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ABSTRACT. In this paper we study a model of an interface between two
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1. INTRODUCTION

Free boundary problems for incompressible, inviscid flows and for active
scalars are mathematically challenging and physically interesting. Moreover,
their applications are really spread, from geothermal reservoirs (see [9]) to
tumor growth (see [23]), passing through weather forecasting (see [28, 13]).

In particular, the evolution of a fluid in a porous medium is important in
the Applied Sciences and Engineering (see [1]) but also in Mathematics (see,
for instance, [16]). The effect of the medium has important consequences
and the usual equations for the conservation of momentum, i.e. the Euler or
Navier-Stokes equations, must be replaced with an empirical law: Darcy’s
Law

(1) o= —Vp—g(0.p).

where p is the dynamic viscosity of the fluid, x is the permeability of the
porous medium, g is the acceleration due to gravity, v is the velocity of the
fluid, p is the density and p is the pressure (see [1]). In our favourite units,
we can assume g =y = 1.

A very important part of the theory of flow in porous media studies
the coexistence of two immiscible fluids with different qualities in the same
volume. The case of two immiscible and incompressible fluids is known as
the Muskat o Muskat-Leverett problem (see [30] and also [34]). In this case
the density is given by

(2) p=P"Lyer@y + 0 Lys o)

3) I(t) = {(z, f(2,1)) - € R},

is the interface between both phases. This interface is an unknown in the
evolution. If p? > p!, the system is in the so-called stable (or Rayleigh-
Taylor stable) regime.

Given the depth of the porous medium, I > 0, we define the following
dimensionless parameter (see [6] and references therein)

[ foll
l

(4) A=

If the porous medium has infinite depth (A = 0), the equation for the
interface is

_P=p (00 f (@) — D, f(x — 1))
=" P'V'/R Pt (f@) — f@ )

where P.V. denotes principal value. This situation is known as the deep
water regime. This case has been extensively studied (see [1, 7, &, 11, 12,
, 17,18, 21, 227 26] and references therein).
If the initial data verifies | fo| < [, in the presence of impervious boundaries
(see Figure 1), the system is in the regime 0 < A < 1. This is known as the
confined Muskat problem. The equation for the interface corresponding to

()
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this situation when [ = 7/2 is

P —p' (0sf(2) — 35 f(z — n)) sinh (1)
® s = ey |
(9f(2) + B, f(x — m)) sinh (1)
cosh (1) + cos (f(z) + f(z —n))
This case has been studied in [5, 20, 24, 25]. Notice that the second kernel
becomes singular when f reaches the boundaries.

FIGURE 1. Physical situation for an interface I' in the strip
R x (=1,1).

It has been proved that A plays an important role on the evolution of
|f(t)|[[cr. For instance, if 0 < A < 1, || f(t)||z decays slower than in the
deep water regime. Moreover, to ensure that ||0,f(t)||r~ < 1 for every
time, one needs to impose conditions on the amplitude and the slope of the
initial data related to the depth [ (see [20]). Notice that in the deep water
case, the condition is only on |0, fo||Lee (see [18]). Finally, we also mention
that, using a computer assisted proof, the authors in [24] proved that there
exists curves, z = (z1(«), z2(a)), solutions of of the confined Muskat problem
(0 < A < 1) corresponding to the initial data zg, such that 0,21(0,6) < 0 for
a sufficiently small time ¢ > 0 (i.e. the wave breaks). The same initial curve
29 when plugged into the infinitely deep Muskat problem (A = 0) verifies
0221(0,9) > 0 (i.e. the wave becomes a smooth graph).

The last case corresponds to A = 1. This case is known as the large
amplitude regime. In this situation, the initial interface reach the impervious
walls at least in one point.

Let’s write Au = y/—02u for the square root of the laplacian. In [19], the
authors proposed the problem

A (@)

(7) of(z) = T O @R

as a model of the dynamics of an interface in the two phase, deep water
Muskat problem (5). If we define g = 0, f and we take the derivative 0, to
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equation (7), we get
2

_ 9 Hg
(8) gt = Ag+8x<1+92>.

This latter equation will be helpful because it has divergence form.

In this paper, to study the effect of the boundaries in the large amplitude
regime, we propose and study a model of (6). Assumel = /2 and f(z) = £l
for some z. Then, the second term in (6) reduces to

(02 f (%) + 0o f(Z —n))sinh () Ox f (& — ) sinh (n)
cosh () + cos (F(7) + F(z — 1)) _ cosh (n) — cos (f(2) — /(7 — 1))
where H denotes the Hilbert transform. Therefore, using (6), 9.f(z) = 0
and the diffusion degenerates.
To capture this crucial fact when f(&) = +l, we introduce the equation

1 1
O W= (et T ger) M

as a model of (6) in the large amplitude regime. Let’s point out that, if
[ = oo, formally, we recover (7).
Notice that

(10)

~ HO, (%),

1 1
1+ O f@)2 1412 = (f(@)

guarantees that the model (9) is in the so-called stable regime. In other
words, if (10) holds, the model has a nonlocal, non-degenerate diffusion.
Notice that the set of functions verifying (10) is not empty.

To bound the stability condition, we define

1 1
(11) o(t) = mﬁ‘x{l +P2—(f@)? 1+ @f(w))?}'

Using this function, the stability condition is equivalent to o(t) < 0.

Remark 1. Let us mention that
f(x) = £lsin(x), £l cos(x),
are steady solutions in the unstable case.

1.1. Notation and functional framework. We write Hu for the Hilbert
transform of the function v and Au = \/—02u = 9, Hu for the Zygmund
operator, i.e.

Tae) = —i%a@ and Au(€) = |¢a(€),

where * denotes the usual Fourier transform.

We write € for our spatial domain. From this point onwards, we consider
either @ =R or 2 =T, in particular our domain is always onedimensional.
We write H*(2) for the usual L2-based Sobolev spaces with norm

£ = 1A1T2 + 1 0 1 e = 1A° £l 2,
We denote [ > 0 the depth and
H} ={fe H°st. |fllre <l}.
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The fractional LP-based Sobolev spaces, W*P(Q), are

L] L]
05 f () - 05 f<y>|€Lp(QXQ)}7
|z —y|» SH(s—Ls))

W”@:{feLWQ%%ﬂfeLﬂ

with norm

Ve = 7120 + Hfuwsp,
[s] [s]
Ve = el g, + [ [ 12 L@ =9 FWIF
vrse = 10 ‘x_mH@ D

Notice that WF+s>® ke N, 1> s> 07 reduces to the usual Holder contin-
uous space C*ts. We define

l2
14102
This is the constant appearing in the linear problem.

C =

1.2. Statement of the results for (9). In this section we collect the state-
ment of the results concerning the equation (9). We start with local well-
posedness of classical solutions and a continuation criterion when the initial
data is in the stable regime:

Theorem 1. Let fy € Hj(Q2), s > 3,1 >0, € >0 and Q = T,R, be an
initial data satisfying the stability condition (10). Then there exists a unique
solution f(x,t) to (9) such that

f(xv t) S C([07 T(fo)], Hs) N L2([07 T(fo)]7 H3.5)'
Moreover, if T is the mazimum lifespan of the solutions, then, T" = co or

(12) sup || f(t)[lw2+ee = o0
0<t<T™

Notice that the continuation criteria (12), as is written in the previous
result, doesnt deal with the possibility of reaching the unstable regime. How-
ever, in Proposition 2 below we address this question.

We also prove that there is a unique local smooth solution even when the
Rayleigh-Taylor condition (10) is not satisfied but our initial data is ana-
lytic. We prove this result complexifying the equation and using a Cauchy-
Kowalevski Theorem (see [31] and [32]).

We define the complex strip S, = {x 4+ i&,[¢| < r}, and v = = £ ir,
v =x +ir' for x € Q. We consider the Hardy-Sobolev spaces (see [3])

(13)
H3(S,) = {f(x +i&) analytic on S, s.t. f(z +ir) € H*(Q) and f(x) € R},

with norm

sy = 3o 17O e

E==+r
These spaces form a Banach scale with respect to the parameter r. In
the same way we define ”f”Lg(Sr Doemtr ILF(y )HL2 . We also have, for

0<r <,
C

r—r

(14) 102+ lr2(s,) < - Mz2(s)-
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The complex extension of the equation can be written as

1 1
@) 050 = (T TR gar) MO0

where
1 —u(y — 1 —uly —
Au(y) = =P.V. / w) e =y, Lpy, / u) ey =m)
Q R n 2w T sin (g)
Notice that the variable 7 is a real number: n € 2. Given a positive 7 < 1,
we define

1 1
dq [f](’)/) = 12— (Ref(,y))Q’dQ[f](V) - T — (Imaxf(’)’))w

Given R > 0, we define the open set
Of = {f € H*S,), 5. 0 <di[f] < R,0 < da[f] < R, |||l s,y < R}
We remark that in this set we have
(Ref(7))? <+ 7, (Imdy f(7))* < 7.

Theorem 2. Let fo € Op for some 0 < 79 < 1, Ry > 0 be the ini-
tial data for (9). Then, there exists T(fo) and a unique solution f(x,t) €
C([-T,T), H*(R)).

This result is interesting because there exist functions such that f(zZ) =1
in this set OF. For instance one can consider f§(r) = acos(x) 41— a for a
small enough a. In particular, this case is analogous to the case where the
initial data reaches the boundary, i.e. the large amplitude regime.

We study the decay of some lower order norms and other qualitative
properties:

Proposition 1. Given fy € H?(Q), 1 > 0, Q = R, T, in the stable regime,
then the solution of (9) verifies:
e The even/odd symmetry of the initial data propagates.

1f @)l Lo @) < lfollze (@)
o Assume that fo € H}(T) is odd, then

1 < e~ foll oo (m)
(16) 1f @) Loo () < ¥ A(eCT—1)’

where A is defined in (4).
e As long as the solution remains in the stable case, the solution is in
LPHYS N L2H! and we have the following energy balance

t
O sy =2 | o 0y < 1folEpnsge

where o(t) < 0 is defined in (11). Moreover, if the solution is in the
stable regime up to time T, then

sup ||f()]lz2 < ([l follgos, T)-
0<t<T
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o Assume that fo € HP(T), then

t
(17) LF 052y < €0 7O fol o5 .

e Given fo € HP(R) and assuming that the solution is in the stable
regime in the time interval [0, T], we obtain

L y 1 _1/3
[f )o@y < ((1 +l2> ¢(fo,T) - HfoHBw(R)> ’

where

2\/T‘|f0”['{0‘5

ming<s<r \/|0(s)]

¢(fo, T) = [ foll2 +

)

is a bound for || f(t)||L2(w)-

Recall that (16) in Proposition 1 gives us that, in the case

2
A= follpee(m) = 1,

(the interface is close to the boundary)

C
e_TltHfoHLoo(T)
& ~ || foll Lo ()
1+ A4 <e*7t - 1)

and our decay estimate degenerates. This fact has been observed for equa-
tion (6) in [20]. Moreover, it has also been observed in the numerical simu-
lations in Section 6 (see Figure 2).

Notice that there is not a L? maximum principle, but we can use backward
bootstrapping to bound the L2 norm once that we now a bound for H5.

We prove that if the initial data is small, then there exists a global-in-
time solution. Furthermore, we obtain some decay estimates in a lower norm.
Thus, these results complement the decay rates proved in Proposition 1. We
will use the approach in [10, 33]. Notice that, given fo € H?, there exists a
time of existence Ty = T'(fy) and the solution is on the stable regime. For
any T < Ty, we define the total norm

(18) Ifll = OiltlfT{Hf(t)llx +DWIf Oy}

£ )l g () <

where X C Y are Banach spaces. The function D(t) — oo as t — oo and
gives us the decay in the lower order norm. Using Duhamel’s principle we
write the expression for the mild solution

t
(19) fla,t) =e % fy + / e IAANL(s)ds,
0

where
0o f)? (14202 + 14 —12f2) + f2
(1 + (amf)Q)(l + 12 — f2)(1 + l2)

(20) NL = Af
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Theorem 3. Let fo € H>3(T) be an odd initial data for equation (9) in
the stable regime. Then, there exist 6 > 0, such that if || fol|gsry < 0 the
corresponding solution is global in time and the solution verifies

I _
1 @)llormy < 3¢

Remark 2. The oddness assumption is related to the decay estimate. We
know that the odd character of the initial data propagates, so the solution
will have zero mean and then the equilibrium solution is fo = 0. However,
as the mean is not preserved, it is not clear, and in general it is not true,
that the mean will propagate for general initial data with zero mean.

There are several results with limited regularity for (5) (see [12]). In
particular, the authors in this paper proved the global existence of smooth
solution corresponding to initial data with small derivative in the Wiener
algebra. We prove that (9) also captures these features. In particular, we
study the equation (9) when the initial data is only H? and we prove local
existence for small initial data in both spatial domains, the real line and the
torus.

Theorem 4. Let fy € H?(Q), Q = T,R, be the initial data for equation
(9) in the stable regime. We assume that || fol| g2y < 0 for a small enough
6 > 0. Then, there exists at least one local solution

f € C(0,T(fo)], H*(2)) N L*([0, T(fo)], H**(£2)).

Notice that the solution is classical, but if the initial data is only H? the
well-posedness for arbitrary data can not be achieved by standard energy
methods. In the case where the initial data is odd and periodic, we can
improve the previous local-in-time result:

Theorem 5. Let fo € H?(T) be an odd initial data for equation (9) in the
stable regime. Then, there exist 6 > 0, such that if || fol| g2(T) < & there exists
at least one global in time solution. This solution verifies

I _
1F @Ol (my < 7e @t and || f(®)llcrery < lfollorery-

The two main possibilities for finite time blow up seem to be

(1) To reach the unstable regime,
(2) a blow up of the curvature for the case f(z) = 1.

To reach the unstable regime is similar to the turning singularities presents
for (5) and (6) in [3] and [5, 20, 24]. We discard this situation for (9). In par-
ticular we prove that, if the solution reaches the unstable case, the W?21€>
blows up first. The second source of singularity, a blow up of the curvature
when the initial data reaches the boundaries may take two different forms:
a corner-type singularity (blow up of the second derivative while the first
derivative is bounded) and a cusp-type singularity (blow up of the first and
second derivatives). We prove that, if the second derivative blows up, then
the norm W1+&% blows up first. Notice that, as a consequence of our proof,
we get that if the initial data reaches the boundary, then the solution cor-
responding to this initial data reaches the boundary as long as it remains
smooth.

We collect these two results in the next proposition:
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Proposition 2. Let fo € H3(Q) be the initial data for equation (9) and
0 < T < oo be an arbitrary parameter. We assume that the corresponding
solution is f(z,t) € C([0,T), H3(Q)). Then,
o If fo is in the stable regime and T is the first time where the solution
leaves the stable regime, then

imsup / O

o If fo is analytic and there exists T such that fo(Z) =1, then
fEH=1,Y0<t<T

and

< lf Af(Z,s)ds
Jnax [02f(F,6)] < e(l, fo)e! J

Consequently, the curvature can not blow up for a W1t solution.

There are three main questions that remain open for this model: an exis-
tence theory for initial data in H*>NW 12 a proof of finite time singularities
where the curvature blows up and the existence of a geometry (instead of a

flat strip) that enhances the similarities between the Muskat problem and
the model introduced in this paper.

1.3. Statement of the results for (7). We obtain a new energy balance
for (7). To do that, we consider the evolution of the entropy

/Q Oa f () log(1 + (9, (1))2)da

Proposition 3. Given fo € W3(Q)NWHL(Q), Q = R, T, then the solution
of (7) verifies the following energy balance

(21) /Q 0, £ (1) log(1 + (9, £(1))?)d

+2/Qarctan(9f //1f88ff dxds

= / Oz folog(1 + (9p.fo)?)dx + 2/ arctan(9; fo).
Q Q

Furthermore, under a positiveness hypothesis for 9, fy, we can use this
energy balance to obtain global existence of weak solutions with rough ini-
tial data. This energy balance fully exploits the diffusive character of the
equation (7). Notice also that, due to the positiveness of g, we can not
recover a smooth, periodic f from this g. Now we define our notion of weak
solution:

Definition 1. g(z,t) is a global weak solution of (8) if
gla,t) € L=([0,T], L%(T)) N L*([0, T], H**(T))

and (8) holds in the sense of distributions: for any ¢ € C*([0,T) x T),
periodic in space and with compact support in time,

T gQHg -
[ [ ~svg+ g - 000 (258 ) asat ~ [ (e 0)(alaz =
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for every T' < oo.
We state now our result:

Theorem 6. Let gy € L*™(T) be a positive initial data for equation (8).
Then, there exist at least one global weak solution

g(x,t) € L2([0,T], L>(T)) N L*([0, 7], H**(T)),
satisfying the bounds

9@z (1) < llg0ll oo (T)> mgging(ﬁ'?at) > mxingo(x) Vit >0,

1 0
/ lg(s HH05 = ( * lollz=)" </ gobg(l—i—g%)dw—l—?/arctan(go)>.
T T

mlnx g0

Remark 3. Notice that if we study the evolution of the energy

/ (1 + 5 (0uF (2, 0))) (@uf 2,1)

under (7), we find

1
10s £1I72 + = Ha Fllza +/ 10 f () G055 = 10z follZ2 + Gl10a foll 7

We thank the anonymous referee for pointing out this energy. This energy
balance can be used to extend Theorem 6 to arbitrary (non necessarily posi-
tive) g € L> N L*.

1.4. Plan of the paper. The structure of the paper is as follows: In section
2, we prove the energy balance (21) for the solutions of equation (7) and
we use it to prove global existence of weak solutions of (8). The results
concerning (9) are contained from Section 3 to Section 8. In Section 3 we
obtain well-posedness in Sobolev spaces and in an analytical framework for
equation (9). In Section 4 we study the qualitative properties of the solutions
and we get some maximum principles for different lower order norms. In this
Section, using the same scheme as in [10], we also prove a global existence
and decay in C! for the mild solution corresponding to small initial data in
H3. In Section 5 we obtain existence and decay in H' for the mild solution
corresponding to initial data small in H2. In Section 6 we present some
numerics comparing the solutions to equations (5) and (6). We present
these simulations for the sake of completeness and to bring into comparison
with the simulations corresponding to equation (9). In Section 7 we present
some numerics for equation (9). In particular we compute the evolution of
a family of initial data reaching the boundary. In the last Section we study
analytically some properties of the solutions when the initial data reaches
the boundary. Notice that these solutions exist due to the well-posedness
result in the analytical framework.

2. A NEW ENERGY BALANCE AND GLOBAL WEAK SOLUTIONS FOR (7)

Now we show a new energy balance for the derivative of (7).
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Proof of Proposition 3. We consider the equation for the derivative of the
interface evolving in the infinite depth regime (8).
Now consider the evolution of the following quantity,

d 26 g1
log(1 log(1 + ¢?
p gog( +9°) = /gtog( +g)+/ﬂl+gz

gt
— lo 1+2—2/
/ﬂgt g(1+g%) Sy

= 0 2y — ; (arctan
—/Qgtlg<1+g> 2/96( tan(g))

since fQ gr = 0.
Let’s look at the first term in the right hand side,

(22) /Qgtlog(l +¢%) / —Aglog(1+ ¢°) + 0, <

The second term,

2
g°Hg 2
/Q(?m<1+g>log1+g /8 )log(1+g)
Aglog(1 + /aJC( Hy >lo 1+
/ glog(1+g*) — A 5 2 g(1+g°)

299z
= [ Aglog(1 + ¢ +/Hg
J paontr )+ | ot
Ag
= [ Aglog(1+ ¢°) +
/Q ( ) ol+g?
Putting this back together into (22),

d d Ag
pr glog(l +¢%) + Qa / arctan(g) = /Q Trg

2

Hg
log(1
1 tg >0g(+9)

Remark 4. Now we can symmetm’ze the extra term in (21

),
B —9W)*(9@) +9@)
/1+g T dn //qmr sin? (25 y )1+ (9(2)*) (1 + (9(y))? )d .

in the periodic case and

B 9 0@) + o)
/1+g = //M @y 1+< @R+ (o)) W

which is negative if we assume that g > 0. This observation will allow us
to gain half o derivative from this enerqgy identity.

We fix Q = T to simplify and we consider f, € W1, Consequently
go € L. We also assume gg > 0. In particular this implies that

9@z (1) < llg0ll oo (T)> mgging(ﬁ'?at) > majngo(x) Vi > 0.

We use the previous energy identity to get compactness and to construct
weak solutions:
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Proof of Theorem 6. We define the approximate problems
(9)°Hyg*
(23) g; = —Ag" + 0, <T(g€)2 +€07g°, g°(x,0) = pe * go,
where p, is a standard mollifier.
Multiplying equation (23) by —d2¢¢, and integrating over the torus, we
obtain,

_ €92 € _ (g )2Hg € _ €12

H EH _/Aigge _/mg — ellgual -
2dt T 14 (g6)27"" (14 (g6)2)2"" A

To estimates the remaining terms, we will use the following inequalities
which are a direct consequence of Gagliardo-Nirenberg,
(24)  ullfiia < Cllullgellull e and [ullf 5 < Ol s [lull oo

These inequalities are valid for zero mean, periodic functions, but as the
L' norm of our solution propagates with the evolution, we can adapt the
argument straightforwardly. Using this into our estimate,

1d

2 dtHga:Ho + €llgazlls < llgzallol Agllo + 2llgas lollgell el Hgll 4 gl oe

< C(Mgaalls + XHQ”lLOOO)'

Choosing A = €/2C, we absorb the second derivative into the left side, and
integrating in time we obtain,

(25) gz (O1IF + ellghe 7272 < llg5(0)I + tHg I e

Since the L*-norm of ¢¢ is uniformly bounded, we have a global estimate
for the H' norm of ¢¢ for every e > 0.
We study the evolution of [ glog(1 + (¢)?). We find

/T “(t)log(1 + (g°(t))*)dx + 2/ arctan(g°)

// dxds—i—?e// mg ddt
1+ 1+ (g

= / g6 log(1 + (95)2)dm + 2/ arctan(gg).
T T

This implies the uniform-in-e bound

(1 + llgollz=)? / 2 /
( log(1 + dxr + 2 t .
/ lg°(9)]|%05 < r—— Tgo og(1 + gg)dx Tarc an(go)

Banach-Alaoglu Theorem implies g € L°°([0,T], L) N L?([0, T], H*?). Us-
ing (8) we get a uniform bound for d;¢¢ in L?H;'. Thus, we can apply
Lemma 3 with

Xo=H" X=L%Y=H",
to get strong convergence ¢g¢ — g in L%([0,T] x T). This compactness implies
the convergence of the weak formulations. O



ON THE EFFECT OF BOUNDARIES IN TWO-PHASE POROUS FLOW 13

3. WELL-POSEDNESS

3.1. Well-posedness in Sobolev spaces. First, we prove local well-posedness
in the stable regime:

Proof of Theorem 1. We proof the case s = 3,1 = 7/2 being the other cases
analogous. We define the energy

(26) E(t) = |fO)lgs + d[f]llze + IDLf]ll 1o,
where
(27) dlf] = .

(5) = (f(2))* - Ouf(@))?
and
(28) Dlf] = —5—

(3)° = (f())”
The quantity d[f] controls the stability condition (10) for our model. Indeed,
if initially d[fp] > 0, then, as long as the energy remains bounded, d[f] > 0.
This implies that the dynamics is in the stable regime (10). The quantity
D[f] ensures that we don’t leave the set H}.

Estimates for 0;f, 0,0, f: By the basic properties of the Hilbert trans-
form and the Sobolev embedding, we get

(29) 10:fllzoe < 2[HOx fllLee < Cf| s,
and
(30) (1040 flloe < 2| HOf| oo
+ C (1102 f 102 fll oo + £ 1o 102 f 1| o) 1A || oo

< Clf s f 17 + 1)

Estimates for d[f]: We compute
%d[f] = (d[f])* (2f (2)0cf (x) + 20 f (2)0e0s f () -
Using the definition of the energy (26), we get

S aig) < caif) (B 41y,

thus, integrating in (¢,t + h)

d[f](t + h) < d[f](£)eC f " PERD" g,

We have
d e I+ ) pee — (1dLf] @) e
(31) Tdlf] = lim g
C I BE gy

< L)) Jim = < CE*(E+1).

h

Estimates for D[f]: In the same way,

(32) LD < OB (B +1).



14 R. GRANERO-BELINCHON, G. NAVARRO, AND A. ORTEGA

Estimates for the higher order terms: The higher order terms are

1 1
B - AO3 F(2)02 f(x)dx,
I /Q (1 + (%)2 B (f(x))Q 1+ @Cf(m))Q) xf( ) xf( )

p= [ P2 pypwyar
? (14 (0.4 (x))?)
Notice that, due to (31), o(¢) < 0 for sufficiently small time. To estimate
I, we use the pointwise inequality [14, 15]
2009 > AG>.
This inequality and the self-adjointness of the operator allow us to integrate

by parts in the stable regime (which is guaranteed for a short time by (31)).
We get

I = Jy + Jo,
with
1 1 1
J < = A — —o(t
<5, <1 G- t@r 1redwr )>
X (02 f(2))?da
1 1
< CO|flI3s ||A —
< Wl |2 |~ T |
- ( 2/0, f ” 20, f 2] H )
S @+ @ =@ 10+ @ @)
(33) <O fl7gs
and
(34) Iy = olt) / (A%538 f(x))2dz < 0.
Q
The term I can be bounded as in [19]. With the same ideas, we can handle

the lower order terms. We conclude

d

I @llas < C(E+ 7.

Obtaining uniform estimates: Collecting the estimates (see (31), (32),
(33), (34)), we get
d
—E<CE+1)".
dt — (E+1)

Using Gronwall’s inequality, we obtain

B(t) < C(fo), it 0 <t < T(fo).

With this a priori estimate we can obtain the local existence of smooth
solutions using the standard arguments (see [27]). Moreover, (33) and (34)
give us

DI B~ oS0 yas < OB+ 1)

Integrating in time, we conclude f € L?H32"®.
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Uniqueness: Let’s assume that there exists f1, fo, two different solutions
corresponding to the same initial data and denote f = f; — fo. Then, with
the same ideas, we get

d
I < CU il L2l m)IF 1172

and using Gronwall inequality, we conclude the uniqueness.
Continuation criterion: We use Lemma 2 (a« = 1,d = 1,7 = 0.6) in
(33) to get

1 2 2f(z)
) | =g < COM e + e (@)
—1 2 283&.]0(1') z
(36) A [1+(8$f(m))2] < Cl0ef lloses + (1+(8$f(x))2)2A8$f( ).

From here we conclude the result.
O

3.2. Well-posedness in the analytical framework. We start with a
useful Lemma:

Lemma 1. Consider 0 < r’ < r and the set OF. Then, for f,g € OF, the
spatial operator in (15), F : OF — H3(S,/) is continuous. Moreover, the

following inequalities holds:

) 1F 35,y < 721 N3,

(2) IF1f] = Flalllmss,) < 225 11f = gllmss,)-
Proof. For the sake of brevity, we only prove the first part. The second one
is analogous. Notice that

A caqsy < g lH Flzagsn <~ laas,)
By definition:
Iy =T+ 1T
where )
| ) v
i@ T 1re-7) M,

2
11 =

, -1 1
% (e * ee—p) V) 1350

To estimate I, we use Holder and the fact that we’re working in the open
set OF to get .
1—7 <1+ (9:1)°I"
and, as a consequence,
1

< .

v1i—rT
ﬁ. Hence, we have:

—1 1
H<1+(<9mf)2 * 1+l2—f2> Af

1
‘1 + (0 )?

A similar bound holds for the term

CT
<
L2(S}) -r

1fllz2(s,)
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In 11 we compute the third derivative. The terms involving 1,2 and 3 deriva-
tives can be bounded using the previous ideas, the open set definition and
the Banach scale property. For the terms involving 4 derivatives we use (14).
In particular

1L+ (02 f)?) 200 fOr fllL2(sy)
- Ck
<A+ (0:)?) 7200 f oo (s 10202 ) | 2257y < 51 F | mrss,»

r—r

~1 1 5
H(Lumﬂ2+1+ﬂ—ﬂ>@Afpw”

< —1 1
= H<1+(8$f)2 + 1+z2—f2>

102 (AP 725y

Le=(S7)
Ch
< B sy
This concludes the proof. O
The former Lemma is used in the proof of Theorem 2
Proof of Theorem 2. The proof follows the ideas in [31, 32] (see also [3, 20,

]. Wefix R> Ry > 0and 1 > 7 > 79 and we consider the following
Picard’s iteration scheme

ﬂ@=h+AFWIW-

By induction hypothesis we have fJ/ € Of for 1 < j < n. Using Lemma
1 and the ideas in [31, 32] we can find Ty > 0 such that || f"[|gss,) < R,
consequently, we need to find 77,75 such that

0< dl[fn] <R, 0< dg[fn] < R.
We obtain T» for dsy, being T similar. We have

1 1
7—Imd, f"* > T—Imamfo—tCﬁ = T—To—l—TO—Im@xfO—tCIE > R——tCIT% > =

0
by taking 0 < t < T = T5(R, 7) small enough. We define T' = min{Tp, 71, T>} >
0 and we conclude. O

4. QUALITATIVE THEORY

4.1. Decay estimates for the lower norms.

Proof of Proposition 1. We assume | = 7/2 without losing generality.

Step 1: The proof of this part is straightforward.

Step 2: We denote M (t) = max, f(z,t) = (X, t) and m(t) = min, f(z,t) =
f(z,t). Using Rademacher Theorem as in [15] and [1&], we obtain

d (3)" - (f(X0)°
X;) = — Af(Xy).
! e g
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Using the kernel representations
1 u(z) —u(x —n) 1 / u(z) —u(z —n)
A = —P.V. dn, —P.V. dn,
R A 0 i

for the flat at infinity case and for the periodic case, respectively. We con-
clude M'(t) < 0. With the same approach we get m/(t) > 0.
Step 3: The solution remains odd, so, as in [2], we have

th f(Xe —n)
sin?(n/2)

Af(X,) = PV

_271'. T

Thus, we have

(8) -, (5)" - (FCx)? (3 - £(x)

F(Xe) > f(Xy) > (X,

1+ (3)" = (f(X0)° o 1+ (%) ) 1+ (%)? (%)

We conclude ( fx ))
d T _ .
Ef(Xt) < — 21 T (%)2 f(Xy),

therefore

£l zoo(r) < i || foll oo ()

s
2

us t :
me” B 42| foll poe ) (1 - ng)

Step 4: We test the equation (9) against Af, integrate in space and use
the self-adjointness. Recalling the definition of o(¢) (11), we have

1F )1 0s — / a(s)IIF ()7 < I follFos-

Assume again that the solution doesn’t leave the stable regime up to time
T, then testing equation (9) against f, we get

d
I FIIZe < AUASllz2llf N ze,

and integrating in time,

4 t
10l < Ullae + s [T s
2\/T||f0||H0A5

ming<s<r /[0 (s)|

Step 5: Using Poincaré inequality and recalling that fractional deriva-
tives have zero mean, we get

th\lf( Wiy < oOIF 0.

Using Gronwall inequality we conclude the result.
Step 6: Taking T such that the solution is in the stable regime and using
a previous step, we have

<[ follz2 +

1)z < €(fo,T).
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Using Rademacher Theorem and the decay of the amplitude, we obtain

d ( ) ||f( )HLoo
—_— f t ) = — le Tt

——Hf ||Loo Hf<>||3oo(R)
Q:(fo,T)
3 umﬁw 150 e ey
. &(fo.T)
1F 17 00 )
= <1 g2> foT)

thus, for 0 <t <T we conclude

1)) < !

3 % 3t + 1
(%) €(fo. 1) " Nl foll ooy

4.2. Global existence and decay estimates in C'.

Proof of Theorem 3. In this case we have X = H3 Y = C' and D(t) = €%,
We use the estimate

(37) ||€7tClAHLoo*>Loo S eiclt,
and get
t

(38) IF @)y < 1 follye™* +/ eI |INL(s)|ly ds.

0
Using Sobolev embedding, we have

I
INLG) e < COIflno (10:F + 1 OI=) < CO L

and

10 NL()|[z < C ) [Ifllzrzs (102 f 1300 + [ F@)II3)
1 lerrs (190 flloe 102 F Lo (102f 13 + 1F ()13 )
+ 102 f el Fllzoe (190 F20e + 11£(@)][200)
10w Fll o2 102 F | oo + 1100 Fll e | =) ] -

Recalling the following inequalities
(39)  Nullzs < Cllullyz® " lulljf! and Jlull e < Cll0zull3 ull3,
and using |0, f||12 < Cl|0f ||, we get

1 s < C (1l + 10219710 £1%2) < ClI £l eS0T,

102 £l < ClOLFUSZNOEL 192 < CIf e 0%
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Putting all the estimates together, we conclude the following estimate

INL($)lor < @) (I + 715 ) €2

Inserting this estimate in (38), we obtain

“NFWller < Woller +CO (I + ) [ ees

With the energy estimates in Theorem 1 and the definition of (18), we get

d
ZIF O < ClFOllPUI e,

for a polynomial P with powers bigger than one. Integrating in time and
collecting all the estimates together, we conclude

Il < Cllfollas + [l foller + QI llz) < €6+ QU fll7),

where Q is a polynomial with high powers. From this latter inequality, by a
standard continuation argument, we obtain the global existence if § is small
enough. Moreover, if we take § small enough, we can ensure that

l
U f@)ler < 5

5. LIMITED REGULARITY

Proof of Theorem /. We explain how to obtain the good bounds, then, using
mollifiers for the initial data the result follows.
Step 1: Case 2 =T Given d > 0, we define the energy

B(t) = £ Ol + £ Ol + m

We define M(t) = max, Oy f(z,t) = O0pf(z:) as in Proposition 1. Then,
using Rademacher’s Theorem, we have

; 1 _ 1
M= (1 + 12 = (f(@)? 1+ (0uf(21))

thus, using Proposition 1,

< (Pl SOl LY
(142 = follf=)? 1+ (0p f(2r))?
If || fol| g2 < 9, due to the form of the energy, there exist a time 7 such that
maxo<i<+ || f(t)]| g2 < 26. At this step in the proof, this time may depend
on the regularization parameter, but we are going to bound it uniformly.
Consequently,

2f(24)0: f (4)
(L+12 = (f(2e)H)*

2) A0y f(we)+Af(24)

1 C6? 1
M < — M(t
< (rrr—or " arE Iy TreR) MO

and, if § << 1 we obtain M (t) < M(0), for 0 < ¢ < T*. In the same way
we obtain reverse inequality for m(t) = ming 0, f(x,t) = 05 f (z¢). So,

102 f ()|l Lee < |0 follLee < C6 for 0 <t < T



20 R. GRANERO-BELINCHON, G. NAVARRO, AND A. ORTEGA

From this decay we obtain that the solution relies in the stable regime.
Recalling the definition (11), we compute

17l < (@l +8FW i + ollz=) 11
FG 4 IO 2200+ 2O oo D I
+ (801w + 17 i) NI ) 111

! ! ] (821 (x)da

2dt

1
w3 [1+l2— G@2 1+ @ f@)

+o (O )1 25-

We use interpolation (24) to obtain

HfH < OOl flFp + oI O F s + L+ OCI s I f oo
1 1

1
w5 [1 TP G@P 1T (f%f(w))Q} (021 (@))"de.

We use (35) and (36). Thus, using the LP-boundedness of the singular
integral operators,

HfH < CO|lf I + o @If @G5 + 1+ OCIF G511 Fllyirr
COIF IRyos.0e 17 + follocIAF (Lo 17

+C 00 f 06,00 1 172 + I1F .o 1 15y

COllf 112 + o OIF OG5 + ClF I s I f s

+C W2 1115

Collf 11z + o OIF OG5 + ClF I I f s

+CFIZZ2IF 2 1S

C5HfH2~ +aOIF O s + Ol 25 1F oo

+C(Of s + Cellf 17

where we have used the continuous embedding H*! c W6 (39) and
Young’s inequality with p = 2/1.68 and ¢ = 6.25. Notice that, if 4 is small
enough,

2dt

2dt

IN

IN

IN

()< — 1 L_ <o
N =TTrE e 1408

Let K € N be a fixed number. Inserting the latter bound we get

1

2
mumms < C(Le)d| fll 2

d
S +
1 K-1
2 fe—
1112 (1 +12-08 K(1+C8)
Thus, taking 0 < d,e << 1 small enough and K = K(I) large enough, we
obtain

+C’e+C5>.
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Putting all together, we obtain

4B < OWEQ+E) < 00,051 + B

This bound doesn’t depends on the regularization parameter, so using Gron-
wall inequality, we obtain a time 7™ = T*(l, ¢, ) where the solution remain
in a ball with radius 26 in H2. Moreover, due to the evolution of M (t), m(t)
and the Proposition 1, the solution doesn’t leave the stable regime. This
concludes the result in the periodic case.

Step 2: Case 2 = R Given u(x), we define X such that u(X) =
max, u(z). Then

Au(X) = lpv. /R ulX) —ulX ~y) dy > 2u(X) /100 y2dy

0 32 0
1 wX —y 2 2
S My 2 - il
7 JBe(0,1) Y m 3

We define M (t) as before. Then, using Rademacher’s Theorem, we have

/ 2|1f @)l [l foll zoe
M
((1 +12 = [ follF)?
2 2

TR P folie) 7+ @uf @)

)t

— (71(1 + 12 — Hfo”%oo) o 7T(1 + (3xf($t))2)> §||f||H1

- C6? N 2 B 2 M)
= \(1+12-C8)2  a(1+12-062) n(1+Cs2)

LT
(1412 -C02)  =n(1+Cs2)) 3" H

and, if § is taken small enough, integrating in time and using Proposition 1,
we have

—1 1 t
(e * tram) W == [ @GN < Lol

thus,

t
L U@ linds < VS0 < VEC@ Al
and
M(t) < M(0) + VEC (L, 0) foll gro.s-
With the same ideas we obtain the appropriate bound for m(t) and we get
1F O lyirree < N ollyiree + VECL O foll gro.s-

With this bound and Proposition 1 we conclude the existence of a time
Ty = Ti1(9,1) such that the solution doesn’t leave the stable regime. We
define the energy

E@) = 1f®lla> + m'
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With the same ideas as in the periodic case we get a second time To =
T5(6,1,€) such that the solution remains in the ball with center the origin
and radius 2 in H?. We take T* = min(7},T,) the time of existence and
we conclude the result. O

If we add a symmetry hypothesis for the initial data we can improve
Theorem 4:

Proof of Theorem 5. We have X = H?5 with norm ||f(t)||x = ||f()|lg2 +
fg [ £(s)%25ds, Y = H' and D(t) = €', Since Theorem 4, there exist a
local solution on the interval [0,7]. We define the total norm ||f||, as in
(18). We use

le™ M oy < e,
Due to the interpolation inequality (39) and using the expression (20), we
get

£ 117
(D(s))*

INL(s)llz2 < CON02f 2 (102 f 17 + 1£]7) < C(1)

and, using Bochner Theorem,

D2 < Iolle + C(l)H!f!H?%/O —zds <l follzz + COIIfI7-

With the same ideas, we get

IS NSO I + I

10:NL(s)| 2 < C(1) (D(t))4/3 (D(t))Q

Consequently,

t
gwﬂmml_\m%ﬁ+awmm@+wmoég%%

A

12 4

17 (5)I2
conm® [ e
wwm+co0wm+wmﬁ

@ ([ e )yg(/\v Sy

< ol + €@ (I + NFNG + A1)

We need to obtain bona fide a priori estimates on the H? seminorm for
small initial data. With the same estimates as in Theorem 4 we get

d
1 + 15125 < CIFoll2) P )e 7",

where C(L, || follzz) — 1 as ||follzz — 0 and P is a polynomial with high
powers. Thus, adding both estimates,

fllz < Wfollerz + C [ foll z2) QU )

If || follgz << 1 is choosen small enough, this nonlinear Gronwall-type in-
equality and the fact || f()|/y1.00 < || follwr. (again, for a small enough H?

IN

1/3
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initial data) give us the global existence by means of a classical continuation
argument. ]

6. NUMERICAL SIMULATIONS FOR THE CONFINED MUSKAT PROBLEM

In this section we perform numerical simulations for equations (5) and
(6) to study the decay of || f(t)||ze~. The main purpose of these simulations
is to compare the behaviour when the depth is finite (equation (6)) with the
case where the depth is infinite (equation (5)). We consider equations (6)
and (5) where p? — p! = 4n. For each initial datum we approximate the
solutions of (6) and (5) with the same numerical and physical parameters.

To perform the simulations we follow the ideas in [19]. The interface is
approximated using cubic splines with N spatial nodes. The spatial operator
is approximated with Lobatto quadrature (using the function quadl in Mat-
lab). Then, three different integrals appear for a fixed node z;: the integral
between z;_; and z;, the integral between x; and z;; and the nonsingular
ones. In the two first integrals we use Taylor series to remove the singularity.
In the nonsingular integrals the integrand is made explicit using the splines.
We use a classical explicit Runge-Kutta method of order 4 to integrate in
time. In the simulations we take N = 300 and dt = 10~2. In what follows
we change slightly the notation and write f™/2(x,t) for the solution of (6)
and f°°(x,t) for the solution of (5). Notice that the superscript denotes
the depth in each situation. Then, given an initial datum f(z,0) = fo(z),
which is the same for both evolution problems, we are computing a numeri-
cal approximation for f™2(z,t) and f*(z,t). The initial datum considered
is

(40) folz) = (g - 0.0001) e’

We obtain Figures 2. We can see that the decay is slower in the finite depth
case and the existence of a big time interval with a very small decay.

Comparison between ||f(t)||Lw norms

Finite depth Infinite depth

16

IO, =

- - - Infinite depth
Finite depth

"o 0.02 0.04 0.06 0.08 0.1
Time

FIGURE 2. a) Dynamics for f™/2(z,t), b) dynamics for
fe(x,t), ¢) f™3(z,t) (blue) and f(z,t) (red) for the same
times t; and initial datum given by (40).
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7. NUMERICAL SIMULATIONS FOR (9)

In this section we take | = w/2. To approximate the solutions to (9) we
use a Fourier collocation method with a explicit Runge-Kutta scheme for
the time integration. We write N for the number of spatial nodes. Then
the operator A can be easily discretized using the Fast Fourier Transform
routine. To perform the multiplications we jump to the physical space. To
advance in time we use a Runge-Kutta (4,5) scheme.

7.1. Decay of || f(t)| /L. We consider [ = 7/2 and fo = (I — 0.001) cos(x)
and we study || f(¢)||zee. We show the results on Figure 3. We see that the
evolution is qualitatively similar to the dynamics of the same quantity for
equation (6) (see Figure 2).

LU

FIGURE 3. Evolution of || f(t)| re

7.2. Reaching the boundary. We consider a > 0 and define the family
of initial data

fo(x) =cos(z) xa+7/2 — a.
Notice that f§(0) = w/2 = I, thus, the equation is in the unstable regime.
We see in Figure 4 that the second derivative at x = 0 grows. In Figures
5 and 6, we observe that there exists two points where 02f and d,Af are
large.

8. LARGE TIME DYNAMICS

In this section we show that the solution never leaves the stable regime
and that, for Holder solutions, the curvature is bounded at the point where
the initial data reach the boundary. These statement excludes the two main
candidates for finite time singularities.

Proof of Proposition 2. Step 1: We define
1 1

SO S Gy T T @@




ON THE EFFECT OF BOUNDARIES IN TWO-PHASE POROUS FLOW 25

f(x.t)
f(x.t)

f(x.t)
f(x.t)

FIGURE 4. Evolution of f(z,t) for the different cases a =
0.1,0.2,0.3,0.4 with N = 26, The wide line corresponds to
the initial data.

9, f(x.t)
9, f(x.t)

a f(x)
0, 1(xt)

F1GURE 5. Evolution of 9, f(x,t) for the different cases a =
0.1,0.2,0.3,0.4 with N = 2'7. The wide line corresponds to
the initial data.

We compute

—2fSAf —20,f (BADLf + 0,2 f)
(G +E= P (T + 0.7
Using (11) and Rademacher Theorem, we get
d J(@e, A S (2,0 O f (e, t)ADy f (24, 1)
170 = =200 (T B G G e i)
thus,

B t f(zs, $)Af(zs,8) Onf(xs, $)NO, f (25, 5)
o0 =0 (-2 [ (T F G0+ o) )
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a=0.2

Af(D)
Af(xD)

AfxD)
Af(xD)

FIGURE 6. Evolution of Af(z,t) for the different cases a =
0.1,0.2,0.3,0.4 with N = 2'7. The wide line corresponds to

the initial data.

From this equation we conclude the first statement.
Step 2: We consider an initial data such that f(z) = [ for some Z.

Evaluating (41) at & we get

t 5 Af(7F
S(2,t) = 2(&, 0) exp <—2/0 q f;ff)(f{gj)))zpds) .
Assuming f(x,t) € C([0,T], H3())) we obtain ¥(#,t) =0 forall 0 <t < T.
We compute

20 _ 2 ! .
8t8$f = Aaxf <1+l2_f2 - 1+8J:f2>
+2A(3xf <(1 12— f2)2 (1 + 8:1:f2)2>
20,12 +2f02f | 20, f03f + 2021
f< S N (N D )

2 2 £\2
ong (IO (20732
(+2— P (1+0./
If we evaluate at * = & and we use the fact that f(Z) = [ is the maximum,
we obtain
00;f(@) = 20:f(@)Af(@) (1 +07f(7)).
From this ODE we conclude the result.

APPENDIX A. AUXILIARY RESULTS

We provide a bound for the A acting on the composition of two functions:
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Lemma 2. Given Q = R%, T4 F € C%2(R) and h € W>®(Q) with 2y > a >
0, we have

ACF(h(x)) < C(F a7, d)|[Blfye + F'(h(2)A%R(2),
where C(F, a,,d) = C(||F[|c2(z1<|h)| oo )s @& V> D) -
Proof. We prove this result for Q = R?. For the torus, the proof follows the
same ideas. We define

W(z,y) = { F(h(m))—F(h(x—%» / Hh = he =)

’ o (h(zx)) otherwise.

Notice that, using Taylor Theorem,
(W < Cplh(z) — h(z —y)|.

Then, given € > 0, if |y| > € we have

FW@D-?W@—yD@:ﬂV@yﬁ@ﬂ—yw—wwl
[yl e ’ [y|te
+F’(h(a:))h(w) ‘_y’g—’(_i — y)
Consequently,
F(h(@) = F(hz =), _ b =R =)
e A BN v
)=y

1,d—1,2vg
T T T
< CFHhH?/'V%oo/(; e

h(z) — h(z —y)
+F/(h(:c))/
e<|y|<1 |y|d+a
For the outer part we have
F(h(x)) — F(h(x —y
1<ly|<2 |y
h(z) — h(z —y)
+Ph) [ .
1<|y|<1 |y| @+

Putting all together and taking the limit € — 0, we conclude the result. U
We will use a classical compactness result:

Lemma 3 ([35]). Let Xy, X, X1 be three Banach spaces such that
XgC X C Xy,

with continuous embedding and such that X; are reflexive and the injection
Xo C X is compact. Let T > 0 be a finite number and let ag,aq be two
finite numbers such that o; > 1. Then the space

Y ={ue L*(0,T], Xo), Ou € L**([0,T], X1)}
is compactly embedded in L*°([0,T], X).
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