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ON A NONLOCAL ANALOG OF THE

KURAMOTO-SIVASHINSKY EQUATION

RAFAEL GRANERO-BELINCHÓN AND JOHN K. HUNTER

Abstract. We study a nonlocal equation, analogous to the Kuramoto-
Sivashinsky equation, in which short waves are stabilized by a possibly
fractional diffusion of order less than or equal to two, and long waves
are destabilized by a backward fractional diffusion of lower order. We
prove the global existence, uniqueness, and analyticity of solutions of
the nonlocal equation and the existence of a compact attractor. Numer-
ical results show that the equation has chaotic solutions whose spatial
structure consists of interacting traveling waves resembling viscous shock
profiles.
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1. Introduction

In this paper, we study a family of nonlinear, nonlocal pseudo-differential
equations in one-space dimension for a function u(x, t) given by

(1) ∂tu+ ∂x

(
1

2
u2
)

= Λγu− ǫΛ1+δu,

where ǫ > 0 and Λs is the fractional derivative

Λs =
(
−∂2x

)s/2
, Λ̂su = |ξ|sû.

We assume that the exponents δ, γ satisfy

(2) 0 < δ ≤ 1, 0 ≤ γ < 1 + δ.

Equation (1) consists of an inviscid Burgers equation with a higher-order
linear pseudo-differential term that gives long-wave instability and short-
wave stability. It is analogous to the well-known Kuramoto-Sivashinsky
(KS) equation [28, 36, 37]

(3) ∂tu+ ∂x

(
1

2
u2
)

= −∂2xu− ǫ∂4xu,

which has negative second-order diffusion stabilized by forth-order diffusion.
By contrast, we consider (1) in the parameter regime (2), where the stabi-
lizing diffusion is second-order or less.

A special case of (1), corresponding to γ = δ = 1, is

(4) ∂tu+ ∂x

(
1

2
u2
)

= Λu+ ǫ∂2xu,
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which provides a simple model for the stabilization of a Hadamard instabil-
ity, with growth rate proportional to the absolute value of the wavenumber,
by second-order viscous diffusion. This type of instability occurs in scale-
invariant systems, such as conservation laws (e.g., the Kelvin-Helmholtz
instability for the Euler or MHD equations) and kinetic equations (e.g., the
Vlasov equations), in which the growth rate of long waves is determined by
a parameter with the dimensions of velocity. In particular, (4) provides a
model equation for the negative Landau damping of plasma waves [29, 33].

If γ = 0 and δ = 1, then (1) is the Burgers-Sivashinsky (BS) equation
introduced by Goodman [20],

(5) ∂tu+ ∂x

(
1

2
u2
)

= u+ ǫ∂2xu.

For (5), the growth rate of long waves is bounded independently of the
wavenumber, and its dynamical behavior is much simpler than that of (1)
with γ > 0.

The KS equation (3) exhibits chaotic behavior and possesses a compact
global attractor [31, 32]. Furthermore, it has an inertial manifold [16] that
appears to contain a chaotic attractor when ǫ is sufficiently small. (See
[4, 7, 20, 19, 34] for further results). The spatial analyticity of solutions
of the KS equation is addressed in [6, 22] and the temporal analyticity in
[23]. More recently, the authors in [1, 15, 41] have used computer-assisted
methods to study the dynamics of the solutions.

In this paper, we prove that (1) possesses a compact global attractor in
the parameter range (2) (see Theorem 6). Moreover, numerical solutions
indicate that if 0 < γ < 1+ δ, then (1) exhibits chaotic behavior with an in-
teresting spatial structure. Waves that resemble thin viscous shocks appear
spontaneously at different points, after which they propagate toward and
merge with a primary viscous shock. This spatial behavior is qualitatively
different from what one sees in the usual KS equation. (See Section 6.) By
contrast, solutions of the BS equation (5), with γ = 0, do not behave chaot-
ically; instead, they approach a time-independent viscous sawtooth wave
solution as t → ∞ [20].

The numerical results suggest that (1) with exponents (2) may have an in-
ertial manifold that can be parametrized in some way by the viscous shocks.
We do not investigate this question here, but in Section 5.2 we obtain an up-
per bound on the number of oscillations in solutions of (1) (see Theorem 7).

Nonlocal KS equations similar to (1) have been studied previously by
Frankel and Roytburd [18]. Their results, however, are less detailed than
ours and they apply only in the case when δ ≥ 1. A different type of nonlocal
generalization of the KS equation has been studied in [3, 12].

We conclude the introduction by outlining the contents of this paper. In
Section 2, we prove the global existence of smooth solutions of (1), and
in Section 3, we prove that these solutions gain analyticity in a strip. In
Sections 4–5, we prove the existence of an attractor for (1), and in Section 6,
we show some numerical solutions.
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2. Global existence of solutions

In this section we use a classical energy method to prove the global exis-
tence of solutions of the initial value problem for (1),

∂tu+ ∂x

(
1

2
u2
)

= Λγu− ǫΛ1+δu, x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

(6)

We consider either spatially periodic solutions or solutions on the real line,
with Ω = T or Ω = R as appropriate. In the periodic case, we normalize the
length of T to 2π.

To prove the existence result, we first obtain an a priori L∞-estimate,
using the ideas in [8] to handle the nonlocal operators (see also [2, 9]). This
step of the proof depends on the choice of Ω and δ and is different in each
case. In Section 2.1 we obtain the existence of solutions for 0 < δ < 1. The
gain of derivatives can be as small as 1/2+δ/2, so the well-posedness results
are more delicate than for the usual KS or BS equations. In Section 2.2
we treat the simpler case δ = 1. To simplify the notation, we omit the t-
dependence of u when convenient and use C to denote a (harmless) constant
that can change from one line to another

First, we define what we mean by a weak solution of (6). We denote the
usual Sobolev spaces of functions with weak L2-derivatives of the order less
than or equal to s by Hs(Ω), or Hs, and the real or periodic spatial Hilbert
transform, with symbol −i sgn ξ, by H. In particular, Λ = H∂x.
Definition 1. Let T > 0. A function u(x, t) with

u(x, t) ∈ L2([0, T ],H
1+δ
2 ), ∂tu(x, t) ∈ L2([0, T ],H− 1+δ

2 )

is a weak solution of (6) if the following equality holds for all test functions

φ ∈ H
1+δ
2 (Ω),

∫

Ω
φ∂tu dx− 1

2

∫

Ω
Λ

1+δ
2 φΛ1− 1+δ

2 H(u2) dx

=

∫

Ω
Λγ/2φΛγ/2u dx− ǫ

∫

Ω
Λ(1+δ)/2φΛ(1+δ)/2u dx a.e. 0 < t < T ,

and u(x, 0) = u0(x).

We remark that the L2-boundedness of H, a Moser-type inequality [39],
and Sobolev inequalities, imply that

‖Λ1− 1+δ
2 H(u2)‖L2 ≤ ‖Λ 1−δ

2 (u2)‖L2 ≤ C‖u2‖
H

1−δ
2

≤ C‖u‖L∞‖u‖
H

1−δ
2

≤ C‖u‖
H

1+δ
2
‖u‖

H
1−δ
2
,

so the nonlinear term in this weak formulation is well-defined.

2.1. The case 0 < δ < 1. First, we consider spatially periodic solutions.
Since the mean of u is preserved by the evolution, we can restrict ourselves
to periodic initial data with zero mean,

∫

T

u0(x)dx = 0.
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Lemma 1. If u(x, t) is a spatially periodic, smooth solution of (6), then

‖u(t)‖L∞(R) ≤ ‖u0‖L∞(R) exp (C(ǫ, γ, δ)t) .

Proof. The fractional derivatives can be written as [2]

Λαu(x) =
Γ(1 + α) cos

(
(1− α)π2

)

π
P.V.

∫

R

u(x)− u(η)

|x− η|1+α dη

=
Γ(1 + α) cos

(
(1− α)π2

)

π

∑

k∈Z
P.V.

∫

T

u(x)− u(η)

|x− η − 2kπ|1+α dη

=
Γ(1 + α) cos

(
(1− α)π2

)

π

∑

k∈Z
P.V.

∫

T

u(x)− u(x− η)

|η − 2kπ|1+α dη

(7)

and

Λu(x) =
1

2π
P.V.

∫

T

u(x)− u(x− η)

sin2
(η
2

) dη.

We start the proof with the case γ = 1, for which we have a concise
expression for the kernel. Let xt denote the point where u(·, t) attains its
maximum, and suppose that the L∞-norm ‖u(t)‖L∞(R) = u(xt) is achieved
at the maximum of u. A straightforward calculation shows that u(xt) is a
Lipschitz continuous function of t, so Rademacher’s Theorem [13] implies
that ‖u(t)‖L∞(R) is differentiable pointwise almost everywhere. Now we can
apply the technique developed in [2, 8, 9, 10], to obtain the evolution of
du(xt)/dt. Using the expressions for the kernels, we get

d

dt
‖u(t)‖L∞(R) ≤

1

2π
P.V.

∫

T

(u(xt)− u(xt − η))

(
1

sin2
(η
2

) − 1
(η
2

)2

)
dη

+
1

2π
P.V.

∫

T

(u(xt)− u(xt − η))

(
1
(η
2

)2 − 2ǫΓ(2 + δ) cos
(
δ π2
)

|η|2+δ

)
dη.

The first term is not singular and can be estimated as follows:

I1 =
1

2π
P.V.

∫

T

(u(xt)− u(xt − η))

(
1

sin2
(η
2

) − 1
(η
2

)2

)
dη

≤
2‖u(t)‖L∞(T)

π

∫ π

0

(
1

sin2
(η
2

) − 1
(η
2

)2

)
dη

≤ 8

π2
‖u(t)‖L∞(T).

Notice that there exists ω = ω(δ, ǫ) such that for 0 < |η| ≤ ω, we have

(u(xt)− u(xt − η))

(
1
(η
2

)2 − 2ǫΓ(2 + δ) cos
(
δ π2
)

|η|2+δ

)
≤ 0

We split the second term as

I2 =
P.V.

2π

∫

T

(u(xt)− u(xt − η))

(
1
(η
2

)2 − 2ǫΓ(2 + δ) cos
(
δ π2
)

|η|2+δ

)
dη

≤ J1 + J2
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with

J1 =
P.V.

2π

∫

B(0,ω)
(u(xt)− u(xt − η))

(
1
(η
2

)2 − 2ǫΓ(2 + δ) cos
(
δ π2
)

|η|2+δ

)
dη

≤ 0,

and

J2 =
1

2π

∫

Bc(0,ω)
(u(xt)− u(xt − η))

(
1
(η
2

)2 − 2ǫΓ(2 + δ) cos
(
δ π2
)

|η|2+δ

)
dη

≤ C(ǫ, δ)‖u(t)‖L∞(T),

thus,

I2 = J1 + J2 ≤ J2 ≤ C(ǫ, δ)‖u(t)‖L∞(T).

The same argument applies if ‖u(t)‖L∞(R) = −minx∈T u(x, t), so

‖u(t)‖L∞(R) ≤ ‖u0‖L∞(R) exp (C(ǫ, δ)t) .

In the general case γ 6= 1, some extra terms appear. These terms corre-
spond to |k| ≥ 1 in (7). Since they are not singular, they can be estimated
as follows:

Γ(1 + γ) cos
(
(1− γ)π2

)

π

∑

|k|≥1

P.V.

∫

T

u(xt)− u(xt − η)

|η − 2kπ|1+γ dη

≤ C(γ)‖u(t)‖L∞(T).

The rest of the proof remains unchanged. �

Next, we prove our main existence result.

Theorem 1. Suppose that ǫ > 0, 0 < δ < 1, and 0 ≤ γ < 1 + δ. If

u0 ∈ Hα(T) ∩ L∞(T),

then the following statements hold:

• If α ≥ 2+ δ, then for every 0 < T <∞ the initial value problem (6)
has a unique classical solution

u(x, t) ∈ C([0, T ],Hα(T)).

• If (1 − δ)/2 < α < 2 + δ, then for every 0 < T < ∞ there exists a
weak solution of (6) (see Definition 1) such that

u(x, t) ∈ L∞([0, T ],Hα(T) ∩ L∞(T)) ∩ C([0, T ],Hs(T) ∩ Lp(T))
for every 0 ≤ s < α and 2 ≤ p <∞.

• These solutions gain regularity and satisfy

u(x, t) ∈ L2([0, T ],Hα+ 1+δ
2 (T)).

Moreover, if 3/2 < α+ (1 + δ)/2, then this weak solution is unique.

Proof. Step 1: L2 estimate. We multiply (1) by u and integrate by parts:

1

2

d

dt
‖u‖2L2 = − ǫ

2
‖Λ 1+δ

2 u‖2L2 +

∫

T

u(x)
(
Λγ − ǫ

2
Λ1+δ

)
u dx.
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Using the Fourier transform, we get
∫

T

u(x)
(
Λγ − ǫ

2
Λ1+δ

)
u dx ≤

(
2γ

ǫ(1 + δ)

)1/(1+δ−γ)
‖u(t)‖2L2(T).

Inserting this into the previous bound we obtain

d

dt
‖u‖2L2 ≤ −ǫ‖Λ 1+δ

2 u‖2L2 + 2

(
2γ

ǫ(1 + δ)

)1/(1+δ−γ)
‖u(t)‖2L2(T),

and using Gronwall inequality,

(8)

‖u(t)‖2L2(T) + ǫ

∫ t

0
exp

(
2

(
2γ

ǫ(1 + δ)

)1/(1+δ−γ)
(t− s)

)
‖Λ 1+δ

2 u(s)‖2L2 ds

≤ ‖u0‖2L2(R) exp

(
2

(
2γ

ǫ(1 + δ)

)1/(1+δ−γ)
t

)
.

In particular

‖u(t)‖L2(T) + ǫ

∫ t

0
‖Λ 1+δ

2 u(s)‖2L2 ds

≤ ‖u0‖2L2(T) exp

(
2

(
2γ

ǫ(1 + δ)

)1/(1+δ−γ)
t

)
.

Step 2: Hα estimate. We multiply (1) by Λ2αu and integrate, which
gives

d

dt
‖Λαu‖2L2(T) = I1 + I2 + I3,

where

I1 =

∫

T

Λα+
1+δ
2 uΛα+1− 1−δ

2 H(u2) dx,

I2 = 2

∫

T

Λαu
(
Λγ − ǫ

2
Λ1+δ

)
Λαu dx ≤ C(ǫ, γ, δ)‖Λαu‖2L2(T),

I3 = −ǫ‖Λα+ 1+δ
2 u‖2L2(T).

The term I1 can be handled as follows (see also [26]): We use the Cauchy-
Schwarz and Kato-Ponce inequalities (see Lemma 6) and the properties of
the Hilbert transform (see [38]) to get

I1 ≤ ‖Λα+ 1+δ
2 u‖L2(T)‖Λα+1− 1+δ

2 (u2)‖L2(T)

≤ C‖Λα+ 1+δ
2 u‖L2(T)‖Λα+1− 1+δ

2 u‖L2(T)‖u‖L∞(T).

Then, using

α+ 1− 1 + δ

2
= t(α+

1 + δ

2
) + (1− t)α,

for t = −1 + 2/(1 + δ), and Hölder’s inequality on the Fourier side (with
p = 1/t and q = 1/(1 − t)), we write

‖Λα+1− 1+δ
2 u‖2L2(T) ≤ ‖Λα+ 1+δ

2 u‖2tL2(T)‖Λαu‖
2(1−t)
L2(T)

.
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Inserting this into the bound for I1, we obtain

I1 ≤ C‖Λα+ 1+δ
2 u‖1+t

L2(T)
‖Λαu‖1−t

L2(T)
‖u‖L∞(T).

Using Hölder’s inequality again (with p = 2/(1 + t) and q = 2/(1 − t)), we
get

I1 ≤ C(ǫ, δ)‖Λαu‖2L2(T)‖u‖
2/(1−t)
L∞(T) +

ǫ

2
‖Λα+ 1+δ

2 u‖2L2(T).

Using the estimate for ‖u(t)‖L∞(T) and putting all the estimates together,
we obtain

(9)
d

dt
‖Λαu‖2L2(T) ≤ ‖Λαu‖2L2(T) exp

(
C
(
ǫ, γ, δ, ‖u0‖L∞(T)

)
(1 + t)

)

− ǫ

2
‖Λα+ 1+δ

2 u‖2L2(T).

Finally, from Gronwall inequality, we conclude that

‖Λαu(t)‖2L2(T) +
ǫ

2

∫ t

0
ee

C(ǫ,γ,δ,‖u0‖L∞(T))(1+t−s)

‖Λα+ 1+δ
2 u(s)‖2L2(T)ds

≤ ‖Λαu0‖2L2(T) exp
(
exp

(
C
(
ǫ, γ, δ, ‖u0‖L∞(T)

)
(1 + t)

))
.

In particular,
∫ t

0
‖Λα+ 1+δ

2 u‖2L2(T)ds ≤
2

ǫ
‖Λαu0‖2L2(T)e

e
C(ǫ,γ,δ,‖u0‖L∞(T))(1+t)

.

Step 3: Strong solutions. We denote by Jǫ a positive, symmetric
mollifier. Then, in the case α > 2 + δ, we define the regularized problems

(10) ∂tuϑ + Jϑ ∗
∂x((Jϑ ∗ uϑ)2)

2
= Jϑ ∗

(
Λγ − ǫΛ1+δ

)
Jϑ ∗ uϑ,

with initial data

uϑ(0) = u0.

By Picard’s Theorem, these regularized problems have a unique solution
uϑ ∈ C1([0, T ],Hα(T)). Moreover, since the a priori estimates remain valid,
these solutions are global in time. Thus, for every T > 0 there exists

u(x, t) ∈ L∞ ([0, T ],Hα(T))

such that (after picking a subsequence)

uϑ ⇀ u in L2
(
[0, T ],Hα+ 1+δ

2 (T)
)
.

Next, we want to show that uϑ → u in C
(
[0, T ], L2(T)

)
. The method

is classical (see e.g., [30]) and we only sketch the proof. We subtract the
regularized problems corresponding to labels ϑ and ̟:

∂tuϑ − ∂tu̟ + Jϑ ∗
∂x((Jϑ ∗ uϑ)2)

2
− J̟ ∗ ∂x((J̟ ∗ u̟)2)

2

= Jϑ ∗
(
Λγ − ǫΛ1+δ

)
Jϑ ∗ uϑ − J̟ ∗

(
Λγ − ǫΛ1+δ

)
J̟ ∗ u̟.

From this equation, we obtain

‖uϑ − u̟‖C([0,T ],L2(T)) ≤ C(T, u0, γ, ǫ, δ)max{̟ − ϑ},
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and we get that
uϑ → u in C

(
[0, T ], L2(T)

)
.

Using interpolation and the parabolic character of the equation, we have

uϑ → u in C ([0, T ],Hα(T)) ,

which shows that u is a classical solution. Uniqueness follows by energy
estimates.

Step 4: Regularized problems and compactness. We define the
regularized problems

(11) ∂tuϑ + ∂x

(
1

2
u2ϑ

)
=
(
Λγ − ǫΛ1+δ

)
uϑ,

with initial data
uϑ(0) = Jϑ ∗ u0.

These problems have a global in time, smooth solution. Moreover, due to
the energy estimates in the previous step, these solutions satisfy a uniform
bound in the space

uϑ ∈ Lp([0, T ],Hα(R) ∩ L∞(R))

for all 1 ≤ p ≤ ∞, and

uϑ ∈ L2([0, T ],Hα+ 1+δ
2 (R)).

In particular, we get weak convergence in L2([0, T ],Hα+ 1+δ
2 (R)) and weak-∗

convergence in L∞([0, T ], L∞(R)) of a subsequence to a function u. More-
over, by the weak lower semi-continuity of the norm, we have

‖u‖
L2([0,T ],Hα+1+δ

2 (R))
, ‖u‖L∞([0,T ],L∞(R)) ≤ C(ǫ, δ, γ, u0).

The dual space of H(1+δ)/2(T) is H−(1+δ)/2(T), and the corresponding
norm of a function f is given by

‖f‖H−(1+δ)/2(T) = sup
‖ψ‖

H(1+δ)/2(T)
≤1

∣∣∣∣
∫

T

fψdx

∣∣∣∣ .

We have
Hα(T) →֒ L2(T) →֒ H−(1+δ)/2(T),

where the first inclusion is compact and the second inclusion is continuous
(see [11]). To invoke the Aubin-Lions compactness Theorem (see Corollary
4, Section 8 in [35]) we need uniform bounds in the Bochner spaces

uϑ ∈ L∞([0, T ],Hα(T)), ∂tuϑ ∈ L2([0, T ],H−(1+δ)/2(T)).

Multiplying (11) by ψ ∈ H(1+δ)/2(T) and integrating by parts, we obtain

‖∂tuϑ‖H−(1+δ)/2(T) ≤ ‖Λ 1−δ
2 u2ϑ‖L2(T) + ‖Λ

γ
2 uϑ‖L2(T) + ǫ‖Λ 1+δ

2 uϑ‖L2(T)

≤ ‖Λ 1−δ
2 uϑ‖L2(T)‖uϑ‖L∞(T) + ‖Λ γ

2 uϑ‖L2(T) + ǫ‖Λ 1+δ
2 uϑ‖L2(T)

Recalling that the energy estimates gives us uniform bounds

uϑ ∈ L2([0, T ],H(1+δ)/2(T)), and uϑ ∈ L∞([0, T ], L∞(T)),

and using Poincaré inequality, we get a uniform bound

∂tuϑ ∈ L2([0, T ],H−(1+δ)/2(T)).
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Thus, we get

uϑ ⇀u ∈ L2([0, T ],Hα+ 1+δ
2 (T)),(12a)

∂tuϑ ⇀∂tu ∈ L2([0, T ],H−(1+δ)/2(T)).(12b)

Applying the Aubin-Lions Lemma, we get that

uϑ →u ∈ C([0, T ], L2(T)),(13a)

uϑ →u ∈ C([0, T ], Lp(T)) for all 2 ≤ p <∞.(13b)

Then, using interpolation in Sobolev spaces, we get

(14) uϑ → u ∈ C([0, T ],Hs(T)), 0 ≤ s < α.

Step 5: Convergence of the weak formulation. We need to show
that the limit u of the regularized solutions in the previous step is a weak
solution in the sense of Definition 1. Let φ ∈ H(1+δ)/2(T) be a test function.
Using the properties of mollifiers we obtain uϑ(0) → u0 in L2. To show
convergence in the equation, we have to deal with the nonlinear term.

For 0 < δ < 1/2, we have Hδ →֒ L2/(1−2δ) and

∫

T

Λ(1+δ)/2φΛ(1−δ)/2H
(
u2ϑ − u2

)
dx

≤ C(φ)‖Λ(1−δ)/2H
(
u2ϑ − u2

)
‖L2(T)

≤ C(φ)
(
‖Λ(1−δ)/2(uϑ + u)‖L2/(1−2δ)(T)‖uϑ − u‖L1/δ(T)

+‖Λ(1−δ)/2(uϑ − u)‖L2(T)‖uϑ + u‖L∞(T)

)

≤ C(φ)
(
‖Λ(1+δ)/2(uϑ + u)‖L2(T)‖uϑ − u‖L1/δ(T)

+‖Λ(1−δ)/2(uϑ − u)‖L2(T)‖uϑ + u‖L∞(T)

)

≤ C(φ, ǫ, δ, u0, γ)
(
‖uϑ − u‖L1/δ(T)

+‖Λ(1−δ)/2(uϑ − u)‖L2(T)

)
.

For δ = 1/2, we use H1/2 →֒ L4 to get

‖Λ(1−δ)/2H
(
u2ϑ − u2

)
‖L2(T)

≤
(
‖Λ(1−δ)/2(uϑ + u)‖L4(T)‖uϑ − u‖L4(T)

+‖Λ(1−δ)/2(uϑ − u)‖L2(T)‖uϑ + u‖L∞(T)

)

≤
(
‖Λ(1+δ)/2(uϑ + u)‖L2(T)‖uϑ − u‖L4(T)

+‖Λ(1−δ)/2(uϑ − u)‖L2(T)‖uϑ + u‖L∞(T)

)
.
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For 1/2 < δ ≤ 1, we have Hδ →֒ L∞ and

‖Λ(1−δ)/2H
(
u2ϑ − u2

)
‖L2(T)

≤
(
‖Λ(1−δ)/2(uϑ + u)‖L∞(T)‖uϑ − u‖L2(T)

+‖Λ(1−δ)/2(uϑ − u)‖L2(T)‖uϑ + u‖L∞(T)

)

≤
(
‖Λ(1+δ)/2(uϑ + u)‖L2(T)‖uϑ − u‖L2(T)

+‖Λ(1−δ)/2(uϑ − u)‖L2(T)‖uϑ + u‖L∞(T)

)

Using (13b) and (14), we obtain

(15) sup
t

∣∣∣∣
∫

T

Λ(1+δ)/2φΛ(1−δ)/2H
(
u2ϑ − u2

)
dx

∣∣∣∣→ 0.

Next, we test against φ ∈ C1([0, T ],H(1+δ)/2(T)) and integrate in time.
Equation (12a) gives

∫ T

0

∫

T

Λsφ(t)Λs(uϑ(t)− u(t)) dxdt → 0 0 ≤ s ≤ α+
1 + δ

2
,

which ensures the convergence of the linear terms with s = γ/2, (1 + δ)/2,
while (15) ensures the convergence of the nonlinear terms. Since

C1([0, T ],H(1+δ)/2(T))

is dense in

L2([0, T ],H(1+δ)/2(T)),

it follows that u satisfies the weak formulation for every

φ ∈ L2([0, T ],H(1+δ)/2(T)).

Taking φ independent of t, we find that the weak formulation holds almost
everywhere in time, which completes the proof of the existence of weak
solutions.

Step 6: Uniqueness of weak solutions. Suppose that u1, u2 are weak
solutions of (6) with the same initial data and let w = u1 − u2. Testing
against w, we have

1

2

d

dt
‖w‖2L2 = −

∫

R

w2∂xu1 + wu2∂xwdx

+

∫

R

wΛγw − ǫ

∫

R

wΛ1+δwdx

≤ C‖w‖2L2(‖u1‖H1.5+ε + ‖u2‖H1.5+ε + 1),

and Gronwall’s inequality implies that w = 0. �

The proof of global existence for Ω = R is similar to the one for Ω = T,
but we need to modify the proof of the L∞-estimate to account for the
difference in the kernel of the fractional derivatives.

Lemma 2. If u(x, t) is a smooth solution of (6) on Ω = R, then

‖u(t)‖L∞(R) ≤ ‖u0‖L∞(R) exp (C(ǫ, γ, δ)t) .
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Proof. The fractional derivative on R can be written as

Λαu(x) =
c(α)

π
P.V.

∫

R

u(x)− u(x− η)

|η|1+α dη

where

c(α) = Γ(1 + α) cos
(
(1− α)

π

2

)
.

Let xt denote the point where u reaches its maximum (this point is contained
in a compact set in the real line since u ∈ Hα where α is certainly greater
than 1/2) and assume that ‖u(t)‖L∞(R) = u(xt). Then, using Rademacher’s
Theorem as before, we get

d

dt
‖u(t)‖L∞(R) = ∂tu(xt)

=
1

π
P.V.

∫

R

(u(xt)− u(xt − η))
(
c(γ)|η|1+δ−γ − c(1 + δ)ǫ

)

|η|2+δ dη

≤ 1

π

∫

|η|>C(ǫ,γ,δ)

(u(xt)− u(xt − η))

|η|1+γ dη

≤ C(ǫ, γ, δ)‖u(t)‖L∞(R).

Similarly, if ‖u(t)‖L∞(R) = −u(xt) where xt for the point where u attains
its minimum, we have

d

dt
‖u(t)‖L∞(R) = −∂tu(xt)

= − 1

π
P.V.

∫

R

(‖u(t)‖L∞(R) + u(xt − η))
(
c(1 + δ)ǫ − c(γ)|η|1+δ−γ

)

|η|2+δ
≤ C(ǫ, γ, δ)‖u(t)‖L∞(R),

and it follows that

‖u(t)‖L∞(R) ≤ ‖u0‖L∞(R) exp (C(ǫ, γ, δ)t) .

�

Using Lemma 2 and the same ideas as in Theorem 1, we then get the
following result.

Theorem 2. Let 0 < δ < 1, 0 ≤ γ < 1 + δ, and ǫ > 0. If

u0 ∈ Hα(R) ∩ L∞(R)

with α ≥ 2 + δ, then for every 0 < T < ∞ there exists a unique classical
solution of (6) such that

u(x, t) ∈ C([0, T ],Hα(R)).

Moreover, the solution gains regularity and satisfies

u(x, t) ∈ L2([0, T ],Hα+ 1+δ
2 (R)).
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2.2. The case δ = 1. In this case, equation (1) becomes

(16) ∂tu+ ∂x

(
1

2
u2
)

= Λγu+ ǫ∂2xu, x ∈ Ω, t > 0,

The previous proofs do not apply directly since they use a kernel representa-
tion of Λ1+δ which is not valid if δ = 1. Nevertheless, we have an analogous
existence result.

Theorem 3. Let u0 ∈ Hα(Ω) with α ≥ 1 be the initial data for equation
(16), where ǫ > 0, 0 ≤ γ < 2, and Ω is T or R. Then the following
statements hold.

• If α ≥ 3, then for every 0 < T < ∞ there exists a unique classical
solution

u(x, t) ∈ C([0, T ],Hα(Ω)).

• If 1 ≤ α < 3, then for every 0 < T <∞ there exists a weak solution

u(x, t) ∈ L∞([0, T ],Hα(Ω)) ∩ C([0, T ], L2(Ω)).

• Moreover, the solution gains regularity and satisfies

u(x, t) ∈ L2([0, T ],Hα+1(Ω)).

Proof. We give only the a priori estimates. The proof then follows from the
one for 0 ≤ δ < 1 with minor changes.

The L2 energy estimate is

1

2

d

dt
‖u(t)‖2L2(Ω) +

ǫ

2
‖∂xu‖2L2(Ω) = ‖Λγ/2u‖2L2(Ω) −

ǫ

2
‖∂xu‖2L2(Ω).

Using Fourier estimates and Gronwall’s inequality, we obtain

‖u(t)‖L2(Ω) + ǫ

∫ t

0
‖∂xu(s)‖2L2(Ω)ds ≤ ‖u0‖2L2(Ω) exp (c(ǫ, γ)t) .

In particular

∫ T

0
‖u(s)‖2L∞(Ω)ds ≤ c

∫ T

0
‖∂xu(s)‖2L2(Ω)ds ≤ C(T, u0, γ, ǫ).

The H1 energy estimate is

1

2

d

dt
‖∂xu(t)‖2L2(Ω) ≤

c

ǫ
‖u(t)‖2L∞(Ω)‖∂xu(t)‖2L2(Ω) + ‖Λγ/2u‖2L2(Ω)

− ǫ

2
‖∂xu‖2L2(Ω) ≤ C(ǫ, γ)(‖u(t)‖2L∞(Ω) + 1)‖∂xu(t)‖2L2(Ω).

Also, using Sobolev and Gronwall inequalities we obtain

sup
t∈[0,T ]

‖u(t)‖2L∞(Ω) ≤ c‖∂xu(t)‖2L2(Ω) ≤ C(ǫ, γ, u0, T ).

With these global estimate in H1 and L∞, we can mimic the previous proof
that used Hα norms. �
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3. Instant analyticity

In this section, we prove that solutions of (1) immediately gain some
analyticity. As in [5] (see also [2, 10, 22]), our proof is based on a priori
estimates in Hardy-Sobolev spaces for the complex extension of the function
u in a (growing) complex strip

Bk(t) = {x+ iξ : x ∈ Ω, |ξ| < kt},
where k is a positive constant. We also consider a (shrinking) complex strip

Vh(t) = {x+ iξ : x ∈ Ω, |ξ| < h(t)},
where h(t) is a positive, decreasing function. When convenient, we do not
display the t-dependence of these strips explicitly.

We define the norms

‖u‖2L2(Bk)
=
∑

±

∫

Ω
|u(x± ikt)|2dx,

‖u‖2Hn(Bk)
= ‖u‖2L2(Bk)

+ ‖∂nxu‖2L2(Bk)
,

with their analogous counterparts for the strip Vh. The corresponding func-
tion spaces have the same flavour as the Gevrey classes used in [14, 17]. In
particular, the tools in [14] may be adapted to get u(x, t) ∈ G1

t (Ω), which
implies the analyticity for real spatial arguments x.

Theorem 4. Let u be a classical solution of (6) with (real-valued) initial
data u0, where ǫ > 0 and γ, δ satisfy (2). Then the following statements
hold.

• If u0 ∈ H3(Ω) and k > 0, then there exists a time T (k, u0, ǫ, δ, γ) > 0
such that u continues analytically into the strip Bk(t) for 0 < t <
T (k, u0, ǫ, δ, γ).

• If u0 ∈ H3(Ω) continues to an analytic function in a complex strip
of width h0 > 0, then there exists a time T (u0, ǫ, δ, γ) and a positive
decreasing function h : [0, T ) → (0,∞) such that h(0) = h0 and u
continues analytically into the strip Vh(t) for 0 < t < T (u0, ǫ, δ, γ)
with finite H3(Vh)-norm.

Proof. Step 1: Growing strip. We prove the result in the case Ω = T; the
case Ω = R is similar. We write z = x± ikt. Then the extended equation is

(17) ∂tu(z, t) + u(z, t)∂xu(z, t) =
(
Λγ − ǫΛ1+δ

)
u(z, t), x ∈ Ω, t > 0.

First, we study the evolution of ‖u‖H3(Bk). Since we consider periodic
solutions with zero mean, it follows from Poincaré inequalities that we only
need to estimate the L2 norm of the third derivative.

Using Plancherel’s theorem, we have

d

dt
‖∂3xu‖2L2(Bk)

= 2ℜ
∫

T

∂3xū(z)
(
∂t∂

3
xu(z)± ik∂4xu(z)

)
dx,

and from (17), we get that

(18) ∂t∂
3
xu = −3(∂2xu)

2 − 4∂xu∂
3
xu− u∂4xu+ Λγ∂3xu− Λ1+δ∂3xu.
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We have the following estimates:

A1 = −3

∫

T

(∂2xu(z))
2∂3xū(z)dx ≤ C‖∂3xu‖L2(Bk)‖∂

2
xu‖L2(Bk)‖∂

2
xu‖L∞(Bk)

≤ C‖∂3xu‖3L2(Bk)
,

A2 = −4

∫

T

∂xu(z)|∂3xu(z)|2dx ≤ C‖∂3xu‖2L2(Bk)
‖∂xu‖L∞(Bk)

≤ C‖∂3xu‖3L2(Bk)
,

A3 = ±ik
∫

T

∂3xū(z)∂
4
xu(z)dx

= ∓ik
∫

T

∂3xū(z)ΛH∂3xu(z)dx

= ∓ik
∫

T

Λ1/2∂3xū(z)Λ
1/2H∂3xu(z)dx ≤ 2k‖Λ1/2∂3xu‖2L2(Bk)

.

Moreover, we have

A4 = ℜ
∫

T

∂3xū(z)u(z)∂
4
xu(z)dx

=

∫

T

ℜ∂3xuℜ∂4xuℜu+ ℑ∂3xuℑ∂4xuℜudx

+

∫

T

−ℜ∂3xuℑ∂4xuℑu+ ℜ∂4xuℑ∂3xuℑudx

= −1

2

∫

T

|∂3xu|2ℜ∂xudx

− 2

∫

T

ℜ∂3xuℑ∂4xuℑu+ ℜ∂3xuℑ∂3xuℑ∂xudx

= −1

2

∫

T

|∂3xu|2ℜ∂xudx+

∫

T

ℜ∂3xuℑ∂3xuℑ∂xudx

− 2

∫

T

[
Λ1/2,ℑu

]
ℜ∂3xuΛ1/2Hℑ∂3xudx

− 2

∫

T

ℑuΛ1/2ℜ∂3xuΛ1/2Hℑ∂3xudx,

so, using the commutator estimate (see Lemma 6)
∥∥∥
[
Λ1/2, F

]
G
∥∥∥
L2

≤ c‖∂xF‖L∞‖G‖L2 ,

we get that

A4 ≤ C‖∂3xu‖2L2(Bk)
‖∂xu‖L∞(Bk)

+ C‖∂3xu‖L2(Bk)‖∂xu‖L∞(Bk)‖Λ1/2ℑ∂3xu‖L2(Bk)

+ 2‖Λ1/2∂3xu‖2L2(Bk)
‖ℑu‖L∞(Bk)

≤ C(‖∂3xu‖4L2(Bk)
+ 1)

+ ‖Λ1/2∂3xu‖2L2(Bk)

(
2‖ℑu‖L∞(Bk) + 1

)
.
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Let λ > ‖u0‖L∞ be a positive constant. Putting these results together and
using Poincaré’s inequality, we get

d

dt
‖∂3xu‖2L2(Bk)

≤C(‖∂3xu‖4L2(Bk)
+ 1)

+ ‖Λ1/2∂3xu‖2L2(Bk)

(
2‖ℑu‖L∞(Bk) − 2λ+ 2λ+ 2k + 1

)

+ ‖Λγ/2∂3xu‖2L2(Bk)
− ǫ‖Λ(1+δ)/2∂3xu‖2L2(Bk)

≤C(‖∂3xu‖L2(Bk) + 1)4 + ‖Λ1/2∂3xu‖2L2(Bk)

(
2‖ℑu‖L∞(Bk) − 2λ

)

+ 2 (λ+ k + 1) ‖Λmax{1,γ}/2∂3xu‖2L2(Bk)
− ǫ‖Λ(1+δ)/2∂3xu‖2L2(Bk)

.

Define a constant C(λ, k, ǫ, δ, γ) > 0 by

C(λ, k, ǫ, δ, γ) = max
ξ∈R

[
2 (λ+ k + 1) |ξ|max{1,γ} − ǫ|ξ|1+δ

]

= 2 (λ+ k + 1)

(
max{1, γ}2 (λ+ k + 1)

ǫ(1 + δ)

) max{1,γ}
1+δ−max{1,γ}

− ǫ

(
max{1, γ}2 (λ+ k + 1)

ǫ(1 + δ)

) 1+δ
1+δ−max{1,γ}

.

(19)

Then, using Plancherel’s theorem, we get that

2 (λ+ k + 1) ‖Λmax{1,γ}/2∂3xu‖2L2(Bk)
− ǫ‖Λ(1+δ)/2∂3xu‖2L2(Bk)

≤ C(λ, k, ǫ, δ, γ)‖∂3xu‖2L2(Bk)
,

and therefore

d

dt
‖∂3xu‖2L2(Bk)

≤C(‖∂3xu‖L2(Bk) + 1)4 + 2‖Λ1/2∂3xu‖2L2(Bk)

(
‖ℑu‖L∞(Bk) − λ

)

+ C(λ, k, ǫ, δ, γ)‖∂3xu‖2L2(Bk)
.

We define a new energy by

‖u‖Bk
= ‖∂3xu‖2L2(Bk)

+ ‖dλ[u]‖L∞(Bk)

where

dλ[u](z) =
1

λ2 − |u(z)|2 .

Note that |u(z)| < λ as long as ‖u‖Bk
remains finite. We need a bound for

the remaining term in the energy ‖u‖Bk
. Using (17) and Sobolev embedding

to estimate ∂tu, we have

d

dt
dλ[u] ≤ 4dλ[u]2‖u‖L∞(Bk)‖∂tu‖L∞(Bk) ≤ C(‖u‖Bk

+ 1)3dλ[u]

Thus, we obtain

dλ[u](t+ h) ≤ dλ[u](t) exp

(∫ t+h

t
C(‖u‖Bk

+ 1)3ds

)
.

Finally, we have

d

dt
‖dλ[u]‖L∞(T) = lim

h→0

‖dλ[u](t+ h)‖L∞(T) − ‖dλ[u](t)‖L∞(T)

h

≤ C(‖u‖Bk
+ 1)4.
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It follows that

d

dt
‖u‖Bk

=
d

dt
‖∂3xu‖2L2(Bk)

+
d

dt
‖dλ[u]‖L∞(T)

≤ c(‖∂3xu‖L2(Bk) + 1)4 + C(λ, k, ǫ, δ, γ)‖∂3xu‖2L2(Bk)
+ c(‖u‖Bk

+ 1)4

≤ c(‖u‖Bk
+ 1)4 + C(λ, k, ǫ, δ, γ)‖u‖Bk

.

Thus,

‖u(t)‖Bk
≤

3
√
C(λ, k, ǫ, δ, γ) exp


C(λ, k, ǫ, δ, γ)




log





‖u(0)‖Bk

3
√

c‖u(0)‖3
Bk

+C(λ,k,ǫ,δ,γ)





C(λ,k,ǫ,δ,γ) + t







3

√√√√√√√√
1− c exp


3C(λ, k, ǫ, δ, γ)




log





‖u(0)‖Bk

3
√

c‖u(0)‖3
Bk

+C(λ,k,ǫ,δ,γ)





C(λ,k,ǫ,δ,γ) + t







.

The time of existence of analytic solutions is then at least

T (k, u0, ǫ, δ, γ) =

log


 C(λ,k,ǫ,δ,γ)

(

‖∂3xu0‖2L2+
1

λ2−‖u0‖
2
L∞

)3

c

+ 1




3C(λ, k, ǫ, δ, γ)
,

(20)

where C(λ, k, ǫ, δ, γ) is given by (19), and we may choose λ =
√
2‖u0‖∞, for

example.
Now we approximate this problem using an analytic mollifier such as the

heat kernel. The regularized problems have entire solutions and satisfy the
same a priori bounds. Using the uniqueness of classical solutions, we obtain
the first part of the result.

Step 2: Shrinking strip As before, we consider the evolution in the
Hardy-Sobolev spaces in the strip Vh. We write z = x± ih(t). Notice that
since the solution is real for real z we have

∂kxu(x± ih(t))− ∂kxu(x± i0) =

∫

Γ
∂k+1
x u(x± ζ)dζ =

∫ h(t)

0
i∂k+1
x u(x± iθ)dθ.

Thus, using the Hadamard Three Lines Theorem, we get

∣∣∣∂kxu(x± ih(t)) − ∂kxu(x± i0)
∣∣∣ ≤ h(t) sup

x∈T
sup

|θ|<h(t)
|∂k+1
x u(x± iθ)|

≤ h(t)‖∂k+1
x u‖L∞(Vh).
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Using Lemma 8 and equation (18) for ∂t∂
3
xu, we have

d

dt
‖∂3x(t)‖2L2(Vh)

≤h
′(t)
10

∑

±

∫

T

Λ∂3xu(z)∂
3
xu(z)dx

− 10h′(t)
∑

±

∫

T

Λ∂3xu(x)∂
3
xu(x)dx

+ 2ℜ
∑

±

∫

T

∂t∂
3
xu(z)∂

3
xu(z)dx

=J1 + J2 + J3 + J4,

where

J1 =
h′(t)
10

∑

±

∫

T

Λ∂3xu(z)∂
3
xu(z)dx,

J2 = −10h′(t)
∑

±

∫

T

Λ∂3xu(x)∂
3
xu(x)dx

J3 = 2ℜ
∫

T

[
−3(∂2xu)

2 − 4∂xu∂
3
xu− u∂4xu

]
∂3xu(z)dx

= K1 +K2 +K3,

J4 = 2ℜ
∑

±

∫

T

(
Λγ − ǫΛ1+δ

)
∂3xu(x)∂

3
xu(x)dx.

We have the estimates

J2 ≤ 20|h′(t)|‖u0‖2H3.5 exp (exp (C(ǫ, δ, γ, ‖u0‖L∞(1 + t)))) ,

J4 ≤ 2

(
γ

ǫ(1 + δ)

) 1
1+δ−γ

‖∂3xu‖2L2(Vh)
.

Moreover, following the previous ideas, and using Gagliardo-Nirenberg and
Sobolev inequalities, we find that

K1 +K2 ≤ C‖∂3xu‖2L2(Vh)
‖∂xu‖L∞(Vh) ≤ C‖∂3xu‖3L2(Vh)

.

We also have

K3 =2

∫

T

ℜuℜ∂4xuℜ∂3xu+ ℜuℑ∂4xuℑ∂3xudx

+ 2

∫

T

−ℑuℜ∂4xuℑ∂3xu+ ℑuℑ∂4xuℜ∂3xudx

≤C‖∂3xu‖2L2(Vh)
‖∂xu‖L∞(Vh) − 4

∫

T

ℑuℜ∂4xuℑ∂3xudx

≤C‖∂3xu‖3L2(Vh)
− 4

∫

T

Λ1/2Hℜ∂3xuΛ1/2
(
ℑuℑ∂3xu

)
dx.

The last integral can be written in terms of a commutator as
∫

T

Λ1/2Hℜ∂3xu
[
Λ1/2,ℑu

]
ℑ∂3xudx+

∫

T

Λ1/2Hℜ∂3xuℑuΛ1/2ℑ∂3xu dx,
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and using Lemma 6, we get

K3 ≤ C‖∂3xu‖3L2(Vh)
+ C‖Λ1/2∂3xu‖L2(Vh)‖∂xℑu‖L∞(Vh)‖∂3xu‖L2(Vh)

−4

∫

T

Λ1/2Hℜ∂3xuℑuΛ1/2ℑ∂3xudx

≤ C
(
‖∂3xu‖L2(Vh) + 1

)3

+C
(
‖∂xℑu‖2L∞(Vh)

+ ‖ℑu‖L∞(Vh)

)
‖Λ1/2∂3xu‖2L2(Vh)

≤ C
(
‖∂3xu‖L2(Vh) + 1

)3

+Ch(t)
(
‖∂3xu‖L2(Vh) + 1

)2 ‖Λ1/2∂3xu‖2L2(Vh)
.

Collecting the bounds for K3 and for J1, we have

K3 + J1 ≤ C
(
‖∂3xu‖L2(Vh) + 1

)3

+
(
Ch(t)

(
‖∂3xu‖L2(Vh) + 1

)2
+ 10h′(t)

)
‖Λ1/2∂3xu‖2L2(Vh)

,

and, choosing

(21) h(t) = h(0) exp

(
−10C

∫ t

0

(
‖∂3xu(s)‖L2(Vh) + 1

)2
ds

)
,

we obtain

d

dt
‖∂3xu(t)‖2L2(Vh)

≤ C
(
‖∂3xu‖L2(Vh) + 1

)3

+C
(
‖∂3xu‖L2(Vh) + 1

)2 ‖u0‖2H3.5 exp (exp (C(ǫ, δ, γ, ‖u0‖L∞(1 + t)))) .

Finally, we use a standard Galerkin approximation method to obtain a local
solution that satisfies these estimates, which completes the proof. �

In the previous proof, we can choose the parameter k > 0 that determines
the strips of analyticity in any way we wish, but we get shorter existence
times for larger values of k, so we cannot conclude that the solution is entire
for t > 0.

To obtain an explicit estimate for the width of a strip that depends only
on the initial data (and the parameters in the equation), we choose

(22) k =

(
‖∂3xu0‖2L2 +

1

λ2 − ‖u0‖2L∞

)3

, λ =
√
2‖u0‖∞

in the proof of Theorem 4. Then the corresponding time T of analyticity is
given by (20), and the width of the strip of analyticity at time T is at least
kT . Using the preceding equations, we find that

(23) kT =
log (E/c+ 1)

3E ,
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where c is a constant, and E is given by

E =

2
(√

2‖u0‖L∞(T) + k + 1
)(max{1,γ}2(

√
2‖u0‖L∞(T)+k+1)
ǫ(1+δ)

) max{1,γ}
1+δ−max{1,γ}

(
‖∂3xu0‖2L2 +

1
‖u0‖2L∞

)3

−
ǫ

(
max{1,γ}2(

√
2‖u0‖L∞(T)+k+1)
ǫ(1+δ)

) 1+δ
1+δ−max{1,γ}

(
‖∂3xu0‖2L2 +

1
‖u0‖2L∞

)3 .

(24)

Finally, we remark that by using this smoothing effect, one can prove the
ill-posedness in Sobolev spaces of the evolution problem backward in time.

Corollary 1. There are solutions ũ to the backward in time equation (1),
such that ‖ũ‖H4(0) < ǫ and ‖ũ‖H4(µ) = ∞ for all ǫ > 0 and sufficiently
small µ > 0.

Proof. The proof follows the idea in [2, 10]. We consider the solution (for-
ward in time) uν to the equation (1) with initial data u(x, 0) = νv(x) where
v ∈ H3, v /∈ H4 0 < ν < 1. Now define ũν,µ(x, t) = uν(x,−t + µ) for fixed,
small enough 0 < µ(v) ≪ 1. This function is analytic at time 0 but it does
not belong to H4 at time µ. Taking 0 < ν ≪ 1 we conclude the proof. �

4. Large time dynamics

In this section we prove the existence of an absorbing ball in Lp for the
problem (1) in the periodic case Ω = T. We will require a Lemma similar
to the results in [20, 31, 40]:

Lemma 3. Let M ∈ N, δ > 0, and x0 ∈ T. Then there exists a smooth,
periodic function bx0M ∈ C∞(T) and a constant

C1(δ,M) = c1(δ)

(
1

M1+δ
+

1

δM δ

)1/2

such that the following inequality holds: for every u ∈ C∞(T) with u(x0) = 0,∣∣∣∣
∫

T

bx0M (x)u2(x, t)dx

∣∣∣∣ ≤ C1(δ,M)‖Λ 1+δ
2 u‖2L2(T).

Proof. We define

bx0M (x) =
∑

|ξ|≤M
e−iξ(x−x0).

We have ∫

T

bx0M (x)u2(x, t)dx =
∑

|ξ|≤M

∫

T

u2(x, t)e−iξ(x−x0)dx

=
∑

|ξ|≤M

∫

T

u2(x+ x0, t)e
−iξxdx

= 2π
∑

|ξ|≤M
ĝ(ξ),
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where g(x) = u2(x+x0). Since
∑
ĝ(ξ) = g(0), it follows from the definition

of x0 that
∑
ĝ(ξ) = 0, and therefore

∣∣∣∣∣∣
∑

|ξ|≤M
ĝ(ξ)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

|ξ|>M
ĝ(ξ)

∣∣∣∣∣∣

≤


 ∑

|ξ|>M
|ξ|1+δ (ĝ(ξ))2




1/2
 ∑

|ξ|>M

1

|ξ|1+δ




1/2

≤ 1√
2π

‖Λ 1+δ
2 g‖L2(T)

(
1

M1+δ
+

1

δM δ

)1/2

.

The Kato-Ponce inequality then implies that there is a constant c1(δ) such
that

∣∣∣∣
∫

T

bx0M (x)u2(x, t)dx

∣∣∣∣ ≤ c1(δ)‖Λ
1+δ
2 u‖2L2(T)

(
1

M1+δ
+

1

δM δ

)1/2

,

which proves the result. �

Next, we prove that solutions of (1) remain uniformly bounded in Lp.
The key step is to prove the existence of an absorbing set in L2, and we do
this following the ideas of [20, 31].

Theorem 5. Suppose that u0 ∈ Hα(T), where α > 1, has zero mean. Then
the solution u of the initial-value problem (6) in the periodic case satisfies

lim sup
t→∞

‖u(t)‖L2(T) ≤ r2(ǫ, δ, γ),

‖u(t)‖L2(T) ≤ max{‖u0‖L2(T), r2} = R(ǫ, δ, γ).

Moreover, for 2 < p ≤ ∞ and 0 < δ < 1, we have

lim sup
t→∞

‖u(t)‖Lp(T) ≤ r
2/p
2

(
max

{√
3

π
R,C (δ)R

})1−2/p

.

Proof. We start by assuming that the initial data is odd.
Step 1: Absorbing set in L2 Let s be a smooth, periodic function,

which we will choose later. We compute that

1

2

d

dt
‖u(t)− s‖2L2(T) = ‖Λγ/2u‖2L2(T) − ǫ‖Λ(1+δ)/2u‖2L2(T) −

∫

T

∂xs
u2

2
dx

−
∫

T

Λ(1+δ)/2u
(
ǫΛ(1+δ)/2s+ Λγ−(1+δ)/2s

)
dx.

Using the inequality

2|ξ|γ ≤ ǫ

3
|ξ|1+δ +

(
6γ

(1 + δ)ǫ

) 1
1+δ−γ

, for all ξ ∈ R
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and the Plancherel theorem, we get

1

2

d

dt
‖u(t)− s‖2L2(T) ≤ −‖Λγ/2u‖2L2(T) −

2ǫ

3
‖Λ(1+δ)/2u‖2L2(T) − ‖u‖2L2(T)

+

∫

T

(
λ− ∂xs

2

)
u2dx

+

∫

T

Λ(1+δ)/2u
(
−ǫΛ(1+δ)/2s+Λγ−(1+δ)/2s

)
dx,

where

(25) λ =

(
6γ

(1 + δ)ǫ

) 1
1+δ−γ

+ 1.

Then, using the Young and Cauchy-Schwarz inequalities, we obtain

1

2

d

dt
‖u(t)− s‖2L2(T) ≤ −‖Λγ/2u‖2L2(T) − ‖u‖2L2(T) −

ǫ

3
‖Λ(1+δ)/2u‖2L2(T)

+

∫

T

(
λ− ∂xs

2

)
u2dx

+
3

ǫ

∫

T

((
−ǫΛ(1+δ)/2 + Λγ−(1+δ)/2

)
s
)2
dx.

Since the odd symmetry is preserved by (1) and u0 is odd, we have
u(0, t) = 0. For M ∈ N, we choose s such that

(26) ∂xs(x) = −2λ
∑

0<|ξ|≤M
e−iξx = −2λ

[
b0M (x)− 1

]
.

Then from the preceding inequality and Lemma 3, we get

1

2

d

dt
‖u(t)− s‖2L2(T)

≤ −‖Λγ/2u‖2L2(T) − ‖u‖2L2(T) −
ǫ

3
‖Λ(1+δ)/2u‖2L2(T)

+

∫

T

bλ,0M u2dx+
3

ǫ

∫

T

((
−ǫΛ(1+δ)/2 + Λγ−(1+δ)/2

)
s
)2
dx

≤ −‖Λγ/2u‖2L2(T) − ‖u‖2L2(T) −
ǫ

3
‖Λ(1+δ)/2u‖2L2(T)

+ c1λ‖Λ(1+δ)/2u‖2L2(T)

(
1

M1+δ
+

1

δM δ

)1/2

+
6

ǫ
‖Λs‖2L2(T).

We take M =M(ǫ, δ, γ) such that

c1

((
6γ

(1 + δ)ǫ

) 1
1+δ−γ

+ 1

)(
1

M1+δ
+

1

δM δ

)1/2

≤ ǫ

3
,

and we obtain

1

2

d

dt
‖u(t)− s‖2L2(T) ≤ −2‖u(t) − s‖2L2(T) + 2‖s‖2L2(T) +

6

ǫ
‖Λs‖2L2(T).
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Using Gronwall inequality, we conclude that

‖u(t) − s‖2L2(T) ≤
(
‖u0 − s‖2L2(T) + ‖s‖2L2(T) +

3

ǫ
‖Λs‖2L2(T)

)
e−4t

+ ‖s‖2L2(T) +
3

ǫ
‖Λs‖2L2(T).

The existence of an absorbing set in L2 is now straightforward. Thus we
have the existence of a constant R = R(ǫ, δ, γ) such that

‖u(t)‖L2(T) ≤ R(ǫ, δ, γ).

Step 2: Absorbing set in L∞ We assume u(xt) = ‖u(t)‖L∞(T). We
take ν > 0 a positive number and define

U1 = {η ∈ [−ν, ν] s.t. u(xt)− u(xt − η) > u(xt)/2},
and U2 = [−ν, ν]− U1. We have

R2(ǫ, δ, γ) ≥ ‖u(t)‖2L2(T)

≥
∫

R

(u(xt − η))2 dη

≥
∫

U2

(u(xt − η))2 dη

≥
(
u(xt)

2

)2

|U2|.

Equivalently,

2ν − 4R2

‖u(t)‖2L∞(T)

≤ 2ν − |U2| = |U1|.

Using the fact that the initial data has zero mean, we get

Λ1+δu(xt) =
∑

k∈Z

∫

T

u(xt)− u(xt − η)

|η − 2kπ|2+δ dη

≥
∑

|k|>0

∫

T

u(xt)− u(xt − η)

|η − 2kπ|2+δ dη +

∫

U1

u(xt)− u(xt − η)

|η|2+δ dη

≥
∑

|k|>1

∫

T

u(xt)− u(xt − η)

|2(k − 1)π|2+δ dη +
u(xt)
2

ν2
|U1|

≥ u(xt)

ν2+δ

(
ν − 2

(
R

u(xt)

)2
)

+
2ζ(2 + δ)u(xt)

(2π)1+δ
.

We define

ν = 3

(
R

u(xt)

)2

,

and we obtain

Λ1+δu(xt) ≥
(u(xt))

3+2δ

32+δR2(1+δ)
+

2ζ(2 + δ)u(xt)

(2π)1+δ
.
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As ν ≤ π this choice implies
√

3

π
R ≤ u(xt).

We have

d

dt
‖u(t)‖L∞(T) ≤ Λγu(xt)−

1

2
Λ1+δu(xt)−

1

2
Λ1+δu(xt)

≤ C(γ, δ)‖u(t)‖L∞(T) −
1

2

(
(u(xt))

3+2δ

32+δR2(1+δ)
+

2ζ(2 + δ)u(xt)

(2π)1+δ

)

≤ C(γ, δ)‖u(t)‖L∞(T) −
‖u(t)‖3+2δ

L∞(T)

2 · 32+δR2(1+δ)
.

On the other hand, if ‖u(t)‖L∞(T) = −minx u(x, t), we define

U1 = {η ∈ [−ν, ν] s.t. − u(xt) + u(xt − η) > −u(xt)/2},

and U2 = [−ν, ν]− U1. We get

d

dt
‖u(t)‖L∞(T) = −Λγu(xt) + Λ1+δu(xt) = Λγ(−u(xt))− Λ1+δ(−u(xt))

≤ C(γ, δ)‖u(t)‖L∞(T) −
‖u(t)‖3+2δ

L∞(T)

2 · 32+δR2(1+δ)
.

Collecting these inequalities, we obtain the existence of an absorbing ball in
L∞ with radius

r∞ = max

{√
3

π
R,C (γ, δ)R

}
.

Step 3: Absorbing set in Lp For the case 2 < p <∞, we use interpo-
lation. We get

‖u(t)‖Lp(T) ≤ ‖u(t)‖2/p
L2(T)

‖u(t)‖1−2/p
L∞(T)

≤ R2/pmax

{√
3

π
R,C (δ)R, ‖u0‖L∞(T)

}1−2/p

.

The radius for this case can be obtained in a similar way.
Step 4: Initial data without odd symmetry Following the same

ideas as in [20] (see also [7, 18]), we introduce the set of translations of the
function s defined in (26):

S = {s̃ : s̃(x) = s(x+ χ) with |χ| ≤ π}.

Since the function u0 has zero mean, the solution u(t) has zero mean for all
time, so there exists at least one point x0(t) such that u(x0(t), t) = 0. Then,
for any particular time t, we consider, as in the step 1 above, the function

b
x0(t)
M (x) defined in Lemma 3 where λ was defined in (25), and let

∂xs̃(x, t) = −2λ
∑

0<|ξ|≤M
e−iξ(x−x0(t)) = −2λ

[
b
x0(t)
M (x)− 1

]
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Notice that s̃(x) = s(x+x0(t)), with s defined in (26). As before, we obtain

d

dt′
‖u(t+ t′)− s̃(t)‖2L2(T)

≤ −4‖u(t+ t′)− s̃(t)‖2L2(T) + 4‖s(t)‖2L2(T) +
12

ǫ
‖Λs(t)‖2L2(T).

If follows that
d

dt′
‖u(t+ t′)− s̃(t)‖2L2(T)

∣∣∣∣
t′=0

≤ 0

if

d(u(t), s̃(t)) = ‖u(t)− s̃(t)‖L2(T) ≫ 1.

As a consequence, we find that

d(u(t), s̃(t)) = ‖u(t)− s̃(t)‖L2(T)

is a bounded function of time. Since d(u(t),S) ≤ d(u(t), s̃(t)), this completes
the proof. �

Corollary 2. Let u0 ∈ Hα(T), α > 1 be the mean-zero initial data for the
problem (1) with ǫ ≥ 1 > δ in the periodic case. Then we have

‖u(t)‖Lp(T) ≤ ‖u0‖2/pL2(T)
max

{√
3

π
‖u0‖L2(T), C (δ) ‖u0‖L2(T), ‖u0‖L∞(T)

}1−2/p

,

and

lim sup
t→∞

‖u(t)‖Lp(T) = ‖u0‖2/pL2(T)

(
max

{√
3

π
‖u0‖L2(T), C (δ) ‖u0‖L2(T)

})1−2/p

.

Proof. The result follows from Poincaré’s inequality. �

The existence of an absorbing set in the L2-norm and the regularity results
from Section 2 imply the existence of an absorbing set in higher Sobolev
norms. The proof is straightforward, and we just state the result.

Lemma 4. Suppose that α > 1 and u0 ∈ Hα(T) has zero mean. Then for
every 0 < s ≤ α the solution u of the initial-value problem (6) in the periodic
case satisfies

lim sup
t→∞

‖u(t)‖Hs ≤ C
(
s, ǫ, δ, γ, ‖u0‖L2(T)

)
.

5. The attractor

In this section we prove the existence of an attractor for spatially periodic
solutions (Ω = T) and derive some of its properties.

5.1. Existence. We denote the solution operators for (6) by S(t), where
S(t)u0 = u(x, t). The compactness of a nonlinear semigroup, or semiflow, is
defined as follows [40].

Definition 2. The solution operator S(t)u0 = u(t, x) defines a compact
semiflow in Hs if, for every u0 ∈ Hs the following statements hold:

• S(0)u0 = u0.
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• for all t, s, u0, the semigroup property hold, i.e.,

S(t+ s)u0 = S(t)S(s)u0 = S(s)S(t)u0.

• For every t > 0, S(t) is continuous (as an operator from Hs to Hs).
• There exists t1 > 0 such that S(t1) is a compact operator, i.e. for
every bounded set B ⊂ Hs, S(t1)B ⊂ Hs is a compact set.

It is then is straightforward to use our existence results to prove the
following lemma.

Lemma 5. Let u0 ∈ Hα(T) for α ≥ 3 be the initial data for the problem
(1). Then S(t)u0 = u(·, t) defines a compact semiflow in Hα(T). Moreover
S(t)u0 is a continuous map from [0, T ] to Hα(T) for every initial data u0,
i.e., S(·)u0 ∈ C([0, T ],Hα).

Now we can apply Theorem 1.1 in [40] to obtain the existence of the
attractor

Theorem 6. In the spatially periodic case with Ω = T, equation (1) has a
maximal, connected, compact attractor in the space Hα(T) for every α ≥ 3.

Proof. The result follows from Lemma 4, where the existence of an absorbing
set is proved, and Lemma 5, where the properties of the semigroup are
proved. �

5.2. Number of wild oscillations. In this section we obtain a bound for
the number of wild oscillations that a solution u can develop. This bound is
similar to the bound in [22] for the standard KS equation (see also [27]), and
splits T into a set IM where ∂xu is uniformly bounded and a set RM where
∂xu may be large but u cannot have too many critical points. However, our
bound is valid for arbitrary initial data while the bound in [22] only works
for initial data in a neighborhood of a stationary solution.

Theorem 7. Let u be the solution of (6) for initial data u0 ∈ H3(T) and
define T > 0 as in (20), (22). Then for every M > 1, there exist τM > 0
and IM , RM ⊂ T, where IM a union of at most [4π/τM ] open intervals, such
that T = IM ∪RM and the following estimates hold for T/M < t < T :

|∂xu(x, t)| ≤
√
2‖u0‖L∞(T)

M
for all x ∈ IM ,

card{x ∈ RM : ∂xu(x, t) = 0} ≤ 4π

log 2

log (M/τM )

τM
.

An explicit choice for τM is

τM =
1

M

[
log (E/c+ 1)

3E

]
,

where E is given by (24).

Proof. From Theorem 4, after time t > 0 the solution becomes analytic in a
complex strip Bk(t). In particular, choosing the parameters k, λ as in (22),
we get from (23) that the width of the strip after time T/M is at least

τM =
1

M

[
log (E/c+ 1)

3E

]
.
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Using Cauchy’s integral formula and the definition of dλ[u] in Theorem 4,
we find that

‖∂xu(t)‖L∞(Bk) ≤
‖u(t)‖L∞(Bk)

τM
≤ λ

τM
,

and an application of Lemma 9 with µ = λ/M then gives the result. �

Theorem 7 is local in time, but we can apply the result repeatedly to get
bounds on the number of oscillations on successive time intervals

[T/M,T ] ∪ [T + T1/M,T + T1] ∪ . . . ,
where T1 is given by (20) with u0 replaced by u(T ). In view of the uniform
H3-bounds on u(t), we can extend the estimates to arbitrarily large times,
but there are small gaps between successive time intervals in which the
estimates may not apply.

6. Numerical simulations

In this section, we show some numerical solutions of (1), which we repeat
here for convenience

(27) ∂tu+ ∂x

(
1

2
u2
)

= Λγu− ǫΛ1+δu,

with 2π-periodic boundary conditions. We approximate the spatial part by a
pseudo-spectral scheme, typically using 212–214 Fourier modes, and advance
in time with an explicit method such as the ode45 function in MATLAB.

In Figures 1–2, we show a numerical solution of (27) with δ = γ = 1 in
−π < x < π for initial data

(28) u0(x) = cosx+ e−x
2
sinx.

A primary “viscous shock” forms from the initial data, after which smaller
“viscous sub-shocks” develop spontaneously throughout the interval. These
sub-shocks grow, propagate toward the primary shock, and merge with it.
The number of sub-shocks and their rate of formation increases as ǫ de-
creases. Some movies of the numerical simulations are available at

http://youtu.be/8r0QMgxZJMk?list=PLUwnEWNEnlmhroc7JS_cZ2PLN6pe-HiX7

In Figure 3, we show a solution of the usual KS equation (3) with the same
initial data as in Figure 1. The spatial “shock-like” structure of chaotic solutions
of (27) is qualitatively different from the “worm-like” structure of solutions of (3).

Similar behavior is observed for (27) with other values of 0 < δ < 1, 0 < γ < 1+δ,
and ǫ > 0. In Figure 4 we show a solution for δ = 0.5, γ = 1.45, and ǫ = 0.8, with
the initial data

(29) u0(x) = cosx.

Chaotic behaviour occurs for larger values of ǫ as γ gets closer to 1+δ. This is con-
sistent with the fact that the band of unstable wavenumbers k for the linearization
of (27) at u = 0 is given by

0 < k < k∗(δ, γ, ǫ) where ǫk1+δ−γ
∗ = 1.

Thus, for a fixed value of ǫ, the unstable band gets wider as γ increases toward
1 + δ. (We have k∗ = 100 in Figure 2 and k∗ ≈ 87 in Figure 4.)

Figures 5–7 show the transition to chaos for ǫ = 0.5, δ = 0.5 as γ increases
toward 1.5. For each value of γ, we plot the L∞ and L2 norms of u at a number
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Figure 1. A spatially periodic numerical solution of the
nonlocal KS equation (27) with δ = 1, γ = 1, ǫ = 0.01,
and initial data (28).
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Figure 2. A numerical solution of (27) with δ = 1, γ = 1,
ǫ = 0.01 and the same initial data as in Figure 1 at t =
0, 0.49, 2.49.

of different times after the solution has approached its time-asymptotic state. For
γ . 1.3 the solution is steady, but for γ & 1.3 its norms fluctuate wildly in time.
We have k∗ ≈ 32 at transition.
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Figure 3. A numerical solution of the usual KS equation
(3) with ǫ = 0.01 and initial data (28).
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Figure 4. A solution of (27) with δ = 0.5, γ = 1.45, ǫ = 0.8,
and initial data (29) at t = 0, 2.45, 7.

Similarly, in Figures 8–10, we show the transition to chaos for δ = 1, γ = 1 as
ǫ decreases toward 0. The solution is steady for ǫ & 0.04 and chaotic for ǫ . 0.04,
with k∗ ≈ 25 at transition.

Appendix A. Auxiliary results

In this appendix, we state without proof several results used in the paper.
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Figure 5. The large time behavior of ‖u‖L∞ for different
values of γ ∈ (1, 1.4) with δ = 0.5, ǫ = 0.5.
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Figure 6. The large time behavior of ‖u‖L2 for different
values of γ ∈ (1, 1.4) with δ = 0.5, ǫ = 0.5.

We start with the Kato-Ponce inequality and the Kenig-Ponce-Vega commutator
estimate for [Λs, F ] = ΛsF − FΛs, where Λ =

√
−∂2x (see [21, 24, 25]).

Lemma 6. Let F , G be two smooth functions that decay at infinity. Then, for
0 < s ≤ 1, we have

‖Λs(FG)− FΛsG‖Lp ≤ C
(
‖F‖W s,p1‖G‖Lp2)

+‖G‖W s−1,p3‖∂xF‖Lp4 ) ,

with

1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
where 1 ≤ p2, p4 ≤ ∞, 1 < p, p1, p3 <∞.

Furthermore, if s > max{0, 1/p− 1}, then
‖Λs(FG)‖Lp(R) ≤ C

(
‖ΛsF‖Lp1(R)‖G‖Lp2(R) +‖ΛsG‖Lp3(R)‖F‖Lp4(R)

)
,



30 R.GRANERO-BELINCHÓN AND J. HUNTER
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Figure 7. The large time behavior of ‖∂xu‖L∞ for different
values of γ ∈ (1, 1.4) with δ = 0.5, ǫ = 0.5.
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Figure 8. The large time behaviour of ‖u‖L∞ for different
values of ǫ ∈ (0.02, 0.2) with δ = 1, γ = 1.

with
1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
where 1/2 < p <∞, 1 < pi ≤ ∞.

We require the following uniform Gronwall lemma (see [40]).

Lemma 7. Suppose that g, h, y are non-negative, locally integrable functions on
(0,∞) and dy/dt is locally integrable. If there are positive constants a1, a2, a3, r
such that

dy

dt
≤ gy + h,

∫ t+r

t

g(s)ds ≤ a1,

∫ t+r

t

h(s)ds ≤ a2,

∫ t+r

t

y(s)ds ≤ a3

for t ≥ 0, then

y(t+ r) ≤
(a3
r

+ a2

)
ea1 .
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Figure 9. The large time behaviour of ‖u‖L2 for different
values of ǫ ∈ (0.02, 0.2) with δ = 1, γ = 1.
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Figure 10. The large time behaviour of ‖∂xu‖L∞ for differ-
ent values of ǫ ∈ (0.02, 0.2) with δ = 1, γ = 1.

We also use the following result on the time derivative of a complex function
(see [5]).

Lemma 8. Suppose that h(t) > 0 is a decreasing, smooth function of t, and

φ(x± iζ, t) =
∑

|ξ|≤N

Aξ(t)e
iξ(x±iζ).
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Then

∂t
∑

±

∫

T

|φ(x ± iζ, t)|2dx

≤ h′(t)

10

∑

±

∫

T

Λφ(x± iζ, t)φ(x ± iζ, t)dx

− 10h′(t)
∑

±

∫

T

Λφ(x, t)φ(x, t)dx

+ 2ℜ
∑

±

∫

T

∂tφ(x± iζ, t)φ(x ± iζ, t)dx

The last Lemma concerns the number of wild spatial oscillations of an analytic
function (see [22] and the references therein)

Lemma 9. Let L, τ > 0, and let u be analytic in the neighborhood of {z : |ℑz| ≤ τ}
and L-periodic in the x-direction. Then, for any µ > 0, [0, L] = Iµ ∪Rµ, where Iµ
is an union of at most [ 2L

τ
] intervals open in [0, L], and

• |∂xu(x)| ≤ µ, for all x ∈ Iµ,

• card{x ∈ Rµ : ∂xu(x) = 0} ≤ 2
log 2

L
τ
log
(

max|ℑz|≤τ |∂xu(z)|

µ

)
.

References

[1] G. Arioli and H. Koch. Computer-assisted methods for the study of stationary so-
lutions in dissipative systems, applied to the Kuramoto-Sivashinski equation. Arch.
Ration. Mech. Anal., 197(3):1033–1051, 2010.

[2] Y. Ascasibar, R. Granero-Belinchón, and J. M. Moreno. An approximate treatment
of gravitational collapse. Physica D: Nonlinear Phenomena, 262:71 – 82, 2013.

[3] J. C. Bronski, R. C. Fetecau, and T. N. Gambill. A note on a non-local Kuramoto-
Sivashinsky equation. Discrete Contin. Dyn. Syst., 18(4):701–707, 2007.

[4] J. C. Bronski and T. N. Gambill. Uncertainty estimates and L2 bounds for the
Kuramoto-Sivashinsky equation. Nonlinearity, 19(9):2023–2039, 2006.

[5] A. Castro, D. Cordoba, C. Fefferman, F. Gancedo, and M. Lopez-Fernandez.
Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves.
Annals of Math, 175:909–948, 2012.

[6] P. Collet, J.-P. Eckmann, H. Epstein, and J. Stubbe. Analyticity for the Kuramoto-
Sivashinsky equation. Phys. D, 67(4):321–326, 1993.

[7] P. Collet, J.-P. Eckmann, H. Epstein, and J. Stubbe. A global attracting set for the
Kuramoto-Sivashinsky equation. Comm. Math. Phys., 152(1):203–214, 1993.
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