(N − 1) + 1)n−1 −N

for every choice of n,N ≥ 2. Besides, we have that

2Nm(n(N − 1) + 1)m ≤ M1(n,N),M2(n,N)

for big N since the left side is of the order of 2nNNn while M1 and M2 have terms with order NN .

Remark 4.2.15. In [4], they prove that, for a non-degenerate configuration,

# Cr(V ) ≤ 4N2(3N)2N .

This upper bound is interesting, as it does not depend on n at all. Therefore, it is better, for big n, than
all the bounds discussed in this text. However, it has a much faster growth with respect to N for a fixed n,
as it has a term with N2 in the exponent. Thus, our bounds are better for big N .

Remark 4.2.16. As a final comment to this chapter, it is worth to mention that we have obtained our
upper bounds by means of very general results about polynomials and Nash functions, without taking into
consideration the highly particular structure of our functions. For this reason, it is likely that the upper
bounds can be refined using the methods, rather than the results, of Real Algebraic Geometry, focusing on
the specific functions we have worked with.
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Appendix A

Cauchy-Kovalevskaya Theorem

The contents of this appendix have been extracted from [2] and [3]. We start with some preliminary
definitions.

Definition A.1 (Hypersurface). A subset S ⊂ Rn is called a hypersurface of class Ck (1 ≤ k ≤ ∞) if for
every x0 ∈ S there is an open set V ⊂ Rn containing x0 and a real-valued function ϕ ∈ Ck(V ) such that
∇ϕ ̸= 0 in S ∩ V and

S ∩ V = {x ∈ V : ϕ(x) = 0}.

If S satisfies these conditions with Ck replaced by Cω, we say that S is a real analytic hypersurface.

Remark A.2. In the situation of Definition A.1, by the Implicit Function Theorem (Lemma 3.3.11), we
can solve the equation ϕ(x) = 0 near x0 for some coordinate xi (for convenience, say i = n) to obtain

xn = ψ(x1, . . . , xn−1)

for some Ck function ψ. An open neighborhood of x0 in S can be mapped to a piece of the hyperplane
{xn = 0} ⊂ Rn by the Ck transformation

x 7−→ (x1, . . . , xn−1, xn − ψ(x1, . . . , xn−1)) .

This neighborhood of S can be represented, in parametric form, as the image of an open subset of Rn−1

under the map
(x1, . . . , xn−1) 7−→ (x1, . . . , xn−1, ψ(x1, . . . , xn−1)).

The inverse of this map may be thought of as giving a local coordinate system of S near x0.

With S, V and ϕ as above, the vector ∇ϕ(x) is perpendicular to S at x for every x ∈ S ∩ V . We shall
always suppose that S is oriented, i.e., that we have chosen a unit vector ν(x) for each x ∈ S, varying
continuously with x, which is perpendicular to S at x. The vector ν(x) will be called the normal vector to
S at x. In particular, on S ∩ V we have

ν(x) = ± ∇ϕ(x)
|∇ϕ(x)| .

Definition A.3 (Directional Derivative). If f is a function of class Ck defined in a neighborhood of some
point x ∈ Rn, we define the kth directional derivative of f along a vector w ∈ Rn at x by

∂k
wu(x) =

∑
|α|=k

∂αu(x) w
α

|w|k
=

∑
α1+...+αn=k

∂ku

∂xα1
1 . . . ∂xαn

n
(x)w

α1
1 . . . wαn

n

|w|k
.

Remark A.4. We can see that the previous definition only depends on the direction of the vector, not on
the vector itself. Then, it can be stated just in terms of unit vectors, simplifying the notation.
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We consider the kth-order linear differential operator

L =
∑

|α|≤k

aα(x)∂α

and, for some function f , the kth-order linear partial differential equation

Lu =
∑

|α|≤k

aα(x)∂αu(x) = f(x)

in some region U ⊂ Rn. Throughout the rest of the present section, we consider S to be an analytic
hypersurface contained in U and ν(x) to be the normal vector to S in each x ∈ S. Also, let ϕ0, . . . , ϕk−1 be
functions of class Ck−1 defined near S. We want to find solutions for the Cauchy problem

(P )
∑

|α|≤k

aα∂
αu = f, ∂j

νu = ϕj in S (0 ≤ j ≤ k − 1)

that are defined in a neighborhood of some point x0 ∈ S. That is, we want to find a neighborhood W ⊆ U
of x0, where the ϕj are defined, and a function u : W → R such that∑

|α|≤k

aα∂
αu(x) = f(x) for x ∈ W and ∂j

νu(x) = ϕj(x) in S ∩W (0 ≤ j ≤ k − 1).

In order for the Cauchy problem to be well-behaved, we need S to be non-characteristic for the operator L.
This condition is described in the following definitions.

Definition A.5 (Characteristic Form, Vector and Variety). Let L =
∑

|α|≤k aα∂
α be a linear partial differ-

ential operator of order k in some region U ⊂ Rn. Its characteristic form at some x ∈ U is the homogeneous
polynomial of degree k on Rn defined by

χL(x, ξ) =
∑

|α|=k

aα(x)ξα (ξ ∈ Rn).

A nonzero vector ξ ∈ Rn is called characteristic for L at x if χL(x, ξ) = 0, and the set of such ξ is called
the characteristic variety of L at x and is denoted by

charx(L) = {ξ ̸= 0 : χL(x, ξ) = 0}.

Definition A.6 (Non-characteristic hypersurface). We say that a hypersurface S is non-characteristic for
the operator L if ν(x) /∈ charx(L) for all x ∈ S, i.e., if∑

|α|=k

aα(x)ν(x)α ̸= 0

for all x ∈ S.

Definition A.7 (Elliptic Operator). Assume that we are in the context of the previous section. A linear
differential operator L is said to be elliptic at a point x ∈ U if charx(L) = ∅, that is, if every nonzero vector
is not characteristic for L at x. Also, L is said to be elliptic on U if it is elliptic at every x ∈ U .

The following result is a direct consequence of the definitions of elliptic operator and non-characteristic
hypersurface:

Proposition A.8. If L is an elliptic operator, then every hypersurface in Rn is non-characteristic for L.

We are now in a position to state the Cauchy-Kovalevskaya Theorem. The proof can be found, for
example, in Section 4.6.3. of [2] or in Section 1.D of [3].

Theorem A.9 (Cauchy-Kovalevskaya Theorem). If ϕ0, . . . , ϕk−1, f, aα(|α| ≤ k) are analytic functions near
x0 and the hypersurface S is non-characteristic for L, there is a neighborhood of x0 on which the Cauchy
problem (P ) has a unique analytic solution.



Appendix B

Measure Theory

B.1. Measure Spaces

Definition B.1 (Sigma Algebra). Let X be a set. A σ-algebra on X is a collection B of subsets of X that
satisfies the following properties:

(i) (Empty set) ∅ ∈ B.

(ii) (Complement) If E ∈ B, then the complement Ec := X \ E also lies in B.

(iii) (Countable unions) If {En}∞
n=1 is a sequence of elements in B, then

⋃∞
n=1En ∈ B.

We refer to the pair (X,B) of a set X together with a σ-algebra on that set as a measurable space. We say
that a subset E ⊂ X is B-measurable, or just measurable, if E ∈ B.

Example B.2 (Borel σ-algebra). Let X be a topological space. The Borel σ-algebra B[X] of X is defined
to be the σ-algebra generated by the open subsets of X, i.e., the intersection of all σ-algebras that contain
the open subsets of X. Elements of B[X] will be called Borel measurable.

Definition B.3 (Outer Measure). Let X be a set and P(X) the power set of X. An outer measure on X
is a map µ∗ : P(X) → [0,+∞] that satisfies the following properties:

(i) (Empty set) µ∗(∅) = 0.

(ii) (Monotonicity) If E ⊂ F , then µ∗(E) ≤ µ∗(F ).

(iii) (Countable subadditivity) If {En}∞
n=1 is sequence of subsets of X, then µ∗ (

⋃∞
n=1En) ≤

∑∞
n=1 µ

∗(En).

Definition B.4 (Measure). Let (X,B) be a measurable space. A measure µ on B is a map µ : B → [0,+∞]
that satisfies the following properties:

(i) (Empty set) µ(∅) = 0.

(ii) (Countable additivity) If {En}∞
n=1 is a sequence of disjoint measurable sets, µ (

⋃∞
n=1En) =

∑∞
n=1 µ(En).

A triplet (X,B, µ), where (X,B) is a measurable space and µ : B → [0,+∞] is a measure is called a measure
space.

Proposition B.5. Let (X,B, µ) be a measure space. Then,

(i) (Countable subadditivity) If {En}∞
n=1 is a sequence of measurable sets, then µ (

⋃∞
n=1En) ≤

∑∞
n=1 µ(En).

(ii) (Upwards monotone convergence) If {En}∞
n=1 is a sequence of measurable sets such that En ⊂ En+1,

then
µ

Ç ∞⋃
n=1

En

å
= lim

n→∞
µ (En) = sup

n∈N
µ(En).
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(iii) (Downwards monotone convergence) If {En}∞
n=1 is a sequence of measurable sets such that En ⊃ En+1

and µ(Ek) < +∞ for at least one k, then

µ

Ç ∞⋂
n=1

En

å
= lim

n→∞
µ (En) = inf

n∈N
µ(En).

B.2. Lebesgue Measure

Definition B.6 (boxes). A box in Rn is a Cartesian product B := I1 × . . .× In of n bounded intervals. The
volume |B| of such a box B is defined as |B| := |I1| . . . |In|, where |Ik| is the length of the interval Ik.

Definition B.7 (Lebesgue Outer Measure). Let E be a subset of Rn. We define the Lebesgue outer measure
of E by

m∗(E) := inf
® ∞∑

k=1
|Bk| : (Bk)k∈N is a sequence of boxes such that E ⊂

∞⋃
k=1

Bk

´
The map m∗ : P(Rn) → [0,+∞] satisfies the properties of Definition B.3.

Definition B.8 (Lebesgue Measurability). A set E ⊂ Rn is said to be Lebesgue measurable if, for every
ε > 0, there exists an open set U ⊂ Rn containing E such that m∗(U \E) ≤ ε. If E is Lebesgue measurable,
we refer to m(E) := m∗(E) as the Lebesgue measure of E. The collection of Lebesgue measurable subsets
of Rn is a σ-algebra on Rn. We will call it the Lebesgue σ-algebra and denote it by L[Rn]. The map
m : L[Rn] → [0,+∞] satisfies the properties of Definition B.4 on. Unless stated differently, we will just say
a set is measurable when referring to the fact that it is Lebesgue measurable.

There is a direct consequence of this definition:

Corollary B.9. Every open subset U of Rn is measurable and if U ̸= ∅, then m(E) > 0. In fact, every
Borel subset of Rn is measurable.

Definition B.10. (Null Sets) Every subset of Rn of Lebesgue outer measure zero is measurable. Such sets
are called null sets.

Lebesgue measure is unique in the following sense:

Proposition B.11. The Lebesgue measure E 7→ m(E) is the only measure defined on L[Rn] that satisfies
the properties:

(i) (Translation Invariance) If E is measurable and x ∈ Rn, then m(E + x) = m(E), where we define
E + x := {y + x : y ∈ E} ⊂ Rn.

(ii) (Normalisation) m([0, 1]n) = 1.

Definition B.12 (Almost Everywhere). A property P (x) that affects points x ∈ Rn is said to hold almost
everywhere in some nonempty open subset U of Rn, or for almost all x ∈ U , if the set of x ∈ U for which
P (x) fails has Lebesgue measure zero (i.e. P is true outside of a null set).
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Real Algebraic Geometry

C.1. Algebraic and Semi-Algebraic Sets

Definition C.1 (Algebraic Set). Let R[X1, . . . , Xn] be the ring of polynomials on n variables with coeffi-
cients in R. Let B be a subset of R[X1, . . . , Xn]. Denote

Z(B) = {x ∈ Rn : ∀f ∈ B f(x) = 0} .

The elements of Z(B) are the zeros of the set B. An algebraic subset of Rn is the set of zeros of some
B ⊆ R[X1, . . . , Xn]. If B = {f1, . . . , fk} is a finite set, we denote

Z(f1, . . . , fk) = Z(B) = {x ∈ Rn : f1(x) = · · · = fk(x) = 0} .

We can see that the algebraic set defined by some B ⊆ R[X1, . . . , Xn] only depends on the ideal it
generates in R[X1, . . . , Xn].

Proposition C.2. Let B ⊆ R[X1, . . . , Xn] and I = (B) the ideal it generates in R[X1, . . . , Xn]. Then,

Z(B) = Z(I).

Proof. As B generates I, we have that B ⊆ I. Then,

Z(I) =
⋂
f∈I

Z(f) ⊆
⋂

f∈B

Z(f) = Z(B).

On the other hand, let x ∈ Z(B) and f ∈ I. There exist f1, . . . , fk ∈ B and g1, . . . , gk ∈ R[X1, . . . , Xn] such
that

f =
k∑

j=1
gjfj .

Then,

f(x) =
k∑

j=1
gj(x)fj(x) =

k∑
j=1

gj(x) · 0 = 0,

so x ∈ Z(I). The result follows.

As a result, the set Z(I) equals Z(G) for every set G that generates I. Then, every algebraic set can be
described as the set of zeros of an ideal in R[X1, . . . , Xn].

Proposition C.3. Given an algebraic subset V of Rn, there exists f ∈ R[X1, . . . , Xn] such that V = Z(f).

Proof. There is some ideal I ⊆ R[X1, . . . , Xn] such that V = Z(I). Besides, the ring R[X1, . . . , Xn] is
Noetherian (all its ideals are finitely generated) by Hilbert’s Basissatz. Thus, there are some polynomials
f1, . . . , fk that generate I, so V = Z(f1, . . . , fk). If we take f = f2

1 + · · · + fk, we have the result.
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Proposition C.4 (Zariski Topology). We have the following properties of algebraic sets in R[X1, . . . , Xn]:

(i) ∅ = Z(R[X1, . . . , Xn]) and Rn = Z(0), where 0 ∈ R[X1, . . . , Xn] is the zero polynomial.

(ii) Let {Z(Ij) : j ∈ J} be a family of algebraic sets. Their intersection is an algebraic set too. In fact,

⋂
j∈J

Z(Ij) = Z

(∑
j∈j

Ij

)
,

where
∑

j∈j Ij is the sum ideal.

(iii) Let Z(I1) and Z(I2) be two algebraic sets. Their union is an algebraic set too. In fact,

Z(I1) ∪ Z(I2) = Z(I1I2),

where I1I2 is the product ideal.

As a consequence of these properties, the set {Z(B) : B ⊆ Rn} of algebraic subsets of Rn defines a topology
on Rn where this set corresponds to the class of closed sets. It is called the Zariski topology on Rn.

Definition C.5. Given a set S of Rn, denote by

I(S) := {f ∈ R[X1, . . . , Xn] : ∀x ∈ S f(x) = 0}

the ideal of R[X1, . . . , Xn] of polynomials that vanish on S.

Proposition C.6. If {Sj : j ∈ J} is a family of subsets of Rn, then

I

(⋃
j∈J

Si

)
=

⋂
j∈J

I(Sj).

Proposition C.7. If S is a subset of Rn, then

S = Z(I(S)),

where S corresponds to the closure of the set S in the Zariski topology on Rn. Furthermore,

I(S) = I
(
S
)
.

Definition C.8. (Semi-Algebraic Set) A semi-algebraic subset of Rn is a set of the form
s⋃

i=1

ri⋂
j=1

{x ∈ Rn : fi,j ∗i,j 0} ,

where fi,j ∈ R[X1, . . . , Xn] and ∗i,j is either < or =, for i = 1, . . . , s and j = 1, . . . , ri.

Remark C.9. Clearly, every algebraic set is semi-algebraic.

By their definition, semi-algebraic sets are stable under finite union, finite intersection and taking com-
plements. In fact, they are also stable under projection.

Proposition C.10 ([1], Theorem 2.2.1). Let S be a semi-algebraic subset of Rn+1 and Π : Rn+1 → Rn the
projection on the first n coordinates. Then, Π(S) is a semi-algebraic subset of Rn.

Definition C.11 (Basic Semi-Algebraic Sets). A basic open semi-algebraic subset of Rn is a set of the form

{x ∈ Rn : f1(x) > 0, . . . , fk(x) > 0} ,

where f1, . . . , fk ∈ R[X1, . . . , Xn].

A basic closed semi-algebraic subset of Rn is a set of the form

{x ∈ Rn : f1(x) ≥ 0, . . . , fk(x) ≥ 0} ,

where f1, . . . , fk ∈ R[X1, . . . , Xn].
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C.2. Nash Functions
Now, we introduce the concept of Nash functions and some of their basic properties.

Definition C.12 (Graph of a Map). Let X and Y be two sets and f : X → Y a map. The graph of f is
the set

G(f) = {(x, f(x)) ∈ X × Y : x ∈ X} .

Definition C.13 (Semi-Algebraic Mapping). Let A ⊆ Rn and B ⊆ Rm be two semi-algebraic sets. A
mapping f : A → B is said to be semi-algebraic if its graph G(f) is semi-algebraic in Rn+m.

Definition C.14 (Nash Function). Let U be an open semi-algebraic subset of Rn. A function f : U → R
is said to be a Nash function if it is a semi-algebraic function of class C∞. The ring of Nash functions on U
is denoted by N (U).

Proposition C.2.1. If f : U → R is a Nash function then it is real analytic on U .

The following result about Nash functions can be found in [15] as Lemma 2.1:

Lemma C.15. If f : U → R is a Nash function, there exists a nonzero polynomial P ∈ R[X1, . . . , Xn, Y ]
such that P (x, f(x)) = 0 for all x ∈ U .

Definition C.16 (Complexity). Let f : U → R be a Nash function.. The complexity of f , denoted c(f),
is the minimum degree of all nonzero polynomials P ∈ R[X1, . . . , Xn, Y ] such that P (x, f(x)) = 0 for all
x ∈ U . That is,

c(f) = min {degP : P ∈ R[X1, . . . , Xn, Y ] \ {0} and P (x, f(x)) = 0 for all x ∈ U} .

Clearly, c(f) ≥ 1.

Remark C.17. The definition of complexity makes sense by Proposition C.15. Besides, it is a generalization
of polynomial degree since all polynomials are Nash functions and, if f is a polynomial, we have that
c(f) = max {deg(f), 1}.
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