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Abstract. We consider the 1D transport equation with nonlocal velocity field:

θt + uθx + νΛγ
θ = 0,

u = N (θ),

where N is a nonlocal operator. In this paper, we show the existence of solutions of this model
locally and globally in time for various types of nonlocal operators.

1. Introduction

In this paper, we study transport equations with nonlocal velocity. One of the most well-known
equation is the two dimensional Euler equation in vorticity form,

ωt + u · ∇ω = 0,

where the velocity u is recovered from the vorticity ω through

u = ∇⊥(−∆)−1ω or equivalently û(ξ) =
iξ⊥

|ξ|2 ω̂(ξ).

Other nonlocal and quadratically nonlinear equations, such as the surface quasi-geostrophic equa-
tion, the incompressible porous medium equation, Stokes equations, magneto-geostrophic equation
in multi-dimensions, have been studied intensively as one can see in [1, 2, 5, 6, 7, 8, 9, 12, 15, 16,
18, 19, 21] and references therein.

We here consider the 1D transport equations with nonlocal velocity field of the form

θt + uθx + νΛγθ = 0, (1.1a)

u = N (θ), (1.1b)

where N is typically expressed by a Fourier multiplier. The study of (1.1) is mainly motivated by
[11] where Córdoba, Córdoba, and Fontelos proposed the following 1D model

θt + uθx = 0, (1.2a)

u = −Hθ, (H being the Hilbert transform) (1.2b)

for the 2D surface quasi-geostrophic equation and proved the finite time blow-up of smooth solu-
tions. In this paper, we deal with (1.2) and its variations with the following objectives.

(1) The existence of weak solution with rough initial data. The existence of global-in-time solutions
is possible even if strong solutions blow up in finite time, as in the case of the Burgers’ equation.
(2) The existence of strong solution when the velocity u is more singular than θ. We intend to see
the competitive relationship between nonlinear terms and viscous terms.

More specifically, the topics covered in this paper can be summarized as follows.

• The model 1: N = −H and ν = 0. We first show the existence of local-in-time solution
in a critical space under the scaling θ0(x) 7→ θ0(λx). We then introduce the notion of a weak
super-solution and obtain a global-in-time weak super-solution with θ0 ∈ L1 ∩ L∞ and θ0 ≥ 0.
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• The model 2: N = −H(∂xx)
−α, α > 0, ν = 1, and γ > 0. This is a regularized version of

(1.2) which is also closely related to many equations as mentioned in [3]. In this case, we show the
existence of weak solutions globally in time under weaker conditions on α and γ compared to [3].

• The model 3: N = −H(∂xx)
β, β > 0, ν = 1, and γ > 0. Since β > 0, the velocity field is

more singular than the previous two models. In this case, we show the existence of strong solutions
locally in time in two cases: (1) 0 < β ≤ γ

4 when 0 < γ < 2 and (2) 0 < β < 1 when γ = 2. We

also show the existence of strong solutions for 0 < β < 1
2 and γ = 2 with rough initial data. We

finally show the existence of strong solutions globally in time with 0 < β < 1
4 and γ = 2.

We will give detailed statements and proofs of our results in Section 3–5.

2. Preliminaries

All constants will be denoted by C that is a generic constant. In a series of inequalities, the
value of C can vary with each inequality. We use following notation: for a Banach space X,

CTX = C([0, T ] : X), L
p
TX = Lp(0, T : X).

The Hilbert transform is defined as

Hf(x) = p.v.

∫

R

f(y)

x− y
dy.

We will use the BMO space (see e.g. [4] for the definition) and its dual which is the Hardy space
H1 which consists of those f such that f and Hf are integrable. We will use the following formula

2H(fHf) = (Hf)2 − f2

which implies that g = fHf ∈ H1 and for any f ∈ L2,

‖g‖H1 ≤ ‖f‖2L2 . (2.1)

The differential operator Λγ = (
√
−∆)γ is defined by the action of the following kernels [10]:

Λγf(x) = cγp.v.

∫

R

f(x)− f(y)

|x− y|1+γ
dy, (2.2)

where cγ > 0 is a normalized constant. Alternatively, we can define Λγ = (
√
−∆)γ as a Fourier

multiplier: Λ̂γf(ξ) = |ξ|γ f̂(ξ). When γ = 1, Λf(x) = Hfx(x).
We finally introduce Simon’s compactness.

Lemma 2.1. [22] Let X0, X1, and X2 be Banach spaces such that X0 is compactly embedded in
X1 and X1 is a subset of X2. Then, for 1 ≤ p <∞, the set

{
v ∈ L

p
TX0 :

∂v
∂t ∈ L1

TX2

}
is compactly

embedded in Lp
TX1.

3. The model 1

We now study (1.1) with N = −H and ν = 0 which is nothing but (1.2):

θt − (Hθ) θx = 0, (3.1a)

θ(0, x) = θ0(x). (3.1b)
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3.1. Local well-posedness. The local well-posedness of (3.1) is established in H2 ([2]) and H
3

2
−γ

with the viscous term Λγθ ([13]). To improve these results, we first notice that (3.1) has the following
scaling invariant property: if θ(t, x) is a solution of (3.1), then so is θλ(t, x) = θ(λt, λx). So, we take
initial data in a space whose norm is closely invariant under the scaling: θ0(x) 7→ θλ0(x) = θ0(λx).

In this paper, we take the space Ḃ
3

2

2,1 because there is a constant C such that

C−1 ‖θλ0‖
Ḃ

3
2
2,1

≤ ‖θ0‖
Ḃ

3
2
2,1

≤ C ‖θλ0‖
Ḃ

3
2
2,1

.

The mathematical tools needed to prove the local well-posedness of (3.1), such as the Littlewood-
Paley decomposition and Besov spaces, are provided in the appendix. We also need the following
commutator estimate [4, Lemma 2.100, Remark 2.101].

Lemma 3.1 (Commutator estimate). For f, g ∈ S

‖[f,∆j]gx‖L2 ≤ Ccj2
− 3

2
j ‖fx‖

Ḃ
1
2
2,1

‖g‖
Ḃ

3
2
2,1

,

∞∑

j=−∞

cj ≤ 1.

The first result in this paper the following theorem.

Theorem 3.1. For any θ0 ∈ Ḃ
3

2

2,1, there exists T = T (‖θ0‖) such that a unique solution of (3.1)

exists in CT Ḃ
3

2

2,1.

Proof. We only provide a priori estimates of θ in the space stated in Theorem 3.1. The other parts,
including the approximation procedure, are rather standard.

We apply ∆j to (3.1), multiply by ∆jθ, and integrate the resulting equation over R to get

1

2

d

dt
‖∆jθ‖2L2 =

∫

R

∆j ((Hθ)θx)∆jθdx

=

∫

R

((Hθ)∆jθx)∆jθdx+

∫

R

[∆j,Hθ]∆jθx∆jθdx

= −1

2

∫

R

(Hθ)x |∆jθ|2 dx+

∫

R

[∆j ,Hθ]∆jθx∆jθdx.

(3.2)

By the Bernstein inequality, we have

‖Hθx‖L∞ ≤ C‖θ‖
Ḃ

3
2
2,1

. (3.3)

We then apply Lemma 3.1 to the second term in the right-hand side of (3.2) to obtain
∫

R

[∆j,Hθ]∆jθx∆jθdx ≤ Ccj2
− 3

2
j‖θ‖2

Ḃ
3
2
2,1

‖∆jθ‖L2 . (3.4)

By (3.2), (3.3), and (3.4), we have

d

dt
‖θ‖2

Ḃ
3
2
2,1

≤ C‖θ‖3
Ḃ

3
2
2,1

,

from which we deduce

‖θ(t)‖
Ḃ

3
2
2,1

≤
‖θ0‖

Ḃ
3
2
2,1

1− Ct‖θ0‖
Ḃ

3
2
2,1

≤ 2‖θ0‖
Ḃ

3
2
2,1

for all t ≤ T =
1

2C‖θ0‖
Ḃ

3
2
2,1

.

This completes the proof. �
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3.2. Global weak super-solution. We next consider (3.1) with rough initial data. More precisely,
we assume that θ0 satisfies the following conditions

θ0 ≥ 0, θ0 ∈ L1 ∩ L∞. (3.5)

Since θ satisfies the transport equation, we have

θ(t, x) ≥ 0, θ ∈ L∞(R) for all time. (3.6)

If we follow the usual weak formulation of (3.1), for all φ ∈ C∞
c ([0,∞) × R)

∫ T

0

∫

R

[θψt − (Hθ) θψx + (Λθ) θψ] dxdt =

∫

R

θ0(x)ψ(x, 0)dx. (3.7)

For θ0 ≥ 0, there is gain of a half derivative from the structure of the nonlinearity, that is

‖θ(t)‖L1 +

∫ t

0

∥∥∥Λ 1

2 θ(s)
∥∥∥
2

L2
ds = ‖θ0‖L1 . (3.8)

So, we can rewrite the left-hand side of (3.7) as
∫ T

0

∫

R

[
θψt − (Hθ) θψx + Λ

1

2 θ
[
Λ

1

2 , ψ
]
θ +

∣∣∣Λ 1

2 θ
∣∣∣
2
ψ

]
dxdt =

∫

R

θ0(x)ψ(x, 0)dx.

However, the Ḣ
1

2 regularity derived from (3.8) is not enough to pass to the limit in
∫ T

0

∫

R

∣∣∣Λ 1

2 θǫ
∣∣∣
2
ψdxdt

from the ǫ-regularized equations described below. So, we introduce a new notion of solution. Let

AT = L∞
T

(
L1 ∩ L∞

)
∩ L2

TH
1

2 .

Definition 3.2. We say θ is a weak super-solution of (3.1) on the time interval [0, T ] if θ(t, x) ≥ 0
for all t ∈ [0, T ], θ ∈ AT , and for each nonnegative ψ ∈ C∞

c ([0, T ]× R),
∫ T

0

∫

R

[
θψt − (Hθ) θψx + Λ

1

2 θ
[
Λ

1

2 , ψ
]
θ +

∣∣∣Λ 1

2 θ
∣∣∣
2
ψ

]
dxdt ≥

∫

R

θ0(x)ψ(x, 0)dx. (3.9)

To prove Theorem 3.3, we need to estimate a commutator term involving Λ
1

2 :[
Λ1/2, ψ

]
(f − g) ∈ L6

which is proved in [3].

Lemma 3.2. For f ∈ L
3

2 , g ∈ L 3

2 and ψ ∈W 1,∞, we have∥∥∥
[
Λ

1

2 , ψ
]
f −

[
Λ

1

2 , ψ
]
g
∥∥∥
L6

≤ C‖ψ‖W 1,∞ ‖f − g‖
L

3
2
.

The second result in our paper is the following theorem.

Theorem 3.3. For any θ0 satisfying (3.5), there exists a weak super-solution of (3.1) in AT .

Proof. We first regularize initial data as θǫ0 = ρǫ ∗ θ0 where ρǫ is a standard mollifier that preserve
the positivity of the regularized initial data. We then regularize the equation by introducing the
Laplacian term with a coefficient ǫ > 0, namely

θǫt −Hθǫθǫx = ǫθǫxx. (3.10)

For the proof of the existence of a global-in-time smooth solution we refer to [17]. Moreover, θǫ

satisfies that θǫ ≥ 0 and

‖θǫ(t)‖L1 + ‖θǫ(t)‖L∞ +

∫ t

0

∥∥∥Λ 1

2 θǫ(s)
∥∥∥
2

L2
ds ≤ ‖θ0‖L1 + ‖θ0‖L∞ .
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Therefore, (θǫ) is bounded in AT uniformly in ǫ > 0.
From this, we have uniform bounds

Hθǫ ∈ L4
TL

2, θǫ ∈ L2
TL

2, ((Hθǫ) θǫ)x ∈ L
4

3

TH
−2, ǫθǫxx ∈ L2

TH
−2.

Moreover, for any φ ∈ H2,
∫

R

|θǫΛθǫφ| dx ≤
∥∥∥Λ 1

2 θǫ
∥∥∥
2

L2
‖φ‖L∞ +

∥∥∥Λ 1

2 θǫ
∥∥∥
L2

‖θǫ‖L∞

∥∥∥Λ 1

2φ
∥∥∥
L∞

which implies that

θǫΛθǫ ∈ L1
TH

−2.

Combining all together, we obtain

θǫt = Hθǫθǫx + ǫθǫxx = (Hθǫθǫ)x − θǫΛθǫ + ǫθǫxx ∈ L1
TH

−2.

To pass to the limit into the weak super-solution formulation, we extract a subsequence of (θǫ),
using the same index ǫ for simplicity, and a function θ ∈ AT such that

θǫ
⋆
⇀ θ in L∞

T

(
Lp ∩H 1

2

)
for all p ∈ (1,∞),

θǫ ⇀ θ in L2
TH

1

2 ,

θǫ → θ in L2
TL

p for all 1 < p <∞,

(3.11)

where we use Lemma 2.1 for the strong convergence with

X0 = L2
TH

1

2 , X1 = L2
TL

p, X2 = L1
TH

−2.

We now multiply (3.10) by a test function ψ ∈ C∞
c ([0, T ) × R) and integrate over R. Then,

∫ T

0

∫ [
θǫψt − (Hθǫ) θǫψx︸ ︷︷ ︸

I

+ǫθǫψxx

]
dxdt−

∫
θǫ0(x)ψ(0, x)dx

= −
∫ T

0

∫
Λ

1

2 θǫ
[
Λ

1

2 , ψ
]
θǫ

︸ ︷︷ ︸
II

dxdt−
∫ T

0

∫ ∣∣∣Λ 1

2 θǫ
∣∣∣
2
ψ

︸ ︷︷ ︸
III

dxdt.

(3.12)

We note that we are able to rearrange terms in the usual weak formulation into (3.12) since θǫ

is smooth. By the strong convergence in (3.11), we can pass to the limit to I. Moreover, since
[
Λ

1

2 , ψ
]
θǫ →

[
Λ

1

2 , ψ
]
θ

strongly in L2
TL

6 by Lemma 3.2 and the strong convergence in (3.11), we can pass to the limit to
II. Lastly, by Fatou’s lemma,

lim
ǫ→0

∫ T

0

∫ ∣∣∣Λ 1

2 θǫ
∣∣∣
2
ψdxdt ≥

∫ T

0

∫ ∣∣∣Λ 1

2 θ
∣∣∣
2
ψdxdt.

Combining all the limits together, we obtain that

∫ T

0

∫

R

[
θψt − (Hθ) θψx + Λ

1

2 θ
[
Λ

1

2 , ψ
]
θ +

∣∣∣Λ 1

2 θ
∣∣∣
2
ψ

]
dxdt ≥

∫

R

θ0(x)ψ(x, 0)dx. (3.13)

This completes the proof. �
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4. The model 2

We now consider the following equation:

θt −
(
H(∂xx)

−αθ
)
θx + Λγθ = 0, (4.1a)

θ(0, x) = θ0(x), (4.1b)

where α, γ > 0. In this case, we focus on the existence of weak solutions under some conditions of
(α, γ). As before, we assume that θ0 satisfies the following conditions

θ0 ≥ 0, θ0 ∈ L1 ∩ L∞. (4.2)

Let

BT = L∞
T

(
L1 ∩ L∞

)
∩ L2

TH
γ
2 .

Definition 4.1. We say θ is a weak solution of (4.1) on the time interval [0, T ] if θ(t, x) ≥ 0 for
all t ∈ [0, T ], θ ∈ BT , and for each ψ ∈ C∞

c ([0, T ] × R),
∫ T

0

∫

R

[
θψt −

(
H(∂xx)

−αθ
)
θψx − Λ1− γ

2 (∂xx)
−αθΛ

γ
2 (θψ)− θΛγψ

]
dxdt =

∫

R

θ0(x)ψ(x, 0)dx.

The third result in the paper is the following.

Theorem 4.2. Suppose that two positive numbers α and γ satisfy

0 < γ < 1, α ≥ 1

2
− γ

2
. (4.3)

Then, for any θ0 satisfying (4.2), there exists a weak solution of (4.1) in BT for all T > 0.

Proof. As in the proof of Theorem 3.3, we regularize θ0 and the equation as

θǫ0 = ρǫ ∗ θ0, θǫt −
(
H(∂xx)

−αθǫ
)
θǫx + Λγθǫ = ǫθǫxx. (4.4)

Then, the corresponding θǫ satisfies

θǫ(t, x) ≥ 0, ‖θǫ(t)‖L∞ ≤ ‖θ0‖L∞ for all time (4.5)

and

‖θǫ(t)‖L1 +

∫ t

0

∥∥∥Λ 1

2 (∂xx)
−α

2 θǫ(s)
∥∥∥
2

L2
ds ≤ ‖θ0‖L1 . (4.6)

We next multiply (4.4) by θǫ and integrate over R. Then,

1

2

d

dt
‖θǫ(t)‖2L2 +

∥∥∥Λ
γ
2 θǫ(t)

∥∥∥
2

L2
+ ǫ ‖θǫx‖2L2 = −1

2

∫

R

{
Λ(∂xx)

−αθǫ(t)
}
(θǫ(t))2dx

= −1

2

∫

R

{
Λ1− γ

2 (∂xx)
−αθǫ(t)

}
Λ

γ
2 (θǫ(t))2dx

≤ C
∥∥∥Λ1− γ

2 (∂xx)
−αθǫ(t)

∥∥∥
L2

∥∥∥Λ
γ
2 θǫ(t)

∥∥∥
L2

‖θǫ(t)‖L∞

≤ 1

2

∥∥∥Λ
γ
2 θǫ(t)

∥∥∥
2

L2
+ C

∥∥∥Λ1− γ
2 (∂xx)

−αθǫ(t)
∥∥∥
2

L2
‖θǫ(t)‖2L∞ .

By (4.3), (4.5) and (4.6), we obtain

‖θǫ(t)‖2L2 +

∫ t

0

∥∥∥Λ
γ
2 θǫ(s)

∥∥∥
2

L2
ds+ ǫ

∫ t

0
‖θǫx(s)‖2L2 ds ≤ C‖θ0‖2L1‖θ0‖2L∞ . (4.7)

Therefore, (θǫ) is bounded in BT uniformly in ǫ > 0.
From this, we have uniform bounds

{(
H(∂xx)

−αθ
)
θ
}
x
∈ L2

TL
2, Λγθǫ + ǫθǫxx ∈ L2

TH
−2.
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Moreover, the condition (4.3) implies that
(
Λ(∂xx)

−αθǫ
)
θǫ ∈ L1

TH
−1.

Combining all together, we also derive that

θǫt ∈ L1
TH

−2.

We now multiply (4.4) by a test function ψ ∈ C∞
c ([0, T )× R) and integrate over R. Then,

∫ T

0

∫ [
θǫψt −

(
H(∂xx)

−αθǫ
)
θǫψx︸ ︷︷ ︸

I

+Λγθǫ + ǫθǫψxx

]
dxdt−

∫
θǫ0(x)ψ(0, x)dx

=

∫ T

0

∫
Λ1− γ

2H(∂xx)
−αθǫΛ

γ
2 (θǫψ)︸ ︷︷ ︸

II

dxdt.

(4.8)

To pass the limit to this formulation, we extract a subsequence of (θǫ), using the same index ǫ
for simplicity, and a function θ ∈ BT such that

θǫ
⋆
⇀ θ in L∞

T

(
Lp ∩H 1

2

)
for all p ∈ (1,∞),

θǫ ⇀ θ in L2
TH

γ
2 ,

θǫ → θ in L2
TH

1− γ
2
−2α ∩ L2

TL
p for all 1 < p <∞,

(4.9)

where we use Lemma 2.1 for the strong convergence with the condition (4.3) and

X0 = L2
TH

γ
2 , X1 = L2

TH
1− γ

2
−2α ∩ L2

TL
p, X2 = L1

TH
−2.

By the strong convergence in (4.9), we can pass to the limit to I and II in (4.8). Therefore, we
obtain

∫ T

0

∫

R

[
θψt −

(
H(∂xx)

−αθ
)
θψx − Λ1− γ

2 (∂xx)
−αθΛ

γ
2 (θψ)− θΛγψ

]
dxdt =

∫

R

θ0(x)ψ(x, 0)dx.

This completes the proof of Theorem 4.2. �

Remark. Theorem 4.2 improves Theorem 1.4 in [3], where (α, γ) is assumed to satisfy α ≥ 1
2 −

γ
4 .

The main idea of taking weaker regularization in (4.1) is that the Hilbert transform in front of
(1− ∂xx)

−α gives (4.6) which makes to obtain (4.7). We choose α > 1
2 −

γ
2 instead of α ≥ 1

2 −
γ
2 to

apply compactness argument when we pass to the limit to ǫ-regularized equations.

5. The model 3

In this section, we consider the following equation

θt −
(
H(∂xx)

βθ
)
θx + Λγθ = 0, (5.1a)

θ(0, x) = θ0(x) (5.1b)

where β, γ > 0. Depending on the range of β and γ, we will have four different results.

5.1. Local well-posedness. We begin with the local well-posedness result.

Theorem 5.1. Let 0 < γ < 2 and 0 < β ≤ γ
4 . For θ0 ∈ H2(R) there exists T = T (‖θ0‖H2) such

that a unique solution of (5.8) exists in C
(
[0, T );H2(R)

)
. Moreover, we have the following blow-up

criterion:

lim sup
tրT ∗

‖θ(t)‖H2 = ∞ if and only if

∫ T ∗

0

(
‖ux(s)‖L∞ + ‖θx(s)‖L∞

)
ds = ∞. (5.2)
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Proof. Let u = −H(∂xx)
βθ. Operating ∂lx on (5.8), taking its L2 inner product with ∂lxθ, and

summing over l = 0, 1, 2,

1

2

d

dt
‖θ(t)‖2H2 +

∥∥∥Λ
γ
2 θ

∥∥∥
2

H2
= −

2∑

l=0

∫
∂lx(uθx)∂

l
xθdx

= −
2∑

l=0

∫ (
∂lx(uθx)− u∂lxθx

)
∂lxθdx−

2∑

l=0

∫
u∂lxθx∂

l
xθdx = I1 + I2.

(5.3)

Using the commutator estimate in [14]
∑

|l|≤2

∥∥∥Dl(fg)− fDlg
∥∥∥
L2

≤ C
(
‖∇f‖L∞ ‖Dg‖L2 +

∥∥D2f
∥∥
L2 ‖g‖L∞

)
,

we have

I1 ≤
2∑

l=0

∥∥∥∂lx(uθx)− u∂lxθx

∥∥∥
L2

‖θ‖H2 ≤ C (‖ux‖L∞‖θ‖H2 + ‖u‖H2‖θx‖L∞) ‖θ‖H2

≤ Cκ

(
‖ux‖L∞ + ‖θx‖2L∞

)
‖θ‖2H2 + κ‖u‖2H2 .

(5.4)

And by integration by parts,

I2 = −1

2

2∑

l=0

∫
u∂x

∣∣∣∂lxθ
∣∣∣
2
dx =

1

2

2∑

l=0

∫
ux

∣∣∣∂lxθ
∣∣∣
2
dx ≤ C‖ux‖L∞‖θ‖2H2 . (5.5)

Since β ≤ γ
4 , for a sufficiently small κ > 0

κ‖u‖2H2 ≤ 1

2

∥∥∥Λ
γ
2 θ

∥∥∥
2

H2
.

By (5.4) and (5.5), we obtain

d

dt
‖θ‖2H2 +

∥∥∥Λ
γ
2 θ

∥∥∥
2

H2
≤ C

(
‖ux‖L∞ + ‖θx‖2L∞

)
‖θ‖2H2 ≤ C‖θ‖3H2 + C‖θ‖4H2 , β ≤ γ

4
(5.6)

from which we deduce that there is T = T (‖θ0‖H2) such that

‖θ(t)‖H2 ≤ 2‖θ0‖H2 for all t < T.

(5.6) also implies (5.2).
To show the uniqueness, let θ1 and θ2 be two solutions of (5.8), and let θ = θ1−θ2 and u = u1−u2.

Then, (θ, u) satisfies the following equations

θt + u1θx − uθ2x = −Λγθ, u = −H(∂xx)
βθ, θ(0, x) = 0.

By taking the L2 product of the equation with θ,

d

dt
‖θ‖2L2 + 2

∥∥∥Λ
γ
2 θ

∥∥∥
2

L2
≤ C (‖u1x‖L∞ + ‖θ2x‖L∞) ‖θ‖2L2 ≤ C

(∥∥∥Λ
γ
2 θ1

∥∥∥
H2

+ ‖θ2‖H2

)
‖θ‖2L2 .

So, θ = 0 in L2 and thus a solution is unique. This completes the proof of Theorem 5.1. �

Theorem 5.1 provides a local existence result for β ր 1
2 as γ ր 2. But, we can increase the

range of β when we deal with (5.8) directly with γ = 2 because we can do the integration by parts.

Theorem 5.2. Let γ = 2 and 0 < β < 1. For θ0 ∈ H2(R) there exists T = T (‖θ0‖H2) such that a
unique solution of (5.8) exists in C

(
[0, T );H2(R)

)
.
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Proof. We begin the L2 bound:

1

2

d

dt
‖θ‖2L2 + ‖θx‖2L2 ≤ ‖θ‖L∞

∥∥∥H(∂xx)
βθ

∥∥∥
L2

‖θx‖L2 ≤ C‖θ‖3H2 .

We next estimate θxx. Indeed, after several integration parts, we have

1

2

d

dt
‖θ‖2

Ḣ2 + ‖θ‖2
Ḣ3 = −

∫ {
H(∂xx)

βθx

}
θxθxxxdx+

1

2

∫ {
H(∂xx)

βθx

}
θxxθxxdx = I1 + I2.

When 0 < β < 1,

|I1| ≤ ‖θx‖L∞

∥∥∥H(∂xx)
βθx

∥∥∥
L2

‖θxxx‖L2 = ‖θx‖L∞

∥∥∥Λ2β+1θ
∥∥∥
L2

‖θxxx‖L2

≤ C ‖θ‖H2 ‖θx‖1−β
L2 ‖θxxx‖1+β

L2 ≤ C ‖θ‖4H2 + C ‖θ‖
4−2β
1−β

H2 +
1

4
‖θxxx‖2L2 .

And

|I2| ≤
∥∥∥H(∂xx)

βθx

∥∥∥
L2

‖θxx‖2L4 ≤ C
∥∥∥H(∂xx)

βθx

∥∥∥
L2

‖θxx‖
3

2

L2 ‖θxxx‖
1

2

L2 ≤ C ‖θ‖4H2 +
1

4
‖θxxx‖2L2 .

Therefore, we obtain

d

dt
‖θ‖2H2 + ‖θx‖2H2 ≤ C ‖θ‖4H2 + C ‖θ‖

4−2β
1−β

H2 . (5.7)

This implies that there exists T = T (‖θ0‖H2) such that there exists a unique solution of (5.8) in
C
(
[0, T );H2(R)

)
. �

We may lower the regularity of the initial data to prove a local existence result of a weak solution

by considering initial data in Ḣ
1

2 . The main tools to achieve this will be the use of the Hardy-BMO
duality together with interpolation arguments. However, in order to simplify the computation, we
consider an equivalent equation by changing the sign of the nonlinearity:

θt +
(
H(−∂xx)βθ

)
θx + Λγθ = 0, (5.8a)

θ(0, x) = θ0(x) (5.8b)

This can be obtained from (5.8) via θ 7→ −θ. For this equation, we do Ḣ
1

2 estimates and prove
that there exists a local existence of a unique solution in that special case.

Theorem 5.3. Let γ = 2 and 0 < β < 1
2 . For any θ0 ∈ Ḣ

1

2 (R), there exists T = T (‖θ0‖
Ḣ

1
2
) such

that there exists a unique local-in-time solution in C([0, T ); Ḣ
1

2 (R)) ∩ L2
(
[0, T );H

3

2 (R)
)
.

Proof. By recalling that Λ2β = (−∂xx)β we get

1

2

d

dt
‖θ‖2

Ḣ
1
2

+
∥∥∥Λ

1+γ
2 θ

∥∥∥
2

L2
= −

∫
Λ

1

2 θΛ
1

2

{(
H(−∂xx)βθ

)
θx

}
dx

= −
∫
θxΛθ H(−∂xx)βθdx = −

∫
θxHθxH(−∂xx)βθdx.

We now use the H1-BMO duality to estimate the right hand side of the last equality. By using the

estimate (2.1) and Ḣ
1

2 →֒ BMO, we obtain

‖θxHθx‖H1 ≤ ‖θ‖2
Ḣ1 ,

∥∥∥H(−∂xx)βθ
∥∥∥
L2

≤ C‖θ‖
Ḣ2β+1

2

and thus we have
1

2

d

dt
‖θ‖2

Ḣ
1
2

+
∥∥∥Λ

1+γ
2 θ

∥∥∥
2

L2
≤ C‖θ‖2

Ḣ1‖θ‖Ḣ2β+1
2
.
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By fixing γ = 2 and by using the interpolation inequalities

‖θ‖2
Ḣ1 ≤ ‖θ‖

Ḣ
3
2
‖θ‖

Ḣ
1
2
, ‖θ‖

Ḣ2β+1
2
≤ ‖θ‖2β

Ḣ
3
2

‖θ‖1−2β

Ḣ
1
2

,

where we use 1
2 ≤ 2β + 1

2 ≤ 3
2 for β ∈

(
0, 12

)
to get the second inequality. Hence, we obtain

1

2

d

dt
‖θ‖2

Ḣ
1
2

+
∥∥∥Λ 3

2 θ
∥∥∥
2

L2
≤ ‖θ‖2

Ḣ1‖θ‖Ḣ2β+1
2

≤ ‖θ‖1+2β

Ḣ
3
2

‖θ‖2−2β

Ḣ
1
2

≤ 1

2
‖θ‖2

Ḣ
3
2

+ 2‖θ‖4
1−β
1−2β

Ḣ
1
2

,

where we use the condition β ∈
(
0, 12

)
again to derive the inequality. This implies local existence

of a unique solution up to some time T = T (‖θ0‖
Ḣ

1
2
). �

5.2. Global well-posedness. We finally deal with (5.8) with γ = 2.

Theorem 5.4. Let γ = 2 and β < 1
4 . For any θ0 ∈ H2(R), there exists a unique global-in-time

solution in C
(
[0,∞);H2(R)

)
.

Proof. By Theorem 5.1, we only need to control the quantities in (5.2). Let u = −H(∂xx)
βθ. We

first note that (5.8) satisfies the maximum principle and so

‖θ(t)‖L∞ ≤ ‖θ0‖L∞ ≤ C‖θ0‖H2 .

We take the L2 inner product of (5.8) with θ. Then,

1

2

d

dt
‖θ‖2L2 + ‖θx‖2L2 = −

∫
uθxθdx ≤ ‖θ0‖L∞‖u‖L2‖θx‖L2 . (5.9)

Since

‖u‖L2 ≤ C‖θ‖1−2β
L2 ‖θx‖2βL2 for β <

1

2
,

we have

‖θ(t)‖2L2 +

∫ t

0
‖θx(s)‖2L2ds ≤ C (t, ‖θ0‖H2) . (5.10)

We next take ∂x to (5.8), take its L2 inner product with θx, and integrate by parts to obtain

1

2

d

dt
‖θx‖2L2 + ‖θxx‖2L2 =

∫
uθxθxxdx ≤ 2‖u‖2L∞‖θx‖2L2 +

1

2
‖θxx‖2L2 .

Since

‖u‖2L∞ ≤ C‖θ‖2L2 + C‖θx‖2L2 when β <
1

4
,

we obtain

‖θx(t)‖2L2 +

∫ t

0
‖θxx(s)‖2L2ds ≤ C (t, ‖θ0‖L1 , ‖θ0‖H2) when β <

1

4
. (5.11)

By (5.10) and (5.11), we finally obtain

∫ t

0
(‖θx(s)‖L∞ + ‖ux(s)‖L∞) ds ≤ C

∫ t

0
(‖θx(s)‖L2 + ‖θxx(s)‖L2) ds ≤ C (t, ‖θ0‖L1 , ‖θ0‖H2)

and so we complete the proof of Theorem 5.4. �
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6. Appendix

This appendix is briefly written based on [4]. We first provide notation and definitions in the
Littlewood-Paley theory. Let C be the ring of center 0, of small radius 3

4 and great radius 8
3 . We

take smooth radial functions (χ, φ) with values in [0, 1] that are supported on the ball B 4

3

(0) and

C, respectively, and satisfy

χ(ξ) +
∞∑

j=0

φ
(
2−jξ

)
= 1 ∀ ξ ∈ R

d,

∞∑

j=−∞

φ
(
2−jξ

)
= 1 ∀ ξ ∈ R

d \ {0},
∣∣∣j − j

′

∣∣∣ ≥ 2 =⇒ supp φ
(
2−j ·

)⋂
supp φ

(
2−j

′

·
)
= ∅,

j ≥ 1 =⇒ supp χ
⋂

supp φ
(
2−j ·

)
= ∅.

(6.1)

From now on, we use the notation

φj(ξ) = φ
(
2−jξ

)
.

We define dyadic blocks and lower frequency cut-off functions.

h = F−1φ, h̃ = F−1χ,

∆jf = φj (D) f = 2jd
∫

Rd

h
(
2jy

)
f(x− y)dy,

Sjf = χ
(
2−jD

)
f = 2jd

∫

Rd

h̃
(
2jy

)
f(x− y)dy,

∆−1f = χ (D) f =

∫

Rd

h̃ (y) f(x− y)dy.

(6.2)

Then, the homogeneous Littlewood-Paley decomposition is given by

f =
∑

j∈Z

∆jf in S ′

h,

where S ′

h is the space of tempered distributions u ∈ S ′

such that

lim
j→−∞

Sju = 0 in S ′.

We now define the homogeneous Besov spaces:

Ḃs
p,q =

{
f ∈ S ′

h : ‖f‖Ḃs
p,q

=
∥∥∥
∥∥2js ‖∆jf‖Lp

∥∥
lq(Z)

∥∥∥ <∞
}
.

We also recall Bernstein’s inequality in 1D : for 1 ≤ p ≤ q ≤ ∞ and k ∈ N,

sup
|α|=k

‖∂α∆jf‖Lp ≤ C2jk ‖∆jf‖Lp , ‖∆jf‖Lq ≤ C2
j
(

1

p
− 1

q

)

‖∆jf‖Lp . (6.3)
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[8] A. Castro, D. Córdoba, Self-similar solutions for a transport equation with non-local flux. Chinese Annals of

Mathematics, Series B 30 (2009), no. 5, 505–512.
[9] D. Chae, A. Cordoba, D. Cordoba, M. Fontelos, Finite time singularities in a 1D model of the quasi-geostrophic

equation. Adv. Math. 194 (2005), no. 1, 203–223.
[10] A. Cordoba, D. Cordoba, A maximum principle applied to quasi-geostrophic equations. Comm. Math. Phys. 249

(2004), no. 3, 511–528.
[11] A. Córdoba, D. Córdoba, M. Fontelos, Formation of singularities for a transport equation with nonlocal velocity.

Ann. of Math. (2) 162 (2005), 1–13.
[12] S. De Gregorio, On a one-dimensional model for the 3D vorticity equation. J. Statist. Phys. 59 (1990), 1251–1263.
[13] H. Dong, Well-posedness for a transport equation with nonlocal velocity. J. Funct. Anal. 255 no.11, (2008),

3070–3097.
[14] T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math.

41 (1988), no. 7, 891–907.
[15] A. Kiselev, Regularity and blow up for active scalars. Math. Model. Math. Phenom. 5 (2010), 225–255.
[16] O. Lazar, On a 1D nonlocal transport equation with nonlocal velocity and subcritical or supercritical diffusion.

Journal of Differential Equations, Vol. 261 5, No. 9 (2016), pp 4974-4996.
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