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Abstract

The main objective of this work is to study how we can combine the data from the
Cosmic Microwave Background (CMB) experiments Planck and the upcoming LiteBIRD
in order to improve the estimation of the gravitational lensing effect. This effect deflects
the CMB photons along their path to us and it is an important cosmological probe as it
traces the distribution of matter in the Universe. Along this work, CMB maps have been
simulated taking into account a simplified experimental framework, including white instru-
mental noise, limited angular resolution, and partial sky coverage. Using the quadratic
estimators from Okamoto & Hu [1], the map of the gravitational lensing potential can
be reconstructed from the observed CMB maps. The results provided in this document
show that combining both experiments is a great idea because they are complementary.
While Planck has measured very precisely CMB temperature, LiteBIRD will measure
CMB polarization with an unprecedented precision. Consequently, the estimated full-sky
signal-to-noise ratio of the lensing potential for the combination will be of about 130,
whereas for each individual experiment is approximately of 86 for Planck and 88 for Lite-
BIRD. It implies an improvement of about a 50% in the lensing potential reconstruction
when combining both experiments.

Keywords: Cosmic Microwave Background, Cosmology, Weak Gravitational Lensing,
Quadratic Estimators.

Resumen

El objetivo principal de este trabajo es estudiar cómo combinar los datos de los ex-
perimentos de Fondo Cósmico de Microondas (FCM) Planck y la futura misión LiteBIRD
con el fin de mejorar la estimación del efecto lente gravitacional. Este efecto deflecta
los fotones del FCM a lo largo de su camino hacia nosotros y es una importante sonda
cosmológica ya que traza la distribución de materia en el Universo. A lo largo de este
trabajo se han simulado mapas del FCM teniendo en cuenta un marco experimental sim-
plificado, incluyendo ruido instrumental blanco, resolución angular limitada y cobertura
parcial del cielo. A partir de los mapas simulados y utilizando los estimadores cuadráticos
de Okamoto & Hu [1], el mapa del potencial gravitatorio ha podido ser reconstruido. Los
resultados que aparecen en este documento muestran que combinar ambos experimentos
es una gran idea porque son complementarios. Mientras que Planck ha medido con gran
precisión la temperatura del FCM, LiteBIRD medirá con una precisión sin precedentes la
polarización del FCM. Consecuentemente, la razón señal-ruido estimada a cielo completo
para la combinación de ambos experimentos será aproximadamente de 130, mientras que
para cada experimento de forma individual se estima que es 86 para Planck y 88 para
LiteBIRD. Esto implica una mejora del 50% en la reconstrucción del potencial al combi-
nar ambos experimentos.

Palabras clave: Fondo Cósmico de Microondas, Cosmoloǵıa, Efecto Lente Gravitacional
Débil, Estimadores Cuadráticos.
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Foreword

This master’s thesis is the result of a project under the supervision of Patricio Vielva
and Patricia Diego. It has been supported by a JAE Intro 2021 grant from the Spanish
National Research Council (CSIC). Due to the important computational component of
this work, the Altamira Supercomputer at the Institute of Physics of Cantabria (IFCA-
CSIC), member of the Spanish Supercomputing Network, was used for performing most
of the simulations.

Our work aims to study how well can the gravitational lensing potential be recon-
structed from CMB observations from Planck and the future mission LiteBIRD. To do so,
we have used simulations from both experiments under a simplified experimental scheme.
The novelty of our approach is in the way both data sets are combined, using always the
best data available in terms of noise levels. The lensing potential is reconstructed using
the quadratic estimators from Okamoto & Hu [1].

This work is structured as follows. In Chapter 1, we introduce the Cosmic Microwave
Background and focus on the effect that Weak Gravitational Lensing has on the CMB. We
explain how the CMB angular power spectra is affected by lensing and the correlations
between multipoles introduced by this effect, which are the key of the quadratic estimators.
Chapter 2 focuses on explaining how the observed CMB maps are simulated and how the
lensing potential is reconstructed. It also describes the different Python libraries we used
to do so. In Chapter 3, the results obtained from the lensing reconstruction from observed
CMB maps are presented for two situations: full-sky and partial-sky coverage. Finally,
in Chapter 4 the conclusions of this project and future work are described. The Python

code developed for this project can be found at https://github.com/miguelrgranda/

lensingReconstruction.
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Chapter 1

Introduction

The Universe in its origin was very hot, dense, and opaque. In this early phase, radiation
and matter were in thermal equilibrium, with photons continuously scattered by free
electrons through Thomson scattering. As the Universe expanded, it progressively cooled
down, and became transparent when it reached a temperature of around 3000 K. Radiation
decoupled from matter and photons escaped.

This radiation emitted when the Universe was 375.000 years old, 13.8 billion years ago,
is observed nowadays in the microwave range as an almost perfect black-body spectrum
with a characteristic temperature of T0 = 2.72548 ± 0.00057 K [2]. For that reason, it
is named the Cosmic Microwave Background (CMB). The CMB radiation was discovered
by Penzias and Wilson in 1965, however it was not until 1992 when the temperature
fluctuations were detected with COBE.

Although the CMB is extremely homogeneous, small temperature anisotropies have
been observed at the 10−5 K level. These temperature anisotropies contain valuable infor-
mation about the primordial density perturbations and the characteristics of our Universe.
In particular, it can be used to constrain the cosmological parameters that appear in the
standard cosmological model, named ΛCDM, which describes a flat Universe containing
three major components: baryonic or ordinary matter, cold dark matter (weakly inter-
acting non-relativistic matter detected only by its gravitational effects) and dark energy
(consistent with a cosmological constant Λ, causing the current accelerated expansion of
the Universe).

The existence of temperature fluctuations implies that CMB radiation must be po-
larized as a consequence of the directional dependence of the Thomson scattering, which
was confirmed this century. Experiments such as WMAP (2001-2012) and more recently
Planck, whose final data release is from 2018, provided precise measurements of the tem-
perature and polarization fluctuations generated on the last scattering surface [3].

These CMB anisotropies are partly produced at the last scattering surface at redshift
z = 1090, when the CMB photons escaped. We used the word partly because on their
path from the last scattering surface to us, CMB photons experience several effects. For
instance, the Integrated Sachs-Wolfe effect, which is a consequence of the time evolution
of potential wells along the line of sight, or other second order effects like the lensing
effect, which is the main topic of this project. Its main consequences are the deflection
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1.1. LENSING OF THE CMB

of photons by the perturbed gravitational field, which produces changes in the pattern
of CMB anisotropies, the introduction of non-Gaussianities, and the generation of a B-
mode polarization signal, which is an important signal that prevents us from detecting
primordial gravitational waves. The lensing effect is called a second order effect because,
if the CMB was perfectly isotropic or there were no perturbations on the gravitational
potential, the net effect of the deflection would vanish.

1.1 Lensing of the CMB

In this Section we explain how to calculate the angular power spectrum of the lensing
potential and how lensing changes the shape of the CMB angular power spectra. This
part is strongly based on two main references, which are the excellent review on CMB
weak lensing made by Lewis and Challinor [4] and [5].

The lensing effect produces small deflections on the direction of CMB photons (weak
lensing regime) and in this work we will work under the Born approximation, which
consist in calculating the lensing potential gradients along the undeflected path. The
mean deflection of each potential is of about |α| = 10−4. Assuming that the typical
size of the potential wells is about 300 Mpc (comoving) and that the distance to the last
scattering surface is about 14000 Mpc, then light rays have passed through the order of
50 of such wells. If the potentials are uncorrelated we would expect a total deviation of√

50|α| = 2 arcmin. We then expect lensing to become an order unity effect on the CMB
at scales ` & 3000.

1.1.1 Lensing potential

The deflection angle, α(n̂), of a source at conformal distance χ∗ is given in terms of the
gravitational potential Φ by

α(n̂) = −2

∫ χ∗

0
dχ

fK(χ∗ − χ)

fK(χ∗)fK(χ)
∇n̂Φ(χn̂; η0 − χ), (1.1)

where η0 − χ is the conformal time in which the photon was at position χn̂, ∇n̂ is the
angular derivative, which is equivalent to the covariant derivative on the sphere defined
by n̂, and fK(χ) is the angular diameter distance, where

fK(χ) =


K−1/2 sin(K1/2χ) for K > 0 (closed),

χ for K = 0 (flat),

|K|−1/2 sinh(|K|1/2χ) for K < 0 (open).

(1.2)

Now, we define the lensing potential:

φ(n̂) ≡ −2

∫ χ∗

0
dχ

fK(χ∗ − χ)

fK(χ∗)fK(χ)
Φ(χn̂; η0 − χ), (1.3)

so that the deflection angle is given by ∇n̂φ(n̂).
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1.1. LENSING OF THE CMB

For the CMB, we can approximate recombination as being instantaneous and described
by a single plane at χ = χ∗. We neglect the very small effect of late times sources, including
reonization. For scales where Φ is Gaussian, the lensing potential is also Gaussian. On
smaller scales, non-linear evolution can introduce non-Gaussianities, however, we are not
considering this in this work.

For a flat Universe, fK(χ) = χ, and for simplicity we are going to assume flatness
hereafter. As the reader may notice, a divergent term 1/χ arises in equations (1.1) and
(1.3) near χ = 0. However, it only affects the monopole of the lensing potential, which is
related to the mean value across the sky and does not contribute to the deflection angle.
Therefore, we can set the monopole term to zero and the remaining multipoles would be
finite, meaning that the lensing potential field is well defined.

As a Gaussian field, the lensing potential is fully characterized by its power spectrum.
Next, we will derive the lensing potential power spectrum in terms of the power spectrum
of the gravitational potential.

Figure 1.1: Planck 2018 lensing power spectrum band powers (pink boxes) and the 2015 analysis band

powers (green boxes). Also shown are recent measurements by the ACTPol [6], SPTpol [7], and SPT-SZ [8]

collaborations. The black line shows the lensing potential power spectrum for the ΛCDM best-fit parameters

to the Planck 2018 TT,TE,EE+lowE. Figure from [9].

First, we expand the lensing potential in spherical harmonics:

φ(n̂) =
+∞∑
`=0

+∑̀
m=−`

φ`mY`m(n̂), (1.4)

where the φ`m complex coefficients are Gaussian distributed with zero mean, 〈φ`m〉 = 0,
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1.1. LENSING OF THE CMB

and non-zero variance, 〈φ`mφ∗`′m′〉 = δ``′δmm′C
φφ
` . The monopole term is set to zero, so

φ00 = 0 and normally the summation on `s is restricted up to a maximum value `max
(instead of going to infinity) due to experimental limitations such as spatial resolution.

The variance of the spherical harmonic coefficients, Cφφ` , is called the lensing angular
power spectrum and is given by

Cφφ` = 16π

∫
dk

k
PR(k)

[∫ χ∗

0
dχ

(
χ∗ − χ
χ∗χ

)
j`(kχ)TΦ(k, η0 − χ)

]2

, (1.5)

where TΦ(k, η0−χ) is a transfer function so that Φ(k; η0−χ) = TΦ(k, η0−χ)R(k), being
R(k) the primordial comoving perturbation, and the primordial power spectrum is PR(k),
usually expressed in a power-law form:

PR(k) = As

(
k

k∗

)ns−1

, (1.6)

where k∗ = 0.05 Mpc−1, As is the scalar amplitude, and ns is the scalar spectral index.

In Figure 1.1, the lensing power spectrum measured by Planck and other CMB exper-
iments are shown.

1.1.2 Lensing of CMB temperature

The purpose of this Subsection is to understand how the CMB temperature power spec-
trum is affected by lensing. The lensing effect introduces non-Gaussianities and changes
the shape of the temperature power spectrum by smoothing the peaks and troughs in the
small angular scales. Although being a second-order effect, it has to be correctly taken into
account to obtain accurate cosmological parameter constraints from CMB observations.

Flat-sky approximation for CMB temperature

As we are mostly interested in small scales, we adopt a flat-sky approximation to obtain
the lensed temperature power spectrum. For ` & 100, which corresponds to angular scales
of less than about 2◦, we can neglect the curvature of the sphere of directions and consider
it as a normal plane to êz. In this approximation, we can replace the spherical harmonics
by exponentials.

Y`m(n̂)→ 1

2π
ei`·x, (1.7)

where x is a small vector in the plane normal to êz and ` = `(cosϕ`, sinϕ`) is a vector
in the Fourier plane. In this approximation the magnetic quantum number m is replaced
by the continuous direction of the vector `. This means we are switching from a spherical
harmonics transform to a Fourier transform of the temperature anisotropy map, T :

T (n̂) =
+∞∑
`=0

+∑̀
m=−`

t`mY`m(n̂) −→ T (x) =
1

2π

∫
d2`T (`)ei`·x. (1.8)

The temperature fluctuations are assumed to be statistically isotropic, which means
that any statistical average cannot depend on the position or orientation on the sky where
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1.1. LENSING OF THE CMB

it is evaluated. The correlation function of the temperature at two points, ξ, can only
depend on the separation between the points, and the power spectrum for the temperature
field is diagonal in `:

〈T (x)T (x′)〉 = ξ(|x− x′|), 〈T (`)T ∗(`′)〉 = δ(`− `′)CTT` . (1.9)

Approximation for small deflection angles for CMB temperature

To derive an expression for the lensed temperature power spectrum we will use an ap-
proximation for small deflection angles. As argued at the beginning of this document, for
` > 3000 the deflection angle is comparable to the angular separation between points, and
therefore this approximation is not longer valid.

In the first-order approximation, the deflection angles have zero curl and can be de-
scribed as the gradient of a potential, α = ∇φ. The lensing effect changes the direction
in which the photon is received, which can be interpret as a remapping of the unlensed
temperature map:

T̃ (x) = T (x +∇φ), (1.10)

where T̃ (x) is the lensed temperature anisotropy and T (x) is the unlensed temperature
anisotropy.

The small deflection angle approximation mentioned before consists in a Taylor series
expansion truncated at second order,

T̃ (x) = T (x +∇φ) ≈ T (x) +∇aφ(x)∇aT (x) +
1

2
∇aφ(x)∇bφ(x)∇a∇bT (x). (1.11)

Neglecting the correlation between T and φ coming from the Integrated Sachs-Wolfe
(ISW) effect we get the following equation [10],

C̃TT` ≈ (1− `2Rφ)CTT` +
1

4π2

∫
d2`′ (`′ · (`− `′))2Cφφ|`−`′|C

TT
`′ , (1.12)

where we have defined half the total deflection angle as

Rφ ≡ 1

2
〈α2〉 =

1

4π

∫ ∞
0

d`′ `′3Cφφ`′ , (1.13)

whose value is for typical models Rφ ∼ 3×10−7, corresponding to an rms deflection of∼ 2.7
arcmin. The integral term in equation (1.12) smooths the peaks of the unlensed power
spectrum, which is the main qualitative effect that we can observe on the temperature
spectrum pattern at high `.

1.1.3 Lensing of CMB polarization

In this Subsection we study how CMB polarization is affected by lensing. There are two
lensing contributions to the observed CMB polarized sky. First, as occurs for temperature,
lensing re-maps the observed CMB photons coming from n̂′ = n̂ + α, where n̂ is the
direction in which they have been observed. Second, the propagation of the polarization
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1.1. LENSING OF THE CMB

basis along the perturbed line of sight n̂ at last scattering will be rotated in comparison
to an unlensed basis transported along n̂ + α. To lowest order, this means that the
orientation in the observed direction n̂ and in the lensed direction n̂′ are the same if they
are determined with respect to a basis that is parallel transported from n̂ to n̂′. In the
flat sky approximation, this basically means that we have to measure polarization in both
points with respect to the same basis (ε̂1, ε̂2). The effect of lensing for polarization can
now be handled in a similar way as temperature.

Flat-sky approximation for CMB polarization

As for temperature, we will use the flat-sky approximation. In the flat-sky approximation,
the spin-2 spherical harmonics are given by

±2Y`m(x)→ −e±2iϕ`ei`·x, (1.14)

where ϕ` is the angle which ` encloses with the x axis.

We expand now the polarization field as

(Q± iU)(x) = − 1

2π

∫
d2` (E(`)± iB(`))e±2iϕ`ei`·x, (1.15)

where Q and U are the Stokes parameters describing linear polarization.

Approximation for small deflection angles for CMB polarization

The approximation for small deflection angles, as explained for CMB temperature, is not
valid for all scales. It only holds when considering angular scales much larger than the
deflection angle (` . 3000). Nevertheless, under the small deflection angle approximation,
we can qualitatively understand how lensing affects CMB polarization.

While CMB temperature is a scalar field, the CMB polarization is a tensor field charac-
terized by a trace-free symmetric polarization tensor Pab. For some choice of orthonormal
basis (ε̂1, ε̂2), the components for the polarization tensor are

Pab =
1

2

(
Q U
U −Q

)
. (1.16)

As for temperature anisotropies, we start by expanding the polarization tensor in the
deflection angle up to second order,

P̃ab(x) = Pab(x +∇φ) ≈ Pab(x) +∇cφ∇cPab(x) +
1

2
∇cφ∇dφ∇c∇dPab(x). (1.17)

Since parallel-transporting in the flat sky means keeping the polarization basis e± =
ε̂1 ± iε̂2 constant, the same expression is valid for Q± iU .

In the flat-sky approximation and, for statistically isotropic fields, the unlensed power
spectra of EE, BB and TE are given by

〈E(`)E∗(`′)〉 = δ(`− `′)CEE` ,

〈B(`)B∗(`′)〉 = δ(`− `′)CBB` ,

〈T (`)E∗(`′)〉 = δ(`− `′)CTE` .

(1.18)
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1.2. LENSING RECONSTRUCTION WITH QUADRATIC ESTIMATORS

We have assumed that statistical parity invariance holds, so that B is uncorrelated
with T or E. Now, after keeping only lowest-order terms in Cφφ` , the EE, BB and TE
lensed power spectra are given by

C̃EE` = (1− `2Rφ)CEE`

+
1

4π2

∫
d2`′ (`′ · (`− `′))2Cφφ|`−`′|[C

EE
`′ cos2 2(ϕ`′ − ϕ`) + CBB`′ sin2 2(ϕ`′ − ϕ`)],

C̃BB` = (1− `2Rφ)CBB`

+
1

4π2

∫
d2`′ (`′ · (`− `′))2Cφφ|`−`′|[C

EE
`′ sin2 2(ϕ`′ − ϕ`) + CBB`′ cos2 2(ϕ`′ − ϕ`)],

C̃TE` = (1− `2Rφ)CTE` +
1

4π2

∫
d2`′ (`′ · (`− `′))2Cφφ|`−`′|C

TE
`′ cos 2(ϕ`′ − ϕ`),

(1.19)
where Rφ is given by equation (1.13).

One of the most interesting aspects of equation (1.19) is the fact that, even in the
situation where no primordial B-mode polarization exists, CBB` = 0 (purely scalar pertur-
bations), lensing induces a non-zero B-mode spectrum given by

C̃BB` =
1

4π2

∫
d2`′ (`′ · (`− `′))2Cφφ|`−`′|C

EE
`′ sin2 2(ϕ`′ − ϕ`). (1.20)

This has crucial implications in the detectability of the primordial gravitational wave
(tensor modes) background via the B-mode signal by future experiments. In order to
detect this background, we will need to first characterize the contribution from lensing
and this is one important reason why understanding lensing is critical in CMB science.

1.2 Lensing reconstruction with quadratic estimators

In the previous Section, we have introduced how the temperature and polarization angular
power spectra are modified by the effect of lensing. Additionally, the lensing effect produces
higher-order correlations between the multipole moments. In this Section, we explain
how to measure the lensing potential using quadratic combinations of the CMB fields
to form the so-called quadratic estimators. This is explained in Subsection 1.2.1. In
Subsection 1.2.2, we explain how to combine the different quadratic estimators to minimize
the reconstruction noise. Finally, in Subsection 1.2.3 we discuss the impact of partial sky
coverage on the quadratic estimators.

The flat-sky approximation was used in the previous Section for simplicity. However,
most of the lensing power is concentrated at ` < 102 where this approximation fails. For
that reason, a treatment incorporating the curvature of the sky is preferable and will be
used hereafter. This introduces an additional level of complexity because it requires work-
ing with spherical harmonics functions instead of the much easier Fourier’s exponentials.
For simplicity, we will skip the underlying mathematics in this Section, but a detailed
treatment can be found in [10].
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1.2. LENSING RECONSTRUCTION WITH QUADRATIC ESTIMATORS

1.2.1 Quadratic estimators

The unlensed CMB spherical harmonic coefficients X`m are assumed to be Gaussian and
statistically isotropic, so that the statistical properties are characterized by the angular
power spectra,

〈X`mY
∗
`′m′〉 = δ``′δmm′C

XY
` , (1.21)

where X,Y ∈ {T,E,B}.

Due to the effect of lensing by a fixed deflection field, the covariance acquires off-
diagonal terms and becomes

〈X̃`mỸ
∗
`′m′〉|φ = CXY` δ``′δm−m′(−1)m +

∑
LM

(−1)M
(
` `′ L
m m′ −M

)
fXY`L`′φLM , (1.22)

where the matrix corresponds to the Wigner 3 − j symbols and fXY`L`′ are weights for the
different quadratic pairs which depend on the lensed angular power spectra.

An estimator for the lensing potential φ̂XY`m can be built using the existing correlations
produced by lensing. It is expressed as a weighted sum over multipole pairs, where the
weights minimize the variance of the estimator, leading to the following equation:

φ̂XY`m =
AXY`
`(`+ 1)

∑
`1m1

∑
`2m2

(−1)M
(
`1 `2 L
m1 m2 −M

)
fXY`1L`2h

XY
aX`1m1

ĈXX`1

aY`2m2

ĈY Y`2

, (1.23)

where AXY` is a normalization factor, aX`1m1
and aY`2m2

are the corresponding spherical

harmonics coefficients, and ĈX`1 and ĈY`2 their angular power spectra. Finally,

hXY =


1

2
, if X = Y,

1, otherwise.
(1.24)

The covariance of the recovered lensing potential is given by the following equation:

〈φ̂XY`m φ̂X
′Y ′∗

`′m′ 〉 = δ``′δmm′
[
Cφφ` +NXYX′Y ′

`

]
, (1.25)

where NXYX′Y ′
` is the reconstruction noise. In this work we will only take into consid-

eration the zeroth order bias, which is the one with the highest impact and present even
in the absence of lensing. It causes a positive bias for the whole multipole range. There
are other higher order biases, for instance, the first order bias, which introduces a small
positive bias at small scales, and the second order bias, introducing a small negative bias
at large scales [11]. Both of them will be considered in future work.

As shown in [1], the reconstruction noise for XY = X ′Y ′ corresponds to the normal-
ization factor,

NXYXY
` = AXY` . (1.26)

Although a full derivation of these equations is not provided, this Section introduces
all the basic notions necessary for the reconstruction of the lensing potential. A more
detailed explanation can be found in [1] and [12].
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1.2. LENSING RECONSTRUCTION WITH QUADRATIC ESTIMATORS

1.2.2 Minimum-variance estimator

In this Section, we deal with the problem of combining the different quadratic estimators
φ̂X`m, where X ∈ {TT,EE, TE, TB,EB}, to minimize the reconstruction noise. The

objective is to obtain a quadratic estimator of minimum variance, φ̂MV
`m , expressed as the

weighted sum of the quadratic estimators from the different channels:

φ̂MV
`m =

∑
X

wX` φ̂
X
`m. (1.27)

The problem is traduced into the optimization problem (MV )` in which we want to
minimize the variance of the weighted sum of equation (1.27):

(MV )`



Minimize Var

[∑
X

wX` φ̂
X
`m

]
=
∑
X,Y

wX` w
Y
` Cov

[
φ̂X`m, φ̂

Y
`m

]
,

wX` ∈ R for each X ∈ {TT,EE, TE, TB,EB},

Subject to:
∑
X

wX` = 1.

(1.28)

The covariance matrix of the lensing reconstruction has the following shape:

Cov
[
φ̂X`m, φ̂

Y
`m

]
= Cφφ` +NXY

` , (1.29)

where

N` =


NTTTT
` NTTTE

` NTTEE
` 0 0

NTTTE
` NTETE

` NTEEE
` 0 0

NTTEE
` NTEEE

` NEEEE
` 0 0

0 0 0 NTBTB
` NTBEB

`

0 0 0 NTBEB
` NEBEB

`

 . (1.30)

Substituting equation (1.29) into equation (1.28), the objective function, i.e., the func-
tion we want to minimize, reduces to∑

X,Y

wX` w
Y
` Cov

[
φ̂X`m, φ̂

Y
`m

]
=
∑
X,Y

wX` w
Y
` (Cφφ` +NXY

` ) = Cφφ` +
∑
X,Y

wX` w
Y
` N

XY
` . (1.31)

The last equality comes from the normalization constraint of (MV )`, from which it
can be derived that

∑
X

wX` = 1⇒

(∑
X

wX`

)2

=
∑
X,Y

wX` w
Y
` = 1⇒

∑
X,Y

wX` w
Y
` C

φφ
` = Cφφ` . (1.32)

Note that the value of the first term of equation (1.31), Cφφ` , is constant for any weights.
Then it can be eliminated from the objective function. This leads to an equivalent problem
presented in equation (1.33) which has the same solution.

9
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(MV )`



Minimize
∑
X,Y

wX` w
Y
` N

XY
` ,

wX` ∈ R for each X ∈ {TT,EE, TE, TB,EB},

Subject to:
∑
X

wX` = 1.

(1.33)

The problem expressed in equation (1.33) is a quadratic optimization problem. Using
the Lagrange multiplier theorem, the optimal values of the `−dependent weights can be
derived [1]:

wX` =

∑
Y (N−1

` )XY

NMV
`

where NMV
` =

∑
X

∑
Y

(N−1
` )XY . (1.34)

The solution of (MV )` verifies the normalization condition imposing that the sum of
the weights is equal to one. However, the weights are not bounded, i.e., they can take
negative values or values above one. An example of this is presented in Subsection 3.1.1
and it should not surprise the reader.

Finally, the reader might have noticed that the quadratic estimator φBB`m has not been
considered. The underlying reason is the little power of the B-mode power spectrum,
which implies that it cannot provide much information and it can be safely ignored.

1.2.3 Impact of sky cuts

In the presence of a mask, applying the quadratic estimator leads to a biased reconstruc-
tion. The expectation of the lensing quadratic estimator is

〈φ̂`m〉 =
∑
λµ

Mλµ
`mφλµ + φMF

`m , (1.35)

where Mλµ
`m is a coupling matrix which depends on the mask and φMF

`m is a spherical
harmonic coefficient of the mask mean field. The variance of the quadratic estimator is
given by

〈φ̂`mφ̂∗`m〉 =
∑
λ

Mλ
`mC

φφ
λ +NM

`m + CMF
` , (1.36)

where Mλ
`m is a coupling matrix which depends also on the mask, NM

`m is a reconstruction
noise depending on the structure of the mask, and CMF

` is the angular power spectra of
the mask mean field.

The mask mean field is present even in the absence of lensing and it is produced by
the effect of the mask. For sufficiently apodized masks (see Subsection 2.2.3 for further
details), the coupling matrices are essentially diagonal. In this situation, the effect of the
coupling matrix is just a normalization factor:

〈φ̂XY`m φ̂X
′Y ′∗

`′m′ 〉 = δ``′δmm′
(
fgal,4

[
Cφφ` +NXYX′Y ′

`

]
+ CMF

`

)
, (1.37)

where

fgal,4 =
1

Npix

∑
i

w4
i , (1.38)

10



1.2. LENSING RECONSTRUCTION WITH QUADRATIC ESTIMATORS

wi corresponds to the value of the apodized mask at the pixel i, Npix is the number of
pixels of the map, and NXYX′Y ′

` is the reconstruction noise corresponding to the full-sky
scenario of Subsection 1.2.1.

The effect of the mask mean field bias can be estimated using a Monte Carlo procedure
and subtracted from the quadratic estimator. However, it is out of the scope of this project
and we will leave it for a future work. A more detailed explanation of this can be found
in [13].

11



Chapter 2

Methodology

In this Chapter we focus on explaining how the simulated CMB maps for Planck, Lite-
BIRD, and the combination of them are produced. We have considered idealized exper-
iments only affected by limited angular resolution, instrumental noise, and partial sky
coverage. In Sections 2.3 and 2.4, we introduce how we estimate the lensing potential
using quadratic estimators on the CMB maps and the Wiener filter.

2.1 Simulating ideal lensed CMB maps

In this Section we detail how the simulated lensed CMB maps are obtained and explain the
different techniques applied. The simulation pipeline has 3 steps. First, in Subsection 2.1.1
we compute the theoretical CMB angular power spectra. Secondly, in Subsection 2.1.2
we generate correlated unlensed CMB maps using the Cholesky decomposition technique.
Finally, in Subsection 2.1.3 we explain how the simulated unlensed CMB maps are lensed.

2.1.1 Computing the CMB angular power spectra

We have used the Cosmic Linear Anisotropy Solving System (CLASS) 1 [14] Boltzmann
code to compute the CMB angular power spectra. It is written in C, but it is possible to
execute through Python thanks to the existence of a Python wrapper.

We have used the mean values of the cosmological parameters provided by the Planck
experiment [15] from TT,TE,EE+lowE+lensing data and assumed r = 0 to compute
the unlensed angular power spectra up to `max = 3500 and the lensed angular power
spectra up to `max = 2500. The one thousand multipole difference between the lensed
and unlensed angular power spectra is required to precisely compute the lensed angular
power spectra and for an accurate lensing of the CMB maps. Lensing the maps requires
knowing information about smaller scales described at multipoles higher than `max = 2500.
Non-linear corrections are computed using the halofit [16] software. In the simulation
of the CMB maps only the unlensed angular power spectra are required. However, the
lensed power spectra is very useful for comparison purposes and will be required in the

1http://www.class-code.net/
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2.1. SIMULATING IDEAL LENSED CMB MAPS

computation of the quadratic estimators of the lensing potential. In the Figures 2.1 and
2.2 the computed theoretical unlensed and lensed CMB angular power spectra are plotted.
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Figure 2.1: The unlensed and lensed TT , TE, EE and BB angular power spectra computed with CLASS

using Planck 2018 TT,TE,EE+lowE+lensing cosmological parameters.
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Figure 2.2: The unlensed φφ, Tφ and Eφ angular power spectra computed with CLASS using Planck 2018

TT,TE,EE+lowE+lensing cosmological parameters.
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2.1. SIMULATING IDEAL LENSED CMB MAPS

2.1.2 Correlating unlensed fields using Cholesky decomposition

In this Subsection, we explain how to generate random realizations of spherical harmonic
coefficients for the unlensed CMB temperature and E-mode polarization, and the lensing
potential that have the correct correlations between themselves. In these simulations we
have assumed no primordial B-mode polarization (r = 0), so b`m = 0 for each ` and m.
For this purpose, we will use a Cholesky decomposition of the covariance matrix of the
three fields [17].

We are going to start by defining what a Cholesky decomposition is:

Theorem 2.1. Let A ∈ Rn×n. Then the following conditions are equivalent:

a) A is a symmetric positive-definite matrix.

b) Exists a unique factorization of the form A = LLT , where L is a lower triangular
matrix. This factorization is called the Cholesky decomposition of the matrix A.

A covariance matrix is always a positive semi-definite matrix, which means that not
every time a Cholesky decomposition can be performed. However, in this case, the CMB
and lensing potential fields are only partially correlated and the covariance matrix for
each ` is positive definite. This statement has been checked numerically through the
computation of the Cholesky decomposition for all the multipoles. Then, in fact, it is a
valid approach to the problem.

The covariance matrix, C(`), of the three fields is given by

C(`) =

CTT` CTE` CTφ`
CTE` CEE` CEφ`
CTφ` CEφ` Cφφ`

 , (2.1)

where the angular power spectra are those from Subsection 2.1.1.

The Cholesky decomposition of the covariance matrix satisfies C(`) = L(`)LT (`) where

L(`) =

L11(`) 0 0
L21(`) L22(`) 0
L31(`) L32(`) L33(`)

 , (2.2)

and the corresponding elements of the matrix L(`) are

L11(`) =
√
CTT` , L21(`) =

CTE`√
CTT`

, L31(`) =
CTφ`√
CTT`

,

L22(`) =

√
CEE` −

(CTE` )2

CTT`
, L32(`) =

CEφ` − CTE` CTφ`
CTT`√

CEE` − (CTE` )2

CTT`

,

L33(`) =

√√√√√√√Cφφ` −
(CTφ` )2

CTT`
−

(
CEφ` − CTE` CTφ`

CTT`

)2

CEE` − (CTE` )2

CTT`

.

(2.3)

14



2.1. SIMULATING IDEAL LENSED CMB MAPS

At this point we know how to compute the Cholesky decomposition of the covariance
matrix C(`). Now, we will generate correlated Gaussian spherical harmonic coefficients
for the unlensed temperature, t`m, E-mode polarization, e`m, and lensing potential, φ`m,
using the following equation: t`me`m

φ`m

 =

L11(`) 0 0
L21(`) L22(`) 0
L31(`) L32(`) L33(`)

h`mj`m
k`m

 (2.4)

where h`m, j`m, and k`m are uncorrelated complex Gaussian variables of zero mean and
unit variance [18]. Additionally, as the t`m, e`m, and φ`m are the complex harmonic
coefficients of a real field, h`m, j`m, and k`m have to verify the reality condition

a∗`m = (−1)ma`−m, (2.5)

where a ∈ {h, j, k} [19].

To generate uncorrelated Gaussian spherical harmonic coefficients we have used sev-
eral functions from the healpy2 package [20], which is a Python package based on the
Hierarchical Equal Area isoLatitude Pixelation (HEALPix3) [21] software that has differ-
ent methods to perform numerical analysis of functions on the sphere. We start with an
arbitrary non-zero initial power spectrum. Then, using the function synalm, we generate
a set of a`m given the power spectrum C`. Finally, we divide each a`m by the square root
of their power spectrum C`. In our code we have used C` = 1 for 0 ≤ ` ≤ `max = 3500, so
this final step is not necessary. Applying this procedure three times, we generate the three
uncorrelated Gaussian spherical harmonic coefficients h`m, j`m, and k`m of unit variance.

2.1.3 Lensing the CMB maps

Weak gravitational lensing deflects CMB photons coming from an original direction n̂′ on
the last scattering surface to an observed direction n̂. The two directions are related by
the deflection vector, α(n̂) = ∇φ(n̂), where the observed lensed CMB field X̃ is obtained
by remapping the corresponding unlensed CMB field X ∈ {T,Q,U}:

X̃(n̂) = X(n̂′) = X(n̂ +α(n̂)). (2.6)

The typical deviations of the CMB photons are ∼ 2 arcmins. For that reason, we
will work under the Born approximation. This means that the deflection is considered
constant between n̂ and n̂′ and the deflection field is evaluated along the unperturbed
direction. The practical consequence is that to compute the lensed CMB at a given point
it is sufficient to calculate the unlensed CMB at another position in the sky as shown in
equation (2.6) [22].

The lensing potential is a scalar function and can be expanded in spherical harmonics.
However, the gradient of the lensing potential is a vector field and to make an spherical
harmonics transform we have to use a spin-1 basis. Considering the components of ∇φ(n̂)

2Documentation available at https://healpy.readthedocs.io/en/latest/
3https://healpix.sourceforge.io/
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2.1. SIMULATING IDEAL LENSED CMB MAPS

with respect to the helicity basis e± ≡ êθ ± iêϕ, e± · ∇φ(n̂), they can be expanded in
spin-1 spherical harmonic functions:

e± · ∇φ(n̂) =
∑
`m

±1a`m ±1Y`m(n̂), (2.7)

where

1a`m =

∫
dΩ (e+ · ∇φ(n̂)) 1Y

∗
`m(n̂) = −

∫
dΩ ðφ(n̂) 1Y

∗
`m(n̂)

=−
∫

dΩ
∑
`′m′

φ`′m′
√
`′(`′ + 1) 1Y`′m′(n̂) 1Y

∗
`m(n̂) = −

√
`(`+ 1)φ`m,

−1a`m =

∫
dΩ (e− · ∇φ(n̂)) −1Y

∗
`m(n̂) = −

∫
dΩ ð∗φ(n̂) −1Y

∗
`m(n̂)

=

∫
dΩ

∑
`′m′

φ`′m′
√
`′(`′ + 1) −1Y`′m′(n̂) −1Y

∗
`m(n̂) =

√
`(`+ 1)φ`m,

(2.8)

in which ð is the spin raising operator and we have applied that

φ(n̂) =
∑
`m

φ`mY`m(n̂),

∫
dΩ sY`m(n̂)sY

∗
`′m′(n̂) = δ``′δmm′ . (2.9)

The deflection field could be now easily calculated from

e+ · ∇φ(n̂) = (∇φ(n̂))θ + i(∇φ(n̂))ϕ, (2.10)

where the real and the imaginary part correspond to the êθ and êϕ components of the
deflection field, ∇φ(n̂), respectively.

Defining β as the angle between the deflection vector, α(n̂) = ∇φ(n̂), and êθ, such
that

α(n̂) = α cosβ êθ + α sinβ êϕ, (2.11)

where α = |α(n̂)|, and the value of a lensed field X̃ in a direction n̂ = (θ, ϕ) is given by
the unlensed field X ∈ {T,Q,U} at n̂′ = (θ′, ϕ+ ∆ϕ) where

cos θ′ = cosα cos θ − sinα sin θ cosβ,

sin ∆ϕ =
sinα sinβ

sin θ′
.

(2.12)

The previous equations have been derived using identities for spherical triangles. This
approach is very accurate in general except near the coordinate singularities.

For polarization, which is a spin-2 field, we need to account for the different directions
of the coordinate vectors at the two points n̂ and n̂′. This requires rotating the components
of the spherical polar coordinates by an angle γ = β−β′, which is the difference between the
angle made by êθ and the geodesic connecting the two points. This is done by multiplying
the unlensed polarization field by an extra factor to obtain the corresponding lensed field
[23]:

(Q̃+ iŨ)(n̂) = e2iγ(Q̃+ iŨ)(n̂′), (2.13)
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where, again, n̂ = (θ, ϕ) and n̂′ = (θ′, ϕ + ∆ϕ), and the angle γ can be calculated using
the following equation:

γ = β − β′ = β − arctan

(
α sinβ

α sinα cot θ + α cosβ cosα

)
, (2.14)

where

β = arctan

(
(∇φ(n̂))ϕ
(∇φ(n̂))θ

)
. (2.15)
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Figure 2.3: The recovered angular power spectra from the lensed T , Q and U maps compared with the

lensed angular power spectra computed with CLASS using Planck 2018 TT,TE,EE+lowE+lensing cosmolog-

ical parameters.

All the theory needed to compute simulated lensed CMB maps has already been pre-
sented. However, we have to face certain computational limitations connected with the
fact that we are working with discrete maps. Given a unlensed pixelated CMB map, X,
we want to compute its value at a position n̂′ = n̂ +α(n̂), which, in general, will not
correspond to a pixel center on the map. The calculation could still be done, but at a
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higher computational cost, because it requires computing

X(n̂ +α(n̂)) =
∑
`m

a`mY`m(n̂ +α(n̂)). (2.16)

The calculation of the previous equation is just for one pixel. For the full map, it would
take O(N2

pix) operations, which is a prohibitive cost for the high resolution maps we
are working with. The solution is to use interpolation with neightbouring pixels in the
computation of X(n̂ +α(n̂)).

At this point, we have all the necessary tools to calculate the lensed maps. We are
going to lens the CMB maps using a software called lenspyx, which is a curved-sky Python

lensed CMB maps simulation package developed by Julien Carron. It is strongly based on
the software LensPix, written in Fortran and developed by Anthony Lewis. The software
lenspyx uses a bicubic interpolation in a oversampled grid and, instead of using the typical
HEALPix pixelization, lenspyx uses an Equidistant Cylindrical Projection of the sphere
(ECP), which has been proven to be computationally cheaper [24,25].

Given unlensed (T,Q,U) + φ maps from the (t`m, e`m, b`m = 0, φ`m) harmonic coef-
ficients, we lens the maps using the functions alm2lenmap and alm2lenmap spin for the
temperature and the polarization maps, respectively. The lensed maps (T̃ , Q̃, Ũ) have a
resolution of Nside = 2048, corresponding to Npix ≈ 5 · 107 rhomboid pixels with a 1.72
arcmins side. The lensed maps are constructed by remapping the unlensed ones, after
having interpolated them at a resolution of approximately 0.35 arcmins.

2.2 Observed CMB maps by different experiments

In this Section we consider an idealized experiment M that is only affected by limited
angular resolution, instrumental noise, and partial sky coverage. After explaining how the
observed signal is affected by the previous effects, in Subsection 2.2.1 we briefly describe
Planck and LiteBird experiments, in Subsection 2.2.2 we explain how the combination of
the two experiments is done and, finally, in Subsection 2.2.3, we show how to deal with
partial sky coverage.

First, the limited angular resolution is modelled by smoothing the lensed CMB (T̃ , Q̃, Ũ)
maps with a Gaussian symmetric beam. In harmonic space, this smoothing is given by a
beam function bM`,XY , using the healpy function smoothing. Then, we simulate a realiza-
tion of instrumental noise in which the noise in each pixel is Gaussian and uncorrelated
with the noise in any other pixel and with the cosmological signal. This noise map is gen-
erated by sampling from a normal distribution N (0, σMpix,X

2
) and added to the smoothed

(T̃ , Q̃, Ũ) maps. When working in harmonic space, the instrumental noise introduces an
additive term, NXY,M

` , as shown in the following equation:

CXY,M` = bM`,XY
2
CXY` +NXY,M

` , (2.17)

where X,Y ∈ {T,E,B}, M ∈ {P,L,C} is the experiment under consideration and can be
either Planck (P ), LiteBIRD (L) or the combination of them (C), and CXY` corresponds to
the XY theoretical angular power spectrum. The beam function depends on the FWHM4

4FWHM and standard deviation, σ, are easily related by σ = FWHM/
√

8 ln 2.
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of the beam, σMB , and slightly on the spin s of the field [26],

b`,XY = exp([−`(`+ 1)/2 + s]σMB
2
), (2.18)

where s = 0 for TT, s = 1 for TE and s = 2 for EE and BB.

The instrumental noise is given by

NXY,M
` =


4πσMpix,X

2

Npix
, if X = Y

0, if X 6= Y

(2.19)

where σMpix,X is the noise per pixel for the X map and Npix is the number of pixels of the
map. Note that for X 6= Y , the noise is zero because the random noise realizations are
not correlated with each other.

At this point, it is interesting to deconvolve the effects of the beam to obtain an
estimate of CXY,M` as close as possible to CXY` :

CXY,M
′

` =
CXY,M`

bM`,XY
2 = CXY` +

NXY,M
`

bM`,XY
2 . (2.20)

After doing this, the constant noise power spectrum that we have in equation (2.19)
explodes at high ` due to the dominant contribution of bM`,XY .

2.2.1 Planck and LiteBIRD experiments

The Planck satellite was a European mission that ended on 2013. It observed the CMB
using an array of 74 detectors to measure the sky in nine bands, covering frequencies
between 25 and 1000 GHz, with angular resolutions between 33 and 5 arcmins. Our
simulations take as reference the noise level of a typical clean CMB map. This leads to
a noise per pixel for temperature of σPpix,T = 20 µK·arcmin and for polarization σPpix,E =

σPpix,B = 40 µK·arcmin, and an effective circular Gaussian beam with a FWHM of 5
arcmins [27].

LiteBIRD is JAXA’s CMB space mission for the study of B-mode polarization and
Inflation. JAXA, the Japanese Space Agency, selected LiteBIRD in May 2019 as a strategic
large-class (L-class) mission, with its expected launch date in the late 2020s. LiteBIRD will
use 15 frequency bands between 34 and 448 GHz to achieve a total polarization sensitivity
of σLpix,E = σLpix,B = 2.2 µK·arcmin, In this project we will also consider this noise value

for temperature σLpix,T . The typical angular resolution of LiteBIRD is a FWHM of 30
arcmin at 100 GHz [28].

Using the experimental characteristics of both experiments, and considering the pro-
cedure explained at the beginning of Section 2.2, we generate simulations of the observed
CMB maps by Planck, (T̃ , Q̃, Ũ)Planck, and LiteBIRD, (T̃ , Q̃, Ũ)LiteBIRD. As it will be
needed in the forthcoming Sections, we compute the harmonic coefficients from the CMB
maps for Planck, (tP`m, e

P
`m, b

P
`m), and for LiteBIRD, (tL`m, e

L
`m, b

L
`m), using the healpy func-

tion map2alm.
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In Figure 2.4, we can observe expected data from LiteBIRD, and measurements from
other CMB experiments. Planck has measured temperature to an exquisite precision,
thanks to its low instrumental noise levels. LiteBIRD promises to do the same for polar-
ization, although only for the largest scales due to its limited angular resolution. Here
exquisite precision refers to the limit imposed by the cosmic variance in temperature. Lite-
BIRD is expected to reach that limit for the E-mode polarization. Consequently, Planck
and LiteBIRD are two complementary experiments because Planck provides precise tem-
perature and small scale information and LiteBIRD will provide precise polarization in-
formation. For that reason, we combine both experiments in Subsection 2.2.2 to quantify
how beneficial it would be for the lensing reconstruction.

Figure 2.4: Summary of present measurements of CMB power spectra and expected polarization sensitivity

of LiteBIRD. Figure from [28].

2.2.2 Combination of Planck and LiteBIRD experiments

This is one of the crucial parts of this work and related to the title of this document. Here
we develop a procedure to combine Planck and LiteBIRD data given CMB maps of both
experiments.

Given the harmonic coefficients from the CMB maps for Planck, (tP`m, e
P
`m, b

P
`m), and
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for LiteBIRD, (tL`m, e
L
`m, b

L
`m), we can combine them to produce (tC`m, e

C
`m, b

C
`m) using a

weighted sum:

tC`m = wP,T` tP`m + wL,T` tL`m,

eC`m = wP,E` eP`m + wL,E` eL`m,

bC`m = wP,B` bP`m + wL,B` bL`m,

(2.21)

where the weights are wM,Y
` for M ∈ {P,L} and Y ∈ {T,E,B} and verify

wP,Y` + wL,Y` = 1, wM,Y
` ∝ 1

NY Y,M
` bM`,Y Y

−2 , (2.22)

leading to the following equations:

wP,Y` =
NY Y,L
` bL`,Y Y

−2

NY Y,P
` bP`,Y Y

−2
+NY Y,L

` bL`,Y Y
−2 , w

L,Y
` =

NY Y,P
` bP`,Y Y

−2

NY Y,P
` bP`,Y Y

−2
+NY Y,L

` bL`,Y Y
−2 . (2.23)

The weights that appear in equation (2.22) are inversely proportional to the noise term
of equation (2.20). Thus, we are are performing an inverse-variance weighting, minimizing
the variance of the combination and favouring the experiment with the smallest noise
term. In Figure 2.5, the weights are plotted for the Planck and LiteBIRD experiments.
As it can be concluded from this Figure, LiteBIRD is the dominant contribution at the
low ` region (` < 600) and Planck dominates at the high ` region (` > 600). The reasons
behind that are the low instrumental noise and resolution of the LiteBIRD mission in
contrast to the Planck experiment.
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Figure 2.5: Plots of the weights for Planck and LiteBIRD experiments for the t`m, e`m and b`m harmonic

coefficients.The left figure correspond to the temperature weights and the right figure to the polarization

weights.
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Using equation (2.21) we can calculate the beam and instrumental noise for the com-
bination of Planck and LiteBIRD experiments. Let start by computing the temperature
angular power spectrum

CTT,C` =
1

2`+ 1

∑̀
m=−`

|tC`m|2 = (wP,T` )2CTT,P` +(wL,T` )2CTT,L` +
2wP,T` wL,T`

2`+ 1

∑̀
m=−`

Re{tP∗`mtL`m},

(2.24)
where

CTT,P` = bP`,TT
2
CTT` +NTT,P

` ,

CTT,L` = bL`,TT
2
CTT` +NTT,L

` .
(2.25)

To calculate the cross-term of equation (2.24) we use

tP`m = t̃`mb
P
`,TT + nTT,P`m ,

tL`m = t̃`mb
L
`,TT + nTT,L`m ,

(2.26)

where t̃`m are the temperature spherical harmonics coefficients of the signal, NTT,P
` =

〈nTT,P`m nTT,P∗`m 〉 and NTT,L
` = 〈nTT,L`m nTT,L∗`m 〉. Then,

tP∗`mt
L
`m = bP`,TT b

L
`,TT |t̃`m|2 + noise terms, (2.27)

where the noise terms vanish when performing the summation because they are not cor-
related, so they are not shown. Finally,

2wP,T` wL,T`

2`+ 1

∑̀
m=−`

Re{tP∗`mtL`m} = 2wP,T` wL,T` bP`,TT b
L
`,TTC

TT
` , (2.28)

and substituting in equation (2.24) we get

CTT,C` = bC`,TT
2
CTT` +NTT,C

` , (2.29)

where

bC`,TT
2

=
(
wP,T` bP`,TT

)2
+
(
wL,T` bL`,TT

)2
+ 2wP,T` wL,T` bP`,TT b

L
`,TT ,

NTT,C
` =

(
wP,T`

)2
NTT,P
` +

(
wL,T`

)2
NTT,L
` .

(2.30)

The same expression is obtained for CEE,C` and CBB,C` just changing the beam, noise,
and weights for polarization.

The cross-correlation between temperature and E-mode polarization for the combina-
tion can also be computed in a similar manner:

CTE` =
1

2`+ 1

∑̀
m=−`

tC`m
∗
eC`m = wP,T` wP,E` CTE,P` + wL,T` wL,E` CTE,L`

+
wP,T` wL,E`

2`+ 1

∑̀
m=−`

tP∗`me
L
`m +

wP,E` wL,T`

2`+ 1

∑̀
m=−`

tL∗`me
P
`m,

(2.31)
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where
CTE,P` = bP`,TE

2
CTE` ,

CTE,L` = bL`,TE
2
CTE` .

(2.32)

Following a similar procedure to temperature, from equation (2.31) we get

CTE,C` = bC`,TE
2
CTE` , (2.33)

bC`,TE
2

= wP,T` wP,E`
(
bP`,TE

)2
+ wL,T` wL,E`

(
bL`,TE

)2
+ wP,T` wL,E` bP`,TT b

L
`,EE + wL,T` wP,E` bL`,TT b

P
`,EE ,

(2.34)

In Figures 2.6 and 2.7, the plots of the beam and noise for Planck, LiteBIRD, and the
combination of both experiments are plotted.
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Figure 2.6: Plots of the beam for Planck, LiteBIRD, and the combination of both experiment for the

different angular power spectra.
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Figure 2.7: Plots of the instrumental noise for Planck, LiteBIRD, and the combination of both experiment

for the different angular power spectra.
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Figure 2.8 shows the deconvolved angular power spectra of the simulated CMB maps
of Planck, LiteBIRD, and the combination of them. The deconvolution is just a division
by the squared of the beam function. From them, we can observe that LiteBIRD does
not contribute too much to the TT and TE angular power spectra, but makes a huge
difference in the polarization E and B modes at low `. Especially, the lensed B modes are
not detected by Planck, but they will be detected by LiteBIRD. As pointed before, the
way the combination of Planck and LiteBIRD is defined means that we are taking the
best experiment for each multipole `.
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Figure 2.8: Plots of the deconvolved angular power spectra comparing the results from ideal case, Planck,

LiteBIRD, and the combination of Planck and LiteBIRD.

2.2.3 Masking the CMB maps

Masking could be defined as the process of hiding patches of the sky whose microwave
emission correspond to other sources distinct from the CMB. In this Section we distinguish
between two masks: the point source mask and the Galactic mask.

The point source mask includes all the extragalactic sources emitting in the microwave
range, like galaxy clusters, dusty galaxies, or radio-loud active galactic nuclei. They are
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compact and isolated objects in the sky. The point mask will not be included in this project
because it requires using a technique named inpainting, which consists in restoring a (fake)
signal in the contaminated regions. The source holes are filled with a Gaussian realization
constrained by the signal around the masked region. As a consequence, some noise is
added in a small area of the sky. In [13] the authors have shown that this approach is
harmless for lensing, allowing an excellent reconstruction of the power spectrum of the
lensing potential without the creation of any spurious lensing signal. Recently the topic
has increased in popularity and some problems have been detected. Masking the point
sources might be dangerous because they are part of the gravitational potential responsible
of lensing and their emission is as well lensed by the large scale structure between them
and us. This could lead to correlations and biases [29]. This will be part of extensive work
in the future.

The second group corresponds to the Galactic mask, which basically covers the Galac-
tic plane of the CMB map to hide the Milky Way’s microwave emission. Masking produces
two major impacts on the recovered angular power spectrum, which are a considerable
reduction on the amplitude of the signal related to the percentage of the sky covered by
the mask, and a coupling between different multipoles, modelled by the coupling matrix
presented in Subsection 1.2.3. Additionally, related to the use of lensing quadratic esti-
mators, masking introduces a mask mean field bias which occurs even in the absence of
lensing and must be removed. The quadratic estimators exploits the correlations between
multipoles and by masking we are introducing artificial correlations.

Figure 2.9: Power spectrum of the mask mean field rescaled by fgal,4. When the binary Galactic mask is

applied (blue lines) the reconstruction is strongly biased at high multipoles. Figure from [13].
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To minimize the last two effects produced by masking, we are going to use a technique
called apodization. It consists in a smoothing of the mask using a sin-like function so that
the mask border does not go abruptly from 0 to 1. The apodization scale is set to 10◦

because it reduces the mask mean field bias, as as discussed in [13] and shown in Figure
2.9. As it is well known in CMB science, apodization transforms the coupling matrix into
an almost diagonal matrix, reducing the off-diagonal terms, and therefore the correlations
between different multipoles.

Even though the mask mean field bias has been significantly reduced, it must still be
estimated. Although we are not going to estimate this bias in this document, we will
explain how it should be taken into account. Simulating NMF

unl simulations of unlensed
CMB maps and using a Monte-Carlo procedure, the mask mean field bias is estimated
using the following equation:

φ̂MF
`m =

1

NMF
unl

NMF
unl∑
i=1

φ̂i`m. (2.35)

In this work we have used the same Galactic mask for both temperature and polariza-
tion, corresponding to the 2015 Galactic plane mask GAL0805 where 80% of the sky has
been left unmasked (Figure 2.10). This mask has been used in the analysis of the Planck
data. After performing a 10◦ apodization C1 of the mask (Figure 2.11), we multiply it by
the lensed (T̃ , Q̃, Ũ) simulated maps of the different experiments. To apodize the mask we
have used pymaster6 [30], which is the Python implementation of the NaMaster library.

0 1

Figure 2.10: 2015 Galactic plane binary
mask GAL080 obtained from the Planck Legacy
Archive.

0 1

Figure 2.11: 2015 Galactic plane mask
GAL080 obtained from the Planck Legacy Archive
and apodized with apodization type C1 and a scale
of 10◦ using pymaster.

For the 2015 Galactic plane mask GAL080, we have checked the diagonalization of the
coupling matrix. Figure 2.12 clearly shows how apodizing the mask with a scale of 10◦

reduces the off-diagonal terms about six orders of magnitude.

5File HFI Mask GalPlane-apo0 2048 R2.00.fits which can be found in Maps>Masks>Galactic Plane
in https://pla.esac.esa.int/#home

6https://namaster.readthedocs.io/en/latest/
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Figure 2.12: TT coupling matrix of the 2015 Galactic plane mask GAL080 with and without an apodiza-

tion of 10◦ calculated using pymaster.

2.3 Reconstruction of the lensing potential

For the reconstruction of the lensing potential we are going to use the software lensQUEST7

developed by Dominic Beck. It contains an implementation of the quadratic estimators
for lensing reconstruction and the minimum-variance estimator following the equations
appearing in [1] and explained in detail in Sections 1.2 and 1.2.2.

To compute the quadratic estimator φ̂`m/A`, where A` is the normalization factor,
requires the CMB maps in terms of the harmonic coefficients normalized by their angu-
lar power spectra (t`m/Ĉ

TT
` , e`m/Ĉ

EE
` , b`m/Ĉ

BB
` ), the theoretical lensed angular power

spectra, and the observed angular power spectra, i.e., as expressed in equation (2.20).

The same approach could be applied for partial sky coverage maps. First, we need
to include the effect of the mask in the CMB maps by multiplying them by the apodized
mask and recovering the harmonic coefficients of the result. Secondly, we need to take into
account how the theoretical and observed angular power spectra change when applying a
mask. The approach that we are following is a proposal based on [13]. To do so, we need
to calculate the pseudo power spectrum C̃` using the mode-mode coupling matrix, M``′ :

C̃` =
∑
`′

M``′C`′ , (2.36)

where C`′ corresponds to a full-sky angular power spectrum [31]. For the computation of
the coupling matrix we have used pymaster (NaMaster library).

The results obtained from the lensing reconstruction are shown and explained in Chap-
ter 3.

7https://github.com/doicbek/lensquest
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2.4 Wiener filter

In this work, we have considered three different sets of data: Planck, LiteBIRD, and the
combination of both experiments. Considering we have an observation d from one of the
experiments, it can be decomposed in the sum of a signal, s, and a noise, n, as it has
been shown in equation (2.20). Assuming both terms are Gaussian and isotropic, we are
interested on getting an estimation ŝ of the signal from a noisy observation. One way
to proceed, and a very common approach in CMB science, is to apply a Wiener filter to
the data, which is the linear filter that minimises the variance of the reconstruction error.
Given the harmonic coefficients d`m of the observation, an estimation ŝ`m of the signal is
given by:

ŝ`m =
Cs`

Cs` + Cn`
d`m, (2.37)

where Cs` and Cn` correspond to the power spectrum of signal and noise respectively. The
Wiener filter is the fraction multiplying the d`m coefficients.

The power spectrum of the Wiener filter reconstruction is biased towards values lower
than the true signal, with the bias depending on the signal-to-noise ratio of the data [17].
Using equation (2.37), the expected value of the power spectrum for the reconstructed
signal is given by

〈C ŝ` 〉 =
(Cs` )2

Cs` + Cn`
< Cs` . (2.38)
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Figure 2.13: Left: Plots of the Wiener filter corresponding to the minimum-variance estimators of the

lensing potential. Right: Plots of the expected value of the reconstructed lensing power spectrum from the

minimum-variance estimators for the different experiments considered.

In Figure 2.13, we can observe how the Wiener filter works when applied to the lensing
reconstruction. At low ` (large scales) the filter scales the observation by a value lower
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than one and, at high ` (small scales), the filter rapidly takes a value close to zero due
to the dominance of noise. Basically, we are eliminating the noise-dominated scales and
keeping only information from scales where the intensity of the signal is relevant compared
to the noise. The bias observed after applying a Wiener filter is significant, recovering a
considerably lower signal compared to that of the theoretical lensing power spectrum. It
is important to take into account that all the plots in Figure 2.13 use the noise levels
estimated from the minimum-variance estimator of the lensing potential, which are the
best estimation of the lensing angular power spectrum from each experiment. This Figure
shows another prove of how combining data from Planck and LiteBIRD experiments results
beneficial at all scales in the recovery of the lensing spectrum, reducing the observed bias
after applying the Wiener filter.

The Wiener filter is applied when dealing with CMB maps, as occurs in several parts
of the project, for instance, when working with deflection maps in Chapter 3.
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Chapter 3

Results

In this chapter we are going to analyse two different situations. First, in Section 3.1, we will
consider Planck and LiteBIRD experiments only affected by limited angular resolution and
instrumental noise. Secondly, in Section 3.2, we will show the effect of the introduction of a
mask on the TT quadratic estimator for the Planck and LiteBIRD combination. The aim
in both situations is to study how well can we recover the lensing gravitational potential.

3.1 Lensing reconstruction from noisy and limited resolu-
tion experiments

In this Section, we will consider simulations of Planck, LiteBIRD, and the combination of
both experiments. These simulations consider idealized full-sky experiments only affected
by limited angular resolution and white instrumental noise.

In Figures 3.1, 3.2, and 3.3, respectively, the lensing reconstruction for Planck, Lite-
BIRD, and the combination of both are plotted. For each plot there are five different
lensing reconstructions in which the TT, TE, EE, TB, and EB quadratic estimators have
been used. Additionally, the minimum-variance estimator MV has been plotted, which ba-
sically takes the best of each different measurement available of the lensing reconstruction.
A very useful plot is Figure 3.4, which shows the values of the weights for the different
estimators and experiments used to calculate the weighted-sum of the minimum-variance
estimator from equation (1.27).

The combined analysis of all the Figures presented yields interesting results. First, for
Planck, the best lensing reconstruction comes from the TT estimator, which can be also
confirmed from the contribution of more than a 50% at all scales to the MV estimator.
It is followed by the TE and EE estimators, which contribute around a 20% to the MV
estimator at the low ` region. The contributions to the MV estimator from the TB and
EB are almost negligible due to the dominance of the reconstruction noise.

A completely contrary situation is faced when looking at the results from LiteBIRD.
The major contribution comes from the EB estimator at ` . 1000. For ` & 1500, the
major contribution to the lensing reconstruction signal comes from the TT. However, as
this last region is mostly noise dominated, not much signal could be obtained from the
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data. The TB estimator is the second with a significant contribution to the MV estimator
of the LiteBIRD experiment. The remaining estimators have a minor impact in the lensing
reconstruction.
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Figure 3.1: Plots of the lensing reconstruction using simulations of the Planck experiment.
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Figure 3.2: Plots of the lensing reconstruction using simulations of the LiteBIRD experiment.

From the Planck and LiteBIRD analysis it could be concluded that, in fact, they
are complementary experiments. While Planck benefits the most from the TT and TE
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estimators, the LiteBIRD experiment benefits the most from the EB and TB. This is the
underlying reason why a combination of both experiments is perfect.
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Figure 3.3: Plots of the lensing reconstruction using simulations of the combination of Planck and

LiteBIRD experiments.

The lensing reconstruction from the combination of Planck and LiteBIRD experiments
is better for the TT and EB estimators as it might have been anticipated. In the low `
region, the EB estimator dominates, reaching a 60% of the total contribution to the MV
estimator, whereas the TT contributes around a 40%. In the high ` region, the TT
estimator dominates absolutely. Other minor contributions to the MV estimator at low `
come from the TE and EE estimators. The remaining quadratic estimators have a minor
impact on the MV estimator.

3.1.1 Weights of the minimum-variance estimator

In Figure 3.4, we plot the Okamoto & Hu weights used for the computation of the
minimum-variance estimator in Figures 3.1, 3.2, and 3.3. To compute this weights we
have used equation (1.34) [1]. Note that in Figure 3.4, for multipoles ` > 500 we get
negative weights for the TE estimator in all the three experiments considered. We do not
obtain very negative weights, being the minimum weight obtained −0.013. Additionally,
for the LiteBIRD experiment, the TT weights for certain multipoles take values above
one.

The multipole region where these negative weights appear is for ` > 500, which is
noise dominated and no lensing signal is expected to be recovered. In fact, after apply-
ing a Wiener filter, the multipole region corresponding to ` > 500 is highly suppressed.
Therefore, we are working effectively always with positive weights.
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Figure 3.4: Plots of the weights used in the computation of the MV estimator and calculated using

Okamoto & Hu weights from equation (1.34).

3.1.2 Patch of the reconstructed lensing map

The objective of this Section is to visually compare the original lensing-deflection map
with the reconstructed lensing-deflection map. To do so, 20 × 20 degree patches of the
lensing-deflection maps centred at θ = ϕ = 0 are plotted. The lensing-deflection map,
d`m, is related to the lensing potential map, φ`m, by the following equation:

d`m =
√
`(`+ 1)φ`m. (3.1)

Except the original lensing-deflection map, which is not affected by noise or limited
angular resolution, the patches plotted here have been Wiener filtered as explained in
Section 2.4.

In Figure 3.5, the different lensing-deflection maps reconstructed using the quadratic
estimators and experiments available. For reference, the original lensing-deflection map is
plotted in Figure 3.6.

From Figure 3.5, focusing in Planck’s maps, we can conclude that the main contribu-
tions to the MV estimator comes from the TT, EE, and TE. The TT map is the one that
contributes the most to the final shape of the MV map. This is coherent with the weights
presented in Subsection 3.1.1. It is particularly interesting how combining the different
quadratic estimators to form the MV estimator leads to a clearly better result.

Continuing with LiteBIRD, two major differences with Planck can be observed. First,
the LiteBIRD’s MV reconstruction is better than Planck ’s. Sharper forms can be observed
compared to the original lensing-deflection map. Secondly, not a huge difference is observed
between the EB and MV recovered maps, which is compatible with EB being the estimator
with the greatest S/N . The TB is the second map which the highest contribution.
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Figure 3.5: 20×20 degree central patches of the recovered lensing-deflection map by the different quadratic

estimators and experiments.

Finally, we are going to analyse the reconstructed lensing-deflection maps for the com-
bination of Planck and LiteBIRD. As explained in previous Sections and shown in Figure
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3.5, Planck contribution comes mostly from the TT estimator and LiteBIRD most impor-
tant contribution is the EB estimator. This is what we see for the combination of both
experiments in Figure 3.5, the TT map is Planck ’s and the EB map is LiteBIRD’s. It
is interesting also that different information is obtained from the TT and the EB maps,
contributing both to the MV map. The MV map reconstructed using the combination of
both experiments is the best lensing-deflection reconstruction of all those plotted in this
Subsection when compared with the original lensing map in Figure 3.6.

Figure 3.6: 20× 20 degree central patch of the original lensing-deflection map.

3.1.3 Signal-to-noise ratio

In this Section, we compute the signal-to-noise ratio for the lensing potential reconstruction
and for the cross-correlation between the lensing potential reconstruction and the original
lensing potential map.

The signal-to-noise ratio, S/N , is calculated using the following equation:

S/N =

(∑
`

s2
`

σ2
`

)1/2

, (3.2)

where s` is the observed signal and σ` is the uncertainty associated with the measurement
of the signal.

The signal-to-noise ratio for the lensing potential reconstruction, φ̂, is calculated using
equation

S/N =

∑
`

(
C φ̂φ̂` −N`

)2

(
C φ̂φ̂`

)2 (`+ 0.5)


1/2

, (3.3)
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where C φ̂φ̂` is the reconstructed lensing angular power spectrum and N` is the reconstruc-
tion noise.
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Figure 3.7: Signal-to-noise ratio plots using the theoretical angular power spectra of the signal and the

noise.

In Figure 3.7, the theoretical signal-to-noise ratio for the two experiments and their
combination are plotted. For Planck, the S/N is dominated by the TT channel as expected,
and the MV estimator reaches a S/N value of 85.51. For LiteBIRD, the S/N is dominated
by the EB channel, and the MV estimator’s S/N is 88.08, which is just a bit higher than the
corresponding value for Planck ’s MV estimator. For the combination of both experiments,
the S/N is considerably higher than for each experiment alone, with the MV estimator
reaching a S/N of value of 129.19. It implies an improvement of about a 50% in the lensing
potential reconstruction when combining both experiments. The EB channel is better than
the TT, something expected from the plots regarding the individual experiments.

The signal-to-noise ratio for the cross-correlation between the lensing potential recon-
struction, φ̂, and the original lensing potential map, φ, is computed using the following
equation:

S/N correlation =

∑
`

(
C φ̂φ`

)2

C φ̂φ̂` Cφφ` +
(
C φ̂φ`

)2 (2`+ 1)


1/2

, (3.4)

where C φ̂φ` is the cross-correlation between the original and reconstructed lensing angular

power spectrum and Cφφ` is the original lensing power spectrum.

In Figure 3.8, the signal-to-noise of the cross-correlation for the two experiments and
their combination are plotted. We can observe a similar situation, as in Figure 3.7. In an

ideal situation we would expect C φ̂φ̂` = C φ̂φ` = Cφφ` , so that equation (3.4) transforms to
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an monotonically increasing function given by

S/Nperfect correlation =

(∑
`

(`+ 0.5)

)1/2

. (3.5)

The presence of noise prevents the S/N to continue growing, leading to the saturation
shown in Figure 3.8. The saturation tells us up to which multipole are we able to extract
information
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Figure 3.8: Signal-to-noise ratio plots of the cross-correlation between the original and reconstructed

lensing potential.

3.2 Impact of partial sky coverage on lensing reconstruction

In this Section, we present an introduction of the results that can be obtained from the
lensing reconstruction of masked CMB maps. Following the steps presented in [13], we
apply the TT quadratic estimator to the Planck and LiteBIRD combination and show
the effect of the mask mean field on the reconstructed lensing power spectrum. Future
work will be required to include the rest of the quadratics estimators and more realistic
simulations. Both aspects are outside the scope of this work.

In Figure 3.9, the results of applying the TT quadratic estimator to Planck and Lite-
BIRD combination data are presented. We can observe and excess at low multipoles when
comparing the reconstructed lensing power spectrum with the expected one. It is caused
by the mask mean field due to the presence of the mask. To remove that excess Monte
Carlo simulations on unlensed CMB maps should be done as explained in Section 2.2.3.

Figure 3.9 is coherent with the mask mean field presented in Figure 2.9. The mask
mean field dominates at ` < 50. This multipole range is crucial for lensing because it is
the region where most of the lensing power is present.
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lensing power spectrum rescaled by fgal,4.
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Chapter 4

Conclusions and future work

In this work, we have focussed in how Planck and the future mission LiteBIRD are able to
reconstruct the lensing potential from observations of the CMB temperature and polariza-
tion. Additionally, a novelty approach of this work is the combination of both experiments.
Planck is better in CMB temperature, whereas LiteBIRD will be an experiment concen-
trated on CMB polarization, so combining them is ideal. To do so, different softwares
have been used to generate CMB simulations for both experiments and reconstruct the
lensing signal.

Five different specialized CMB Python libraries have been utilized. To generate the
simulations, the following software was executed: CLASS to generate the CMB unlensed and
lensed angular power spectra, healpy to work with the simulated CMB maps and estimate
their angular power spectra, lenspyx to lens unlensed CMB maps and, finally, to mask
the maps pymaster was run. For the lensing reconstruction with quadratic estimators,
the library lensQUEST, which implements the equations in [1], was run.

The CMB simulations performed in this document only consider three different exper-
imental aspects: instrumental noise, limited angular resolution, and partial sky coverage.
It is a simplified scheme where the noise is white, the beam is spherically-symmetric, and
the sky-cuts are a Galactic mask with no extragalactic sources. As explained at the start
of Chapter 3, we have applied the quadratic estimators to the full-sky and partial-sky
simulations separately. The main differences arise from the mode coupling caused by the
mask, which produces an additive bias in the lensing signal, named the mask mean field
bias, and a multiplicative bias by the coupling matrix. While the multiplicative bias is
translated into a normalization factor, the additive one requires estimating the mean field
bias, which we have left for future work.

The results show that the data from LiteBIRD mission will be very valuable to con-
straint the lensing effect. The full-sky signal-to-noise ratio from LiteBIRD (≈ 88) is very
similar to that obtained from Planck (≈ 86). However, when combining both experiments
it is increased about a 50% to approximately 130. From the weights of the minimum-
variance estimator in Figure 3.4, we could observe that for Planck experiment the TT
estimator is the most important one, whereas for LiteBIRD experiment, it is the EB. A
proof of the complementarity of both experiments.

Future work on this project mainly involves improving the CMB simulations in order
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to make them more realistic. For instance, we can include inhomogeneous noise, the
Galactic foregrounds residuals after component separation, and extragalactic foregrounds.
The inclusion of extragalactic sources and how to deal with them will require a deeper
bibliographic review. Additionally, including higher order biases of the reconstruction
noise will be required.
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