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Abstract. This is the continuation of our work on infinite horizon optimal control problems
with a discount factor on the state variable and nonlinear partial differential equations as constraints.
Existence of a solution is proven, and first as well as second order optimality conditions are derived.
They are used to analyze the approximation of the infinite horizon problem by finite horizon problems.
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1. Introduction. In this second part of our work on optimal control problems
with discount factor on the state in the cost functional we focus on optimization
theoretic aspects. In the first part [5] we analyzed the well-posedness of the controlled
equation and differentiability properties of the control-to-state mapping. Concretely
we investigate the problem

. 1 00 . v 00 o)
®) min J):= 5 [ el e+ [l ey [Tl
where

Upa = {u € L*(0,00; L3 (w)) : ug < u(z,t) <up for a.a. (x,t) €w x (0,00)},

—00 < g <0< up < 400 with v, <up, 0 >0, v >0, and v > 0. Here y, denotes the
solution of the following parabolic equation:

o —Aytay+ fly)=g+ux, inQ=0x(0,00),

1.1
(L1) Ony=0 on X =T x (0,00), y(0) =y in Q,

where € is a bounded domain in R”, 1 < n < 3, with a Lipschitz boundary T,
g € L>(0,00; L?(2)), w is a subdomain of ©, x,, denotes the characteristic function
of w,a€ L>(), 0<a#0, and yo € H*(Q). The symbol ux,, is defined as follows:

cu(z,t) if (z,t) € Qu=w x (0,00),

UXw) (X, ) = .
(1xw) (@, 1) 0 otherwise.
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INFINITE HORIZON OPTIMAL CONTROL PROBLEMS 1439

The target y4 is assumed to belong to L°°(0,00; L?(£2)). The exponent o > 0 is known
as the discount factor. The last term of the cost functional is included to promote
sparsity in time of the optimal controls.

Remark 1.1. The choice u, < 0 < uy is needed because if u, > 0 or u; < 0, then
Upg = 0.

As pointed out in [5] there are only very few papers in which infinite horizon
optimal control problems are investigated systematically. This is particularly true
for problems involving partial differential equations. For references concerned with
ordinary differential equations we refer to our references in [5]. Our own investigations
started with [3], where infinite horizon problems with L' sparsity enhancing terms
are investigated for stabilization problems, i.e., y; = 0. The nonlinearities considered
in that paper are of polynomial type and it is verified that for sufficiently large ¢,
once the trajectory reaches a sufficiently small neighborhood of a stable equilibrium,
the associated optimal control switches off, as expected due to the sparsifying term in
the cost functional. In [4] infinite horizon problems of tracking type are considered,
under quite general assumptions on the nonlinearity f. The optimization problem is
investigated under the assumption of existence of at least one optimal control, which is
guaranteed, for instance, for sufficiently small initial conditions. Optimality conditions
are derived without recourse to the regularity of the control to state mapping. The
optimal states themselves are at least in L?(0, 00; L2(£2)). In the present paper, on the
contrary, due to the discounted term, the optimal states are allowed to be much more
general; they need not lie in L?(0,00; L?(€)). The nonlinearities are of polynomial
nature or are globally Lipschitz continuous. The control to state mapping is well
defined and C? regular on all of the control space.

In [4] the nucleus of the proof technique, for the optimality conditions, for in-
stance, rested on the approximation of the infinite horizon by finite horizon problems.
In the present paper we need not rely on this rather technical approach; rather the
first and second order optimality conditions can be proved directly for the infinite
horizon problem. However, we still address the approximation of (P) by means of
finite horizon problems, and even derive a convergence rate estimate with respect to
the time horizon, by exploiting sufficient second order optimality conditions. The im-
portance of such an estimate, besides intrinsic interest, lies in the fact that numerical
approaches many times rely on computations carried out for “sufficiently” large time
horizons. This suggests investigating the error which is made by cutting off the time
interval.

The paper is structured as follows. In section 2 selected results from [5] are recalled
and existence of a solution to (P) is verified. Differentiability properties of the cost
functional on the basis of an appropriately defined adjoint equation are investigated
in section 3. In our work the transversality condition, known from Pontryagin’s
maximum principle, corresponds to the behavior of the adjoint state at oo here. For
ordinary differential equations it has been analyzed in detail in [1]. Necessary and
sufficient optimality conditions are contained in section 4. The last section is devoted
to the approximation of (P) by means of finite horizon problems.

Assumptions on f and notation. For the nonlinear term in state equation f :
R — R we assume that f = f1 + fo such that f; is a polynomial of odd degree 2m+ 1
with a positive leading coefficient, 0 <m <1 if n =3, and m > 0 arbitrary integer if
n=2, and f : R — R is a C? function satisfying

(12)  A(0)=/(0)=0 and 3L;>0:|f5(s)| + /5 (s)| <Ly Vs€R.
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1440 EDUARDO CASAS AND KARL KUNISCH
As established in [5], the assumptions on f imply that

(1.3) JAf >0 such that f'(s) > —A; Vs€eR,
(1.4) dM such that f'(s) >0 and f(s)s>0 V|s| > M;.

Given a real number @ € R and p € [1,00], L2 (Q) denotes the space of measurable
functions ¢ : Q — R satisfying
o] 1
—a I3 .
[6leear={ [ e 160Gy dt) <oc it p<oc,
0

[¢llLee (@) = esssup e” 2t g(x,t)| < o0.
(z,t)€Q

With L2 (0,00; H*(Q2)) and C,([0,00); H*(£2)) we denote the Hilbert and Banach spa-
ces of measurable, respectively, continuous functions y : [0,00) — H'(Q2) endowed
with the norms

e ( [ e Ol dt) 7

lyllc., (jo,00):H1 (2)) = SUP 97%t||y(t)”H1(Q))~
te[0,00)

We also define H.(Q) as the space of functions y € L2 (0, 00; H'(2)) such that 2% €
L2(Q). This is a Hilbert space for the norm

2 3

Li(@)) '

Finally, we set Y,, = H.(Q)NC,([0,00); H(2)). The next estimate was proved in [5]:

Oy
Ilasc@ = (W32 @ oo + || o]

. e < . i
(1.5) Iyl Lam+2(q) < Cllyllyy ifa<0

{cm||y|y40 if & >0,
for a constant C,,. The following well-known inequality will be useful throughout
this paper:

1
2

(1.6) Callzllm @ < (/(|V22+az2)da:> Vze HY(Q).
Q

2. Existence of a solution for (P). In this section, we will prove the existence
of at least one solution to problem (P). First we summarize some results concerning
the state equation. Following [5, Definition 2.1], a function y is called a solution of
(1.1) if it belongs to L2 (0,00; H'(2)) N Cloe([0,00); L2(R)), f(y) € LE.(0,00; L2(Q)),
and it satisfies

2.1) W Aytay+ f(y)=g+uxe nQr=9x(0,T),
. Ony=0 on X7 =T x(0,T), y(0)=yo in Q,

for every 0 < T < 0.
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THEOREM 2.1. For everyu € L*(Q.,) equation (1.1) has a unique solution y, € Yy,
for every a > 0. Moreover, the following properties hold:

(2.2) i e Myu (D)1 ) =0,
—00
1 @a)llz @) + lwa™ ez @) + lvullya
(2.3) < C(||9||Loo(o,oo;L2(Q)) + llullzz.) + IIyollﬁf(b) + 1)7

where C' is independent of g, u, and yo-.

The reader is referred to [5, Theorem 2.4] for the proof of this theorem. The
continuous dependence of the state with respect to the control is established in the
next lemma.

LEMMA 2.2. Let {ug}32, be a sequence in L*(Q,,) with associated states {yy}3> ;.
If up, — u in L*(Q.,), then for every a > 0 the convergences yx — v, in HL(Q) and

flyr) = f(y) in L2(Q) hold.

Proof. From the boundedness of {ux}%2, and (2.3) we deduce the existence of a
subsequence, denoted in the same way, such that y, — y in Y, and f(yx) — ¢ in L2(Q)
for every a > 0. Let T > 0 be arbitrary. From the compactness of the embedding
H'(Qr) C L*(Qr) we infer the existence of a further subsequence such that

yr —y in L*(Qr) and yx(w,t) = y(z,t) ae. in Qr.

Using the above pointwise convergence we deduce that ¢ = f(y) and, hence,
flyr) = f(y) in L2(Q). Now, we prove that y = y,. It is easy to pass to the limit
weakly in the state equation (2.1) satisfied by (yx,ux) and to deduce that (y,u) sat-
isfies the equation in the variational sense in @ for every T > 0. Moreover, from the
continuity of the embedding Y, C Cy([0,00); H(£2)) we have that yo = y(0) — y(0)
in L2(Q), hence y = y,,. From the uniqueness of the solution of (1.1) we deduce that
the whole sequence {y;}72, converges to ys. 0

THEOREM 2.3. Problem (P) admits at least one solution.

Proof. Let {ur}?2, be a minimizing sequence for (P). Since J(uy) < J(0) for
every k large enough (unless u =0 is already an optimal control), the boundedness of
{ur}$2, in L?*(Q,,) follows. Hence, there exists a subsequence, denoted in the same
way, such that uy — @ in L?(Q,,). Let us denote by {yx}32, the states associated with
{u}2,. Lemma 2.2 implies that y, — ¢ in L2(Q), where ¥ is the solution of (1.1)
corresponding to 4. To prove that @ is a solution to (P), we consider the inequality
for arbitrary 7> 0

1 oo T 1/2
—/ e*‘”(g—yd)dedthK/ /ﬁ2dxdt+'y/ (/z‘ﬂdx) dt
2 Q 2 0 w 0 w

<liminf J(ug) = inf (P),
k—o0

which follows from the convexity of the objective functional with respect to pair (y,u)
and the continuity of the embedding L?(0,T; L?(w)) C L*(0,T; L*(w)). Now we have

which concludes the proof. 0

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/14/23 to 193.144.185.30 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

1442 EDUARDO CASAS AND KARL KUNISCH

3. Differentiability of the cost functional. The cost functional J is decom-
posed into two parts: J(u)=F(u) 4+ vj(u) with

(3.1) F(u)= 1/ e (yu — ya)* dx dt + E/ u? dx dt,
2Jq 2 Jq.,
(3.2) () = / () 22 .

Regarding the functional j we have the following properties, which can be obtained
from [2] by reversing the role of the variables z and t.

LEMMA 3.1. The functional j : L'(0,00; L?(w)) — R is Lipschitz and conver
and the following relations hold:
(1) The subdifferential 9j(u) is the set of functions A € L>=(0,00; L*(w)) satisfying

A L2y <1 for a.a. teI?,
: t
33) A(xat):M for a.a. t€ I, and x € w,
[w(®)] L2 (w)

where I, = {t € (0,00) : [|u(t)| r2(w) # 0} and I = (0,00) \ 1.
(2) For every u,v € L'(0,00; L?(w)) the directional derivative is given by

i (u;v) = v 2 . u(z, t)v(z,t)d
B4 Fen= [ Olwds [ e [ e

As we will see later, F is differentiable. As usual, to represent its derivative we
introduce the adjoint state. The next theorem establishes the existence and uniqueness
of an adjoint state as well as its continuous dependence with respect to u.

THEOREM 3.2. Let us assume that o > Ay, h € L%(O,OO;LQ(Q)), and y € Yg for
every B> 0. Then the problem

{%f —Ap+ap+ fy)p=e""hin Q,

(3.5)
Onp=0o0n %, lim; eAft||90(t)HL2(Q) =0

has a unique solution ¢ € L?(0,00; HY(Q))NC([0,00); L2(2)). Moreover, the reqularity
p€eY_, holds for every a < 20. Further, if {(yr, ht)}32, C Yp x L%(O, o0; L2(Q2)) and
(yx, hi) = (y, h) in Yg x L%(O7 o0; L2(2)) for every B> 0, then

(3.6) lim [jor —¢|ly_, =0 Va< 20,
k—o0

where @y, is the solution of (3.5) with (y,h) replaced by (yg, hy).

Proof. The proof is split into several steps.

Step 1: Uniqueness of a solution. Since (3.5) is linear it is enough to prove that the
only solution with a zero right-hand side is ¢ = 0. Multiplying (3.5) by ¢, integrating
by parts in  x (¢,T) for 0 < t < T < oo with T arbitrarily large, and using that
f'(s)>—Ay, we get

2 T
Vol|? Ydxd
e LIV +agdeds

2 T 1
2
ey <A [ T ds+ 5l

3l

2 1
<5 |e)
L2(Q) QHSD( )

2

r 1
< [ [ rwetdedss 3o
t Q

L2(Q)
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By Gronwall’s inequality we infer

2 T—o0

lo®)l|72() < e T Np(D)IIF2 () < [Tl (D)l 2] =0,

which proves that ¢ =0.
Step 2: Existence of a solution. Let {T}}7° | be an increasing sequence converging
to co. For every k we consider the equations

8¢Tk ASOTJC + apr, + f ( ) =e “'hin QTk7
8n<ka =0on ETk7 "2 (Tk) =0.

(3.7)

Since e~?'h € L?(Qr,), the existence and uniqueness of a solution o7, € HY(Qr,) N
C([0,Tx]; H'(2)) is well known. We prove the convergence of {7, }32 ; to the solution
of (3.5). For this purpose we test (3.7) with e** ¢, for a > 2A s and use that pp, (1)) =
0 so we get for ¢t € (0,Tk)

at 2 o Ty ) Ty ) )
S |en) & o d s [ [|v dvd
len ]t 5 Clenlaads+ [ e [ (Ven+aghldeds

Tk Tk:
+/ eas/ FW)er, d:rds:/ e(a*‘j)s/ her, dzds.
t Q t Q

Denoting by ¢, the extension of ¢, by zero for ¢t > T} we deduce from the above
equality with (1.3) and Young’s inequality

at

TNer Ol +C2 [ e 6, (5) s oy s
t

< / (= |1h]| 2oy | B ()| 12 () s
t

1 > a—20)s Cg = S| (5
<o [ IR s P [ e en () o s
2Ca t 2 t

This yields for some constant C; independent of a € [2Af,20) and k
1
2

oo
ess sup e2t||¢Tk(t)||L2(ﬂ)+</ ew”‘?m?ﬁ(ﬂ)ds)
>0 0

Therefore, taking a subsequence, denoted in the same way, we have e2*4p, — e2fp
in L2(0,00; H'(Q)) and e3'pr, — e3tp in L®(0,00; L*(R2)) for some function ¢ €
L?(0,00; HY(Q2)) N L®°(0, 00; L2(Q2)). The first convergence implies that o satisfies the
partial differential equation part of (3.5) and the second convergence yields

(3.9) le** o(t)||r2() < Ko for a.a. >0 and o < 20.

Let us prove that f(y)¢ € L?(Q). From our assumptions on f we deduce the existence
of a constant Cy such that |f/(s)| < Ca(s*™ + 1) for all s € R. Then, using Holder’s
inequality with % and 2m + 1 we obtain

/Qf/(y)2<P2d$dt§C§/O (Il 752y + 1) 1l Zamerz gy di

[ee)
s@é(@mmmmwunww%mw

(||Z/H 0mH1(sz))+1)||80||L2 (0,00;H1(R)) < O©-
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Hence we have p € W(0,T) = H*(0,T; H*()*) N L2(0,T; H'(2)) € C([0,T7]; L*(Q))
for every T’ < oo and, consequently, ¢ € C([0,00); L*(2)). Furthermore, (3.9) implies
that lim;_, o €7*(|(¢)|| 2 () = 0. Hence, we have that ¢ is a solution of (3.5). Further,
due to the uniqueness of a solution we deduce that the whole sequence {7, }32,
converges to ¢ in the sense specified above.

Step 3: ¢ € Y_,. We test (3.7) with —eas&pTgiiw’s), a € [2Af,20), and get for

every t € (0,7T})
o m)d s+ S [ [9en 00 + ik, (0] ds

Ty
/ o
Tk Tk SOTk
|Vg0Tk| —|—acpT |dzds — f o7, drds
Tk
:—/ e<a*<’)5/ BT 4y s,
t Q (98

Take £ > 0 such that a+e < 20. Using (1.5), | f'(s)| < Ca(s*™+1), Hélder’s inequality
with 2742 4 + 2 and 2 for m > 0 or Schwarz’s inequality for m = 0, the fact that

2m
y€C = ([0,00); H1(2)), and Young’s inequality we infer from the above equality

830Tk

2m

Tk
/ eOéS
t
850Tk

Tk
gcg/ e“5(||y||iTm+z(Q)+1)H<PTk||L4m+2<Q>H s
t

Ty a
(a—o0)s h H PTy
A L

6<PTk ds+ CQGat
2

0s

2
@) o, )22

L3(Q)

L2(Q)

8%0Tk
Os

Ty
< 04/ e(a+§)s([e—ms”yHHl(Q)]Qm + 1) H‘PTk ||L4m+2(Q)H
t

- T
+_/ k e(a_U)S”hHLz(Q)H 2o, ds <Cs 6/ k e(Q—H)S”SOT ||§{1 o) ds
] Os llr2) = 77, HHEE)

T 2 2 1 T
+/ 23 2 ds+§/ e
t t

Taking into account the definition of ¢, , the above inequality leads to

/Oo T a@Tk
t

0s

§20576/ OﬁLS)S”SDTkHHl(Q) ds+2/ e(a*20)sHh”2Lz(Q) ds.
t

L2(Q)

aﬁka
0s

s
L2 ()

2 at|| 4 2
oy 57+ C2 103, )

Since a + € < 20, we deduce from the above inequality and (3.8)

9o,
Os

o0 2 %
Qt ~
esssup e (|G (1) () + (/0 e ) ds) <Csellhllzz, ., @

t>0

for all k¥ > 1. As a consequence we get e3'pp, — e3tp in L>(0,00; H'(Q)) and

eat&gT" —et t%‘” in L2(Q). Then, the above inequality implies

esssup e2t||</7(t)||H1(Q)+< | )%
0

t>0

o ds> <Csellblicz, .. (-
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Hence we have that ¢ € H:_(Q). Moreover, since ¢(T) € H*() for almost every
T >0 and %—f + Ap € L*(Q), we infer that p € C([0,T]; H'(2)); see [7, Proposition
I11-2.5]. Combining this with the fact that ¢ € L (0,00; H*(Q)) we conclude that
0 €C_4([0,00); HL(Q)). All together we obtain that ¢ € Y_, and

(3.10) ol < Mellbllzy, @ Va€l2Az20—2).

Step 4: Proof of (3.6). Take o < 20 and € € (0,20 — a). We set ¢ = ¢ — k.
Then, we have

— %5k = A+ adr + ' (y)dr = =7 [(h— hi) + 7 (f (yn) — f'(y))pr] in Q,
8n¢k =0on Z, limt_mo H(bk(t)HLQ(Q) =0.
Analogously to (3.10) we have

(3.11)
Ioklly. < Mell(h—hi) + e (F' () — FW)prlliz, @ Vo€ 244,20 —2).

2

Observe that h — hy — 0 in ngf(aﬁ)(@) due to hy — h in Yp for all B> 0. Let
us prove that e [f'(yr) — f'(y)]pr — 0 in L3 _(Q) as k — oo for a < 20 arbitrary.
We make the proof for m > 1, being simpler for m = 0. Using Hoélder’s inequality with
1+ 5= and 2m + 1 and taking € € (0,0) we get

2m
e [f (yx) — f’(y)WkHQLga,a(Q)

> (=)t ¢/ o 2 2
< [N ) = L W, g 0l

<O [ )~ P WL, g [ el

< Cller H%E,zg([o,oo);Hl(Q)) ||f/(yk) - f/(y)HLgU%H@(Qy

From (3.10) the boundedness of {¢x}72, in Y._ o, follows. This combined with the

above estimate and the fact that || f/(yx) — f’(y)||L2+# © — 0 as k — oo [5,
30— (a+e)
Theorem 2.7] leads to "

Jimn (= ) + e (F (o) = S )erlzs, @y =0 Va<2o

20—«

Hence, (3.11) yields limy_, || ¢k |ly_, =0 for all @ € [2A,20). Since the norm ||-||y_,
is monotonically increasing with respect to a, equality (3.6) holds. ]

Remark 3.3. We observe that Ay =0 if f is a nondecreasing monotone function.
Hence, existence and uniqueness of a solution for (3.5) hold for all o > 0.

The next theorem establishes the differentiability of the functional F'.

THEOREM 3.4. Assume that o > 4A¢. Then, the functional F: L*(Q,) — R is
of class C' and the following expression for its derivative holds:

(3.12) F’(u)v:/ (pu + vu)vdzdt,
where @, is the solution of the adjoint equation (3.5) with y =y, and h =y, — yq. If
in addition o > 8Ay, then F is of class C* and

(3.13) F"(u)(v1,v2) :/

[efo't o (Puf”(y“)]zvl Zvsg dx dt + l// V1V2 dx dt.
Q

Qu
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Proof Choose a € (4Af,0), and define by Fp : L2(Q) — R the quadratic form
Fo(y)=1%lly — deL2 . Let Gy : L*(Q.,) — Y, with G (u) =y, denote the control
to state mapping. From [5, Theorem 3.3] and the fact that o > 4A; we get that G,
is of class C''. Moreover, z, = G'(u)v is the solution of the equation

{?; —Az+az+ f'(yu)z =vX0 In Q,

(3.14)
Opz=0o0n %, z(0)=01in Q.

Further, since a < 7, Y,, is continuously embedded in L2(Q). Therefore, the mapping
F=FyoGa+3|-l324q,) is of class C' and

F'(u)v= / e NGo(u) — ya)G' o (u)vdr dt + V/ uv dx dt
Q

w

:/ e“’t(yu—yd)zvdxdt+u/ uv dx dt.
Q

w

Testing (3.14) with ¢, and integrating by parts, (3.12) follows from the above identity.
To justify this testing the integrability in @ of every term of (3.14) multiplied by
py needs to be verified. Let us consider the integrability of the first term. Given
B € (2Af,20) we get

0z 8
° |npu|dmdt:/ e 2zt —2
L% .

due to the fact that z, € Y for every 8 > 2A; and ¢, € Y_p for every 8 < 20; see
[5, Lemma 3.1] and Theorem 3.2. The other terms can be analyzed in a similar way
except the one containing f’(y, ). To deal with this term we consider the case m > 1;
for m = 0 the proof is easier. We select 5 € (2Af, =% 1+ —). This is possible because

o>4A;. Now we take 1 € (0, 27511) and (s = B3 — S3. We define By = (2 + & )b,
Bgm =(2+ m+1 ™13y, and Bgm =(2+ m+1 ™_B5. Then, applying Holder’s mequahty with

24+ L, 24 nle’ and 2 + and using that H(Q) C L2t (Q), we obtain

0z, 0%y

ﬁt|gou|dacdt< H

||80u||L3ﬁ(Q) < oo

L23(Q)

T

/ 1 () 2oipul da dt = / P F () o2 2o | || dr i
Q Q

< f’ Yy %} 2m
|| (u)” Z;n (Q)H v” Hm“(Q)H u“ 2,;’3”“(@)

<c +1

— ||y || ZJlrm (Q)H UHLZ;rerl (0 H1(Q))||Sou||L2:;§2$l (O,oo;Hl(Q))
m+1
|2m +1

|2m+1

< (llyullpamsz gy + llzo] ) (0,095 (9) 2ol 25" (0,001 ()

R T m+41
2m+1 |2m +1

X ||<,0u||c g (mt 1) (0,00 HL(2)) ||80u| ) < 00.
-

(0,00;HL (22
g

For the last inequality we have used that 31, > 0 and (2.3) and the fact that z, € Ysam
2
and ¢, €Y g3, m+1y due to the following properties:
2m

62m(m+1) 2m +1 2m +1 1
om (B = Br) > (1_2m—|—1

Bam _2m+1 2m+1 o
gim < < 20.
SR aec A —— 1+ = 7

)3 =285 > 4Ay,
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Now we turn to the second derivative and assume that o > 8A;. We select
a € (8Af,0). Then, [5, Theorem 3.3] implies that G, is of class C? and z,, 4, =
G (u)(v1,v2) is the solution of the equation

(3.15) {gt —Az+az+ f(yu)z + [ (Yu) 20,20, =0 1n Q,

Opz=00n %, 2(0)=01in Q,
where z,, = G, (u)v;, i = 1,2. Hence, by the chain rule we get that the function
F=FyoG,+5]|- H%Z(Qw) is of class C? and

F"(u)(v1,v2)

:/ e 7 {(Go(u) — ya) Gl (w) (v1,v2) + G o (u)v1 G o (u)va } dmdt—i—y/ vive dz dt
Q Qu

w

:/ e 7 (Yo — Yd) Zuoyvg + Zuy Zug dxdt—H// v1vg dx dt,
Q

where z,, = G (w)v1 and zy,p, = Gh(u)(v1,v2). Now, testing (3.15) with ¢, and
integrating by parts we obtain (3.13). To check that the testing and integration
by parts are justified, the most delicate issue is the one involving f"(yy)zv, ZvyPu-
To prove its integrability we proceed as follows. As above we are going to consider
the case m > 1, the case m = 0 being easier. First, we select 5 € (2Ay, 2T$10)7
B3 € (%6,0‘), By = an%ﬂ, and 31 = B3 — 2835. Let us denote Bi,, = ngfﬁl and
Bom = (4m 4 2)B2. Then we apply Holder’s inequality with 3$f?, dm + 2, 4m + 2,
and 2 to derive

/Q|f”(yu)zvlz1,2<puda:dtz/Qeﬁ1t|f’/(yu)|eﬁ2t|zvl|eﬁ2t|zvz|eﬂ3t|gpu|dmdt

12
<|f (yu)Hszﬁ(Q)HZvl HLZ;”JZ(Q)”ZDQ||L4B;”7:2(Q)”50u||L2,2ﬂ3(Q)
< C(||yu||L‘;’1"+2(Q) +1)][20, ”Yng 120, HY;szm ||<PuHY,2,33 < 0.
m 4m 4am

In the last inequality we used that |f"(s)| < C(|s|*™~! +1) and (2.3), Bim > 0,
% =03>2Ay, and 3 < o along with [5, Lemma 3.1] and Theorem 3.2. d

4. First and second order optimality conditions. The aim of this section is
to establish the necessary and sufficient conditions for local optimality. Since problem
(P) is not convex we will consider local minimizers in this section. We say that @ is
a local minimizer of (P) if & € U,q and there exists a ball B.(#) C L?(Q,,) such that
J(u) < J(u) for every u € Be(u) NUyq. If the inequality is strict for every u # a,
we call u a strict local minimizer. This definition implies that a local minimizer @
satisfies J(u) < co and, consequently, it belongs to L'(0,00; L?(w)) if v > 0. Indeed,
given € > 0 there exists T, > 0 such that for u.(x,t) = a(z,t)xo,r.)(t) the inequality
|t~ L2(0.,) < € holds. Moreover, we have that u. € Uaq and then J(@) < J(u.) < oco.

Following the approach of [2] and using Theorem 3.4 the optimality conditions
are deduced next.

THEOREM 4.1. Let us assume that o > 4Ay. If U is a local minimizer of (P),
then there exists § € Y, for every aa>0, g € Y_g for every 8 < 20, and X € 9j(a) if
v >0, such that
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o
(4.1) 5 ~ AU+ ag+f(p) =g+ ux, inQ,
Ony=0 on X, g(0)=yo inQ,
885 %) 5 I\ 5 __ ,—0t(= .
(4.2) g5~ Ae+ap+ f@e=e " (y—ya) inQ,

Z . A _
Onp=0o0nx, lim e @) L2 @) =0,

(4.3) / [P, + v+ A (u—1) >0 Vu€lyq.

PROPOSITION 4.2. Let (@, @, \) satisfy the optimality conditions (4.1)—(4.3) with
U € Uy and also @ € LY(0,00; L?(w)) if ¥ > 0. Then @ € L>(0,00; L*(w)) and the
following identity holds for almost all (x,t) € Q, :

_ . 1,_ <
(4.4) u(x,t) =Projp,, u,] ( - ;[@(%t) + 7)\(95715)])-
In addition, if v >0 and ug <0 <wup, then we have for almost all (z,t) € Q,

[a()L2(w) = 0 = @)l 22wy <

77@(‘%’0 lftejga
(4.5) Mz, t) = u(x,t)

%) 22 (w)

where Iy = {t € (0,00) : |a(t)]| 12wy # 0} and I = (0,00) \ Iz. Moreover, there exists
T* < oo such that ||u(t)|| 12y =0 for all t >T*.

Identity (4.4) is standard and the regularity @ € L*°(0,00;L?(w)) is a conse-
quence of it. The reader is referred to [2, Corollary 3.9] for the proof of (4.5) just
by reversing the roles of z and ¢. The existence of T follows from the property
1m0 |B(8) | 2y = 0 and (4.5).

Now, we formulate the necessary second order optimality conditions for (P). Once
again, following [2] we introduce the cone of critical directions associated with a control
U € Uy satistying the first order optimality conditions (4.1)—(4.3) as follows:

Cu ={v €U : v satisfies (4.6) below and F'(@)v + 5 (a;v) =0},

where U = L?(Q,,) N L*(0,00; L?(w)) if v >0 and U = L?*(Q,,) if v =0, and

(4.6) v(z,t) {ig ?f ZEx’t) iua’ a.e. in Q.

1 u(z, t)v(z,t) 27 .
J (s 0?) = O/I:?W)W[/w”%’”dx‘ (/w”u(mwdf”) Jaeituzo,

The expression for j'/(u;v?) is just a definition; it does not represent the second
directional derivative, except for special cases. Actually, the expression j'/(u;v?) can
be oo for some functions u and v. Nevertheless, the integral is always well defined
because the integrand is nonnegative. The following necessary second order optimality
conditions can be established as in [2] with the help of Theorem 3.4.
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THEOREM 4.3. Assume that o > 8Ay and uq <0 <up if 7> 0. Let u be a local
minimizer of (P). Then, we have that F"(u)v? +~j" (i;v%) > 0 for every v € Cy.

Proof. If v =0, the proof is well known. Assume that v > 0 and j'/(u;v?) < oc;
otherwise the inequality is obvious. Given v € Cy and T > 0, we define vr(z,t) =
v(x,t) if t <T and zero otherwise. Following the steps of [2, Proof of Theorem 4.3,
Case III], once again reversing the roles of = and ¢, and using that @ € L>°(Qr) due
to g,ya € L>(0,T; L?(2)), we obtain that F"(u)v2 + ;" (a;v%) > 0. We can pass to
the limit in this inequality to conclude that F"'(u#)v? + ~j"(4;v?) > 0. Indeed, using
that |vr(x,t)| < |v(z,t)| and vr(x,t) = v(x,t) when T — oo, Lebesgue’s dominated
convergence theorem implies that

TlgnmgT(t) = lim [/wv%(x,t)dm— (/wu(sn,t)vT(x,t)dm)?}

T—o0 lu(t)ll 22 ()

=g(t):= {/wvg(:c,t)dm—( dew)?.

Moreover, we have that 0 < g(t) for every ¢, gr(t) = g(t) if t < T, and gr(t) =0 if
t >T'. Hence, the monotone convergence theorem implies that

1 1

lim %gT(t)dt:/ gty
T—oo [, 1a(t) 22 (w) o 182 (w)

This implies that limp_, . j"(a;v%) = j'(@;v?). Finally, as a consequence of the
convergence vr — v in L?(Q,,) and Theorem 3.4 we infer that F"(i)vZ — F” (a)v?. O

In the next theorem the sufficient second order conditions for local optimality are
established.

THEOREM 4.4. Assume that uq <0 <up if v >0 and 0 > 8Ay. Let w € U NUgq
satisfy the first order optimality conditions given by Theorem 4.1 and the second order
condition F"()v? + 3" (a;v%) > 0 for all v € Cy \ {0}. Then, there exist € >0 and
0 >0 such that

B _
(4.7) J(ﬁ)+§||u—ﬁ\|%2(Qw) < J(u) Yu€UaqN B.(a),

where Bo(@) = {u € LA(Qu) : |u— 2. <e}-

LEMMA 4.5. Under the assumptions of Theorem 4.4, if there are no 6 >0 and
e > 0 such that (4.7) holds for every u € Uyq N B:(1) N L>(0,00; L?(w)), then there
ezists a sequence {uy }32; CUgq N L>(0,00; L2 (w)) such that for every k> 1

_ 1
(4.8) k= @l 2 < 7
1 i
(4.9) J(ur) < T (@) + 5w = ll3 g, -

Furthermore, if v >0 and T is as introduced in Proposition 4.2, then there ezists a
sequence of measurable sets Iy, C (0,T*) with T* — |I,| < ¢ such that {ux}72, satisfies
additionally

i 1
(4.10) e = @l e (12 ) < 3
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Proof. 1f (4.7) does not hold, then for any integer k > 1 there exists an element
Wy € Uyg N L>(0,00; L?(w)) such that

_ 1 o1 _
(411) ||wk - u||L2(Qw) < E and J(wk) < J(U) + ﬁﬂwk — u”sz(Qw).

If v =0, then we take up = wg. Otherwise, we proceed as follows. From the conver-
gence ||wg(t) — a(t)||L2(w) — 0 in L*(0,00), we deduce the existence of a subsequence,
denoted in the same way, such that |lwy, () — @(t)| z2 () — 0 for almost all ¢ € (0, 00).
Then, from Egorov’s theorem we deduce the existence of a subsequence {w;, }72; and
a sequence {I;,}3°; of measurable subsets of (0,7*) such that T* — |I;| < 4+ holds and

1

lwj, — Lo (1,;02w)) = esssup [Jwy, (1) — 6(t)]|12(w) < ok

tely

Moreover, ji can be chosen so that j, > 2k. Then setting uj = w;, we get with (4.11)

etk = @l oo sz + Nl = ll 2wy

_ _ 1 1
and
1 o R .
J(ug) = J(wj,,) < J(a) + j*k“wjk — |72 g, < /(@) + %ch — 72,
which proves (4.8)—(4.10). 0

Proof of Theorem 4.4. First we prove that (4.7) holds for every u € Uy,q N B. (@) N
L>°(0,00; L?(w)). We argue by contradiction. Let us consider the case v > 0. If y=0,
the proof follows the same steps with the obvious simplifications. If (4.7) does not hold
in Uya N Be () N L>®(0,00; L?(w)), then we get from Lemma 4.5 a sequence {uy }3°, C
UagNL>®(0,00; L?(w)) satisfying (4.8)-(4.10). Let us define py, = [Jux — 1| 2(q,) < 1/k
and vy = (ur — @)/ p. Since ||vg||z2(g) =1 for every k, we can extract a subsequence
denoted in the same way so that vy — v in L?(Q,,). The proof is split into four steps.

Step 1. v € Cy. For all T < oo we define the functional jr : L*(0,T; L*(w)) — R
by

T
ijw=A )] 120 .

Then, we have

y u(t)v(t)
J u;v):/ lv() |22 (e dt+/ /7dmdt.
e N Al A WO

For every T'> T* the following identity holds:

T
jé«(ﬁ;v) = ]51* (ﬁ;v) + /T ||U(t)HL2(w) dt.

The convergence vy, — v in L?(Q,,) implies that vy, — v in L'(0,T; L?(w)). Then,
using that v — j/;.(@; v) is convex and continuous, we have for every T > T*
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T
et [ ol0)] o de = i 50) < Bim it (3
<liminf gr(@+ prvx) = () = liminf M <liminf M
k—o00 Pk k—oo Pk k—o0 Pk

Taking the supremum with respect to T we infer

3 (50) = i (1 0) +/ lo(t) o) dt < iming 1) =300,
T* k—o0 Pk

From this inequality and (4.8)—(4.9) we get
Fl(u)v+ 74 (w0)

< 1§€Ig{gfp*1]€{[F(ﬂ + pro) — F(u)] +05(u + prox) — G ()]}
Pk

=0.
2k

o _ o 1 2 o
= hkn_ﬁgfa[t](uk) —J(u)] < 11]€H_1>gfm ur —allz2(q,,) = hkn_l)gf

To prove the converse inequality we use that
max / \vdz dt = j' (T;v).
xeaj(a) Jo,

Then, with inequality (4.3) we get

F'(a)v+~j'(a;v) > F'(a)v+y v dx dt
Qu

1 -
(4.12) = lim —/ (P4 v+ y\)(up — @) dzdt > 0.
k—o00 P

w

The last two inequalities imply that F'(@)v + vj'(@;v) = 0. Moreover, from this
identity we infer

o0 1 ) B
/|WWBmﬁ=;F@WﬂhWW<W-
T*

Consequently, v € U/ holds. In addition, since vy, satisfies the sign conditions (4.6) for
every k and the set of elements of L?(Q,) satisfying (4.6) is convex and closed, we
deduce that v satisfies (4.6) as well. Hence, we have that v € Cy.

Step I1. v=0. For 8 > 0 small we define

Ig={t€(0,00):[[u(t)||r2(w) > B} and jg(U)Z/I [u()] L2 (w) dt,
B
and with Lemma 4.5

Igr=1gN1I; and jg,k(u)z/ [w(t)] L2 (w) dt.

Ig,k

Since [|a(t)||2(w) > B> 0 for every t € Ik, jar : L™(0,00; L*(w)) — R is infinitely
differentiable in the L>°(0,00; L?(w)) open ball Bg (w). Hence, if k > %, (4.10) implies
that u 4 prvr = ug € Bg (). Then, by a Taylor expansion we get
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. . g 03 03
Jp.k(U+ prvr) — jpr(t) = Pk]}a,k(u; vg) + 3’% (45 vk) + f]lg//k(um,vi)

1
=pk/ %/a(x,t)vk(a:,t)dxdt
o 12O 2w Ju
2 — 2
pk/ 1 / (/ e )
+= TP TE— v (x,t)d xz,t)dx dt
2 )i, |u<t>|L2<w>{ it Tl ||m,> ve(@)
+p2/ 3 1 / oty on(ent)d ’
- uy, (x,t)vg(z,t)dx
6 Jr,., Tuo @y o Oy \L "™

/ka.(x,t)de> </w wg, (x,t) vy (x,t) das) }dt,

where uy, = U+ Ippr v € Bs (@) with 0 <9Jg(t) < 1. Now, using the convexity of the

mapping w — [|w||z2(.), we get for every t
I+ ) ()2~ [0 2 > T [ t)on(ant) o
Using this inequality we obtain
i pre) =) =i [ IOl

+/1 y {1@+ pevi) )l L2(w) = @@ L2 } dt + gk @+ prve) — jak(@)]
u B,k

2
S P2 P}
> prj' (@3 vr) + 73[3 k(@ 07) + ijg/k(“ﬁmvl%)

From (4.9), the above inequality, and the fact that F'(@)vi + 75 (@;vr) > 0 (see
(4.12)), we get

%>J(ﬂ+pkvk)—J( ) > pi{ F' (@) vg + v 5" (5 01) }

2
P _ oo i o
+ B (P @) of + 5 08) )+ ZELF () = F @0 + 928 7 (w08,

where ug, =@ + O pr(ur — @) with 0 <60, <1. We deduce from (4.3)

Pl P L (@) 42 500)) + 5L o) — F ()0 + 2, ).

Dividing this expression by p? /2 we obtain

(4.13)  F"(@)v} +7 4 (W 03) < |[F" (ug,) — F" (@)]uf] + 22 \Jﬁa”k(wkwk)lﬂL*

Since F : L*(Q,) — R is of class C?, ug, — @ in L*(Qy), and |Jv][r2(q,) = 1 we
have

(4.14) lim [[F"(ug,) — F"(@)]vi| < lim [[F"(ug,) — F"(a)]| =0,
k—oo k—oo
where || - | denotes the norm in the space of bilinear forms on L?(Q,)% Let us

estimate the second term of (4.13). Observe that every element v € B () satisfies
2
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Nlu(t) |2y > é for every t € Igy. Using that uy, € Bﬁ( ) for k > 2, Holder’s
inequality, the expressmn of jg’ /" (g, ;v3), (4.10), and HUk||L2 (@.,) = 1, we obtain

ok ()11 2 24
|j/// (Ug,;’US)| SG/ 76125 < / H’Uk(t)Hgg w dt
prltont Uil =0 T e, B2 iy,
24 24
< @H%HLWU@,;C;LQ(W) /Iﬁ ) lor (@) 2 de < B2pik’
So we get
(4.15) |J’” (ug )\<——>0 as k — 00.

S 52

Since Ig C (0,7*), we have that |Ig \ Ig k| — 0 as k — co. Hence, the convergence
X1, vk — v in L*(Ig, L?(w)) holds. Using this fact and the convexity and continuity
of the quadratic form jj(a) : L*(Q,) — R, (4.13), (4.14), and (4.15) we infer the
following inequality:

(4.16) F"(w)v* + 7 jj (v )<hm1nf{F (@) vi + 745 (@ vR)} <0 VB>0.

Now, taking the limit as 8 — 0 we conclude that J"' (@;v?) = F” (@)v? 4+ " (u;v?) <0.
According to the assumption of the theorem, this is possible only if v =0.

Step 111 limy o0 F"' (w)v} = v. Since ||vg||r2(,) = 1, from the expression (3.13)
we deduce

F"(u vk—/[e ot ()22 dxdt+v.

Therefore, it is enough to prove that the integral converges to 0 as k& — co. Let us
select a and f satisfying 2A; < a < 8 <o. Since vy — v =0 in L*(Q) we get from [5,
Lemma 3.1] that z,, — 0 in H(Q) and there exists a constant C such that

(417) HZ'Uk |‘Ca([0,oo);H1(Q)) S 01 Vk Z 1.

From the compactness of the embedding H'(Q7) C L"(Q7) for every T >0 and r < 4,
we infer that z,, — 0 as k — oo in L"(Qr) for every r <4 and T < co. We also know
that |f"(s)] < Ca(]s|>™~! + 1) for every s € R and some constant Cy. Moreover,
since y4 € L>(0,00; L3(Q)) and § € C([0,T]; H'(2)) (see Theorem 2.1), we get that
@ € O(Qr) for every T > 0; see [6, Chapter 3]. All these facts imply with Hélder’s

4m+2 4m+2
inequality for 5725 and 57

et s @i dears [ (1 I@lon Call 4 1)< de e
T T

@18) < lanlan + 12li@n O (I8 gr + 1) lon P gy 0
8m—+4

as k — oo. Above we have used that 5 5 < 4. Next we prove estimates in the
intervals (T,00). From (4.17) and Hélder’s inequality with 2, 3:’;1’?, and 2m + 1, we
obtain
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/ [l = e let, dode- / [l et g et dads

< 2w 122, 0, 00‘L2(Q))/T el dt

+ 0 / 118 2y (1912t ) + )& l20n sz dt
(4.19)
c3

(a—0)T —(|12m—1 2 > Bt
< 2T G oo+ 1)CF | el ar

Using that ¢ € L2(Q) for every a <20 we get for p € (0,0 — j3)

/ eﬁt||%0||L2(sz) dt
T

o 1 o 1 1
< —2pt ) 2 ( 2(B+p)t ) o T
= (/T A Iilze oy dt V2p lelzz.  @-

From this inequality and (4.19) we infer that for every € > 0 there exists T, < oo such

that
[ [ — e, awar <.
. Ja 2

Moreover, from (4.18) we obtain the existence of k. such that

T. c
/ /|e —of"(9)|2 3kda:dt<§ Vk > k..

The last two inequalities prove the convergence to zero of the integral.
Step IV. Contradiction. Using that jg , (a; v?) > 0, and (4.16), we deduce that
v <liminfy_,oo {F" (@) v} +7 35 (% v?)} <0, which contradicts the assumption v>0.
Step V. Removing the assumption u € LOO(O,OO;LQ(W)). Given u € Uyq N B. (@),
we set v = u — U, v(x,t) = Proji_ 4 (v(z,t)), and uj = 1 + v;. From Proposition
4.2 we get that @ € L>(0,00;L*(w)). Then, it is obvious that [juy — @l/z2(q,) <
|u— 1l r2(q,) <€ and ug € Ugq N L>(0, 00; L2( )). Hence, (4.7) implies

1)
J(ﬂ) =+ iHuk - TLH%Q(QM) < J(uk) VE>1.

Of course, we assume that u € L'(0,00;L?(w)); otherwise the inequality (4.7) is
obvious. By Lebesgue’s dominated convergence theorem we obtain that uy — w in
L*(Qu,)NLY(0,00; L?(w)) and, consequently, y,, — . in L2(Q); see [5, Theorem 2.7].
Then, we can pass to the limit in the above inequality and deduce that u satisfies
(4.7). |

5. Approximation of (P). The aim of this section is to approximate the control
problem (P) by a sequence of finite horizon optimal control problems and to obtain
estimates on the error of these approximations. For every 0 <T < oo we consider the
control problem

(Pr)  min Jr(u):= Fr(u) +vjr(u),

UEUT ad
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where

Uraa={ue LZ(QTM) tug <ulx,t) <up for a.a. (z,t) € Qrw},

Fr(u) = 3llyru = vallizop + 5l1uliz(gp.)s 7(W) = lulliiorc2w), Y is the
solution of (2.1) corresponding to u, and Qr, =w x (0,T).

Given a solution (or a local minimizer) ur of (Pr), we denote by yr its associated
state. For every control u € L? (Qr,) with associated state yr ,, we consider extensions
to @, and @, denoted by dr and g, by setting 4r(x,t) =0 if ¢ > T and §r,, the
corresponding solution of (1.1) associated with the extension @. Let us observe that
if u € Uy 4q, then & € U,q due to our assumptions on u, and u,. Using this notation,
we prove the following theorem.

THEOREM 5.1. For every T > 0 the control problem (Pr) has at least one solution
ur. The extensions {ir}r~o of any family of solutions are bounded in L*(Q.). Every
weak limit 4 in L*(Qy) of a sequence {ir, }32, with T, — oo as k — 00 is a solution
of (P). Moreover, the strong convergence i, — i in L*(Q,) holds.

Proof. The existence proof of a solution is analogous to the one for (P). Let us
denote by y" the solution of (1.1) corresponding to the control v = 0. From Theorem
2.1 we know that y° € L2(Q). Then, using the optimality of ur we get

v, . .
§||uT||%2(Qw) + Nl 10,0022 (w)) < Jr(ur) < J(0).
This implies the boundedness of {dr}rso in U. Therefore, there exists a sequence

{T}}32., converging to co such that 47, — u in L?(Q,). Then, using Lemma 2.2 we
get that g7, — 7 in H1(Q). These facts yield

il 2@,y <liminf iz, [[£2(q,)
(5.1) i koo TN
19 = yallzz @) < Uminf[gr, —yallzz @)-

Moreover, the continuous inclusion L?(0,T;L?(w)) € L*(0,T;L*(w)) for all T > 0
implies for v >0

_ .. . .. . 1
all 220,722 wy) < Hminf||ag, [ L0722 () < Hminf [[ar, [[£1(0,00:22(w)) < ;J(O)-
From here we get
(52)  ullero00iL2(w) = sup all 20,7502 (wy) < Hminf{|ag | 10,0022 (w)) < 00-

From (5.1), (5.2), and the optimality of ur we infer for every u € Uy,q

1 (o9}
J(@) <liminf J (47, ) < likrginf Jr, (up,) + limsup 3 / e 7|97, (1) — yd(t)||%z(ﬂ) dt

k—o0 k—o0 Ty

<liminf Jz, (u) = J(u).
k— o0
Above we have used the inequality

(5:3) llwulloqomzz@) < K (Iwollzz) + [lgllze o 0oz + UVT + ull 2@,
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(see [5, Theorem 2.2]) and the fact that y4 € L>(0,00; L(£2)) to deduce

. I . ® sty
fmsup 5 [ e~ (1) — yalt) 3oy dt < 2limsup [ e, (1) o

k—o00 T k—oo JTy

—|—211msup/ ef"tHyd(t)H%%Q) dtSC’limsup/ (t+1)e 7"dt=0
T k

k—o0 —00 Ty

This proves that 4 is a solution of (P). Let us prove that the convergence of {ir, }32,
to u is strong. First we observe that the above convergence to zero and the optimality
of wp, imply

J(@) <liminf J (i, ) <limsup J (47, ) = limsup Jr, (up,) < limsup Jp, (@) = J(a),
k—o0 k— o0 k— o0 k— o0
which implies that J(@) = limg_,o J (7, ). This identity along with (5.1) and (5.2)
and Lemma 5.2 below lead to limg o0 |07, ||22(0.) = Ul 22(q.)- Thus, 47, — @ in
L?(Q.,) holds. a0

LEMMA 5.2. For every j=1,...,k with k> 2, let {a; r}7r>0 be a family of real
numbers satisfying

<11m1nfaJTf0r1<]<k and hm ZaJT—Zaj,
j=1

where {¢; }?:1 CR. Then, the equalities limr_,o oj 7 = oj hold for every j=1,... k.

Proof. We proceed by induction on k. First, we assume that & =2. The conver-
gence a7 — o is obtained as follows:

a1 < hmmfal 7 <limsupaq 1
T—o0

<limsup(oy 7+ ag1) — hmmfag r<(a1+ o) —az=0q.
T— 00

Now the convergence limy_, o, oo 7 = cv2 is immediate. Let us take k£ > 2 and assume
that the statement is valid for k£ — 1. Proceeding as above we get

a1 < hmmfal 7 <limsupaj r
T— o0

<hmsupZaJ;€ —11m1nf2a]k <Zaj Za] =q;.

T—o0

Then, we have from the above inequalities and the assumption of the lemma

k k
hm oy r =0y and hm ZaJT —Zaj
Jj=2
Now, the statement follows by the induction hypothesis. 0

THEOREM 5.3. Let @ be a strict local minimizer of (P). Then, there exist To > 0
and a family {ur}r=T1, of local minimizers to (Pr) such that dr — 4 in L*(Q.) as
T — 0.
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Proof. Since @ is a strict local minimizer of (P), there exists p > 0 such that
J(u) < J(u) for every u € Uyq N B,(u) with u # @, where B,(u) is the closed ball in
L?(Q.,) centered at 4 and radius p > 0. We consider the control problems

P min J(u and P min Jr(u),
( ) u€B, (1) Uaa ( ) ( T’p) u€Br, ,(W)UT,ad T( )

where Br,(a) = {u € L*(Qrw) : |u— @l r2(gr.,) < p}. Obviously @ is the unique
solution of (P,). Existence of a solution ur of (Pr,,) is straightforward. Then, arguing
as in the proof of Theorem 5.1 and using the uniqueness of the solution of (P,), we
deduce the convergence iy — @ in L?(Q,,). This implies the existence of Ty > 0 such
that [lur — ullr2(q,.,, < lldr — Ul L2(q,) < p for all T > Tp. Hence, ur is also a local
minimizer of (Pr) for T > Tj. 0

THEOREM 5.4. Assume that o > 8Ay, uq < 0 < up if v > 0, and let u be
a local minimizer of (P) satisfying the sufficient second order optimality condition
F"(@)v? + vj" (a;v%) > 0 for all v € Cy \ {0}. Let {ur}trs7, be a family of local
minimizers of (Pr) as selected in Theorem 5.3. Then, there exists a constant C
independent of T such that

(5.4) ||’LALT—’17,||L2(QM) <

Clvo—As+1) (T—i—l)e_"T VT > T,
O'*Af

In addition, for every o> 4Ay there exists a constant Cy, such that

Calyo = A+ 1) (T+ 1)e—<’T VT > Tp.

O’*Af

(5.5) lor —9lly, <

Proof. Under our hypotheses, Theorem 4.4 is applicable. Accordingly let € > 0
and ¢ > 0 be such that (4.7) holds. Following the proof of Theorem 5.3 with p=¢, we
have that ur is a solution of (Pr ). Using (4.7), the optimality of ur, and the fact
that @(x,t) =0 for t > T we get

g, . _ . _ _
§HuT - UH%Z(Qw) < J(ur) — J(a) < Jr(ur) — Jr(a)

(5.6)
e [ e i =yl dt— & [ e =yl
2 )y Y1 — Ydllz2(0) 2 /)y € Y = YallL2(q)
11> _, . 1 /> _, i
<3 / "X (00) Oli7 — yall 720y At — 5 / "X (1,000 ()17~ vallF2 e dt,
0 0

where X (1) denotes the characteristic function of the interval (7', 00).
Let F: L?(Q.) — R be the function defined by

1

F =5 [ o Ol =l oy

By [5, Theorem 3.3] and the chain rule we infer that F is of class C2. Arguing as in
the proof of Theorem 3.4 we get

f’(u)v:/ pyvdzdt,

w
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where ¢, is the solution of the adjoint state equation

890 / __ ,—ot .
(57) *a *A§0+a@+f (yu)QOfe X(T,oo)(yu*yd) in Q’

O =0o0n %, limy_o e *o(t)| 12(0) =0.
Applying the mean value theorem in the right-hand side of (5.6) we infer

6. . o o
i~y < [ ortir =) et < o, luxiau lir il

w

which implies

o 2
(5.8) lar = allz2qu) < §llvor lr2(Qu),

where g, is the solution of (5.7) with y,, replaced by ys,., the state associated with
ug, =+ Or(ir — 1), O € (0,1). We use that {ug, }r>7, is bounded in L?(Q) and
ya € L>(0,00; L%(Q)) to estimate ¢or. First, we test the equation satisfied by pg,
with e?A5py. and integrate in (¢,7) x Q for T'>T and t € [0,7)

eQAft

2

2

T
+ A / 21050y, (5)]2 0y ds
t

gl
@97"( ) £2(9)

T
+ / Q2ss / (Von? +agh, + £/ (y)g3, ] dods
t Q

T A e2AfT ~
Z/T e f_a)s/ﬂ(yeT —Yd)por drds + 5 H@aT(T)’

Arguing as in the proof of (3.8), using that lim;_, €*7*(|g, (t)]| 12(n) =0, and taking
the limit as T'— oo, we infer

2

L2(Q)

A

esssup ||y, (t)HL2(Q)+||s09T||L32Af(o,oo;H1(Q)) SCl||X[T,oo)(yaT*yd)HLg(a_Af)(Q)-
t>0 ’

Additionally,  taking T = T in the above inequalities we get

ess supseo,7] |0o- (1)l 22() < llpor (T)||L2(q)- Then, we have
lporll2(@r) < VT esssup |lgor () 22() < VT llpor (T)l| 2(0)
te[0,T]
<eMTVTeM T |pg, (T) | L2 () < Cre™ ™ VT x(1,00) (Yor — vallez, , @-

2

Finally, we get

Nl

Iorliziar < oorlizn + [ Ioor Ol at) " < o liocen

+e g, \|L32Af<Q) < Cre T (VT +1)|IxX(7,00) (Y07 — Z/d)HL;PAf)(Q)
1
o0 2
— e MT(VT 4 1) ( J R RO dt)
T

< Coe™MT(VT +1) (/ e2Ar=t (4 1) dt)

T
< Go- A+ D) (T+1)e*f’T,
- O'—Af
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where we used that ||ye, (£)||r2(0) < Co(V/t + 1); see [5, inequality (2.2)]. The above
estimate along with (5.8) leads to (5.4).
The estimate (5.5) follows from (5.4) and the generalized mean value theorem

97 —3lly. < P 1G5, (@ + O(ur — a)|||ar — allL2(q.),

)

where ||GZ, (i + (a7 — u))|| denotes the norm in £(L?(Q.),Ya)- 0

Remark 5.5. In the formulation of the control problem (P), the discount factor
could be introduced after some period of time. This means that the weight e~7* could
be replaced by weights of type

1 ift<T,

t) = _ -
w(t) e ot=T) ift>T.

The results proved in this paper can be easily modified to include this type of weights.
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