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Abstract

T
he aim of this project is to develop a new inpainting technique for masked Cosmic Microwave
Background (CMB) sky maps. Due to the presence of foreground emissions, the CMB is usually

recovered by using component separation methods, which allow us to separate the CMB signal from
this foreground contamination. However, there are some regions (e.g the galactic plane, point sources)
in which the signal recovery is so poor that it needs to be masked. Inpainting techniques try to fill in
this masked region with random signals that are statistically coherent with the rest of the observed sky.

In order to do so, in this work we have proposed a novel inpainting technique, the wavelet diffuse
inpainting. This method tries to extend an existing procedure, called diffuse inpainting, by applying
a multiresolution approach using a type of wavelet known as HEALPix wavelet. This allows us
to improve the range of angular scales at which the inpainting is effective, as well as to reduce
computing times. For this study, we have characterized the optimal inpainting parameters of this
new method and the diffuse inpainting it is based on. To test the efficacy of the technique, we have
compared it with the diffuse inpainting at three levels, visual sky map reconstruction, angular power
spectra recovery, and presence of correlations between different angular scales. Furthermore, some
preliminary results have been obtained by applying this technique to Planck data.

Keywords: Cosmology, Cosmic Microwave Background, Inpainting, Image Processing

E
l objetivo de este proyecto es desarrollar una nueva técnica de inpainting para mapas enmas-
carados del Fondo Cósmico de Microondas (FCM). Debido a la presencia de emisiones situadas

entre el FCM y nosotros, los mapas del FCM suelen obtenerse mediante el uso de métodos de
separación de componentes, que permiten separar la señal de la contaminación debida a dichas
emisiones. Sin embargo, existen una serie de regiones (p. ej. el plano galáctico, fuentes puntuales)
donde la recuperación de la señal del FCM es demasiado pobre y, por tanto, deben ser enmascaradas.
Las técnicas de inpainting tratan de rellenar esta región enmascarada con señales aleatorias pero
estadísticamente coherentes con el resto del cielo observado.

Para ello, en este trabajo se ha propuesto una nueva técnica de inpainting denominada wavelet diffuse
inpainting. Esta trata de extender la aplicación de un método conocido como inpainting difusivo
añadiendo un enfoque multiresolución con ondículas, en concreto se ha empleado la decomposición
en HEALPix wavelets. Esto nos permite ampliar el rango de escalas angulares a las que el inpainting
es efectivo, así como reducir su coste computacional. Para este estudio, se han caracterizado los
parámetros óptimos tanto de este inpainting con ondículas como del inpainting difusivo en el que
se basa. Para testear la eficacia de este nuevo método se ha realizado una comparación con el
inpainting difusivo a tres niveles: reconstrucción visual del mapa, recuperación del espectro angular
de potencias y presencia de correlaciones entre distintas escalas. Además, se han obtenido unos
resultados preliminares a partir de la aplicación de esta técnica a datos de Planck.

Palabras clave: Cosmología, Fondo Cósmico de Microondas, Rellenado, Procesamiento de Imágenes
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Chapter 1

Introduction

In 1964, while working with a very sensitive horn antenna, Penzias and Wilson detected a strange
excess of noise. Their intention was to study possible sources of radiation in the microwave frequency
band that could be potentially harmful to satellites. Their detection was consistent with an isotropic
white noise with a temperature of 3.5 ± 1 K, which was compatible with the predicted signal of the
cosmic microwave background (CMB) [1]. They published their results in 1965 [2], for which they
were finally awarded the Nobel Prize in Physics in 19781. This was the first observational evidence
of the existence of such cosmic background.

The CMB had already been predicted some years before Penzias and Wilson’s discovery as the
remnant of a primordial hot universe. The Big Bang model postulates a very hot and dense initial
stage (10−6 seconds after the Big Bang) in which the Universe was filled with a hot interacting plasma
consisting of photons, electrons, and baryons. Temperatures at this stage were high enough to keep
photons confined in the plasma via Thomson scattering with the electrons, rendering thus an opaque
universe. As the Universe expanded, its temperature started to drop. When the Universe was around
380 000 years old, its temperature reached 3000 K, rendering the formation of neutral hydrogen
energetically favorable. Once neutral atoms began to form, Thomson scattering became strongly
suppressed and photons were free to travel through the Universe. This epoch is called recombination,
i.e., the epoch when photons decoupled from baryonic matter. At the time of decoupling, radiation
followed a black-body distribution with a temperature close to 3000 K. As the Universe expands
these photons are redshifted, hence experiencing an energy decrease. This leaves us today with a
background radiation characterized by a black-body temperature of T0 = 2.72548±0.00057 K [3].
This emission lies within the microwave band of the electromagnetic spectrum, hence the name of
the CMB. According to measurements so far, this emission is consistent with being homogeneous
and isotropic.

Subsequent experiments, observing in different wavelengths, confirmed the black-body shape of the
CMB spectrum. Furthermore, theoretical works also predicted the existence of some inhomogeneities
of the order of 10−4 - 10−5 [4]. These inhomogeneities were to be produced by different effects on the
last scattering surface (primary anisotropies) as well as by interactions experienced by the photons
on their journey to us (secondary anisotropies). Among these primary anisotropies, we can find
baryon acoustic oscillations [5] or the non-instantaneous nature of recombination [6]. As examples of
secondary anisotropies, we can mention gravitational lensing [7] and the Sunyaev–Zel’dovich effect
[8]. NASA’s COBE mission (COsmic Background Explorer) was the first to properly observe these
fluctuations of the CMB, of the order of 1 part in 105, in 1992 [9].

The importance of the anisotropies of the CMB is that they constitute the oldest cosmic probe
to which we have access today. Their amplitude and angular dependence are highly sensitive to
cosmological models and they can be used to constrain their parameters. Nowadays, the most simple

1https://www.nobelprize.org/prizes/physics/1978/summary/
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CHAPTER 1: INTRODUCTION

model that is able to explain most of our Universe’s properties is the ΛCDM (Lambda-Cold Dark
Matter) model, also known as the standard model of Cosmology or concordance model. This specific
model depends on six parameters: the Hubble parameter H0, the physical baryon density Ωb, the
physical matter density Ωm, the scalar spectral index ns, the reionization optical depth τ , and the
curvature fluctuation amplitude ∆2

R. The values of these parameters can be inferred from the study
of CMB anisotropy data and the large-scale structure in the universe, thus constituting the best
data sources currently available in cosmology.

Following the success of COBE in observing the CMB, WMAP (Wilkinson Microwave Anisotropy
Probe) [10] and ESA’s Planck satellites [11] were launched in 2001 and 2009 respectively. These
missions focused on measuring and characterizing the temperature (intensity) of the CMB, in the
case of Planck (Figure 1.1) reaching the cosmic variance limit2 at most scales. Although it was not
designed as a polarimeter, Planck was also able to measure CMB’s polarized E-mode. Planck mission
was operative until 2013 and has provided the most accurate estimations of many cosmological
parameters to date [12]. Future experiments aim to further characterize CMB polarization and
include space missions (JAXA’s LiteBIRD mission [13]), ground-based telescopes (CMB-S4 [14],
Simons Observatory [15]) and even balloon experiments (SPIDER [16]).

In the following sections, we will study how the CMB anisotropies are characterized via their
angular power spectra, both in temperature Section 1.1 and polarization Section 1.2. Then, we will
describe other astrophysical signals in the microwave range of the electromagnetic spectrum and how
they affect the detection of the CMB Section 1.3. Lastly, we will explain how to mitigate the effects
of these contaminants using masks, as well as different proposals on how to recover the angular
power spectra on masked maps, some of which have been studied in detail in this project Section 1.4.

Figure 1.1: CMB temperature anisotropies from SMICA using Planck data in 2015. Credit: ESA
and the Planck Collaboration3.

2The cosmic variance is the inherent statistical uncertainty in CMB observations due to the limited number of

observable modes.

4



CHAPTER 1: INTRODUCTION

1.1 CMB temperature angular power spectrum

As stated above, CMB fluctuations contain a lot of information about cosmology. As with any
radiation field, these fluctuations can be studied by looking at their intensity and polarization
along the line of sight. Since the CMB radiates as a black-body, we can relate its intensity with its
temperature through Planck’s law. The temperature of the CMB constitutes then a scalar field, and
its fluctuations are defined as:

∆T

T0

(n̂) =
T (n̂) − T0

T0

, (1.1)

where n̂ is the unitary vector in the direction of the observation, and T0 is the average temperature
of the CMB at the present day.

Since the CMB signal is distributed all around the celestial sphere, it is useful to express these
fluctuations in terms of an expansion in spherical harmonics:

∆T

T0

(n̂) =
∞

∑

ℓ=1

ℓ
∑

m=−ℓ

aℓmYℓm(n̂), (1.2)

where Yℓm(n̂) are spherical harmonic functions, being ℓ and m the degree and order of the spherical
harmonics. ℓ are usually called multipole moments, or simply multipoles. The spherical harmonic
coefficients aℓm, satisfying ⟨aℓm⟩= 04, are given by:

aℓm =

∫

Y ∗

ℓm(n̂)
∆T

T0

(n̂)dn̂. (1.3)

Since we are working under the hypothesis of isotropic fluctuations, the variance of these coefficients
does not depend on m. We can therefore write this variance as:

⟨a∗

ℓ′m′ , aℓm⟩ = C̃ℓδℓℓ′δmm′ , (1.4)

where C̃ℓ is the angular power spectrum. From the measured sky we can obtain an approximation of
C̃ℓ, labeled as Cℓ, by summing over the (2ℓ+1) independent m modes of each aℓm coefficient:

Cℓ =
1

2ℓ + 1

ℓ
∑

m=−ℓ

♣aℓm♣2. (1.5)

Our measurements are limited to our own Universe, so the number of observable modes is also

3https://www.cosmos.esa.int/web/planck/picture-gallery
4where ⟨.⟩ represents the ensemble average.
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CHAPTER 1: INTRODUCTION

limited. This limitation is translated into an inherent statistical uncertainty on these coefficients,
∆Cℓ, known as the cosmic variance. This uncertainty is specially relevant for lower multipoles since
fewer m modes are available for them. The cosmic variance can be expressed as:

σ2(Cℓ) =
2

2ℓ + 1
C2

ℓ . (1.6)

Lastly, in order to improve the visualization of the anisotropies in the plots of the angular power
spectrum, it is also interesting to define Dℓ coefficients:

Dℓ =
ℓ(ℓ + 1)

2π
Cℓ. (1.7)

A representation of the angular power spectra making use of these Dℓ is shown in Figure 1.2.

Figure 1.2: Dℓ representation of the angular power spectrum of CMB temperature fluctuations as
a function of angular scale. Red dots represent Planck’s measurements with their error bars. The
green curve represents the best fit from the standard cosmological model to Planck data. The region
around the curve stands for the cosmic variance. Credit: ESA and the Planck Collaboration5.

5https://sci.esa.int/web/planck/-/51555-planck-power-spectrum-of-temperature-fluctuations-in-th

e-cosmic-microwave-background
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CHAPTER 1: INTRODUCTION

1.2 CMB polarization angular power spectra

The electric field components of an electromagnetic wave with frequency ω0 propagating along the z
directions can be written as:

Ex = ax(t) cos [ω0t − θy(t)] ,

Ey = ay(t) cos [ω0t − θy(t)] .
(1.8)

Polarization is often studied in terms of the Stokes parameters, which are defined as:

I ≡ ⟨a2
x⟩ + ⟨a2

y⟩ (1.9)

Q ≡ ⟨a2
x⟩ − ⟨a2

y⟩ (1.10)

U ≡ ⟨2axay cos(θx − θy)⟩ (1.11)

V ≡ ⟨2axay sin(θx − θy)⟩, (1.12)

where I represents intensity (or temperature), Q and U account for linear polarization and V is
the parameter related to circular polarization. Thomson scattering does not produce any circular
polarization so in our case the V parameter is equal to 0.

Both I and V represent physical observables and thus they do not depend on the coordinate
system of the observer. On the other hand, Q and U describe orthogonal modes of linear polarization
and are affected by the coordinate system in which the polarization is measured. It is then useful to
find quantities that provide an invariant description of linear polarization.

We know that the Stokes parameters Q and U transform as if they were a two-dimensional symmetric
and traceless rank tensor. These tensors can be decomposed in a scalar (curl-free) and a pseudo-scalar
(divergence-free) part [17]. We call these parts E and B modes in analogy with the electric field
of a point charge and the magnetic field, which are also curl-free and divergence-free respectively.
E modes show a radial or tangent polarization pattern while B modes are tilted 45◦ and change
direction depending on the sign, as can be seen in Figure 1.3. E and B modes are defined as linear
combinations of Q and U as follows:

(Q ± iU)(n̂) =
∞

∑

ℓ=2

ℓ
∑

m=−ℓ

a±2

ℓm±2Yℓm(n̂) =
∞

∑

ℓ=2

ℓ
∑

m=−ℓ

(aE
ℓm ± iaB

ℓm)±2Yℓm(n̂), (1.13)

where ±2Yℓm are the spin-weighted spherical harmonics [17] and a±2

ℓm their respective coefficients.
Spin-weighted spherical harmonics are generalizations of the standard spherical harmonics and they
fulfill the same orthogonality and completeness relations. This means that the a±2

ℓm are computed
analogously to (1.3). We can then write aE

ℓm and aB
ℓm as their linear combinations:

aE
ℓm =

1

2
(a+2

ℓm + a−2

ℓm), (1.14)

aB
ℓm =

−i

2
(a+2

ℓm − a−2

ℓm). (1.15)
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CHAPTER 1: INTRODUCTION

These new coefficients describe two quantities, the E and B polarization modes. They can be defined
in the real space in the same way we did with the temperature fluctuations in (1.2):

E(n̂) =
∑

ℓ

Eℓ(n̂) =
∑

ℓ

∑

m

aE
ℓmYℓm(n̂), (1.16)

B(n̂) =
∑

ℓ

Bℓ(n̂) =
∑

ℓ

∑

m

aB
ℓmYℓm(n̂). (1.17)

Each one of the E modes (Eℓ) has even parity (-1)ℓ while the B modes (Bℓ) have odd parity (-1)ℓ+1.
Temperature modes (T modes) do also have even parity.

Figure 1.3: E-like and B-like polarization patterns. Figure from [18].

As stated above, it is more interesting to work with E and B since they are scalar fields. We also
know that E modes are produced by scalar and tensor perturbations in the primordial Universe,
while B modes are solely produced by tensor perturbations. Since primordial tensor perturbations
are introduced in the metric by inflation, the detection of primordial B modes would be a smoking
gun of an inflationary phase at the beginning of the Universe. The detection of this primordial
signal constitutes the main goal of future CMB experiments. This signal is characterized by the
tensor-to-scalar ratio, r, which describes the relative intensity of scalar and tensor modes. The
existence of an inflationary phase would imply a non-zero r, but the tensor modes might be too faint
to be detected. The simplest inflation model up to date [19] predicts a value of r ≈ 0.003 [20], which
could still be measured. Current observations give an upper limit of r < 0.032 at 95% confidence
[21] so we know that B modes contain much less power than E modes.

There are nonetheless other effects that need to be taken into account regarding the study of
B modes. One of the most significant is the polarization transfer between E and B modes due to the
distortion produced by gravitational lensing. Astrophysical foregrounds, described in Section 1.3,
are also a source of E and B modes that need to be carefully subtracted. In addition, we also need
to take care of systematic effects, such as cosmic rays or detector noise, turning primordial B mode
detection into an even more challenging mission.

8



CHAPTER 1: INTRODUCTION

Up to this point, we have defined three scalar fields that describe both the temperature fluc-
tuations (T6) and the polarization (E, B). Using the spherical harmonic coefficients that we have
derived for each quantity we can define six power spectra (TT, EE, BB, TE, TB, and EB):

CXY
ℓ =

1

2ℓ + 1

∑

m

aX
ℓm



aY
ℓm

∗

, X, Y ∈ (T,E,B). (1.18)

If parity is conserved, then CT B
ℓ and CEB

ℓ power cross spectra are expected to be zero in the
ΛCDM model. Thus, in the following, the remaining four spectra (CT T

ℓ , CEE
ℓ , CBB

ℓ and CEB
ℓ )

are the ones that we will use to characterize the temperature and polarization fluctuations of the CMB.

These spectra have been measured by different missions, but they can also be obtained analytically
using cosmological models. In this project, we have used the Python wrapper7 of CAMB (Code for
Anisotropies in the Microwave Background), developed by Anthony Lewis [22], to generate these
spectra assuming ΛCDM with the best cosmological coefficients obtained by Planck [12]. Given a
cosmological model and a set of values of its cosmological parameters, this code obtains the analytical
angular power spectra. These spectra can be used later to generate sky simulations of the CMB. An
example of the spectra produced by CAMB using ΛCDM and the aforementioned parameters is shown in
Figure 1.4. In this work we have considered r = 0, thus neglecting the existence of primordial B modes.

Although the data observed by the different experiments agrees with the predictions of the ΛCDM
model, several anomalies have been detected at large angular scales in temperature. These anomalies
include the absence of correlations at large angular scales [23] and the hemispherical power asymmetry
[24] among others. Whether these fluctuations have a cosmological origin or are just statistical
anomalies is still unknown. Temperature data at large scales obtained by Planck are already limited
by cosmic variance and thus further study of the anomalies cannot be done by only looking at
temperature. Polarization maps, specially the E-mode, provide an independent source to check
if these anomalies are really there, and in that case try to get relevant information about their
nature. While Planck data presents a too low signal-to-noise in polarization at large scales, future
experiments are expected to improve these measurements and provide relevant constraints for several
of these anomalies [25].

1.3 Foreground emission

One of the main problems regarding the detection of the CMB is the presence of foreground con-
tamination both from galactic and extragalactic sources. Successful removal of these contaminants
is fundamental to obtain the CMB angular power spectra and access to all the information about
cosmology encoded in the CMB.

The main sources of microwave signal at large scales are diffuse Galactic emissions. Some of
the most important phenomena are:

• Synchrotron emission: Synchrotron is the emission that arises from the cosmic ray electrons
interacting with magnetic fields and it is the dominant galactic component in polarization at
lower frequencies (<70 GHz). A significant fraction of this radiation is linearly polarized and
its intensity and spectrum depends both on the intensity of the magnetic field and the energy
of the cosmic rays, resulting, unlike the CMB, in a very anisotropic signal.

6We will relabel ∆T/T as T for simplicity.
7https://github.com/cmbant/CAMB
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CHAPTER 1: INTRODUCTION

Figure 1.4: CMB angular power spectra produced by CAMB using ΛCDM and the parameters
from [12]. The tensor-to-scalar ratio r has been set to zero, so B modes correspond solely to
lensing B modes. TE spectrum comprises both positive and negative values, so its absolute value is
displayed. The positive part of the TE spectrum is represented with solid lines while the negative
part corresponds to the dashed lines.

• Free-free emission: Thermal bremsstrahlung, known as free-free emission, is produced by the
scattering of free electrons with ions in the interstellar medium. It is also a relevant component
in brightness temperature at low frequencies. This emission is intrinsically unpolarized since
the interaction is produced isotropically.

• Thermal dust emission: At higher frequencies (>70 GHz) the sky signal is dominated by the
thermal dust emission. This contribution can be modeled as a modified black-body with
temperatures T ≈ 20 K modified to account for opacity. Due to the asymmetrical shape of the
dust grains, photons are emitted or absorbed along the longest axis. These grains tend to be
aligned perpendicularly to magnetic fields, producing then polarized radiation. In this case,
the fractions can be up to 20% [26], making this radiation a relevant contribution to polarized
microwave sky signal.

• Anomalous Microwave Emission (AME): this emission of unknown origin can be found at
lower frequencies. One of the preferred candidates to explain the signal excess observed in the
data is spinning dust. It could be produced by tiny dust particles with dipole moment spinning
at GHz frequencies. Its spectrum is expected to be highly peaked at the rotation frequency of
the smallest particles and its polarization is expected to be low. The most stringent constraints
on the polarization fraction, Π, have been provided by [27] with Π < 0.22% at 41 GHz.

The power of these sources, both in intensity and E-mode polarization, is displayed in Figure 1.5. We
can see that this contamination leaves only a small frequency window in which the CMB anisotropies

10



CHAPTER 1: INTRODUCTION

are the dominant microwave source in temperature. In polarization, the situation is worse. At low
latitudes, close to the galactic plane, the foregrounds can be up to an order of magnitude greater
even at the optimal observation frequencies. This figure highlights the importance of identifying and
removing these foregrounds in order to obtain measurements from the CMB.
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Figure 1.5: Left: Root Mean Square (RMS) brightness temperature of anisotropies in intensity at
different frequencies of the CMB and the most important foreground components. Figure from [28].
Right: Same plot for the RMS polarization amplitude. Only foreground sources with a significant
amount of polarization are displayed. Figure from [29].

These contamination sources present a series of features that allow us to distinguish them from
the CMB signal. One of the things that we can take a look at is, as we can see in Figure 1.5, its
frequency dependence. The thermodynamic temperature of the CMB is assumed to be constant
in its entire frequency range. This property is exploited by some component separation methods
in order to isolate and subtract the different foreground components. In the Planck mission, four
different component separation methods were used:

• Commander: [30] It implements a Bayesian parametric component separation. It uses a
parametric model including cosmological, astrophysical, and instrumental parameters, which is
then fitted to the data using a MCMC Gibbs sampling algorithm.

• SEVEM: [31] It stands for Spectral Estimation Via Expectation Maximisation. It produces
cleaned maps by template fitting in the real space. Templates are obtained by subtracting
two smoothed Planck maps of two close frequency channels. A linear combination of these
templates is latter subtracted to generate a clean CMB map.

• NILC: [32] Needlet Internal Linear Combination. It consists in a linear combination of Planck’s
different frequency channels such as it minimises variance on a certain wavelet frame called
needlets.

• SMICA: [33] Spectral Matching Independent Component Analysis. This method assigns
multipole-dependent weights to each Planck map by taking into account their spectral covariance
matrices among others. A cleaned map is then constructed as a linear combination of the
weighted maps.

Another relevant aspect of foreground emission are the non-Gaussian features of the map. The
CMB is expected to be Gaussian and current measurements are consistent with this, so studying the
statistical properties of the maps can help to extract the CMB, as the foreground emission is highly
non-Gaussian. However, this does not unequivocally identify foreground emission since there are
also secondary effects that can induce such non-Gaussianities (such as lensing) asides from plausible
non-standard inflation (primordial non-Gaussianities).

11
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None of the methods above is able to provide a perfect subtraction of the foreground emission from
the CMB. In order to carry out CMB analysis, we need to mask regions where foreground residuals
from these methods are too large to be trusted, leaving us with partial CMB sky maps. In the next
section we will discuss the issues derived from masking CMB maps as well as some of the methods
to recover the angular power spectrum from the missing regions.

Figure 1.6: T and Q maps from the different component separation methods used in the Planck
mission, filtered at 80’. Left column shows maps in temperature while right column shows maps in
the Stokes parameter Q. Maps obtained from the Planck Legacy Archive8.
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CHAPTER 1: INTRODUCTION

1.4 Partial CMB sky maps

The different component separation methods mentioned in (Section 1.3) produce independent CMB
maps both in intensity and polarization, shown in Figure 1.6. Each of these maps presents a region
where foreground residuals are too large and in consequence have to be masked for cosmological
analysis. These leave us with eight different masks (in temperature and polarization) that can be
combined into common masks, which are the recommended ones for the analysis of the cleaned
CMB maps. These common masks are shown in Figure 1.7. Masks are usually characterized by the
fraction of the sky that is left unmasked, also known as fsky. Common masks in Figure 1.7 have
fT

sky= 0.780 and fP
sky= 0.782 respectively.

Figure 1.7: Planck 2018 common masks for temperature and polarization. Figure from [29].

The use of masks entails some problems, the most evident being the loss of information from
the masked regions. This prevents us from obtaining reliable cosmological information on large
scales. Besides, trying to reconstruct E and B by projecting an incomplete map of Q and U on the
E/B basis gives rise to power leakage between modes. In the CMB, where E modes contain more
power than B modes, this power exchange between modes hinders significantly the ability to detect
primordial B modes. These effects are also sensitive to the mask choice and it is also important
to find a balance between the effects of the mask and the foreground emission we are trying to remove.

There have been proposed several methods to recover CMB’s angular power spectra from par-
tial sky coverage. One of them is pseudo-Cℓ algorithms, as the one described in [34]. These
algorithms define a new estimator, Ĉℓ, obtained from the observed angular power spectra. These
Ĉℓ are then related to the real sky’s CMB spectra C̃ℓ using a coupling matrix that encodes the
effects that studying an incomplete sky has on the data. This method has the advantage of being
computationally efficient at the cost of producing sub-optimal angular power spectra at large scales.
Another proposed method is Quadratic Maximum Likelihood (QML), e.g., the one described in [35].
This method defines a quadratic estimator using models from both the CMB signal and the noise,
more specifically using their covariance matrices. QML gives optimal results but it implies storing
and inverting large matrices, which translates into a high computation cost.

Another approach to recover information from masked CMB maps are the so-called inpainting
techniques. While the pseudo-Cℓ and QML methods focus on recovering the angular spectra,
inpainting aims to reconstruct a complete CMB sky map, which can be useful when looking for
large scale anomalies. It consists of filling in the masked region with random signals statistically
coherent with the rest of the sky. Some of the different inpainting techniques used in the literature are:

8https://wiki.cosmos.esa.int/planck-legacy-archive/index.php/CMB_maps

13

https://wiki.cosmos.esa.int/planck-legacy-archive/index.php/CMB_maps


CHAPTER 1: INTRODUCTION

• Diffuse inpainting: [36] The masked pixels are iteratively filled by averaging over their 8 closest
neighbours. This method recovers the largest angular scales and reduces the sharp-edge effects
produced in the discontinuity between the mask and the map. It is the simplest and most
extended of the techniques. In this work we study and characterize it with more detail in
Section 2.2.

• Purified inpainting: [37] The aim of this technique is to reconstruct a full-sky polarization
map p̃ from a masked one M · p, where the reconstructed map is equal to p in the unmasked
region. In the masked region, modes are assigned either to the E and B subspaces or to an
“ambiguous” assignation where some mode mixing is allowed. Initially all modes are assigned
to this ambiguous mode. Then, non-ambiguous modes are separated one by one using a Krylov
subspace [38]. The masked region is finally inpainted by solving ∇2

a = 0 inside the mask,
where a corresponds to the ambiguous mode map. This methods obtains results on pair with
the ones from maximum-likelihood methods at a much lower computation cost.

• Constrained realizations: [39] This method assumes a certain cosmological model and inpaints
the masked region using information from outside the mask. Once defined a probabilistic
model based on the chosen cosmology, the inpainting is done by calculating the conditional
probability density p(d̂♣d), where d̂ is the inpainted field and d the observed data. This
probability density is a Gaussian distribution, whose mean and variance can be obtained from
the pixel covariance matrix of the map, which in turn is obtained from its angular power
spectrum Cℓ. This procedure achieves optimal results at the cost of being computationally
expensive, making it only suitable for low resolution maps. It also relies on choosing the correct
cosmological model.

• Convolutional Neural Network: [40] Both trained and untrained neural networks (NN) are
used in image restoration and can be equally applied to the reconstruction of CMB maps.
In the case of trained NN, one possible approach, known as generative adversarial network
(GAN), is to use both a generator and a discriminator. The generator is trained to generate
fake samples resembling a certain training set, while the discriminator is trained to distinguish
between fake maps and the ones from the sample set. Both networks are trained until the
generator is able to generate inpainted maps that the discriminator is not able to tell if they
are generated or not. In the case of untrained NN, it is assumed that the information necessary
to reconstruct the map is contained in the masked map and the architecture of the NN. Given
some input the image is processed and filled by fitting some NN parameters. Both of these
methods are aimed to inpaint point-sources that affect the small angular scales.

Inpainting is a valuable tool in the study of the CMB at the largest scales, i.e. low ℓ. As pointed
in Section 1.2, there exist some anomalies in temperature at these large scales that are in tension
with the predictions of the ΛCDM model. It is then important to find a technique that allows us to
reconstruct full CMB maps from observations, providing reliable inpaintings while maintaining a
reasonable computational cost. The recovery of E maps is of special interest, since they can be used
as an independent probe for the existence of these anomalies.

In this project we propose a novel inpainting technique, a combination of the diffuse inpaint-
ing with the multiresolution approach of HEALPix wavelet scheme. This method allows us to improve
the range of angular scales at which the diffuse inpainting is effective, as well as to reduce computing
times. In the following chapter we provide a detailed description of both the traditional diffuse
inpainting and this new technique. We also describe the methodology used in its characterization,
as well as the parameters used to simulate and work with CMB observations.
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Chapter 2

Methodology

In this chapter, we describe and implement two different inpainting techniques: the diffuse in-
painting and an original multiresolution wavelet inpainting. Regarding the latter, we propose
two different approaches: one reconstructed using model-constrained details and another using
observation-constrained details.

We work with CMB maps generated fron the angular power spectra obtained with CAMB using
ΛCDM and the default parameters from Planck1. These parameters set the tensor-to-scalar parame-
ter r to 0, so the only B-modes are E- to B- lensing modes. The maps are generated at a HEALPix

resolution (defined in Section 2.1) of Nside = 128. This choice corresponds to a resolution at which
the inpainting from constrained realizations are computationally too expensive. At this Nside we are
working with maps with Npix = 12(Nside)2 = 196 608 and a maximum multipole ℓmax = 383.

All of the maps have been smoothed with a Gaussian symmetric beam with a Full Width Half
Maximum (FWHM) equal to:

FWHM = 2.4 ×

√

4π

Npix
, (2.1)

which, for Nside = 128, is equal to ∼ 1◦.

As for the mask choice, we apply the common temperature mask shown in Figure (1.7), obtained
from Planck Legacy Archive2. Since we are working with simulated maps with no foreground, this
mask is valid for both temperature and polarization maps.

In this project we will obtain inpainted maps using different techniques. In order to compare
the goodness-of-fit of these inpainting methods we use a statistical estimator, χ̃, defined as:

χ̃(ℓmax) =
ℓmax
∑

2

wℓ∆ℓ, (2.2)

where:

∆ℓ =
∣

∣

∣Crec
ℓ − Cref

ℓ

∣

∣

∣ and wℓ = (2ℓ + 1), (2.3)

1https://github.com/cmbant/CAMB/blob/master/inifiles/planck_2018.ini
2http://pla.esac.esa.int/pla/#maps
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where Crec
ℓ is the recovered angular power spectrum and Cref

ℓ is some reference power spectrum.
This estimator is just the sum up to some ℓmax of the residuals with a linear weighting. We omit
from this sum the monopole and the dipole. The weights used give more importance to higher
multipoles, where a greater number of m modes are available. In fact, for a given ℓ there are (2ℓ +
1) m modes, so these weights can also be defined as the number of available m modes in each multipole.

Figure 2.1: T, Q, and U CMB maps produced by CAMB using ΛCDM and the best cosmological
parameters inferred from Planck data. They are generated at a resolution Nside = 128 and filtered
using a Gaussian beam with FWHM = 66’.

2.1 HEALPix

Throughout this work we will make use of HEALPix (Hierarchical Equal Area isoLatitude Pixelization)
[41]. This pixelization scheme aims to provide a tool for handling pixelated data on the sphere. To
do so, the sky is divided into pixels of equal area. At the lowest resolution this division consists
of 12 pixels, called parent pixels. Each subsequent increase in resolution splits each pixel into 4
pixels, giving a total number of pixels Npix = 12 · N2

side. The Nside parameter is a power of 2 that
characterizes the resolution of the map. Figure 2.2 illustrates this scheme. In order to work with
this pixelization we use healpy [42], the Python wrapper for HEALPix.

Given a certain Nside value, the effective angular resolution of a pixel side can be approximated by:
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Figure 2.2: Clockwise from top left: HEALPix pixelation of the sphere for resolutions Nside = 1, 2,
4, and 8. The total number of pixels in each sphere are 12, 48, 192 and 768. Pixels in each color are
originated from the same parent pixel. Figure from [41].

θ ≈

√

4π

Npix
. (2.4)

Due to aliasing, the maximum multipole that can be resolved in a map is given by ℓmax = 3Nside − 1.

These CMB maps are stored as arrays where each value corresponds to one position in the sky.
These values can be indexed following one of two ordering schemes. The RING ordering enumerates
pixels in horizontal rings starting from the North pole. On the other hand, the NESTED ordering
enumerates pixels by grouping them inside big parent pixels, as it is shown in Figure 2.3. This
NESTED ordering is specially useful due to its synergy with scaling operations to the map.

The HEALPix tessellation makes working with spherical harmonics a much easier task. In addition
to the representation features of the package, healpy also includes some useful functions to perform
spherical harmonic analysis of the maps. Given a temperature or polarization map, the anafast
function is able to compute its angular power spectra up to a maximum multipole ℓmax, with its

operation count scaling as O(N
1/2

pix l2max). The inverse process can be done by making use of the
synfast function. Using the Cℓ’s as an input, synfast computes a set of aℓm using a random seed.

These aℓm are then used to create CMB maps. The temporal complexity is again O(N
1/2

pix l2max).
These functions are able to work both with 3-tuples of arrays (representing T, Q, and U maps) and
with individual maps (T, E, or B maps), and we will make extended use of them in the following
sections.
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Figure 2.3: RING and NESTED pixel ordering schemes from HEALPix. Figure from [41].

2.1.1 HEALPix wavelet

Wavelets are localized wave functions that allow for a multi-resolution treatment of data. In this
work we will make use of the HEALPix wavelet, described in [43]. This wavelet takes advantage
of the HEALPix scheme described above to carry out this multi-resolution analysis while reducing
computational time. Using this method we can decompose a CMB map in the wavelet coefficient
space in a series of maps with different resolutions j, from the original map’s resolution J to a
desired lower limit j0, where the Nside of each map is given by Nside = 2j .

HEALPix wavelet functions are defined as:

Ψ0,j,k(x) = ϕj+1,k0
(x) −

ϕj,k(x)

4
,

Ψ1,j,k(x) = ϕj+1,k1
(x) −

ϕj,k(x)

4
,

Ψ2,j,k(x) = ϕj+1,k2
(x) −

ϕj,k(x)

4
,

Ψ3,j,k(x) = ϕj+1,k3
(x) −

ϕj,k(x)

4
,

(2.5)

where

ϕj,k(x) =











1 if x ∈ Pj,k

0 otherwise,
(2.6)

and Pj,k refers to the pixel at position k at resolution j.

Wavelet decomposition of a temperature map (the same would apply for polarization) can be
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Figure 2.4: Construction of the approximation and detail coefficients using the HEALPix wavelet.
Approximation coefficients x are obtained as the average of their 4 children pixels. Detail coefficients
d are obtained as the difference between the original pixels and that average. Figure from [43].

written in terms of these functions as:

∆T

T
(xi) =

Nj0
−1

∑

k=0

λj0,kϕj0,k(xi) +
J

∑

j=j0

3
∑

m=0

Nj−1
∑

k=0

γm,j,kΨm,j,k(xi), (2.7)

where Nj is the number of pixels at a resolution j, and λj,k and γm,j,k are the approximation and
detail coefficients.

Approximation coefficients at any resolution are obtained just by downgrading the map at the
resolution immediately below. In the HEALPix scheme this corresponds to averaging the four daugh-
ter pixels that correspond to each coefficient:

λj,k =
1

4

3
∑

i=0

λj+1,ki
. (2.8)

On the other hand, detail coefficients at a resolution j are obtained by subtracting the approximation
at resolution j from the resolution at j + 1:

γ0,j,k = λj+1,k0
− 4λj,k

γ1,j,k = λj+1,k1
− 4λj,k

γ2,j,k = λj+1,k2
− 4λj,k

γ3,j,k = λj+1,k3
− 4λj,k

(2.9)
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Figure 2.4 illustrates this decomposition process. What we finally obtain is an approximation map
with resolution j0 and (J − j0) detail maps at all the intermediate resolutions. These detail maps
store the information that would be otherwise lost with each resolution downgrade of the map. An
example of the products of this decomposition can be seen in Appendix A for the case of initial
Nside = 128 (J = 7) and final Nside = 8 (j0 = 3).

This wavelet decomposition can be also applied to masked maps. In that case, we perform also the
wavelet decomposition of the mask. Since pixels in the mask can only be masked or unmasked (0 or
1), we need to set a threshold t such as pixels with values larger than t will be considered unmasked,
while the rest will be treated as being masked. In this work we will set this threshold to 0.5. These
mask approximations can then be applied to the decomposition at each resolution. An example of
how the masks changes at each resolution can also be seen in Appendix A.

2.2 Diffuse inpainting

We implement a slightly different variation of the simple diffuse inpainting using the Jacobi method
[44]. The diffuse inpainting consists in substituting each of the pixels in the mask with the mean
value of its 8 closest pixels. In the Jacobi method, values of these closest pixels are taken from the
previous iteration. This process is repeated over several iterations until the mask is completely filled.
2000 iterations have been proposed in the literature ([36],[45]) as an acceptable number to ensure
convergence. In our study, however, we have set a convergence criteria in order to reduce the number
of iterations in each inpainting. We consider the inpainting as completed when the mean relative
change in the inpainted pixels between iterations is less than 10−3:

1

Npix

Npix
∑

i=0

xi(j) − xi(j − 1)

xi(j − 1)
< 10−3, (2.10)

where xi(j) is the value the i-th inpainted pixel at iteration j. This criteria helps us to reduce the
number of iterations and thus the time it takes to run the code.

This method proves to be effective when working on temperature maps. However, averaging
the 8 closest pixels is an arbitrary choice, and it turns out to be less effective in polarization maps.
To deal with this issue, we propose averaging over the pixels that lie inside a disk centered in each of
the pixels of the mask, instead of using just the eight closest neighbours. The optimal radius of this
inpainting disk is studied in Section 3.1.

2.3 Wavelet diffuse inpainting

We propose now a new inpainting technique: a combination of the simple diffuse inpainting described
above with the HEALPix wavelet decomposition introduced in Section 2.1.1. Starting from a masked
CMB map at Nside = 2J , in our case Nside = 128, we perform its wavelet decomposition up to
a resolution Nside = 2j0 , obtaining one approximation at j0 and (J-j0) detail maps. The same
diffuse inpainting technique described above is applied to the approximation map, while we fill the
masked details using two different approaches. The map is then reconstructed using the inpainted
approximation and the filled details, thus recovering a complete CMB sky map.
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The motivation behind this method is to combine the large scale reconstruction of the angu-
lar power spectra, attained with the diffuse inpainting, with the small scale information, provided by
the details in the HEALPix wavelet scheme. The problem now is to find a suitable way of filling the
masked details. In this work, we propose two diffferent methods, which are explained below.

2.3.1 Model-constrained details

Our first approach is to fill in the masked details with the details of a simulated sky realization. The
general process is as follows:

• We start from a masked CMB map, which we will label as the observed sky. Given this sky,
we generate a CMB realization using the best-fitting cosmological parameters for the observed
sky. We will label this realization as the theoretical sky. In this work, since we are using
simulations as the observed skies, both the observed and the theoretical sky are generated
using same parameters.

• We then decompose both maps in wavelets up to a minimum Nside. We do the same with the
mask and use it to mask the observed sky, both the approximation and its details. An example
of the products of this decomposition is shown Appendix A.

• We fill in the masked region in the approximation by performing the diffuse inpainting described
in Section 2.2.

• The masked region in the detail maps are filled by substituting the corresponding pixels from
the theoretical sky detail maps. We then reconstruct a complete CMB sky summing over the
inpainted approximation and the filled details.

In our case, these simulated sky realizations are obtained from the same angular power spectra
using CAMB and therefore are constrained by the model used to create them, namely ΛCDM with the
parameters from [12].

Since the inpainting is done at a low resolution, the number of pixels to be inpainted is greatly
reduced with respect to the simple diffuse inpainting. The computational time needed for HEALPix

wavelet decomposition scales as O(Npix), rendering this method much faster and more efficient than
using constrained realizations. However, the cosmological model dependence is still present since we
need some theoretical details to fill in the masked detail maps.

In this method, two parameters need to be set: the minimum Nside in the decomposition and
the inpainting disk used. As in the case of the diffuse inpainting, we study the χ̃ value for a great
sample of inpainted maps in order to find the optimal values. These results are shown in Section 3.2
and Section 3.3

2.3.2 Observation-constrained details

In this second approach, we try to remove the cosmological model dependence by filling in the
masked details with random Gaussian fields of the same variance as the details. As in the previous
case, we simulate an observed map and perform a wavelet decomposition both of the map and
the mask, applying the corresponding mask approximation at each resolution. The observed map
approximation is then inpainted using the same diffuse inpainting as in the previous sections.

The idea now is to replace the masked region of each detail map with random Gaussian num-
bers of zero mean and variance equal to the variance of the unmasked details. However, this random
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noise does not reproduce the correlations that can be found in the details. It is shown in Figure 2.5
how the angular power spectrum of the details does not correspond with the one of a map filled
with random Gaussian noise. In order to account for this feature, we will need to rescale the power
spectrum of the Gaussian field. We will call this approach observation-constrained details, since we
fill in the masked detail maps by looking at the mean, variance and spectra of the observed detail
maps.

Figure 2.5: TT angular power spectrum of a detail map at Nside = 128 vs a detail map made out
entirely of Gaussian random numbers with the same mean and variance as the details.

The process is as follows:

• To avoid correlations between different scales, we generate a vector of (N128
m,pix + N64

m,pix +

N32
m,pix + N16

m,pix) random Gaussian values with µ = 0 and σ = 1, where N i
m,pix is the number

of masked pixels at Nside = i.

• For each Nside, we calculate the deviation of the unmasked pixels in the detail map, σi. We
then multiply the first N128

m,pix random numbers by σ128, the next N64
m,pix random numbers by

σ64, and so on. Doing so gives us an ordered vector with four groups of random numbers, each
group with the same variance as the detail map we want to fill. We now substitute the masked
pixels at each resolution with the corresponding group of random numbers.

• The next step is to correct the filled map spectrum. Using healpy’s anafast, we obtain the
angular power spectrum of the masked detail maps Cobs

ℓ and of the filled details Cfill
ℓ . We also

obtain the aℓm coefficients of the filled details, afill
ℓm .

• We now apply the following correction to those coefficients:

acorrect.
ℓm = afill

ℓm ·

√

√

√

√

Cobs
ℓ /fsky

Cfill
ℓ

, (2.11)

where we account for the masked region of the details by multiplying its angular power spectra
with f−1

sky. If we recall how we obtained the angular power spectrum from the aℓm coefficients
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(1.5), we can see that this correction modifies the angular spectrum of the filled details to make
it match exactly with the spectrum of the observed details.

• Finally, we generate a map of corrected details using the acorrect.
ℓm . We make our final details

by using the observed details outside of the mask and the corrected details inside the mask.

Multiplying the observed Cobs
ℓ by f−1

sky can be interpreted as a zeroth-order correction towards
recovering the full sky power spectrum from partial skies. The pseudo-Cℓ and the QML methods
mentioned in Section 1.4 are some examples of how to obtain better approximations of the full sky
spectrum.

Following this method, we are able to fill in the masked details with Gaussian values of the
same mean and deviation, which also possess an angular power spectrum similar to the one from the
original details.The computational time is still much shorter than using constrained realizations,
and we also got rid of the cosmological model dependence.
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Results

In this chapter we present the results obtained from the different methods described above. We first
characterize the parameters of both inpainting methods, i.e. the optimal values for the inpainting
disk radius in the diffuse inpainting, and for the minimum Nside and disk radius in the wavelet
diffuse inpainting Section 3.1. Once we have obtained the parameters for each of the techniques we
proceed to compare them in Section 3.2. This comparison is done at three levels. First we perform a
visual comparison at a map reconstruction level by showing T, Q, U, E and B maps for the diffuse
inpainting and the two approaches of the wavelet diffuse inpainting. We then analyze the recovered
spectra by using the χ̃ estimator defined in eq. (2.2), in the previous chapter. Lastly, we check the
existence of correlations between the multipoles in the different techniques. In Section 3.3 we apply
the diffuse inpainting and the wavelet diffuse inpainting to Planck temperature data, and compare it
to the Planck Collaboration inpainted map.

3.1 Parameters

In this section we study the optimal inpainting parameters for the diffuse inpainting and the wavelet
diffuse inpainting. We make use of the χ̃ estimator defined previously to compare the quality of the
inpainting in different maps as a function of the inpainting disk radius in the diffuse inpainting, and
the minimum Nside and disk radius in the wavelet diffuse inpainting.

3.1.1 Diffuse inpainting

The classical diffuse inpainting averages over the 8 closest neighbours of each pixel in the mask.
This methodology proves to be non-optimal when working with polarization maps. The proposed
alternative is to average instead over pixels located inside a disk of a certain radius centered in the
masked pixel.

In Figure 3.1 we show the ratio of χ/χm for CT T
ℓ , CEE

ℓ , and CBB
ℓ . χ corresponds to the χ̃

value of the maps recovered using different disk sizes in the inpainting. χm refers to the χ̃ value for
the angular power spectra of the masked map, corrected by f−1

sky
1. In both cases the reference power

spectrum used to compute the χ value was the one of the complete CMB map. By plotting the ratio
χ/χm we can see whether the inpainted map outperforms the simple f−1

sky correction (χ/χm < 1) or
not.

Since this method only tries to reconstruct the angular power spectra at the largest scales, this χ

1As mentioned in the previous chapter, multiplying the angular power spectrum by f−1

sky constitues a zeroth-order

correction towards recovering the full sky power spectrum.
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value is calculated up to ℓmax = 25. We will see in the following sections how diffuse inpainting gets
outperformed by the other methods when studying smaller scales. The number of inpainted maps
with each disk is N=100 and the map resolution is Nside = 128. In this figure, the optimal disk
size is painted in red and corresponds to the lowest χ/χm value, which translates into the smallest
residuals when compared to the original map. The temperature angular power spectrum is best
recovered at large scales when taking only a small radius of 1◦, close to the pixel resolution at this
Nside. For polarization, larger disks produce better outcomes. Since the inpainting is produced in
the Q and U maps, where E is the dominant component, we will apply the diffuse inpainting using a
disk of radius equal to 3◦ to the maps in polarization. In Figure 3.1 we can see how the optimal disk
radius does not converge for the BB spectrum. As we will see in the next section, the recovered
spectra for BB are rather poor, so we will instead focus on the results for EE. Besides, going into
larger inpainting disks becomes increasingly time-consuming, as larger disks require more pixels
to be averaged in each iteration. As we can see in the figure, the ratios χ/χm are always below 1,
meaning that, at large scales, applying diffuse inpainting is always better than just leaving the pixels
masked and then applying a f−1

sky correction.

Figure 3.1: Mean χ/χm values and their deviation of diffuse inpainted CMB maps as a function
of the disk size used in the inpainting. Red dots represent the optimal inpainting disk in order to
recover each of the power spectra.

3.1.2 Wavelet diffuse inpainting

First we want to find the optimal value at which to stop the decomposition during the wavelet diffuse
inpainting. This value is the Nside of the approximation and, therefore, the resolution at which the
inpainting is done.
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To obtain this value we calculate the χ̃ value of spectra reconstructed using the diffuse wavelet
inpainting at several minimum Nside values. As in the diffuse inpainting, we plot the ratio χ/χm in
order to study the performance of the technique against the masked spectra. Results are similar
for the approach using model-constrained details Section 2.3.1 and for the observation-constrained
details Section 2.3.2, so we will only show results using model-constrained details for the sake of
simplicity.

We study a total of N=100 maps for each approximation resolution. We set the 8 nearest neighbours
as a common inpainting disk for all the resolutions. In this case, the value of χ has been computed
up to the maximum multipole available for the original map resolution. Results are shown in Figure
3.2. The optimal minimum Nside is 8 both for temperature and polarization maps. The obtained
χ/χm ratios are not as good as the ones shown in Figure 3.1 because here we are reaching up to ℓ =
383, instead of limiting ourselves to the best-performing scales as in the previous analysis.

Figure 3.2: Mean χ/χm values and their deviation of N=100 inpainted maps using wavelet
decomposition as a function of the minimum Nside of the decomposition. Red dots indicate the
minimum χ value, and thus the best inpainting.

Decomposing up to that Nside = 8 makes sense if one thinks about how diffuse inpainting and
wavelet decomposition combine. As we will see in Section 3.2, diffuse inpainting is only able to
recover the largest scales of the angular power spectrum (ℓ<25). On the other hand, details at
resolution j store the information lost when downgrading from Nside = 2j to Nside = 2j−1. If we get
up to Nside = 8, the first details that we will have, are the details at Nside = 16. These details store
the information of the low scales that Nside = 16 has but not Nside = 8, i.e. multipoles from ℓ = 23
to ℓ = 47. Details at Nside = 32 cover from ℓ = 47 to ℓ = 95 and so on. This means that going
up to Nside = 8 allows us to recover information in ℓ < 25 thanks to the diffuse inpainting, and
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information in ℓ > 23 using the details from the wavelet, thus covering the entire angular spectrum.
Stopping at a larger Nside would leave an interval of multipoles unrecovered, while stopping at a
smaller resolution might leave out too much information for the diffuse inpainting to be as effective.

Once the optimal Nside of the approximation in the wavelet diffuse inpainting has been set to
Nside = 8, we need to perform the same study as in Section 3.1.1 about the inpainting disk size.

We study the χ/χm value of N=100 maps painted using the wavelet diffuse inpainting, where
different inpainting disks have been used in the approximation. The results are shown in Figure 3.3.
In this case, the inpainting disks are much larger than in the simple diffuse inpainting. We need to
take into account that, as we are inpainting at Nside = 8, the effective angular resolution of each
pixel is θ ≈ 7◦ and therefore larger disks are needed. It is important to note that working at such a
low Nside implies dealing with much less masked pixels. This makes the inpainting process much
faster at Nside = 8 than at Nside = 128, making the wavelet inpainting an improvement over the
diffuse inpainting in terms of computing time.
Since we are working with larger pixels than in Nside = 128, taking only the closest neighbours is

Figure 3.3: Mean χ/χm values and their deviation of N=100 inpainted maps using wavelet
decomposition as a function of the disk size used in the diffuse inpainting of the approximation map
at Nside = 8. Red dots indicate the minimum χ value, and thus the best inpainting.

already enough to capture the information at great scales. The differences between disk sizes are
minimal so we will inpaint using only the 8 closest neighbours.

In contrast to the diffuse inpainting, in this case the ratio χ/χm is close to 1 or even above. The
main difference is that here we are considering all the available multipoles, up to ℓ = 383. We will see
in Figure 3.9 how both EE and BB are best recovered at lower multipoles. This means that this tech-
nique improves the f−1

sky correction of the masked angular power spectra but only up to a certain scale.
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3.2 Method comparison

In this section we perform a comparison between the simple diffuse inpainting and our new method,
the wavelet diffuse inpainting. This comparison consists of three parts: visual reconstruction of the
CMB maps, angular power spectra recovery and study of correlations bewteen multipoles.

3.2.1 Inpainted maps

The maps obtained after applying diffuse inpainting and wavelet inpainting with the two detail
approaches are shown in Figure 3.4. The inpaintings have been done in T, Q and U maps using the
optimal parameters determined in the previous section. E and B polarization maps are constructed
using Q and U maps by obtaining aE

lm and aB
lm and converting them back to E and B maps as

described in equations (1.16) and (1.17).

The left column of Figure 3.4 corresponds to maps inpainted using the simple diffuse inpaint-
ing. In these maps the inpainted region is easily distinguished and features a blurry reconstruction
of the map at larger scales. Looking at the E-mode map we can see how the blurry region from Q
and U carries on. However, the B-mode map exhibits a saturated region in the boundaries of the
galactic mask and in the masked point sources. This saturated region also seems to contaminate the
inner part of the mask. This saturation is caused by the power leakage between E- and B-modes
due to the anisotropies present in the reconstructed Q and U maps. Overall, the map is roughly
recovered at large scales for T and E, while the inpainted B map is affected by E-to-B power leakage.

The center column of Figure 3.4 displays the results for the wavelet diffuse inpainting when using
model-constrained details (Section 2.3.1). In this case, the inpainted region cannot be distinguished
from the overall map and the reconstructed T, Q, U, and E maps are visually identical to a full
CMB sky map. B-mode map is still affected by anisotropies in Q and U, giving rise to the same
excess of power as in the simple diffuse case.

The right column corresponds to the results for the wavelet diffuse inpainting when using observation-
constrained details (Section 2.3.2). The maps obtained with this approach, although more detailed
than the diffuse ones, still show a distinguishable inpainted region in temperature and in polarization.
Power leakage in the B map is even worse than in previous cases. From this visual comparison,
this approach of the wavelet diffuse inpainting gives more detailed maps than the simple diffuse
inpainting, but falls behind with respect to the model-constrained details approach.

3.2.2 Recovered power spectra

In this subsection we compare the mean recovered spectra of N = 100 maps inpainted with each
of the techniques. In Figures 3.5 - 3.8 we represent the different mean spectra with their standard
deviation, as well as the theoretical spectra used by CAMB to generate the observed maps. We also
show the power spectra obtained from the masked map and corrected by f−1

sky for comparison.

Figure 3.5 corresponds to the TT mean spectra. The performance at lower ℓ of the three methodolo-
gies is similar. This is due to the fact that they are all diffuse inpainting, applied to Nside=128 in
the simple diffuse inpainting, and to Nside=8 in the wavelet diffuse inpainting. Going into smaller
scales we can see how the diffuse inpainting fails to recover the power at larger multipoles. The
observation-constrained wavelet inpainting gives a slightly better reconstruction, but it presents
sudden power drops at the multipoles at which the HEALPix wavelet decomposition is done. The best
result is obtained using the model-constrained wavelet inpainting. This approach achieves a good
performance at multipoles up to ℓ=150, while for larger multipoles it exhibits a small power excess.

The same discussion made in the TT spectra can be done for Figure 3.6, which shows the mean EE
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Figure 3.4: Inpainted T, Q, U, E, and B CMB maps using diffuse inpainting (left column) and
wavelet diffuse inpainting with model-constrained details (center column) and observation-constrained
details (right column). Resolution is Nside = 128 and the masked region corresponds to the common
temperature mask shown in Figure 1.7. Inpainting has been done using the parameters obtained in
Section 3.1.
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Figure 3.5: Mean recovered TT power spectra and standard deviation of N = 100 CMB maps
inpainted using the three different methods described in this work. The black solid line represents
the spectrum obtained with CAMB to simulate the observed CMB maps. Black dotted line represents
the masked map poweer spectrum corrected by f−1

sky. Scale in the x-axis is logarithmic up to ℓ = 20,
then linear.

power spectra. In this case, due to the power range that the EE spectrum encompasses, the plot
only displays a clear view of the mutipoles 50 < ℓ < 200. The results are the same as in temperature:
the diffuse inpainting fails to recover the power in this range, the observation-constrained wavelet
inpainting presents sudden drops in power, and the model-constrained wavelet inpainting gives the
best results.

Figure 3.7 shows the results of the BB angular power spectra. As expected from the inpainted maps,
the recovered spectra are far from the theoretical spectrum. Results from the observation-constrained
wavelet inpainting are remarkably bad, not being able to recover even the shape of the original
spectrum. Results for the TE cross spectrum in Figure 3.8 display the same patterns as in the T
and E spectra.

We can also make use of the χ̃ estimator to compare the different techniques. In Figure 3.9 we
plot the mean value of the ratio χ/χm as a function of ℓmax, where χ is the estimator value of the
inpainted maps and χm the estimator for the f−1

sky corrected masked power spectra. These plots
show the performance of each method as a function of the maximum ℓ that we are looking at. This
allows us to see the best performance region for each technique, as well as whether the recovered
spectra represent an improvement over the corrected power spectra from the masked map ( χ/χm < 1).

Using this plots we can see how the three techniques are able to recover the TT, EE and TE
spectra better than the masked spectra at the larger scales. For higher multipoles, the only method
that is able obtain better results than the corrected masked spectrum is the model-constrained
wavelet inpainting. In TT, the standard deviation regions of the techniques are overlapped, so a
conclusive statement cannot be made with the use of this specific estimator. For BB, the best results
are obtained with the simple diffuse inpainting, but as we have seen in Figure 3.7, none of the
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Figure 3.6: Mean recovered EE power spectra and standard deviation of N = 100 CMB maps
inpainted using the three different methods described in this work. The black solid line represents
the spectrum obtained with CAMB to simulate the observed CMB maps. Black dotted line represents
the masked map poweer spectrum corrected by f−1

sky. Scale in the x-axis is logarithmic up to ℓ = 20,
then linear.

Figure 3.7: Mean recovered BB power spectra and standard deviation of N = 100 CMB maps
inpainted using the three different methods described in this work. The black solid line represents
the spectrum obtained with CAMB to simulate the observed CMB maps. Black dotted line represents
the masked map poweer spectrum corrected by f−1

sky. Scale in the x-axis is logarithmic up to ℓ = 20,
then linear.
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Figure 3.8: Mean recovered TE power spectra and standard deviation of N = 100 CMB maps
inpainted using the three different methods described in this work. The black solid line represents
the spectrum obtained with CAMB to simulate the observed CMB maps. Black dotted line represents
the masked map poweer spectrum corrected by f−1

sky. Scale in the x-axis is logarithmic up to ℓ = 20,
then linear.

Figure 3.9: Mean χ/χm values and standard deviation as a function of ℓ of the spectra of each
inpainting method for N = 100 maps. In order to calculate the χ̃ estimator, we take as reference the
spectra of the unmasked maps of each realization.
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recovered spectra can be trusted. Figure 3.9 is useful to compare how each method performs against
each other, and against the f−1

sky corrected masked power spectra. However, it does not give us an
absolute measure of the goodness of each technique, and it needs to be interpreted alongside the
recovered power spectra displayed in Figures 3.5 - 3.8.

3.2.3 Multipole correlations

Lastly, we check for correlations between multipoles in the different methods. Figure 3.10 displays
the correlation coefficients between multipoles of N=100 temperature maps using the different
methodologies, as well as the coefficients for the masked map.

Figure 3.10: Correlation coefficients between multipoles for the masked temperature maps, as well
as for the inpainted temperature maps using different techniques. A total of N = 100 different maps
have been studied.

The masked map presents large correlations at higher multipoles (ℓ > 200), as well as a linear pattern
showing correlations between small-medium scales and large scales. The simple diffuse inpainting
shows a similar picture but is able to mitigate these correlations. In the wavelet diffuse inpainting we
find two different cases. The model-constrained details approach also reduces the correlations, but
still exhibits a geometric pattern at ℓ > 200 due to the anisotropic nature of the HEALPix wavelet
decomposition. On the other hand, the observation-constrained details approach does not present
such pattern, and only shows correlations between multipoles close to each other. This is so because
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the observation-constrained approach fills in the details by taking care of decorrelating the different
scales before doing so, as explained in the first step of the method in Section 2.3.2. The presence of
strong correlations at ℓ > 200 in the masked map and model-constrained wavelet inpaintings could
be responsible for the power excess shown at large multipoles, especially visible in the TT spectra
(Figure 3.5).

In order to fully assess the significance of multipole correlations we need to take into account
the results from previous sections. Diffuse inpainting and the observation-constrained approach of
wavelet inpainting are able to reduce significantly the correlations present in the masked spectrum.
However, as seen in Figure 3.5, they fail to reconstruct the spectrum at most scales. The f−1

sky

corrected masked spectrum (dotted line in Figure 3.5) is closer to the original one, but it suffers
from these strong correlations, especially at higher multipoles. It is in the model-constrained wavelet
inpainting that we find a trade-off between recovering the angular power spectrum and mitigating
multipole correlations. The presence of this anisotropic pattern in this approach’s correlations opens
the door to the use of an isotropic wavelet, such as the needlets used in [32], as a possible way to
improve the technique.

3.3 Application to Planck data

In this section, we apply the diffuse inpainting and the two approaches of the wavelet diffuse
inpainting to Planck data. We have chosen to apply them to the temperature component separation
map obtained by SMICA.

Figure 3.11: Top left: masked temperature map obtained with SMICA downgraded to Nside

= 128. Top right: Inpainted SMICA temperature map obtained by Planck. Bottom left: map
inpainted using diffuse inpainting. Bottom middle: map inpainted using wavelet inpainting with
simulated detail maps. Bottom right: map inpainted using wavelet inpainting with gaussian detail
maps
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The mask used by SMICA is much smaller than the one we have used in our analysis. In this
case, SMICA’s mask is characterized by a fsky value of fsky = 0.98, while the mask used before
corresponded to fsky = 0.79. All of the study carried out in the previous sections was done and
optimized for the common temperature mask. As such, the results obtained in this section should
be taken with a grain of salt. It is likely that different inpaiting parameters from the ones used here
could provide better results when applied to smaller masks, e.g. by decomposing up to a higher
Nside resolution in the wavelet diffuse inpainting.

Figure 3.11 shows the masked SMICA map, the inpainted map obtained by Planck, and the
inpainted maps using the methods described in Chapter 2. Due to the size of the mask, the wavelet
inpainted maps cannot be visually distinguished from the one obtained by Planck. The map recon-
structed with the diffuse inpainting still exhibits its characteristic blurry region inside the mask.

In order to compare the different methods, Figure 3.12 shows the ratio χ/χm for each method,
taking as a reference the map inpainted by Planck. This reference is not the actual angular power
spectrum but the best that Planck has been able to obtain. In this case, the diffuse inpainting does
not produce a better spectrum than the f−1

sky corrected masked SMICA map. It performs better at
larger multipoles, but since this method does not inpaint small scales we can assume this effect to
be produced by the mask. Both wavelet inpainting approaches stand below the χ/χm = 1, thus
improving the spectra obtained from corrected masked spectrum. Best results are obtained by
the observation-constrained wavelet inpainting at all ranges, with the other approach performing
slighlty worse. As stated above, these are just preliminary results and an analogue study to the one
performed in Section 3.1 should be done for this mask in particular.

Figure 3.12: χ/χm values as a function of ℓ of the SMICA maps inpainted using the different
inpainting techniques, taking as a reference the inpainted map obtained by the Planck Collaboration.
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Conclusions and future work

In this project we propose a novel inpainting technique for masked CMB sky maps, the wavelet
diffuse inpainting. This method combines the large scale reconstruction of the diffuse inpainting
with the multiresolution framework provided by the HEALPix wavelet scheme. This allows us to
recover information at medium scales not covered by the simple diffuse inpainting. It also reduces
the computing time by performing a diffusive inpainting at a much lower resolution. Maps at higher
resolution are then obtained by means of the detail maps obtained in the HEALPix wavelet decom-
position. We provide two different approaches to fill the masked details: using model-constrained
detail maps and using observational-constrained detail maps.

In order to assess the performance of this new inpainting method, we have made a compari-
son between the simple diffuse inpainting and this technique. We have evaluated the different
inpaintings at three levels: visual map reconstruction, recovered angular power spectra, and presence
of correlations between multipoles. From the proposed approaches to the wavelet inpainting, the one
using model-constrained detail maps is able to find a trade-off between visual quality, angular power
spectra and reduced multipole correlations.

Maps inpainted using this new technique are visually indistinguishable from the original unmasked
map. At a power spectra level, it is able to recover the TT, EE and TE spectra up to a much higher
ℓ than the diffuse inpainting. However, multipole correlations are still present in this method due to
the anisotropic nature of the HEALPix wavelet deconstruction employed. These correlations occur
mainly between higher multipoles, and might be responsible for the power excess obtained by this
method at the smallest scales. There is also some room for improvement in terms of power spectra
recovery, especially at the largest scales.

This study opens the door for future works to expand on this technique and its capabilities.
Combining the wavelet scheme with other inpainting techniques, such as constrained realizations [46],
could be of special interest. Since the inpainting is performed at a low resolution, using more optimal
techniques could improve the results at larger scales while keeping a reasonable computing time.
In addition, substituting the HEALPix wavelet scheme for an isotropic wavelet could be potentially
effective in terms of reducing correlations between multipoles, due to the anisotropic nature of the
former. It is also interesting to improve on this work by studying a wider range of masks. In this
project we have limited ourselves to the common mask provided by Planck. However, the preliminary
results shown in Section 3.3 suggest that different maks affect the performance of this technique.
Exploring and characterizing the inpainting for different masks would help to better identify the
strengths of this method, and whether it can be applied to real data.

In conclusion, one of the proposed approaches clearly improves the results obtained with the
diffuse inpainting. However, the recovered power spectra are still sub-optimal and further research
needs to be done in order to confirm if this method performs good enough to be applied to real data.
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Appendix A

Wavelet decomposition products

In this appendix we show an example of the different products of the HEALPix wavelet decomposition
performed in Section 2.3.1 and Section 2.3.2.

Figure A.1: Approximation maps of a CMB temperature map obtained by performing a wavelet
decomposition from Nside = 128 up to Nside = 8. The original map has been obtained from the
angular power spectra obtained with CAMB using ΛCDM and the parameters in 1.
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Figure A.2: Detail maps of a CMB temperature map obtained by performing a wavelet decomposi-
tion from Nside = 128 up to Nside = 8. The original CMB map is the one displayed on the top panel
of Figure A.1.
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Figure A.3: Approximation maps of a mask obtained by performing a wavelet decomposition from
Nside = 128 up to Nside = 8. The original mask is the common temperature mask used in Planck,
obtained from 2.
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