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Abstract. We consider a two dimensional parabolic-elliptic Keller-Segel equation with a logistic
forcing and a fractional diffusion of order α. We obtain existence of global in time regular solution
for arbitrary initial data with no size restrictions and c < α ≤ 2, where c ∈ (0, 2) depends on the
equation’s parameters. For an even wider range of α′s, we prove existence of global in time weak
solution for general initial data.

1. Introduction

Let us consider the following drift-diffusion equation on the two-dimensional torus T2

∂tu = −Λαu+ χ∇ · (uB(u)) + f(u), (1)

where Λα = (−∆)α/2, B(u) is a vector of nonlocal operators, f denotes a real function and χ
is a sensitivity parameter. A concrete choice of B, f, χ yields one of many so-called active scalar
equations. The notion active scalar refers to the main unknown u being a scalar advected by a
vector field depending on the scalar itself, here B(u), sometimes under effects of diffusion Λα or
some other forces f . This family of equations appears extensively in applied mathematics. In
particular, evolution of some of the most famous two-dimensional active scalars can be seen as a
special case of (1), including:

• The two dimensional incompressible Euler / Navier-Stokes equation in its vorticity formu-
lation

α = 0 / α = 2, B(u) = (−∂x2 , ∂x1)(−∆)−1u, f = 0, χ = 1,

describing a flow of inviscid/viscous fluid.

• The Surface Quasi-Geostrophic / Dispersive Surface Quasi-Geostrophic equation

0 < α ≤ 2, B(u) = (−∂x2 , ∂x1)Λ
−1u, f = 0 / f(u) = R1u, χ = 1,

where Ri is the i − th Riesz transform (see Section 2.1 for notation), compare [4, 14, 17–19,
29,34,35,37,38]. It models temperature evolution in certain geophysical considerations (me-
teorology, oceanography, simplified magnetodynamics). Besides, it is supposed to provide
insights into behaviour of three-dimensional flows.

• The Incompressible Porous Medium equation (self-explanatorily, related to flows in porous
media)

0 < α ≤ 2, B(u) = (∂x2∂x1 ,−∂2
x1
)(−∆)−1u (= −R⊥R1u), f = 0, χ = 1,

where

R = (R1, R2), R⊥ = (−R2, R1),

see for instance [16, 23];
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• The Stokes equation

0 < α ≤ 2, B(u) = (−∆)−1R⊥R1u, f = 0, χ = 1.

see [2]. Note that this equation can be written equivalently as the following system of
differential equations

∂tu+∇ · (uv) = 0,

−∆v +∇p = −(0, u),

∇ · v = 0.

• The Magnetogeostrophic equation

0 ≤ α ≤ 2, B̂(u) =

(
ξ2ξ3|ξ|2 − ξ1ξ

2
2ξ3,−ξ1ξ3|ξ|2 − ξ32ξ3, ξ

2
1ξ

2
2 + ξ42

)

|ξ|2ξ23 + ξ42
û, f = 0, χ = −1,

where ·̂ denotes the Fourier transform. It is a simplified model for creation of Earths magnetic
field, compare [24–27,45].

• A class of aggregation equations

0 < α ≤ 2, B(u) = ∇K ∗ u, χ > 0,

where K stands for a nonincreasing (thus attractive) interaction kernel. For the fractional
case with f = 0, see [6,7,40–43]. The case α = 2 and K = −∆−1 is the classical (parabolic-
elliptic) Keller-Segel equation, describing concentration of certain microorganisms. Intro-
duction of damping f(u) = u(1 − u) allows to capture birth and death process, compare
model M8 of [30] and [48]. Compare also [28] for the case of a repulsive kernel related to
semiconductor devices.

Some of the presented active scalars may be reformulated also in higher dimensions. However,
the case of two dimensions turns out to be the pivotal one mathematically in certain cases. This
involves SQG and aggregation equations. The latter, being our main motivation, is discussed more
thoroughly in what follows. Let us only remark that despite our main interest in a Keller-Segel
related problems, we expect that our approach may be useful for studying a wide range of damped
aggregation equations.

1.1. The Keller-Segel system. Our main motivation to study (1) is the following parabolic-elliptic
Keller-Segel system with logistic source

∂tu = −Λαu+ χ∇ · (uB(u)) + ru(1 − u), (2)

with either
B(u) = Λβ−1R(1 + Λβ)−1(u), β > 0 (3)

or
B(u) = ∇∆−1(u− 〈u〉) (= Λβ−1RΛ−β(u− 〈u〉) with any β > 0) (4)

where 〈u〉 denotes the spatial mean value 1
4π2

∫
T2 u(t).

The classical (doubly parabolic) Keller-Segel system

∂tu = ∆u− χ∇ · (u∇v)

∂tv = ∆v + u− γv
(5)

serves as a model of chemotaxis, i.e. a proliferation and a chemically-induced motion of cells, see
the pioneering work of Keller & Segel [33], reviews by Blanchet [8] and Hillen & Painter [30]. In
this interpretation u ≥ 0 is a density of cells and v stands for a density of a chemoattractant.
The parameter χ > 0 quantifies the sensitivity of organisms to the attracting chemical signal and
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γ ≥ 0 models their decay. It is fair to recall that before appearance in mathematical biology, the
Keller-Segel equation was introduced by Patlak [47] in a context of quantitive chemistry and physics
(interestingly, in the Bulletin of Mathematical Biophysics). A biologically justified parabolic-elliptic
simplification of (5) consists in rewriting the equation for v as 0 = ∆v+u−γv, i.e. v = (γ−∆)−1(u),
which gives (2) with α = 2, r = 0, β = 2 and either (3) for γ = 1 (since ΛR = −∇) or (4) for γ = 0
(up to lack of subtraction of mean value there, which appears on torus naturally). Thus, one obtains
the parabolic-elliptic Keller-Segel model

∂tu = ∆u− χ∇ · (u∇v)

v = (γ −∆)−1(u).
(6)

In one space dimension (6) admits large-data global in time smooth solutions. In higher dimensions
there are small-data or short-time smoothness results, but generally solutions may exhibit finite-
time blowups for large data. Here the two-dimensional case (d = 2) bears a special importance,

since the scaling invariant Lebesgue space L
d
2 (for γ = 0 and full space case), a reasonable choice to

investigate smoothness/blowup dichotomy, coincides with the space where the quantity conserved
over the evolution by (6) itself lies (‖u(0)‖L1 = ‖u(t)‖L1) and simultaneously with the most natural
choice from the perspective of applications, i.e. the total mass. The related literature is abundant,
so let us only mention the seminal results by Jäger & Luckhaus [31] and Nagai [46], the concise note
by Dolbeault & Perthame [22], where the threshold mass 8π

χ is easy traceable as well as Blanchet,

Carrillo & Masmoudi [9], focused on the threshold mass case. Interestingly, even in this most classical
case a single quantity responsible for jointly local existence and blowup criterion is still not fully
agreed upon, since for a local-in-time existence one needs to assume more than merely finiteness
of the initial mass. Currently, the best candidate seems to be the scaling-invariant Morrey norm,
compare Lemarié-Rieusset [39], Biler, Cieślak, Karch & Zienkiewicz [5] and its references.

Remarkably, it has been noted by A. Kiselev & X. Xu [36] and J. Bedrossian & S. He [3] that
mixing may prevent finite time singularities.

Let us immediately clarify, in context of the eponymous supercriticality, that we simply call a
Keller-Segel-related system in two spatial dimensions supercritical, if it involves a weaker dissipation
than the classical one ∆u.

As already mentioned, introduction of the logistic term ru(1− u) to a Keller-Segel system allows
to capture cells growth. For instance, the cell-kinetics model M8 of [30] is precisely (5) with added
ru(1 − u). One of the most striking results for the classical Keller-Segel says that presence of a
logistic source prevents a blowup of solutions, compare Tello & Winkler [48] for the interesting for
us parabolic-elliptic case.

Since 1990’s, a strong theoretical and empirical evidence has appeared for replacing in Keller-
Segel equations the classical diffusion with a fractional one: Λα, α < 2, in order to model feeding
strategies of a wide range of organisms. For more details, the interested reader may consult our [10]
with its references.

Because −Λαu provides for α < 2 a weaker dissipation than the classical one, it is expected
that a blowup may easily occur (in particular, for any initial mass, but this is automatic, provided
the scaling applies). It is indeed the case for the generic fractional parabolic-elliptic cases, recall
[5–7, 40–43] (Naturally there are small-data global regularity results available, based upon data in
certain Lebesgue or more involved spaces). On the other hand, though, we know already that an
addition of the logistic term prevents blowups in the classical case (6).

1.2. A question and a sketch of our answer. In context of the presented state-of-the-art it is
very natural to pose the following problem

Does the logistic term prevent blowups of solutions to (2) with α < 2?
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This paper is focused on addressing this question. Briefly, our answer reads at follows:

As long as a positive

α > 2
(
1−

χ

r

)
,

then (2) with B given either by (3) or by (4) has a global in time, classical solution (see Theorem
2). Moreover, in a wider range of α’s, the considered problem has a global-in-time weak solution
(see Theorem 1). Namely

• for every α > 0, provided 2r ≥ χ,

• and for every positive α > 4
χ(χ−2r

χ−r )−r

2χ−r otherwise.

Our result can be seen as another method (besides mixing as in A. Kiselev & X. Xu [36] and J.
Bedrossian & S. He [3]) to suppress finite time blow up inherent to the two-dimensional Keller-Segel
with large masses.

In relation to our main research question, let us recall our one-dimensional studies in [11, 12].
We have also studied the doubly-parabolic problem in [13] and provided smoothness for the critical
fractional one-dimensional case with no logistic damping, compare [10] (see also [1]).

1.3. Plan of the paper. The next section contains needed preliminaries and definitions. In Section
3 we provide our main results. Further sections are devoted to their proofs.

2. Preliminaries

In what follows, we provide certain formulas in an arbitrary dimension d.

2.1. Notation. We write Rj , j = 1, . . . , d, for the j−th Riesz transform and Λs = (−∆)s/2, i.e.

R̂ju(ξ) = −i
ξj
|ξ|

û(ξ), (7)

Λ̂su(ξ) = |ξ|sû(ξ), (8)

where ·̂ denotes the usual Fourier transform. These operators have the following kernel representa-
tion, compare [15].

Rif(x) = rd P.V.

∫

Td

f(x−y)
yi

|y|d+1
dy+rd

∑

k∈Zd,k 6=0

P.V.

∫

Td

f(x−y)

(
yi − 2kiπ

|y − 2kπ|d+1
+

2kiπ

|2kπ|d+1

)
dy,

(9)
with

rd =
Γ(1 + d/2)

π
d+1
2

.

Λαf(x) = cα,d

( ∑

k∈Zd,k 6=0

∫

Td

f(x)− f(x− η)dη

|η + 2kπ|d+α
+ P.V.

∫

Td

f(x)− f(x− η)dη

|η|d+α

)
, (10)

where

cα,d =
2αΓ(d+α

2 )

π
d
2 |Γ(−α/2)|

.

Usually, we write
R = (R1, . . . , Rd).

Then, observe the following identity
∇ ·R = Λ.

Next, we denote by Jǫ the periodic heat kernel at time t = ǫ.
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2.2. Function spaces. Let us write ∂n, n ∈ Z
+, for a generic derivative of order n. Then, the

fractional Lp-based Sobolev spaces (also known as Aronsztajn, Gagliardo or Slobodeckii spaces)
W s,p(Td) are

W s,p(Td) =

{
f ∈ Lp(Td) | ∂⌊s⌋f ∈ Lp(Td),

|∂⌊s⌋f(x)− ∂⌊s⌋f(y)|

|x− y|
d
p+(s−⌊s⌋)

∈ Lp(Td × T
d)

}
,

endowed with the norm

‖f‖pW s,p = ‖f‖pLp + ‖f‖p
Ẇ s,p

,

‖f‖p
Ẇ s,p

= ‖∂⌊s⌋f‖pLp +

∫

Td

∫

Td

|∂⌊s⌋f(x)− ∂⌊s⌋f(y)|p

|x− y|d+(s−⌊s⌋)p
dxdy.

In the case p = 2, we write Hs(Td) = W s,2(Td) for the standard non-homogeneous Sobolev space
with its norm

‖f‖2Hs = ‖f‖2L2 + ‖f‖2
Ḣs , ‖f‖Ḣs = ‖Λsf‖L2.

Next, for s ∈ (0, 1), let us denote the usual Hölder spaces as follows

Cs(Td) =

{
f ∈ C(Td) |

|f(x)− f(y)|

|x− y|s
∈ L∞(Td × T

d)

}
,

with the norm

‖f‖Cs = ‖f‖L∞ + ‖f‖Ċs, ‖f‖Ċs = sup
(x,y)∈Td×Td

|f(x)− f(y)|

|x− y|s
.

By D we mean smooth test functions. For brevity, the domain dependance of a function space will be
generally suppressed. Finally, we will use the standard notation for evolutionary (Bochner) spaces,
writing Lp(0, T ;W s,p) etc.

2.3. Weak solutions. We adopt the following standard

Definition 1. u ∈ L2(0, T ;L2) is a global weak solution of (2) emanating from u0 ∈ L2 iff for all
T > 0 and φ ∈ D([−1, T )× T

2) it holds
∫ T

0

∫

T2

u(−∂tφ+ Λαφ) + uB(u)∇φ− f(u)φ dxds =

∫

T2

u0φ(0) dx.

3. Main results

For clarity, let us introduce

[k]+ =

{
k for 0 < k < ∞,

an arbitrary finite number otherwise (k < 0 or ∞)

Let us emphasize that when k < 0 or k = ∞, [k]+ can be chosen as large as required (see (50)
below).

Theorem 1 (Global-in-time weak solutions). Let the active scalar relation in problem (2) be given
either by (3) or by (4). Assume that 0 < α < 2 and χ, β, r > 0. Let u0 ≥ 0, u0 ∈ L2 be an initial
datum and let T be any positive number.

(i) Case 2r ≥ χ: for every 0 < α < 2 there exists a global in time weak solution u to (2), in the
sense of Definition 1, such that

‖u(t)‖L∞(0,T ;L1) ≤ max{‖u0‖L1 , 4π2}.
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It enjoys the following extra regularity

u ∈ L2(0, T ;Hα/2) ∩ L∞(0, T ;L2) ∩ L2+2s(0, T ;W ( α
2+2s )

−

,1+s) ∩ Lm(0, T ;Lm)

for any 0 ≤ s ≤ 1. There, m = 3 for 2r > χ or any m < 3 for 2r = χ. Moreover, if u0 ∈ Lp for a
p ∈ (2, [ χ

χ−r ]+], then

u ∈ L∞(0, T ;Lp) ∩ L1+p−

(0, T ;L1+p−

) and u
p
2 ∈ L2(0, T ;Hα/2).

(ii) Case 2r < χ: Assume that

α > 4
χ(χ−2r

χ−r )− r

2χ− r
. (11)

There exists a global in time weak solution u to (2), in the sense of Definition 1, such that

‖u(t)‖L∞(0,T ;L1) ≤ max{‖u0‖L1 , 4π2}.

It enjoys the following extra regularity

u ∈ L∞(0, T ;Lp0) ∩L1+p−

0 (0, T ;L1+p−

0 ) ∩L2+2s(0, T ;W ( α
2+2s )

−

,1+s) and u
p0
2 ∈ L2(0, T ;Hα/2).

for any 0 ≤ s ≤ min(1, r
χ−r ) and where p0 = χ

χ−r (< 2 in this case).

In a slightly narrower parameter range for the case 2r < χ, but still well into the supercritical
regime α < 2, we obtain our central result

Theorem 2 (Global-in-time smooth solutions). Let the active scalar relation in problem (2) be given
either by (3) or by (4). Take any 0 < α < 2 and positive χ, β, r. Let u0 ≥ 0, u0 ∈ Hk with k > 1,
k ∈ Z

+, be an initial datum and let T be any positive number. Assume that

α > max

(
2−

2r

χ
, 0

)
. (12)

Then, the problem (2) admits a global in time classical solution,

u ∈ C([0, T );Hk(T2))

that satisfies the bound

‖u‖L∞(0,T ;L∞(T2)) ≤ F (T, ‖u0‖L1(T2), ‖u0‖L∞(T2), α, r, χ) (13)

for a nondecreasing F , finite for finite arguments.
Moreover, for k > 3, k ∈ Z

+, we have u ∈ C2,1(T2 × [0, T )) . If additionally α > 1, then u is real
analytic.

Remark 1. Theorem 2 remains valid in the case of the spatial domain being R
2. The proof is

analogous, up to minor modifications.

4. Auxiliary results

First we provide for (2) a short-time smoothness result with a continuation criterion. Then, we
recall the Stroock-Varopulous inequality and prove entropy estimates. Furthermore, needed energy
estimates are given. Eventually, a nonlinear maximum principle for Λα is presented, which is needed
for our proof of Theorem 2.
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4.1. Short-time smoothness and continuation criterion.

Lemma 1. Let u0 ∈ H4 be a non-negative initial data. Then, if 0 < α ≤ 2, there exists a time
0 < Tmax(u0) ≤ ∞ such that there exists a non-negative solution

u ∈ C([0, Tmax(u0)], H
4) ∩ C2,1(T2 × [0, Tmax(u0)))

to the equation (2) with B given by (3) or by (4). Moreover, if for a given T the solution verifies
the following bound ∫ T

0

‖u(s)‖L∞ds < ∞, (14)

then it may be extended up to time T + δ for small enough 0 < δ. Furthermore, under the restriction
1 ≤ α, the solution becomes real analytic.

Proof. The proof is similar to the one in [1]. �

4.2. Entropy estimates.

Lemma 2. Let 0 < s, 0 < α < 2, 0 < δ < α/(2 + 2s) and d ≥ 1. Then for a sufficiently smooth
u ≥ 0 (u ∈ L∞(Td) ∩Hα(Td) is enough) it holds

4s

(1 + s)2

∫

Td

|Λ
α
2 (u

s+1
2 )|2dx ≤

∫

Td

Λαu(x)us(x)dx. (15)

If additionally s ≤ 1, then

‖u‖2+2s

Ẇα/(2+2s)−δ,1+s(Td)
≤ C(α, s, δ, d)‖u‖1+s

L1+s(Td)

∫

Td

Λαu(x)us(x)dx. (16)

Similarly, let 0 < α < 2, 0 < δ < α/2 and d ≥ 1. Then for a sufficiently smooth u ≥ 0
(u ∈ Hα(Td) is enough) it holds

‖u‖2
Ẇα/2−δ,1 ≤ C(α, d, δ)‖u‖L1

∫

Td

Λαu(x) log(u(x))dx. (17)

Proof. Estimate (15) is called sometimes the Stroock-Varopulos or the Córdoba-Córdoba inequality,
compare [21,44]. Inequalities (16) and (17) are multidimensional versions of, respectively, Lemma 7
and Lemma 6 in Appendix B of [12]. For completeness, let us provide a proof for (16). Let us define

I =

∫

Td

us(x)Λαu(x)dx.

Using (10) and changing variables, we compute

I = cα,d

∫

Td

∑

k∈Zd,k 6=0

∫

T2

us(x)
u(x)− u(η)

|x − η + 2kπ|d+α
dηdx+ cα,d

∫

Td

P.V.

∫

Td

us(x)
u(x) − u(η)

|x− η|d+α
dηdx

= cα,d

∫

Td

∑

k∈Zd,k 6=0

∫

Td

us(η)
u(η)− u(x)

|η − x+ 2kπ|d+α
dηdx+ cα

∫

Td

P.V.

∫

Td

us(η)
u(η)− u(x)

|x− η|d+α
dηdx.

In particular

I ≥
cα,d
2

∫

Td

∫

Td

(us(x) − us(η))
u(x) − u(η)

|x− η|d+α
dηdx

=
cα,d
2

∫

Td

∫

Td

∫ 1

0

d

dλ
((λu(x) + (1 − λ)u(η))s)

u(x)− u(η)

|x− η|d+α
dηdx

=
cα,d
2

∫

Td

∫

Td

∫ 1

0

s

(λu(x) + (1− λ)u(η))1−s

(u(x)− u(η))2

|x− η|d+α
dλdηdx.

(18)
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Let us define

J =: ‖u‖1+s

Ẇβ,1+s
=

∫

Td

∫

Td

|u(x)− u(η)|1+s

|x− η|d+(1+s)β
dxdη.

Then we compute

J =

∫

Td

∫

Td

∫ 1

0

|u(x) − u(η)|1+s

|x− η|d+(1+s)β
dλdxdη

=

∫

Td

∫

Td

∫ 1

0

|u(x)− u(η)|

|x− η|d/2+(1+s)β−α/2

|u(x)− u(η)|s

|x− η|d/2+α/2

|λu(x) + (1− λ)u(η)|(1−s)/2

|λu(x) + (1− λ)u(η)|(1−s)/2
dλdxdη

=

∫

Td

∫

Td

∫ 1

0

F (x, η, λ)G(x, η, λ)dλdxdη,

where

F =
|u(x)− u(η)|

|x− η|d/2+α/2

1

|λu(x) + (1− λ)u(η)|(1−s)/2
,

G =
|u(x)− u(η)|s

|x− η|d/2+(1+s)β−α/2
|λu(x) + (1 − λ)u(η)|(1−s)/2.

Consequently

J ≤ ‖F‖L2(Td×Td×[0,1])‖G‖L2(Td×Td×[0,1]). (19)

On the one hand we have via (18)

‖F‖2L2(Td×Td×[0,1]) =

∫

Td

∫

Td

∫ 1

0

(u(x)− u(η))2

|x− η|d+α

dλdxdη

(λu(x) + (1− λ)u(η))1−s
≤

2

cαs
I.

On the other hand, since s ≤ 1

G2 =
|u(x)− u(η)|2s

|x− η|d/2+2(1+s)β−α
|λu(x) + (1− λ)u(η)|1−s

≤ C(s)
|u(x)|1+s + |u(η)|1+s

|x− η|d+2(1+s)β−α
= C(s)

|u(x)|1+s + |u(η)|1+s

|x− η|d−2(1+s)δ
,

where for the equality we have made the choice β = α
2+2s − δ. Therefore, after integration and use

of δ < α/(2 + 2s) < 1/(1 + s), we arrive at

‖G‖2L2(Td×Td×[0,1]) ≤ C(s, δ)‖u‖1+s
L1+s .

Estimates for F and G plugged into (19) give (16). As mentioned at the beginning, inequality (17)
is an analogous multidimensionalization of Lemma 6 in Appendix B of [12], as the just proved (16)
is in relation to Lemma 7 there. �

4.3. A priori energy estimates. Let us define

N = max{‖u0‖L1, 4π2}. (20)

Lemma 3 (Weak estimates). Let 0 < T < ∞ be arbitrary. Let u ∈ C([0, T );H2) be a non-negative
solution to (2) with B given either by (3) or by (4). Take any 0 < s such that

χs

s+ 1
≤ r. (21)
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Then for any t ∈ [0, T ]

sup
t∈[0,T ]

‖u(t)‖L1 ≤ N , (22)

∫ T

0

‖u(τ)‖2L2dτ ≤ N (1/r + T ), (23)

sup
t∈[0,T ]

‖u(t)‖Ls+1 ≤ erT‖u0‖Ls+1, (24)

∫ T

0

‖u
s+1
2 (τ)‖2

H
α
2
dτ ≤

r(1 + s)2

4s
erT ‖u

s+1
2

0 ‖2L2 (25)

(r(s+ 1)− χs)

∫ T

0

‖u(τ)‖s+2
Ls+2dτ ≤ [r(s+ 1)er(s+1)T + 1]‖u0‖

s+1
Ls+1, (26)

If additionally s ≤ 1, then for an arbitrary δ ∈
(
0, α

2+2s

)

∫ T

0

‖u(τ)‖2+2s

Ẇα/(2+2s)−δ,1+s
dτ ≤ C(α, s, δ)F1(T, r, s)‖u0‖

2s+2
Ls+1, (27)

where

F1(T, r, s) = (rT + s+ 1)e2rT .

Similarly, for any δ ∈
(
0, α

2

)

∫ T

0

‖u(τ)‖2
Ẇα/2−δ,1dτ ≤ C(α, δ)NF2(u0, T, r,N , χ), (28)

where

F2(u0, T, r,N , χ) = ‖u0‖
2
L2 +N (χ+ r + T + 1).

Proof. In view of (2), the ODE for ‖u(t)‖L1 reads

d

dt
‖u(t)‖L1 = r‖u(t)‖L1 − r‖u(t)‖2L2 . (29)

(We are allowed to write time derivatives of the space norms involved in this and the next proof,
thanks to our qualitative assumption u ∈ C([0, T );H2), which implies from equation (2) that ut ∈
L∞(L2).) Recalling Jensen’s inequality ‖u(t)‖2L1 ≤ 4π2‖u(t)‖2L2 , we get

d

dt
‖u(t)‖L1 ≤ r‖u(t)‖L1

(
1−

1

4π2
‖u(t)‖L1

)
.

Hence (22).
Let us integrate (29) between 0 and a chosen t to obtain

‖u(t)‖L1 − ‖u0‖L1 = r

∫ t

0

‖u(s)‖L1ds− r

∫ t

0

‖u(s)‖2L2ds,

thus

r

∫ t

0

‖u(s)‖2L2 ds ≤ ‖u0‖L1 − ‖u(t)‖L1 + r sup
0≤s≤t

‖u(s)‖L1t ≤ N + rN t

i.e. (23).
Testing (1) with us we get after two integrations by parts

1

s+ 1

d

dt

∫

T2

us+1dx+

∫

T2

usΛαu dx =

∫

T2

χs

s+ 1
us+1(∇ ·B)(u) + rus+1 − rus+2dx. (30)
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For the case of B given by (4) we have straightforwardly

∇ · B(u) = u− 〈u〉 ≤ u

Our another choice (3) for B implies

∇ · B(u) = Λβ(1 + Λβ)−1(u) =: Λβv,

consequently, by the non-negativity of u, we have

u = v + Λβv ≥ 0 =⇒ v ≥ −Λβv,

hence by a nonlocal weak minimum principle

v ≥ min v(x) = v(x∗) ≥ −Λβv(x∗) ≥ 0,

therefore we obtain also in the case (3) that

∇ · B(u) = u− v ≤ u. (31)

The inequality (30) gives via (31) and the Stroock-Varopulos inequality (15)

d

dt

∫

T2

us+1 +
4s

1 + s

∫

T2

|Λ
α
2 (u

s+1
2 )|2dx+ (r(s+ 1)− χs)

∫

T2

us+2 ≤ r(s + 1)

∫

T2

us+1. (32)

Therefore, for s satisfying (21) i.e. r(s+ 1)− χs ≥ 0, we get (24).
Integrating (32) in time and using next (24) we obtain (25) and

(r(s+ 1)− χs)

∫ t

0

∫

T2

us+2(x, τ)dxdτ ≤ [r(s+ 1)er(s+1)t + 1]

∫

T2

us+1
0 (x)dx,

which is (26).
Using the inequality (16) instead of (15) for the second term of l.h.s. of (30), we arrive at

‖u(t)‖1+s
L1+s

1

s+ 1

d

dt

∫

T2

us+1dx +
1

C(α, s, δ)
‖u(t)‖2+2s

Ẇα/(2+2s)−δ,1+s
≤ r‖u(t)‖2s+2

Ls+1 (33)

Time integration in (33) together with (24) imply
∫ T

0

‖u(t)‖2+2s

Ẇα/(2+2s)−δ,1+s
dt ≤ C(α, s, δ) sup

0≤t≤T
‖u(t)‖2s+2

Ls+1(rT + s+ 1),

which gives (27).
Let us define the functional

F =

∫

T2

u log(u)− u+ 1 dx.

We have, integrating twice by parts

d

dt
F =

∫

T2

∂tu log(u)dx ≤ −

∫

T2

Λαu log(u)dx+ χ

∫

T2

u (∇ ·B)(u)dx + r

∫

T2

log(u)dx.

Consequently, integrating in time and applying (23), we obtain

F(u(t)) +

∫ t

0

∫

T2

Λαu log(u)dx ≤ F(u(0)) + χN (1/r + T ) + rN (1/r + T + 4π2).

This, together with

F(u(0)) ≤

∫

{u(x,0)≥1}

u(x, 0)2dx+ 4π2 ≤ ‖u(0)‖2L2 + 4π2

implies

F(u(t)) +

∫ t

0

∫

T2

Λα(u) log(u) ≤ ‖u0‖
2
L2 + 2N (χ/r + T + 2π2r + 1). (34)
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Hence, using (17) and (22), we get (28). �

Lemma 4 (Strong estimates). Let 0 < T < ∞ be arbitrary. Let u ∈ C([0, T );H2) be a non-negative
solution to (2) with any 0 < α < 2, positive χ, β, r and B given either by (3) or by (4). If

α > 2

(
1−

r

χ

)
(35)

then for any finite p ≥ 1 there exist a finite C1(p, χ, r,N ) and C2(p, χ, r, α) such that

‖u‖L∞(0,T ;Lp) ≤ C1

(
eC2T + 1

)
‖u0‖

C2

Lp . (36)

Proof. Let us recall (32), valid a priori for any 0 < s < ∞. We have not used the dissipation in
the classical way there yet. Putting the last summand of l.h.s. of (32) to its r.h.s. and using the
Sobolev embedding

Hα/2 ⊂ L
2

1−α/2

for u
s+1
2 , we obtain

d

dt

∫

T2

us+1dx+ cs,α

(∫

T2

|u|
s+1

1−α/2 dx

)1−α/2

≤

∫

T2

χsus+2 + r(s + 1)us+1 − r(s + 1)us+2dx. (37)

Let m > 0 be a number, to be precised further. Inequality us+1 − us+2 ≤ 1 and interpolation

‖u‖Ls+2 ≤ C‖u‖θ
L

s+1
1−α/2

‖u‖1−θ
Lm

with θ =
m

s+2−1
m(2−α)
2(s+1)

−1
imply

d

dt

∫

T2

us+1dx+ cs,α‖u‖
s+1

L
s+1

1−α/2

≤ χs‖u‖
θ(s+2)

L
s+1

1−α/2

‖u‖
(1−θ)(s+2)
Lm + 4π2r(s + 1)

as long as the interpolation holds, i.e.

α(s+ 2) > 2 and m < s+ 2. (38)

Hence the Young inequality yields

d

dt

∫

T2

us+1dx+
cs,α
2

‖u‖s+1

L
s+1

1−α/2

≤ C(s, χ)‖u‖
(1−θ)(s+2)(s+1)
(s+1)−θ(s+2)

Lm + 4π2r(s+ 1).

Recalling the form of θ, we arrive at

d

dt

∫

T2

us+1dx+
cs,α
2

‖u‖s+1

L
s+1

1−α/2

≤ C(s, χ, r)

(
‖u‖

m(α(s+2)−2)
mα−2

Lm + 1

)
. (39)

Integrating (39) in time and neglecting the second term on its l.h.s., one has

‖u‖L∞(0,T ;Ls+1) ≤ C(s, χ, r)
(
|u|

γ
s+1

Lγ(0,T ;Lm) + T
1

s+1

)
+ ‖u0‖Ls+1, (40)

where

γ =:
m(α(s+ 2)− 2)

(mα− 2)
. (41)

Let us estimate coarsely (40) and obtain

‖u‖L∞(0,T ;Ls+1) ≤ C(s, χ, r)
(
‖u‖

γ
s+1

L∞(0,T ;Lm) + T
1

s+1

)
+ ‖u0‖Ls+1. (42)

It is valid as long as (38) and γ < ∞ hold, i.e.

α(s + 2) > 2, m < s+ 2, mα > 2. (43)

Observe that if in (42) one had chosen m = 1 given by (22), the needed finiteness of (41) would
coerce α > 2, compare the last inequality of (43). Fortunately, the logistic term provided us with
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(24). For r ≥ χ it implies our thesis immediately. For r < χ, choosing the largest integrability
exponent allowed in (24), i.e. r

χ−r , we have

sup
t∈[0,T ]

‖u(t)‖
L

χ
χ−r

≤ erT‖u0‖
L

χ
χ−r

.

Consequently, we can let m = χ
χ−r in (43) and obtain

‖u‖L∞(0,T ;Ls+1) ≤ C(s, χ, r)
(
(erT ‖u0‖

L
χ

χ−r
)

γ
s+1 + T

1
s+1

)
+ ‖u0‖Ls+1, (44)

for which suffices, according to (43),

s+ 1 >
2

α
− 1, s+ 1 >

χ

χ− r
, α >

2

m
= 2

(
1−

r

χ

)
. (45)

In view of the last condition of (45), for the first condition there suffices s + 1 > r
χ−r , which is in

our case r < χ weaker than the middle one. Interpolation in (44) of ‖u0‖
L

χ
χ−r

between ‖u0‖L1 and

‖u0‖Ls+1 yields (36). �

Remark 2. Estimate (40) or (42) may look appealing as a possible building block for a inductive
Moser-type procedure, aimed at obtaining bound for ‖u‖L∞(0,T ;L∞) < ∞, which would immediately
imply our main Theorem 2. But the power γ

s+1 in (40) exceeds 1.

Remark 3. Instead of using (42), one can try to improve a little the admissible range of α’s by
using (40) bounded by an interpolation of (24) and (26).

4.4. A nonlinear maximum principle. In this section we prove a new nonlinear maximum prin-
ciple in the same spirit as the ones in [20, 21].

Theorem 3. Let δ ∈ (0, 1), ∂x1∂x2φ = u ∈ C2(T2) and denote by x∗ the point such that

max
x∈T2

u(x) = u(x∗).

Then we have the following alternative:

(1) Either

‖u‖L∞ ≤ C1
α,δ‖φ‖Cδ ,

(2) or

Λαu(x∗) ≥ C2
α,δ

u(x∗)1+
α

2−δ

‖φ‖
1+ α

2−δ

Cδ

,

where Ci
α,δ are explicit constants depending only on α and δ.

Proof. Define a smooth cutoff function ζ(x) such that ζ(x) = 0 if |x| ≤ 1, ζ(x) = 1 if |x| ≥ 2. Notice
that ζ can be taken such that ‖ζ‖C2 ≤ C for a large enough C. Let R > 0 be a constant such that

R <
π

21+α
. (46)

This constant will be fixed later.
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Using the kernel representation for Λα and integrating by parts, we have

Λαu(x∗)

cα
≥ P.V.

∫

T2

u(x∗)− u(x∗ − y)

|y|2+α
dy

≥ P.V.

∫

T2

u(x∗)− ∂y1∂y2(φ(x
∗)− φ(x∗ − y))ζ(y/R)

|y|2+α
dy

≥ u(x∗)

∫

T2∩Bc
2R

1

|y|2+α
dy − ‖φ‖Cδ

∫

T2

|y|δ
∣∣∣∣∂y1∂y2

(
ζ(y/R)

|y|2+α

)∣∣∣∣ dy

≥ c1
u(x∗)

Rα
− c2

‖φ‖Cδ

R2+α−δ
,

where in the last equation we have used (46). Now let us choose

R = c3
‖φ‖

1/(2−δ)

Cδ

u(x∗)1/(2−δ)
,

and obtain that, if R fulfils (46),

Λαu(x∗) ≥ C2
α

u(x∗)1+
α

2−δ

‖φ‖
α

2−δ
.

Otherwise, R does not fulfil (46) and we conclude that

‖u‖L∞ ≤ C1
α‖φ‖Cδ .

�

Remark 4. A similar result holds in the case u ∈ S(R2).

5. Proof of Theorem 1

5.1. Approximate problems. Let T > 0 be an arbitrary fixed number. For ǫ ∈ (0, 1), we define
the following approximate problem on T

2

∂tuǫ = ǫ∆uǫ − Λαuǫ + χ∂(uǫB(uǫ)) + ru(1 − u), (47)

where B agrees with (3) or with (4). The mollified initial datum uǫ is given as

uǫ(0, x) = Jǫ ∗ u0(x) ≥ 0.

Along the lines of Lemma 1 we have local existence of a smooth solution uǫ. Furthermore, recalling
Theorem 2.5 of [48], we have global existence of regular solutions. Namely, the differences between
the system considered in [48] and (47) with B given by (3) are: presence of a smoothening −Λα in
(47) and more basic ‘boundary conditions’ in (47). In case of B given by (4) the proof is analogous.

5.2. Uniform estimates. We will use in what follows the thesis of Lemma 3 for uǫ in place of u,
since it holds for uǫ by the same token as for u. Recall that we denote

[k]+ =

{
k for 0 < k < ∞,

an arbitrary finite number otherwise (k < 0 or ∞).

Lemma 3 and the Young inequality for convolutions give the following ǫ-independent bounds

sup
0≤t≤T

‖uǫ(t)‖L1 ≤ N , (48)

∫ T

0

‖uǫ(τ)‖
2
L2dτ ≤ N (1/r + T ). (49)
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Furthermore, the largest

s0 =

[
r

χ− r

]

+

following from equality in (21), yields for any 1 < p ≤ [ χ
χ−r ]+

sup
0≤t≤T

‖uǫ(t)‖Lp ≤ erT ‖u0‖Lp , (50)

∫ T

0

‖u
p
2
ǫ (τ)‖

2

H
α
2
dτ ≤ C(r, s) erT ‖u

p
2
0 ‖

2
L2, (51)

where in the case r ≥ χ/2 we can have p = 2, as well as
∫ T

0

‖uǫ(τ)‖
1+p−

L1+p−
dτ ≤ C(r, p−, χ)[e(rp

−)T + 1]‖u0‖
p−

Lp−
. (52)

We have also
∫ T

0

‖uǫ(τ)‖
2
Ẇα/2−δ,1dτ ≤ C(α, δ)NF2(u0, T, r,N , χ) for any 0 < δ < α/2, (53)

where

F2(u0, T, r,N , χ) = ‖u0‖
2
L2 +N (χ+ r + T + 1).

Finally, for any s ≤ min(1, s0) it holds also
∫ T

0

‖uǫ(τ)‖
2+2s

Ẇα/(2+2s)−δ,1+s
dτ ≤ C(α, s, δ)F1(T, r, s)‖u0‖

2+2s
L1+s for any 0 < δ < α/(2 + 2s), (54)

where

F1(T, r, s) = (rT + s+ 1)e2rT .

5.3. Convergence. Due to the uniform bound (49) we have

∂tuǫ ∈ L2(0, T ;H−2) (55)

ǫ-uniformly bounded via a generous estimate of ∂tuǫ by the remainder of (47).
Let us recall the Aubin-Lions Theorem. If both q1, q0 ∈ (1,∞), then for a Gelfand’s triple of

reflexive Banach spaces X0 ⊂⊂ X ⊂ X1, the evolutionary space

Y = {h : h ∈ Lq0(0, T ;X0), ∂th ∈ Lq1(0, T ;X1)}

is compactly embedded in Lq0(0, T ;X).

5.3.1. Case 2r ≥ χ. Let us first consider the case 2r ≥ χ, where (51) holds with p = 2. Hence we
can extract a subsequence (hare and later, we denoted a subsequence again by uǫ) such that

uǫ ⇀ u in L2(0, T ;Hα/2).

Let us take the following Gelfand’s triple

X1 = H−2, X = L2, X0 = Hα/2.

The Aubin-Lions Theorem with q0 = q1 = 2 implies via (51) that

uǫ → u in L2(0, T ;L2).

This strong compactness is enough to pass to the limit in the weak formulation, since B of the
nonlinear term uB(u) is a compact operator in L2. As a consequence, u is a global weak solution (in
the sense of Definition 1) of the original system (1). Its regularity follows from the uniform bounds
(48) – (54) and the lower weak (or ∗-weak, where applicable) continuity of respective norms.
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5.3.2. Case 2r < χ. Let us explain how to adapt the proof for the second case r < χ/2, where the
largest s0 = [ r

χ−r ]+ = r
χ−r ∈ (0, 1) and p ≤ [ χ

χ−r ]+ = χ
χ−r < 2, in view of the bound on p of (50) –

(52). Instead of (51), we intend to use in this case (54). Notice that for s ≤ s0 = r
χ−r ∈ (0, 1) one

has

W (α/(2+2s))−,1+s ⊂⊂ Lξ, ξ <
4 + 4s

4− α
.

We choose now the related Gelfand’s triple

X1 = H−2, X = Lξ, X0 = W (α/(2+2s))−,1+s.

Hence the Aubin-Lions Theorem with q1 = 2, q0 = 2+2s implies that one can extract a subsequence
(denoted again by uǫ) such that

uǫ → u in L2+2s(0, T ;Lξ).

Let us observe that a limit passage in the chemotactic term uǫB(uǫ) is easier than in the term
u2
ǫ , since B is a compact operator in L2. Let us therefore consider the limit passage in the most

troublesome part −ru2
ǫ

r

∫ T

0

∫

T2

|(u2
ǫ − u2)φ| ≤ r‖φ‖L∞(L∞)‖uǫ − u‖L2+2s(Lξ)‖uǫ + u‖

L
2+2s
1+2s (Lξ′)

. (56)

In order to control the last term of (56), we want to use additionally (52). To this end one needs
ξ′ < 1 + p− (the other condition related to the time integrability always holds) or equivalently
ξ′ < χ

χ−r + 1, i.e.

ξ′ <
2χ− r

χ− r
⇐⇒

4 + 4s

α+ 4s
<

2χ− r

χ− r
⇐⇒ 4

χ(1− s)− r

2χ− r
< α

i.e. (11) for the best possible s = s0. Consequently, the right-hand-side of (56) vanishes as

ǫ → 0 thanks to strong convergence in L2+2s(0, T ;Lξ) and boundedness in L1+p−

(0, T ;L1+p−

) ⊂

L
2+2s
1+2s (Lξ′).

6. Proof of Theorem 2

This proof is independent from the proof of Theorem 1. For the sake of clarity in the exposition,
let us consider the case u0 ∈ Hk with k = 4, the cases k > 4 being similar. Eventually, we will
recover the cases k = 2, 3 (compare Section 6.4).

Let us take any u0 ∈ H4 and use Lemma 1 to obtain a classical local-in-time solution on the time
interval [0, Tmax):

u ∈ C([0, Tmax);H
4(T2)) ∩ C2,1(T2 × [0, Tmax(u0)))

to (2). The standard continuation argument for autonomous ODE in Banach spaces implies that
either Tmax = ∞ or Tmax < ∞ and

lim sup
t→Tmax

‖u(t)‖H4(T2) = ∞.

Then, due to Lemma 1, an estimate showing

‖u‖L∞(0,Tmax;L∞(T2)) ≤ G(Tmax) < ∞, (57)

provides us with the estimate

lim sup
t→Tmax

‖u(t)‖H4(T2) ≤ F (Tmax) < ∞,

and thus, it proves the global existence of solution.
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As in Theorem 3, let us denote by x∗
t the point such that

u(x∗
t , t) = max

x∈T2
u(x, t).

Let us also define

ū(t) = u(x∗
t , t).

Since u ∈ C1(T2 × (0, Tmax)), the function ū(t) is Lipschitz and, consequently, it has a derivative
almost everywhere. Using vanishing of a derivative at the point of maximum, we see that

d

dt
ū(t) = ∂tu(x

∗
t , t).

Inequality (31) for B given by (3) implies that the evolution of ū(t) follows

d

dt
ū+ Λαu(x∗

t , t) ≤ χū2 + rū(1− ū). (58)

6.1. The most-damped case r ≥ χ. Due to the weak maximum principle we obtain from (58)

d

dt
ū ≤ χū2 + rū(1 − ū),

and, if r ≥ χ, we conclude

ū(t) ≤ ertū(0).

6.2. The least-damped case 2r < χ. First, let us define

φ =

∫ x1

−π

∫ x2

−π

u(y1, y2)dy1dy2

and recall that the best possible choice of exponent:

p0 =
χ

χ− r
(59)

in (24) implies

sup
0≤t≤T

‖u(t)‖Lp0 ≤ erT‖u0‖Lp0 , (60)

compare (50). Notice that p0 ∈ (1, 2). It holds

|φ(x+ h)− φ(x)| =

∣∣∣∣∣

∫ x1+h1

x1

∫ x2+h2

x2

u(y1, y2)dy1dy2

∣∣∣∣∣ ≤ ‖u‖Lp0 (h1h2)
p0−1

p0 ≤ ‖u‖Lp02
1−p0
p0 |h|

2(p0−1)

p0

thus

‖φ‖
C

2(p0−1)
p0

≤ c‖u‖Lp0 . (61)

Inequality (61) used in our nonlinear maximum principle (Theorem 3) with δ = 2(p0−1)
p0

(< 1) implies

the following alternative:

Either ‖u‖L∞ ≤ C1
α‖φ‖Cδ ≤ cC1

α‖u‖Lp0 (62)

or Λαu(x∗) ≥ C2
α

u(x∗)1+
α

2−δ

‖φ‖
1+ α

2−δ

Cδ

≥ C2
α

u(x∗)1+
αp0
2

‖φ‖
1+

αp0
2

C
2(p0−1)

p0

≥ C2
α

u(x∗)1+
αp0
2

c‖u‖
1+

αp0
2

Lp0

. (63)
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Consequently, inequalities (60), (62) and (63) yield for u(t) being a classical local in time solution
to (2)

Either ‖u‖L∞(0,Tmax;L∞(T2)) ≤ c C1
α‖u‖L∞(0,Tmax;Lp0(T2)) ≤ c C1

αe
rT‖u0‖Lp0 ≤ C1, (64)

or Λαu(x∗
t , t) ≥

C2
αū(t)

1+
αp0
2

c‖u‖
1+

αp0
2

L∞(0,Tmax;Lp0(T2))

≥
C2

αū(t)
1+

αp0
2

ce(1+
αp0
2 )rT ‖u0‖

1+
αp0
2

Lp0

≥ C−1
1 ū(t)1+

αp0
2 , (65)

where C1 = C1(α, r, T, p0, ‖u0‖Lp0 ), but, more importantly, C1 being Tmax-independent and finite
for any T (for nonzero data). Inequality (64) has already the desired form (57). Our aim is now to
show that (65) also implies (57). Equation (58) together with (65) gives

d

dt
ū+ C−1

1 ū1+
αp0
2 ≤ (χ− r)ū2 + rū, (66)

hence, as long as it holds 1 + αp0

2 > 2 or, equivalently, (12) (via (59)), we obtain

d

dt
ū ≤ C2

Integration in time gives us again (57).

Remark 5. It may be appealing to use a stronger estimate of Lemma 4 instead of (60), in order to
obtain a wider admissibility range for α’a than (12). However, let us observe that the assumption
(35) of Lemma 4 coerces immediately (12). (interestingly, we obtained the same bound for our
pointwise proof and for the strong estimates.) It may suggest that Lemma 4 is useless, since it
provides merely L∞(Lp) estimates precisely in the range where we just proved smoothness (classical
solutions). It turns out that Lemma 4 will turn essential as a patch in the following section.

6.3. The intermediate case r < χ ≤ 2r. Recovering the full admissible range (12), i.e. α >

max
(
2− 2r

χ , 0
)
turns out to bear an unexpected difficulty in this case. Namely, now (59) in (60)

implies the optimal p0 = χ
χ−r ≥ 2, consequently the related δ = 2(p0−1)

p0
≥ 1, whereas our nonlinear

maximum principle (Theorem 3) allows for δ ∈ (0, 1). Of course we can choose a suboptimal p0 = 2−

and the related δ = 1−, but then to close the estimate (66), we need α > 1, which is an additional
bound in this intermediate range r < χ < 2r compared to (12). In order to cope with this obstacle,
let us use another nonlinear maximum principle in place of Theorem 3, namely Lemma 1 of [28],
Appendix A. It implies in place of the dichotomy (62) – (63)

Λαu(x∗
t ) ≥ C(α, p)

u(x∗)1+
αp
2

‖u‖
1+αp

2

Lp

. (67)

and, consequently, in place of (64) – (65) (we choose immediately p0 = χ
χ−r )

Λαu(x∗
t , t) ≥

C
(
α, χ

χ−r

)
ū(t)1+

α
χ

χ−r
2

‖u‖
1+

α
χ

χ−r
2

L∞(0,Tmax;L
χ

χ−r (T2))

≥
C
(
α, χ

χ−r

)
ū(t)1+

α
χ

χ−r
2

(
C1 (eC2T + 1) ‖u0‖

C2

L
χ

χ−r

)1+
α

χ
χ−r
2

≥ δ1ū(t)
1+

α
χ

χ−r
2 , (68)

where for the second inequality we used (36) of Lemma 4. Here

δ1 = δ1

(
α, r, χ, T,

χ

χ− r
, ‖u0‖

L
χ

χ−r

)
> 0. (69)
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Let us assume that the solution has a finite maximal lifespan Tmax. In particular, due to Lemma 1
and condition (14), we have that

∫ Tmax

0

‖u(s)‖L∞ds = ∞. (70)

Using (58), we have the inequality

d

dt
ū+ δ1ū

γ ≤ χū2 + rū(1− ū), (71)

where

γ := 1 +
α χ

χ−r

2
> 2,

because in the range α > max
(
2− 2r

χ , 0
)
it holds

1 +
α χ

χ−r

2
> 1 + max

(
χ− r

χ
, 0

)
χ

χ− r
= 2.

Inequality (71) implies the bound

sup
0≤t≤Tmax

‖u(t)‖L∞ ≤ C(α, r, u0, χ, Tmax).

This is a contradiction with (70).
The proof of the statement of Theorem 2 for k ≥ 4, including the last sentence of Theorem 2, is

complete.

Remark 6. Let us note that the recent argument for case r < χ ≤ 2r, based on Lemma 4 and
Lemma 1 of [28], works also fine for all the other cases. However, we decided in the case 2r < χ for
a proof that uses (and thus presents in action) a new nonlinear maximum principle, since we believe
it may be of independent interest.

6.4. Lowering the initial regularity. Finally, in order to allow for a lower regularity data u0 ∈
Hk, k > 1 observe that the entire proof can be made for a solution to (2) with a mollified uǫ

0 ∈ H4.
We obtain then a classical solution uǫ with an ǫ−uniform bound (13), since for k > 1 it holds
Hk ⊂ L∞.

In [1] the following estimate is obtained

‖uǫ(t)‖Ḣ2 ≤ ‖uǫ
0‖Ḣ2e

∫
t
0
‖∇B‖L∞ds (72)

for the case where B verifies (4). A similar estimate holds also when B solves (3). Recalling the
classical inequality (see formula (3.2b) and Appendix 1 in [32])

‖T f‖L∞ ≤ c(‖f‖Lp + ‖f‖L∞ max{1, log(‖f‖W s−1,p/‖f‖L∞))}, 1 < p < ∞, s > 1 + 2/p

where T is a singular integral operator of Calderón-Zygmund type and using that ∇B is a zeroth
order singular integral operator, we have that

‖∇B‖L∞ ≤ c(‖uǫ‖L2 + ‖uǫ‖L∞ max{1, log(c‖uǫ‖Ḣ2)}),

since, using mass conservation, ‖f‖H2/‖f‖L∞ ≤ 4π2‖f‖Ḣ2/‖f‖L1 + c ≤ c‖f‖H2 + c. Using (13) to
the r.h.s. above and then plugging the resulting estimate into (72), we obtain the uniform estimate

‖uǫ(t)‖Ḣ2 ≤ H(T, ‖u0‖L1 , ‖u0‖L∞ , ‖u0‖Ḣ2 , α, r, χ),

where H is an explicit function depending on F in (13). For the case k = 3 we can repeat the same
ideas and obtain that

‖uǫ(t)‖Ḣ3 ≤ K(T ‖u0‖L1 , ‖u0‖L∞ , ‖u0‖Ḣ2 , ‖u0‖Ḣ3 , α, r, χ),
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where K is another explicit function depending on F in (13) and H .
Summing up, we can close estimate (72) ǫ−uniformly, hence (for an arbitrary T < ∞) obtaining

the respective ǫ−uniform estimates in

uǫ ∈ L∞(0, T ;Hk(T2)) ∩ L2(0, T ;Hk+α/2(T2)), k = 2, 3

Then we can pass to the limit and obtain

u ∈ L∞(0, T ;Hk(T2)) ∩ L2(0, T ;Hk+α/2(T2)), k = 2, 3

that solves (2) in a weak sense. Moreover, using the structure of the Gronwall’s inequality (72) to
obtain the continuity at time t = 0 and the gain of regularity to obtain the continuity at later times
t > 0, we have that

u ∈ C([0, T );Hk(T2)).
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[39] P.G. Lemarié–Rieusset, Small data in an optimal Banach space for the parabolic-parabolic and parabolic-elliptic

Keller–Segel equations in the whole space Adv. Differential Equations, 18, no. 11/12, 1189–1208, 2013.
[40] D. Li and J. Rodrigo. Finite-time singularities of an aggregation equation in Rn with fractional dissipation.

Communications in mathematical physics, 287(2):687–703, 2009.
[41] D. Li, J. Rodrigo, and X. Zhang. Exploding solutions for a nonlocal quadratic evolution problem. Revista Matem-

atica Iberoamericana, 26(1):295–332, 2010.
[42] D. Li and J. L. Rodrigo. Refined blowup criteria and nonsymmetric blowup of an aggregation equation. Advances

in Mathematics, 220(6):1717–1738, 2009.
[43] D. Li, J. L. Rodrigo, et al. Wellposedness and regularity of solutions of an aggregation equation. Revista
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