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a b s t r a c t 

Atmospheric pollution has become a key aspect for sustainable development world-wide. Lack of 
measurements of atmospheric nanoparticles properties at different geographic locations limits the 
understanding of the role atmospheric particulate matter plays in multiple biophysical and envi- 
ronmental processes and its corresponding risks for human beings. This study presents a method 
to measure atmospheric primary nanoparticle, secondary nanoparticle and microparticle data. 
Moreover, a process for samples characterization is proposed combining different spectroscopy 
techniques. 

• The method allows researcher to collect, measure, store and characterize atmospheric 
nanoparticles properties including their electric charge. 
• A specific sample characterization is proposed, based on different techniques such as TEM 

Specifications table 

and RAMAN spectroscopy. 

• The outcomes of the approach give science the chance to study new themes such as the impor- 
tance of particulate matter charge in transmission of infectious respiratory diseases; the role 
of electric charge in pollutants deposition in the respiratory tract; the link between electric 
atmospheric charge of nanoparticles and meteorological variables. 

Abbreviations: ELPI©+ , (Electric Low-Pressure Impactor); Di, (Stokes diameter); D50%, (Aerodynamic diameter); Fa, (femtonampere); fC, (fen- 
tocoulomb); mbar, (millibar); nm, (nanometre); pt/cm 

3 , (particulates per cubic centimetre); μm 

2 /cm 

3 , (squared micrometers per cubic centimetre); 
ml, (millilitre); TEM-EDX, (Transmission Electronic Microscopy- Energy Dispersive X-Ray); RAMAN, (RAMAN spectroscopy). 
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Method details 

Introduction 

Atmospheric particulate matter measurement is nowadays a key issue in relation to multiple scientific topics such as atmospheric 
physics, public health, climate change, biometeorology, ecology, clouds formation [1–5] . This methodology was developed under the 
framework of the COST Action 15,211 Electronet, in Working Group IV. One of the actions of this WG-IV consisted on measuring
atmospheric nano and micro size particulate matter data in the city of Santander (Northern Spain). An electrical low-pressure impactor
(ELPI®+ ) was facilitated by Dekati Limited Company, through the Spanish company SOLMA Solutions, to the Geobiomet Research 
Group at the University of Cantabria in the frame of the indicated COST scientific Action. 

Charge of atmospheric particles can be a key parameter to understand the connections between atmospheric processes and en- 
vironmental health. To date, information on potential interactions between global electric circuit and living organisms in symbiotic 
ecosystems is limited [6–9] . The need of common language amongst scientific disciplines to work on this topic under a multidisci-
plinary approach is needed, even more when considering that human being is a bioelectric organism. Some of the main outcomes of
COST Action 15,211 indicated that specific respiratory, cardiovascular, infectious and neurodegenerative diseases [10–12] may be 
related, through complex pathways, to atmospheric electromagnetic fields. Even some mental disorders [13,14] were theoretically 
associated to the electromagnetic component of the environment. 

Several dimensions associated to the measurement of atmospheric nano and microparticles are summarized in Fig. 1 . Meteorolog- 
ical factors play a key role on spatial spreading of atmospheric nano and microprticles. In this sense, electrical properties of particles
relate with other meteorological variables such as air humidity, temperature, and atmospheric pressure. Measurements of charge of 
particulate matter can facilitate to atmospheric scientists the classifications creation of weather types and air masses based on elec-
trical properties at regional scales attending to different geographic landscapes [15,16] in other to associate electrical environment 
[17] to different regions . 

According to Hsiao et al. [18] , fine particles found in the air are likely a transmission media for influenza virus. Aerosols exhaled
by infected population can use particulate matter existing in the air as a vector to transmit the disease [19,20] . In this sense, charge
as a nanoparticle property, can play a significant role in transportations of microorganisms such as viruses and bacteria [21] , which
can harm human health. 

Size, shape, morphology, and chemical composition of nanoparticles are important in the deposition of particulate matter in the 
respiratory tract of people. The study developed by Fdez-Arroyabe et al. [22] indicates that more particles with smaller aerodynamic
Fig. 1. Main aspects related to the measurement of atmospheric particles. 
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Fig. 2. Electrical low-pressure impactor (ELPI®+ ) with 14 channels vertical sampling line. 

Table 1 

Nominal impactor specifications for each channel according to ELPI©+ manual. 

Stage D50% Di Number min Number max Mass min Mass max 
[μm] [μm] [1/cm 

3 ] [1/cm 

3 ] [μg/m 

3 ] [mg/m 

3 ] 

15 10 
14 5.3 7.3 0.10 1.7E + 04 11 3400 
13 3.6 4.4 0.10 3.0E + 04 4 1300 
12 2.5 3.0 0.16 5.2E + 04 2.3 730 
11 1.6 2.0 0.3 9.7E + 04 1.3 400 
10 0.94 1.2 0.6 2.0E + 05 0.6 195 
9 0.6 0.75 1.2 3.9E + 05 0.3 85 
8 0.38 0.48 2 6.8E + 05 0.12 38 
7 0.25 0.31 4 1.2E + 06 0.06 17 
6 0.15 0.19 6 2.0E + 06 0.03 7.7 
5 0.094 0.12 12 3.7E + 06 0.01 3.2 
4 0.054 0.071 21 7.0E + 06 0.004 1.3 
3 0.030 0.040 42 1.4E + 07 0.0015 0.47 
2 0.016 0.022 90 3.0E + 07 0.0005 0.16 
1 0.006 0.010 240 7.9E + 07 0.0002 0.03 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

diameter deposit at alveolar region according to the ICRP 94 model [23] . This research focused on Brownian motion and only
samples with 6 nm to 380 nm range were characterized. This modelling was used to estimate deposition in the three main regions
of the respiratory tract. Predicted total and regional deposition by the ICRP model [24] was estimated by channel as a function of
particle size. 

The method proposed in this article considers the hypothesis of nanoparticles charge being a potential risk factor for human
health. Its measurement may help us to understand the deposition mechanism of harmful particles in different areas of the human
respiratory system. The main objective of this article is to show the methodology followed to measure atmospheric nanoparticles
properties, mainly electric charge, using an ELPI®+ device. This can help to study how atmospheric electric fields influence health
of living organisms and show its potential use in different research fields such as atmospheric physics, climatology, environmental
health, ecology, epidemiology or biometeorology. 

Materials and method 

Site description and settle down 

The devices were installed on the roof of the Faculty of Philosophy ( Fig. 2 ), separate from the perimeter wall of the roof. The device
was installed at point N 43° 28 ′ 25.07 and W 3°47 ′ 56.54, not far from the shoreline of the Cantabric Sea. The building is located
less than 2 km from the sea coast, and is exposed to inclement weather, winds, fog and precipitation. This site was selected after
considering the absence of any chimney or heating or electrical sources around in order to prevent quality of records. The installations
fed with fossil fuel (diesel and natural gas) in the building and in the adjacent ones remained off during the measurement period.
Traffic in the area was lower than normal when the measurements were recorded, during the summer period. At this time Faculties
activity is very reduced compare to the rest of the year. 

Instrumentation 

An electrical low-pressure impactor (ELPI®+ ) is a real time and offline analysis instrument to measure particles from 6 nm to 10 μm
with 14 size fractions ( Table 1 ). Measurements were recorded from 14 different channels from 4th to 30th of July 2018. Extraction
3 
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Fig. 3. Measurement strategy based on 1-minute cycle and two modes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of samples from the device was weekly. Real-time measurement gives number concentration, size distribution, surface area, mass, 
volume, electric current and electric charge. It takes data from particulate matter within its size range as a whole measurement,
without distinguishing its source and neither its chemical composition. Measurement devices were: 

- An airtight and ventilated security box to insert the ELPI®+ device inside to protect it from meteorological conditions. 
- An Air Pump. Main specification of air pump pressure under the first stage should be 40 mbar. According to manual specifica-

tions of ELPI®+ , pump requirements are a minimum of 16 m 

3 /h at 40 mbar abs., but it is recommended to work at 25 m 

3 /h
at 40 mbar. 

- A collector cone to facilitate the inlet of air through a pipe to the electrometers. 
- An electrical low-pressure impactor (ELPI®+ ) with 14 channels ( Fig. 2 ). Each channel measurement includes Stokes diameter

range Di (nm) and aerodynamic diameter D50% (nm), ( Table 1 ). 
- A laptop connected to the device and a communication card to access to the device remotely. 

Particles are charged into a known charge level by the integrated corona charger before being directed to the cascade impactor.
Inertial classification of particles based on aerodynamic size takes place for the 14 size fractions separately. Each electrometer channel
detects the electric particle charge with a measurement range from 0.5 fA to 500,000 fA. 

Measurement strategy 

Table 1 presents ELPI®+ nominal impactor specifications.. Column Stages orders each channel range threshold, from smaller 
particles in channel 1 to bigger ones in channel 14. Each channel range threshold of ELPI®+ includes Stokes diameter (Di) and
aerodynamic diameter (D50%) measurements. 

The Stokes diameter is more accurate at our nanoparticle size goal [25,26] , and was used to take electric charge measurement.
However, the human respiratory tract model formula works with the aerodynamic diameter, so we took the equivalent unit of each
channel number within each channel range threshold. The D50% or cut-off diameter is the size of particles collected with 50%
efficiency on each impactor stage. 

Inertial particle size classification takes in the cascade impactor along its 14 channels based on aerodynamic size [25] . The ELPI©+
strategy measurement was programmed based on 1-minute cycle ( Fig. 3 ) using two modes of 30 s of periodic repetition during the
entire data collection period. A 6-hour zeroing of the electrometer stages was programmed to each channel with ELPI©+ considering
a typical ambient aerosol, it was taken a particle density of 1 g/cm 

3 to calculate the particles mass. 
Mode 1 completes measurement of physical properties excluding electrical charge, with the corona charger turned on. Particles 

are charged as they enter the corona charger with a known charge level, are classified by size in each channel, and measurement of
number concentration, volume, mass, size distribution, and surface area take place. The data selected for its relationship with the
standardized exposure limit units were number concentration (pt/cm 

3 ), mass (g), surface area (μm 

2 /cm 

3 ) and size distribution (nm).
Mode 2 records direct measurement of the natural electrical charge of the particles in each channel. It involves having the corona

charger turned off. The particles enter with their raw charge and they are classified by size in each channel. Current (fA) and electric
charge (fC) are measured. Measurement in mode 2 has to last a minimum of 20 s to assure there is no artefacts in the process of
measurement. Consequently, measurement strategy was to define 30 s for each mode. 

Data preprocessing and samples 

ELPI®+ real-time measurement was recording by second and each stage (one data per channel per second) including current 
and electric charge. A proper pre-impactor, vertical sampling line was used and ACTRIS aerosol in-situ sampling protocols as well
as WMO-GAW guideline [27,28] were took into consideration. Data preprocessing consisted on testing the consistency of time series 
and cleaning the raw data collected by the ELPI®+ excluding missing data associated to the need of stopping the device weekly to
4 



P. Fdez-Arroyabe, C.L. Salcines Suárez, A. Santurtún et al. MethodsX 10 (2023) 102148 

Fig. 4. A picture of the RAMAN device is on the left and a resulting image of TEM characterisation of multi-walled carbon nanotube at 5 nm scale 
on the right side (Geobiomet ©). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

collect samples. The 10th and 90th percentiles were used to eliminate anomalous extreme values from the temporal series. Using the
software R-Studio, statistical aggregation of raw data was carried out at four different temporal scales (10 min, 1 h, 6 h and 24 h). 

The human respiratory tract deposition modelling was focused on the main regions of the respiratory tract: Head Airways (HA),
Tracheobronchial (TB) and Alveolar (AL). The total and regional deposition percentages were calculated for the 14 channels with a
particle size range from 6 nm to 10 μm. It is important to emphasize that charge measured for each channel is associated only to the
total human respiratory tract deposition as a whole. 

Data collected indicated that negative charge was clearly associated with primary atmospheric nanoparticles in Channel 1 [6–
16 nm] and Channel 2 [16–30 nm] being mainly deposited in the alveolar region where Brownian motion of deposition is character-
istic. 

However, negative charge of nanoparticles of Channel 3 [30–54 nm] and Channel 4 [54–94 nm] was not son predominant. Lastly,
exclusive positive charges were recorded for particles from Channel 5 [94–150 nm] to Channel 14 [5.300–10.000 nm]. Nanoparticles
have shown an alveolar surface area deposition plateau with a size distribution range between 6 nm and 150 nm. 

Samples collection and offline analysis 

The collection substrates were aluminium foil, 25 mm in diameter, with a maximum thickness of 0.1 mm (ELPI®+ manual 1.55).
This substrate is thin, smooth, and pore-free. The face of the impact collection substrate was greased to reduce the particle bounce
effect. Real-time measurement allows users to know the amount of mass loaded on each channel before taking out the samples.
The particles showed regular deposition on the surface substrate on visual observations. Collected samples were characterised with 
Transmission Electronic Microscopy (Jeol Jem 2100 with XEDS) and Raman Spectroscopy (T 64000, Horiba-Jobin-Yvon). Raman 
spectroscopy characterization kept the collected samples unchanged, allowing later characterizations with other techniques. TEM 

characterization involved removing the greased layer beneath and around the collected sample. Steps followed to prepare the samples 
for this technique were: 

1. Cleaning of samples with 2 ml cyclohexane, with 2 ml ethanol and with 2 ml acetone. 
2. Sample sonication for 10 min at 40 °C after each cleaning. 
3. Drying samples for 24 h. 
4. Storing dry power in unbreakable plastic containers with screw cap, inside zip clear plastic bag. Containers were labelled as

nanomaterial and with hazard pictograms. 
5. Before taking samples to the TEM characterization was compulsory to certificate (through RAMAN outcomes) that were free 

of any impurities. 

Samples characterization 

Raman Spectroscopy Service, and Transmission Electronic Microscopy Service coupled with EDX (SERMET) from University of 
Cantabria were used for sample characterization. 

Raman spectroscopy is a light scattering technique, which probes similar low energy vibrational /rotational structures of a 
molecule. Raman characterisation strategy consisted on excluding the presence of oil neither other contaminant on the collected 
particles surface. After that, Raman spectroscopy was used to assure that collection surface was free of any contaminants before pro-
viding the study of chemical composition and structure of particles. On the other hand, TEM was used to study morphology, particle
size and elemental composition. Characterization of morphology with TEM was based on the study of shape of particles and their
toxicological risk ( Fig. 4 ). 

TEM with EDX showed a mainly spherical morphology. Elemental analysis revealed carbon (C) partially formed by multiwalled 
carbon nanotubes ( Fig. 4 ) and the presence of Silica (SiO2) and iron oxides. 

Raman Spectroscopy detected the presence of disordered graphite. Graphite pentagonal defects let the formation of multiwalled 
carbon nanotubes, giving flexibility and allowing them to bend. It was also determined the presence of iron oxide nanoparticles in
samples (hematite 𝛼-Fe2O, Lepidocrocite 𝛾 and 𝛿-FeOOH and Siderite FeCO3). The OH vibration of lepidocrocite comes from the 
presence of water vapour. 
5 
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Fig. 5. Image obtained from TEM-EDX and elemental composition visible in its associated spectrum. 

 

 

 

 

 

 

 

 

 

 

Fig. 5 presents an example of a result from TEM-EDX where elemental composition was obtained for two specific points. On the
right of the figure a spectrum is also presented. In this particular case, the presence of carbon (C), Sodium (Na), Chlorine (Cl), Cupper
(Cu) has been confirmed for a 50 nm nanoparticle. 

Conclusions 

The proposed method to measure atmospheric nanoparticles charge is a useful approach for the development of multidisciplinary 
studies where this property can be a key element to expand our knowledge on different fields. For instance, on mechanisms of
deposition of organic and inorganic matter inside the human respiratory tract, which can be improve if charge measurement of
nanoparticles is considered. Moreover, measurements of charge of atmospheric nanoparticles would allow to elaborate air masses 
electrical classification, study the links between atmospheric variables and electricity, and examine the links between atmospheric 
electric fields and wellbeing of living organisms. The sample characterization based on the combination of the indicated spectroscopy 
techniques provides a useful tactic to better known the structure and composition of atmospheric particulate matter acting as airborne.
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