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Abstract
A class of infinite horizon optimal control problems subject to semilinear parabolic
equations is investigated. First and second order optimality conditions are obtained,
in the presence of constraints on the controls, which can be either pointwise in space-
time, or pointwise in time and L2 in space. These results rely on a new L∞ estimate
for nonlinear parabolic equations in an essential manner.
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1 Introduction

We study the optimal control problem

(P) min
u∈Uad

J (u) = 1

2

∫ ∞

0

∫
Ω

(yu − yd)
2 dx dt + ν

2

∫ ∞

0

∫
ω

u2 dx dt,
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where ν > 0, yd ∈ L2(Ω × (0,∞)) ∩ L p(0,∞; L2(Ω)) with p ∈ ( 4
4−n ,∞], and

Uad = {u ∈ L2(0,∞; L2(ω)) : u(t) ∈ Kad for a.a. t ∈ (0,∞)}.

Above Kad denotes a closed, convex, and bounded set in L2(ω), and yu is the solution
of the following parabolic equation:

{
∂ y

∂t
− Δy + ay + f (x, t, y) = g + uχω in Q = Ω × (0,∞),

∂n y = 0 on Σ = Γ × (0,∞), y(0) = y0 in Ω.
(1.1)

Here Ω is a bounded domain in R
n , 1 ≤ n ≤ 3, with a Lipschitz boundary Γ , and

Ω is an interval if n = 1, ω is a measurable subset of Ω with positive Lebesgue
measure, χω denotes the characteristic function of ω, a ∈ L∞(Ω), 0 ≤ a �≡ 0,
g ∈ L2(Q), and additionally g ∈ L p(0,∞; L2(Ω)) with p ∈ ( 4

4−n ,∞] if n = 2 or
3, and y0 ∈ L∞(Ω). For every u ∈ Uad , the symbol uχω is defined as follows:

(uχω)(x, t) =
{
u(x, t) if (x, t) ∈ Qω = ω × (0,∞),

0 otherwise.

Possible choices for Kad include

Kad = Bγ = {v ∈ L2(ω) : ‖v‖L2(ω) ≤ γ }, 0 < γ < ∞, (1.2)

Kad = {v ∈ L2(ω) : α ≤ v(x) ≤ β for a.a. x ∈ ω}, −∞ < α < β < ∞. (1.3)

Concerning the nonlinearity f : Q × R → R we assume that it is a Carathéodory
function of classC1 with respect to the last variable satisfying the following properties:

f (x, t, 0) = 0, (1.4)

∃M f ≥ 0 such that
∂ f

∂ y
(x, t, y) ≥ 0 and f (x, t, y)y ≥ 0 ∀|y| ≥ M f , (1.5)

∀M > 0 ∃CM such that

∣∣∣∣∂ f

∂ y
(x, t, y)

∣∣∣∣ ≤ CM ∀|y| ≤ M, (1.6)

for almost all (x, t) ∈ Q. Let us observe that (1.5) and (1.6) imply

∂ f

∂ y
(x, t, y) ≥ −CM f ∀y ∈ R and for a.a. (x, t) ∈ Q. (1.7)

Moreover, (1.4) and (1.6) along with the mean value theorem yield

| f (x, t, y)|=
∣∣∣∂ f

∂ y
(x, t, θ(x, t)y)y

∣∣∣≤CMM ∀|y|≤M and for a.a. (x, t) ∈ Q.

(1.8)
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The following generalized Poincaré inequality will frequently be used

Ca‖y‖H1(Ω) ≤
(∫

Ω

[|∇ y|2 + ay2] dx
) 1

2

. (1.9)

All along this paper we will assume that

p ∈
( 4

4 − n
,∞

]
if n = 2 or 3 and p ∈ [2,∞] if n = 1. (1.10)

Remark 1.1 The operator −Δ can be replaced by any uniformly elliptic operator with
L∞(Ω) coefficients. The assumption (1.4) can be relaxed by assuming that f (·, ·, 0) ∈
L2(Q) ∩ L∞(0,∞; L2(Ω)) and then redefining f and g as f (x, t, y) − f (x, t, 0)
and g(x, t) − f (x, t, 0), respectively.

By investigating (P) we continue our efforts on studying infinite horizon optimal
control problems with semilinear parabolic equations as constraints. In [8] the nonlin-
earities were chosen of polynomial type, no constraints were enforced on the controls,
and the focus was put on nonsmooth, sparsity enhancing control costs, which entail
that the controls settle down at zero once the states enter into a neighborhood of a
stable equilibrium. Later, in [9] the nonlinearity was not restricted to be a polynomial
and the conditions on f were very similar to those imposed in the present paper. The
same type of control constraints were imposed as well. The major step forward in
the current paper compared to [9] consists in an L∞(Q) estimate of the states for
feasible controls, i.e. for controls with the property that the associated states yu are
in L2(Q). Utilizing this property, well-posedness and C2 regularity of the control-to-
state mapping, associating the infinite horizon controls to the infinite horizon states,
can be guaranteed, and a second order analysis of (P) becomes possible. This was
not the case in [9], where the first order conditions of the infinite horizon problem
were obtained as the limit of the associated finite horizon problems, and no second
order analysis was carried out. The authors are not aware about the availability of
the second order analysis for optimal control problems with constraints as in (1.2)
even in the finite horizon case. Along a related, but different line of research we also
investigated infinite horizon optimal control problems with a discount factor on the
state, [11] and [12]. This allows to treat a larger class of nonlinearities at the expense
of less information of the optimal states as time increases.

Most of the literature on infinite horizon problems is carried out for ordinary dif-
ferential equations. Let us mention some of these contributions. In [7] the importance
of infinite horizon problems in applications is stressed. In general, when formulat-
ing optimal control problems, the time horizon can be subject to ambiguity. In such
cases the choice as infinite horizon problem can be a valuable choice. The first article,
focusing on infinite horizon problems may be [15]. More recent contributions all in
the context of ordinary differential equations are available for instance in [1, 2, 4].
Concerning the literature, pointwise constraints as in (1.3) have received considerably
more attention than norm constraints as in (1.2). However, from a practical point of
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view (1.2) appears to be equally important. In the case of optimal control of Navier–
Stokes equations the suitability of this type of constraints was discussed in [14]. The
use of the L1(ω) norm replacing the L2(ω)was studied in [10]. The last two references
were devoted to final horizon control problems.

Briefly, the paper is structured in the following way. In Sect. 2, the existence of
optimal controls and first order optimality conditions are established. Necessary and
sufficient second order conditions for the two choices of Kad in (1.2) and (1.3) are
obtained in Sect. 3. Section4 is devoted to convergence results for the finite horizon
problems associated to (P), to the infinite horizon problem. This is not only of intrinsic
interest but also of relevance for numerical realization. In the Appendix the relevant
results for the state equation, and the associated linearized and adjoint equations are
established. The L∞(Q) regularity result for the state equation, already mentioned
above, may be of interest beyond its application in optimal control.

2 Existence of an optimal control and first order optimality conditions

In this section, we prove the existence of an optimal solution of (P) and derive the
first order optimality conditions satisfied by any local minimizer. For this purpose we
will also address the issue of differentiability of the relation control-to-state and of the
cost functional J . Let us observe that Theorem A.2 implies the existence of a unique
state yu for every control u ∈ Uad . However, it could happen that yu /∈ L2(Q) and,
consequently, J (u) = ∞. Therefore, the assumption about the existence of a control
u0 ∈ Uad such that J (u0) < ∞ is needed. This issue will not be addressed in this
paper, the reader is referred, for instance, to [3] and [8] for this question. We will say
that u is a feasible control if u ∈ Uad and J (u) < ∞.

For 0 < T ≤ ∞ we set W (0, T ) = {y ∈ L2(0, T ; H1(Ω)) : ∂ y
∂t ∈

L2(0, T ; H1(Ω)∗)} with ‖y‖W (0,T ) =
(
‖y‖2

L2(0,T ;H1(Ω))
+

∥∥∥ ∂ y
∂t

∥∥∥2
L2(0,T ;H1(Ω)∗)

) 1
2

as norm. It is well known that (W (0, T ), ‖ · ‖W (0,T )) is a Banach space. In fact, it is
a Hilbert space because ‖ · ‖W (0,T ) is a Hilbertian norm. Furthermore, the embedding
W (0, T ) ⊂ C([0, T ]; L2(Ω)) is continuous for T ≤ ∞ and W (0, T ) is compactly
embedded in L2(0, T ; L2(Ω)) if T < ∞.

Theorem 2.1 Let us assume that there exists a feasible control u0. Then, (P) has at
least one solution.

Proof Let {uk}∞k=1 ⊂ Uad be a minimizing sequence of feasible controls with associ-
ated states {yuk }∞k=1. Since J (uk) → inf (P) < ∞, then the boundedness of {uk}∞k=1
and {yuk }∞k=1 in L2(Qω) and L2(Q), respectively, follows. Then, taking subsequences
we can assume that (uk, yuk )⇀(ū, ȳ) in L2(Qω) × L2(Q). SinceUad is a closed and
convex subset of L2(Qω), we infer that ū ∈ Uad . Due to theweak lower semicontinuity
of J with respect to (y, u) in L2(Q)×L2(Qω), it is enough to establish that ȳ is the state
associated to ū to conclude the proof. For this purpose we have to show that ȳ satisfies
(A.2) with g + χωū on the right hand side for every T < ∞. The only delicate point
in this respect is to prove the convergence of f (x, t, yuk ) → f (x, t, ȳ) in L2(QT ) for
every T > 0, where QT = Ω × (0, T ). Using the boundedness of {(uk, yuk )}∞k=1 in
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[L2(Qω)∩L∞(0,∞; L2(ω))]×L2(Q)we deduce from (A.4)–(A.6) the boundedness
of {yuk }∞k=1 in W (0,∞) ∩ L∞(Q) and { f (·, ·, yuk )}∞k=1 in L∞(Q) ∩ L2(Q). Hence,
using the compactness of the embeddingW (0, T ) ⊂ L2(QT ) the desired convergence
follows. ��

Hereafter, the following additional hypothesis on f is assumed:

⎧⎨
⎩

∃m f > 0, ∃δ f ∈ [0, 1), and ∃C f > 0 such that
∂ f

∂ y
(x, t, s) ≥ −C f |s| − δ f a(x, t) ∀|s| ≤ m f and for a.a. (x, t) ∈ Q.

(2.1)

Let us denote for every p satisfying (1.10)

Up = {u ∈ L2(Qω) ∩ L p(0,∞; L2(ω)) such that yu ∈ L2(Q)},
Yp = {y ∈ W (0,∞) ∩ L∞(Q) : ∂ y

∂t
− Δy + ay ∈ L2(Q) ∩ L p(0,∞; L2(Ω))},

and by Gp : Up −→ Y the mapping Gp(u) = yu , where yu is the solution of (1.1).
Yp is a Banach space when endowed with the associated graph norm. We observe that
U∞ ⊂ Up and G∞ is the restriction of Gp to U∞.

Theorem 2.2 Let us assume that Up is not empty. Then, Up is an open subset of
L2(Qω) ∩ L p(0,∞; L2(ω)) and the mapping G p is of class C1. Moreover, given
u ∈ Up and v ∈ L2(Qω) ∩ L p(0,∞; L2(ω)), zv = DGp(u)v is the unique solution
of

⎧⎨
⎩

∂z

∂t
− Δz + az + ∂ f

∂ y
(x, t, yu)z = vχω in Q,

∂nz = 0 on Σ, z(0) = 0 in Ω.

(2.2)

Proof The proof will be based on the implicit function theorem. For this purpose we
define the mapping

Fp : Yp × L2(Qω) ∩ L p(0,∞; L2(ω)) −→ L2(Q) ∩ L p(0,∞; L2(Ω)) × L∞(Ω)

Fp(y, u) =
(∂ y

∂t
− Δy + ay + f (·, ·, y) − g − χωu, y(0) − y0

)
.

By definition of Yp and using (1.8), we deduce that Fp is well defined and is of class
C1. Further, we have that Fp(yu, u) = (0, 0) for every u ∈ Up and

∂Fp

∂ y
(yu, u) : Yp −→ L2(Q) ∩ L p(0,∞; L2(Ω)) × L∞(Ω)

∂Fp

∂ y
(y, u)z =

(∂z

∂t
− Δz + az + ∂ f

∂ y
(·, ·, yu)z, z(0)

)
.
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Then, ∂Fp
∂ y (yu, u) is an isomorphism if and only if the equation

⎧⎨
⎩

∂z

∂t
− Δz + az + ∂ f

∂ y
(x, t, yu)z = h in Q,

∂nz = 0 on Σ, z(0) = z0 in Ω

(2.3)

has a unique solution in Yp for every (h, z0) ∈ L2(Q)∩ L p(0,∞; L2(Ω))× L∞(Ω)

with continuous dependence. This is an immediate consequence of Theorem A.3 with
d(x, t, s) = ∂ f

∂ y (x, t, s) and y = yu ∈ L∞(Q). Finally, the theorem follows by
applying the implicit function theorem. ��

As a consequence of the above theorem, we have that J : Up −→ R is well defined.
The next theorem establishes its differentiability.

Theorem 2.3 Assuming that Up is not empty, the functional J is of class C1 and for
every u ∈ Up and v ∈ L2(Qω) ∩ L p(0,∞; L2(ω)) its derivative is given by

J ′(u)v =
∫
Q
(yu − yd)zu,v dx dt + ν

∫
Qω

uv dx dt =
∫
Qω

(ϕu + νu)v dx dt,

(2.4)

where zu,v = G ′
p(u)v and ϕu ∈ W (0,∞) ∩ L∞(Q) satisfies

⎧⎨
⎩

−∂ϕu

∂t
− Δϕu + aϕu + ∂ f

∂ y
(x, t, yu)ϕu = yu − yd in Q,

∂nϕu = 0 on Σ, limt→∞ ‖ϕu(t)‖L2(Ω) = 0.
(2.5)

The fact that J is of class C1 is an immediate consequence of Theorem 2.2 and the
chain rule. Formula (2.4) is deduced in the standard way from Eqs. (2.2) and (2.5).
Concerning the well posedness of (2.5) we refer to Theorem A.4.

We conclude this section establishing the first order optimality conditions satisfied
by every local minimizer of (P) and deducing some consequences from them. In this
paper, a local minimizer ū is understood in the L2(Qω) sense and it is assumed that
ū ∈ U∞ ∩Uad .

Theorem 2.4 Let ū be a local minimizer of (P). Then, there exist ȳ, ϕ̄ ∈ W (0,∞) ∩
L∞(Q) such that

{
∂ ȳ

∂t
− Δȳ + a ȳ + f (x, t, ȳ) = g + ūχω in Q,

∂n ȳ = 0 on Σ, ȳ(0) = y0 in Ω,
(2.6)

⎧⎨
⎩

−∂ϕ̄

∂t
− Δϕ̄ + aϕ̄ + ∂ f

∂ y
(x, t, ȳ)ϕ̄ = ȳ − yd in Q,

∂n ϕ̄ = 0 on Σ, limt→∞ ‖ϕ̄(t)‖L2(Ω) = 0,
(2.7)
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∫
Qω

(ϕ̄ + νū)(u − ū) dx dt ≥ 0 ∀u ∈ Uad . (2.8)

This theorem is an immediate consequence of Theorem 2.3 and the inequality
J ′(ū)(u − ū) ≥ 0 for all u ∈ Uad .

Corollary 2.1 Let ϕ̄ and ū satisfy (2.7) and (2.8). If Kad is given by (1.2), then the
following properties hold for almost all t ∈ (0,∞)

∫
ω

(ϕ̄(t) + νū(t))(v − ū(t)) dx ≥ 0 ∀v ∈ Bγ , (2.9)

if ‖ū(t)‖L2(ω) < γ ⇒ ϕ̄(t) + νū(t) = 0 in ω, (2.10)

if ‖ū(t)‖L2(ω) = γ ⇒ ū(x, t) = −γ
ϕ̄(x, t)

‖ϕ̄(t)‖L2(ω)

, (2.11)

‖ū‖L∞(Qω) ≤ 1

ν
‖ϕ̄‖L∞(Qω). (2.12)

In the case that Kad is given by (1.3), then we have

ū(x, t) = Proj[α,β]
(

− 1

ν
ϕ̄(x, t)

)
. (2.13)

In both cases we have that ū ∈ L∞(Qω).

Proof For the proof of (2.9) and (2.10) the reader is referred to [9, Lemma 3.2]. Let
us prove (2.11). First, we assume that ‖ϕ̄(t) + νū(t)‖L2(ω) �= 0. Then, again from [9,
Lemma 3.2] we obtain

ū(x, t) = −γ
ϕ̄(x, t) + νū(x, t)

‖ϕ̄(t) + νū(t)‖L2(ω)

for a.a. x ∈ ω.

This yields

(
νγ + ‖ϕ̄(t) + νū(t)‖L2(ω)

)
ū(x, t) = −γ ϕ̄(x, t) for a.a. x ∈ ω. (2.14)

Taking the norm in L2(ω) in the above expression and using that ‖ū(t)‖L2(ω) = γ we
infer

νγ + ‖ϕ̄(t) + νū(t)‖L2(ω) = ‖ϕ̄(t)‖L2(ω). (2.15)

Identities (2.14) and (2.15) imply (2.11). In the case ‖ϕ̄(t) + νū(t)‖L2(ω) = 0 and
‖ū(t)‖L2(ω) = γ we have that

ū(x, t) = −1

ν
ϕ̄(x, t) for a.a. x ∈ ω and νγ = ‖ϕ̄(t)‖L2(ω). (2.16)
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Therefore, (2.11) also holds. Let us prove (2.12). If ‖ū(t)‖L2(ω) < γ , then (2.10)
implies that |ū(x, t)| = 1

ν
|ϕ̄(x, t)| ≤ 1

ν
‖ϕ̄‖L∞(Qω). If ‖ū(t)‖L2(ω) = γ , the inequality

‖ϕ̄(t)‖L2(ω) ≥ γ ν follows from (2.15) and (2.16). Then, (2.11) implies that |ū(x, t)| ≤
1
ν
‖ϕ̄‖L∞(Qω).
Finally, the identity (2.13) is well known.

��

3 Second order optimality conditions

In this section we address the second order optimality conditions for (P). For this
purpose, in addition to assumptions (1.4)–(1.7) we impose the following hypotheses:
f : Q × R −→ R is of class C2 with respect to the second variable and satisfies

∃δ f ∈ [0, 1) such that
∂ f

∂ y
(x, t, 0) ≥ −δ f a(x, t), (3.1)

∀M > 0 ∃CM such that

∣∣∣∣∂
2 f

∂ y2
(x, t, y)

∣∣∣∣ ≤ CM ∀|y| ≤ M, (3.2)

⎧⎨
⎩

∀ε > 0 and ∀M > 0 ∃ρε,M such that∣∣∣∣∂
2 f

∂ y2
(x, t, y2) − ∂2 f

∂ y2
(x, t, y1)

∣∣∣∣ ≤ ε ∀|y1|, |y2| ≤ M with |y2 − y1| ≤ ρε,M ,

(3.3)

for almost all (x, t) ∈ Q. We observe that (3.1) and (3.2) imply (2.1). Indeed, it is
enough to select

m f = 1 and C f = max|s|≤1

∣∣∣∣∂
2 f

∂ y2
(x, t, y)

∣∣∣∣ .

Then, using the mean value theorem we infer for almost all (x, t) ∈ Q

∂ f

∂ y
(x, t, s) = ∂2 f

∂ y2
(x, t, θ(x, t)s)s + ∂ f

∂ y
(x, t, 0) ≥ −C f |s| − δ f a(x, t) ∀|s| ≤ m f .

Theorem 3.1 Under assumptions (1.4)–(1.7) and (3.1)–(3.2) and supposing that Up

is not empty, G p : Up −→ Yp is of class C2. Moreover, given u ∈ Up and
v1, v2 ∈ L2(Qω) ∩ L p(0,∞; L2(ω)), then zv1,v2 = G ′′

p(u)(v1, v2) is the solution
of the equation

⎧⎨
⎩

∂z

∂t
− Δz + az + ∂ f

∂ y
(x, t, yu)z = −∂2 f

∂ y2
(x, t, yu)zv1 zv2 in Q,

∂nz = 0 on Σ, z(0) = 0 in Ω,

(3.4)

where zvi = G ′
p(u)vi for i = 1, 2.
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The C2 differentiability of G follows from the implicit function theorem applied to
the mapping Fp introduced in the proof of Theorem 2.2. It is enough to observe
that now Fp is of class C2. The Eq. (3.4) follows differentiating the identity
Fp(Gp(u), u) = 0 twice.

As a consequence ofTheorem3.1 and the chain rulewehave the following corollary.

Corollary 3.1 If Up is not empty, then the function J : Up −→ R is of class C2 and
we have

J ′′(u)(v1, v2) =
∫
Q

[
1 − ∂2 f

∂ y2
(x, t, yu)ϕu

]
zv1 zv2 dx dt + ν

∫
Qω

v1v2 dx dt

(3.5)

for every u ∈ U and v1, v2 ∈ L2(Qω) ∩ L p(0,∞; L2(ω)).

Remark 3.1 Under assumptions (1.4)–(1.7) and (3.1)–(3.2), for every u ∈ Up the
linear form J ′(u) : L2(Qω) ∩ L p(0,∞; L2(ω)) −→ R as well as the bilinear form
J ′′(u) : [L2(Qω) ∩ L p(0,∞; L2(ω))]2 −→ R can be extended to continuous linear
and bilinear forms J ′(u) : L2(Qω) −→ R and J ′′(u) : L2(Qω)2 −→ R given
by the same expressions (2.4) and (3.5), respectively. Indeed, this is an immediate
consequence of Theorem A.3 along with the L∞(Q)∩ L2(Q) regularity of the adjoint
states established in Theorem A.4.

The analysis of second order optimality conditions is carried out in the next two
subsections, where we consider the cases with Kad given by (1.2) or (1.3).

3.1 Case I: Kad = B� = {v ∈ L2(!) : ‖v‖L2(!) ≤ �}.

For this case we consider the Lagrange function

L : Up × L∞(0,∞) −→ R, L(u, λ) = J (u) + 1

2γ

∫ ∞

0
λ(t)‖u(t)‖2L2(ω)

dt .

Theorem 2.3 and Corollary 3.1 imply thatL is of classC2 and we have the expressions

∂L
∂u

(u, λ)v =
∫
Qω

(ϕu + νu)v dx dt + 1

γ

∫ ∞

0
λ

∫
ω

uv dx dt, (3.6)

∂2L
∂u2

(u, λ)(v1, v2)

=
∫
Q

[
1 − ∂2 f

∂ y2
(x, t, yu)ϕu

]
zv1 zv2 dx dt +

∫ ∞

0
(ν + 1

γ
λ)

∫
ω

v1v2 dx dt .

(3.7)

The identities (3.6) and (3.7) define continuous linear and bilinear forms on L2(Qω)

and L2(Qω)2, respectively.
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Let ū ∈ Uad∩U∞ satisfy the first oder optimality conditions (2.6)–(2.8). Associated
with ū we define λ̄(t) = ‖ϕ̄(t) + νū(t)‖L2(ω). From Theorem 2.4 and (2.12) we get
that λ̄ ∈ L∞(0,∞) ∩ L2(0,∞). We also set

Iγ = {t ∈ (0,∞) : ‖ū(t)‖L2(ω) = γ } and I+
γ = {t ∈ Iγ : λ̄(t) �= 0}.

The choice of λ̄ as Lagrange multiplier associated with the control constraint is sug-
gested by (2.10). Actually, next lemma confirms that this is the correct choice.

Lemma 3.1 Let ū and ϕ̄ satisfy (2.7) and (2.8). Then we have ∂L
∂u (ū, λ̄)v = 0 for every

v ∈ L2(Qω).

Proof Using (3.6), (2.10), (2.11), and (2.15) we infer

∂L
∂u

(ū, λ̄)v =
∫
Qω

(ϕ̄ + νū)v dx dt + 1

γ

∫ ∞

0
λ̄(t)

∫
ω

ū(t)v(t) dx dt

=
∫
I+
γ

∫
ω

(ϕ̄ + νū)v dx dt + 1

γ

∫
I+
γ

λ̄(t)
∫

ω

ū(t)v(t) dx dt

=
∫
I+
γ

∫
ω

(
ϕ̄ − νγ

ϕ̄

‖ϕ̄(t)‖L2(ω)

)
v dx dt

−
∫
I+
γ

λ̄(t)
∫

ω

ϕ̄

‖ϕ̄(t)‖L2(ω)

v(t) dx dt = 0.

��
In order to formulate the second order optimality conditions we introduce the cone

of critical directions associated with ū:

Cū = {v ∈ L2(Qω) : J ′(ū)v = 0 and
∫

ω

ū(t)v(t) dx

{≤ 0 if t ∈ Iγ
= 0 if t ∈ I+

γ
}.

Then we have the following second order necessary optimality conditions.

Theorem 3.2 If ū is a local minimizer of (P), then ∂L
∂u (ū, λ̄)v2 ≥ 0 for all v ∈ Cū.

Proof Since ū is a local minimizer of (P), there exists ε > 0 such that J (ū) ≤ J (u)

for all u ∈ Uad ∩ Bε(ū), where Bε(ū) = {u ∈ L2(Qω) : ‖u − ū‖L2(Qω) < ε}. Due to
ū ∈ U∞ and since U∞ is an open subset of L2(Qω)∩L∞(0,∞; L2(ω)), we can select
ε small enough so that every control u ∈ Bε(ū) satisfying ‖u − ū‖L∞(0,∞;L2(ω)) < ε

belongs to U∞.
Let v ∈ Cū ∩ L∞(0,∞; L2(ω)). The assumption v ∈ L∞(0,∞; L2(ω)) will be

removed later. Let us fix an integer

k0 > max

⎧⎨
⎩

√
2max{‖ū‖L2(Qω), ‖ū‖L∞(0,∞;L2(ω))}

γ 4ε
,
1

γ 2

⎫⎬
⎭ ,
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and set

vk(x, t) =
{
0 if γ 2 − 1

k
< ‖ū(t)‖2L2(ω)

< γ 2

v(x, t) otherwise
∀k ≥ k0.

It is obvious that {vk}k≥k0 ⊂ L2(Qω)∩L∞(0,∞; L2(ω)). Moreover, the convergence
vk → v in L2(Qω) follows from Lebesgue’s dominated convergence theorem.

For fixed k ≥ k0, we define

αk = min

⎧⎨
⎩

min{1, γ }ε
2max{‖v‖L2(Qω), ‖v‖L∞(0,∞;L2(ω))}

,
γ −

√
γ 2 − 1

k

‖v‖L∞(0,∞;L2(ω))

⎫⎬
⎭

and φk : (−αk,+αk) −→ L2(Qω) ∩ L∞(0,∞; L2(ω)) by

φk(ρ) =
√
1 − ρ2

γ 2 ‖vk(t)‖2L2(ω)
ū + ρvk .

Bydefinition ofαk wehave
ρ2

γ 2 ‖vk(t)‖2L2(ω)
< 1 for all k ≥ k0, |ρ| < αk , and almost all

t ∈ (0,∞). Moreover, |φk(ρ)| ≤ |ū| + ε
2‖v‖L2(Qω)

|v| ∈ L2(Qω) ∩ L∞(0,∞; L2(ω)).

Hence, the mapping φk is well defined and it is of class C∞. Let us prove some
properties of this mapping.

I - φk(ρ) ∈ Uad for all ρ ∈ [0,+αk). Let us set uρ = φk(ρ). Then, we have for
almost all t ∈ (0,∞)

‖uρ(t)‖2L2(ω)
=

[
1 − ρ2

γ 2 ‖vk(t)‖2L2(ω)

]
‖ū(t)‖2L2(ω)

+ ρ2‖vk(t)‖2L2(ω)

+ 2ρ

√
1 − ρ2

γ 2 ‖vk(t)‖2L2(ω)

∫
ω

ū(t)vk(t) dx . (3.8)

In the case t ∈ Iγ , we have vk(t) = v(t). Then, using that v ∈ Cū we deduce that the
last integral in the above inequality is less than or equal to zero and, consequently, (3.8)
leads to ‖uρ(t)‖2

L2(ω)
≤ γ 2. If γ 2 − 1

k < ‖ū(t)‖2
L2(ω)

< γ 2, then we have vk(t) = 0

by definition and, hence, (3.8) implies that ‖uρ(t)‖2
L2(ω)

≤ γ 2. Finally, we assume

that ‖ū(t)‖2
L2(ω)

≤ γ 2 − 1
k . Then, we infer from the definition of αk

‖uρ(t)‖L2(ω) ≤
√

γ 2 − 1

k
+ αk‖v‖L∞(0,∞;L2(ω)) ≤ γ.
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II - ‖φk(ρ) − ū‖L2(Qω) ≤ ε. From the definition of φk we get

‖φk(ρ) − ū‖L2(Qω) ≤
∣∣∣∣∣∣1 −

√
1 − ρ2

γ 2 ‖vk(t)‖2L2(ω)

∣∣∣∣∣∣ ‖ū‖L2(Qω) + |ρ|‖vk‖L2(Qω)

≤ α2
k

γ 2 ‖v‖2L∞(0,∞;L2(ω))
‖ū‖L2(Qω) + αk‖v‖L2(Qω).

From the definition of αk and k ≥ k0 > 1
γ 2 we obtain

αk ≤
γ −

√
γ 2 − 1

k

‖v‖L∞(0,∞;L2(ω))

≤ 1

kγ ‖v‖L∞(0,∞;L2(ω))

.

Moreover, αk ≤ ε
2‖v‖L2(Qω)

holds. Then, we have

‖φk(ρ) − ū‖L2(Qω) ≤ ‖ū‖L2(Qω)

k2γ 4 + ε

2
< ε.

The last inequality is consequence of k ≥ k0 >

√
2‖ū‖L2(Qω)

γ 4ε
.

III - φk(ρ) ∈ U∞. Arguing as in the previous step and using again the defini-
tion of αk and k0 with ‖ū‖L2(Qω) and ‖v‖L2(Qω) replaced by ‖ū‖L∞(0,∞;L2(ω)) and
‖v‖L∞(0,∞;L2(ω)), respectively, we infer that ‖φk(ρ) − ū‖L∞(0,∞;L2(ω)) < ε. Due to
the choice of ε this implies that φk(ρ) ∈ U∞.

Now we define the function ψk : (−αk,+αk) −→ R by ψk(ρ) = J (φk(ρ)).
From the local optimality of ū and the established properties of φk we infer that
ψk(0) = J (ū) ≤ J (φk(ρ)) = ψk(ρ) for every ρ ∈ [0,+αk). Since ψk is of class C2,
and ψ ′

k(0) = 0 then ψ ′′
k (0) ≥ 0. Hence, we get

0 ≤ ψ ′′
k (0) = J ′′(φk(0))φ

′
k(0)

2 + J ′(φk(0))φ
′′
k (0) = J ′′(ū)v2k + J ′(ū)φ′′

k (0)

=
∫
Q

[
1 − ϕ̄

∂ f

∂ y
(x, t, ȳ)

]
z2vk dx dt + ν

∫
Qω

v2k dx dt

− 1

γ 2

∫ ∞

0
‖vk(t)‖2L2(ω)

∫
ω

(ϕ̄ + νū)ū dx dt .

Using (2.10), (2.11), (2.15), and (2.16) we obtain that

∫ ∞

0
‖vk(t)‖2L2(ω)

∫
ω

(ϕ̄ + νū)ū dx dt

=
∫
Iγ

‖vk(t)‖2L2(ω)

(
−

∫
ω

γ
ϕ̄2(t)

‖ϕ̄(t)‖L2(ω)

dx + ν‖ū(t)‖2L2(ω)

)
dt

= γ

∫
Iγ

‖vk(t)‖2L2(ω)

(
− ‖ϕ̄(t)‖L2(ω) + νγ

)
dt
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= −γ

∫
Iγ

‖vk(t)‖2L2(ω)
‖ϕ̄(t) + νū(t)‖L2(ω) dt = −γ

∫
Iγ

λ̄(t)‖vk(t)‖2L2(ω)
dt

= −γ

∫ ∞

0
λ̄(t)‖vk(t)‖2L2(ω)

dt .

Inserting this in the above inequality we infer with (3.7)

0 ≤ ψ ′′
k (0) = ∂2L

∂u
(ū, λ̄)v2k .

Now, the convergence vk → v in L2(Q) implies

∂2L
∂u

(ū, λ̄)v2 = lim
k→∞

∂2L
∂u

(ū, λ̄)v2k ≥ 0.

Finally, we remove the assumption v ∈ L∞(0,∞; L2(ω)). Given v ∈ Cū , we
define vk(x, t) = v(x,t)

1+ 1
k ‖v(t)‖L2(ω)

for every integer k ≥ 1. Then, we have {vk}∞k=1 ⊂
L∞(0,∞; L2(ω)) ∩ L2(Qω) and vk → v in L2(Qω). Using that v ∈ Cū we get

∫
ω

ū(t)vk(t) dx = 1

1 + 1
k ‖v(t)‖L2(ω)

∫
ω

ū(t)v(t) dx

{≤ 0 if t ∈ Iγ
= 0 if t ∈ I+

γ

Identity (2.11) implies∫
ω

ϕ̄(t)vk(t) dx = −‖ϕ̄(t)‖L2(ω)

γ

∫
ω

ū(t)vk(t) dt = 0 for a.a. t ∈ I+
γ .

Therefore from (2.10) and the above relations we deduce

J ′(ū)vk =
∫
I+
γ

∫
ω

(ϕ̄(t) + νū(t))vk(t) dx dt = 0.

Hence, {vk}∞k=1 ⊂ Cū ∩ L∞(0,∞; L2(ω)) holds and, consequently, ∂2L
∂u2

(ū, λ̄)v2k ≥ 0

for all k ≥ 1. Finally, passing to the limit as k → ∞ we conclude that ∂2 L
∂u2

(ū, λ̄)v2 ≥
0. ��

Now, we give a second order sufficient optimality condition.

Theorem 3.3 Let ū ∈ Uad∩U∞ satisfy the first order optimality conditions (2.6)–(2.8)
and the second order condition ∂2L

∂u2
(ū, μ)v2 > 0 for every v ∈ Cū\{0}. Then, there

exists κ > 0 and ε > 0 such that

J (ū) + κ

2
‖u − ū‖2L2(Qω)

≤ J (u) ∀u ∈ Uad with ‖u − ū‖L2(Qω) ≤ ε. (3.9)

Proof We argue by contradiction and assume that (3.9) does not hold. Then, for every
integer k ≥ 1 there exists a control uk ∈ Uad such that
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ρk = ‖uk − ū‖L2(Qω) <
1

k
and J (uk) < J (ū) + 1

2k
‖uk − ū‖2L2(Qω)

. (3.10)

We define vk = 1
ρk

(uk − ū). Since ‖vk‖L2(Qω) = 1 for every k, taking a subsequence,

we can assume that vk⇀v in L2(Qω). From (3.10) we deduce that {yuk }∞k=1 is a
bounded sequence in L2(Q), hence {uk}∞k=1 ⊂ U∞. Moreover, given p ∈ ( 4

4−n ,∞)

we have

‖uk−ū‖L p(0,∞;L2(Ω))≤‖uk−ū‖
p−2
p

L∞(0,∞;L2(Ω))
‖uk−ū‖

2
p

L2(0,∞;L2(Ω))
→0 as k → ∞.

Then, yuk = Gp(uk) → Gp(ū) = ȳ in Yp. Consequently, there exists a ball Br (ū) ⊂
L2(Qω) ∩ L p(0,∞; L2(ω)) and k0 ≥ 1 such that {uk}k≥k0 ⊂ Up. The rest of the
proof is split into three steps.

Step I v ∈ Cū . From (2.4) and (2.8) we infer that

0 ≤ J ′(ū)vk =
∫
Qω

(ϕ̄ + νū)vk dx dt →
∫
Qω

(ϕ̄ + νū)v dx dt = J ′(ū)v.

(3.11)

Using the differentiability of the mapping J : Up −→ R we infer with the mean
value theorem and (3.10)

∫
Qω

(ϕθk + νuθk )vk dx dt = J ′(uθk )vk = J (uk) − J (ū)

ρk
<

ρk

2k
→ 0,

where θk ∈ [0, 1], uθk = ū + θk(uk − ū), and ϕθk is the adjoint state corresponding to
uθk . Since yθk = Gp(uθk ) → Gp(ū) = ȳ in Yp, we deduce from Theorem A.4 that
ϕθk → ϕ̄ in Yp as k → ∞. Then, it is straightforward to pass to the limit in the above
expression and to get J ′(ū)v ≤ 0. This inequality and (3.11) imply that J ′(ū)v = 0.

Next, taking into account that ‖uk(t)‖L2(ω) ≤ γ for almost all t > 0, we have for
almost every t ∈ Iγ

∫
ω

ū(t)vk(t) dt= 1

ρk

[ ∫
ω

ū(t)uk(t) dt−
∫

ω

ū2(t) dt
]
≤ 1

ρk
γ
[
‖uk(t)‖L2(ω) − γ

]
≤0.

We define the function φ ∈ L∞(0,∞) by φ(t) = 1 if
∫
ω
ū(t)v(t) dx > 0 and 0

otherwise. Then, from the convergence vk⇀v in L2(Qω) and the fact that φū ∈
L2(Qω) we infer from the above inequality

∫
Iγ

φ(t)
∫

ω

ū(t)v(t) dx dt = lim
k→∞

∫
Iγ

φ(t)
∫

ω

ū(t)vk(t) dx dt ≤ 0.

This is possible if and only if
∫
ω
ū(t)v(t) dx ≤ 0 for almost all t ∈ Iγ . Finally, we

prove that this integral is 0 if t ∈ I+
γ . For this purpose we use Lemma 3.1, (3.6), and

the fact that J ′(ū)v = 0 as follows

123



Applied Mathematics & Optimization            (2023) 88:47 Page 15 of 36    47 

0 = ∂L
∂u

(ū, λ̄)v = J ′(ū)v + 1

γ

∫ ∞

0
λ̄(t)

∫
ω

ū(t)v(t) dx dt

= 1

γ

∫
Iγ

λ̄(t)
∫

ω

ū(t)v(t) dx dt,

which implies that
∫
ω
ū(t)v(t) dx = 0 for almost all t ∈ I+

γ , and thus v ∈ Cū .

Step II ∂2L
∂u2

(ū, λ̄)v2 ≤ 0. First we observe that

∫ ∞

0
λ̄(t)‖uk(t)‖2L2(ω)

dt =
∫
Iγ

λ̄(t)‖uk(t)‖2L2(ω)
dt

≤
∫
Iγ

λ̄(t)‖ū(t)‖2L2(ω)
dt =

∫ ∞

0
λ̄(t)‖ū(t)‖2L2(ω)

dt .

This inequality and (3.10) imply

L(uk, λ̄) < L(ū, λ̄) + 1

2k
‖uk − ū‖2L2(Qω)

.

Performing a Taylor expansion and using again Lemma 3.1 we infer for some ϑk ∈
[0, 1]

1

2

∂2L
∂u2

(ū + ϑk(uk − ū), λ̄)(uk − ū)2

= ∂L
∂u

(ū, λ̄)(uk − ū) + 1

2

∂2L
∂u2

(ū + ϑk(uk − ū), λ̄)(uk − ū)2

= L(uk, λ̄) − L(ū, λ̄) <
1

2k
‖uk − ū‖2L2(Qω)

.

Dividing the above inequality by
ρ2
k
2 we get

∂2L
∂u2

(ū + ϑk(uk − ū), λ̄)v2k ≤ 1

k
. (3.12)

Denoting by uϑk = ū+ϑk(uk − ū), yϑk its associated state, and ϕϑk the corresponding
adjoint state, we get from (3.7)

∂2L
∂u2

(ū + ϑk(uk − ū), λ̄)v2k =
∫
Q

[
1 − ∂2 f

∂ y2
(x, t, yϑk )ϕϑk

]
z2ϑk ,vk

dx dt

+ ν‖vk‖2L2(Qω)
+ 1

γ

∫ ∞

0
λ̄(t)‖vk(t)‖2L2(ω)

dt, (3.13)
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where zϑk ,vk satisfies the equation

⎧⎨
⎩

∂zϑk ,vk

∂t
− Δzϑk ,vk + azϑk ,vk + ∂ f

∂ y
(x, t, yϑk )zϑk ,vk = vkχω in Q,

∂nzϑk ,vk = 0 on Σ, zϑk ,vk (0) = 0 in Ω.

(3.14)

Now, we study the lower limit of (3.12). From Theorem A.3 and the boundedness of
{vk}∞k=1 and {yϑk }∞k=1 in L2(Qω) and L∞(Q), respectively, we infer the boundedness
of {zϑk ,vk }∞k=1 in W (0,∞). Therefore, we can extract a subsequence, that we denote
in the same way, such that {zϑk ,vk }∞k=1 converges weakly in W (0,∞). Moreover, the
convergence uϑk → ū in L p(0,∞; L2(ω)) implies yϑk = Gp(uϑk ) → Gp(ū) = ȳ
in Yp. Using this and the convergence vk⇀v in L2(Qω), it is straightforward to pass
to the limit in (3.14) and to deduce that zϑk ,vk⇀zv in W (0,∞), where zv is the
solution of (2.2). Further, the convergence of yϑk → ȳ in Yp implies the convergence
in L p(0,∞; L2(Ω)) ∩ L∞(Q). Then, from Theorem A.4 we infer that ϕϑk → ϕ̄ in
W (0,∞) ∩ L∞(Q). Indeed, subtracting the equations satisfied by ϕϑk and ϕ̄ we get
for ψk = ϕϑk − ϕ̄

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∂ψk

∂t
− Δψk + aψk + ∂ f

∂ y
(x, t, ȳ)ψk

= yϑk − ȳ +
[

∂ f
∂ y (x, t, ȳ) − ∂ f

∂ y (x, t, yϑk )
]
ϕϑk in Q,

∂nψk = 0 on Σ, limt→∞ ‖ψk(t)‖L2(Ω) = 0.

Then, using (3.3), the established convergence yϑk → ȳ, (A.21), and (A.22) we get
the claimed convergence of {ϕϑk }∞k=1 to ϕ̄.

Now, we take the lower limit in (3.12). For this purpose we take into account that
zϑk ,vk⇀zv in L2(Q), vk⇀v in L2(Qω), and λ̄ ∈ L∞(Q) with λ̄(t) ≥ 0 for almost all
t ∈ (0,∞). Hence, we get by (3.12)

0 ≥ lim inf
k→∞

∂2L
∂u2

(ū + ϑk(uk − ū), λ̄)v2k

≥ lim inf
k→∞ ‖zϑk ,vk‖2L2(Q)

+ lim inf
k→∞

∫
Q

−∂2 f

∂ y2
(x, t, yϑk )ϕϑk z

2
ϑk ,vk

dx dt

+ lim inf
k→∞ ν‖vk‖2L2(Qω)

+ lim inf
k→∞

1

γ

∫ ∞

0
λ̄(t)‖vk(t)‖2L2(ω)

dt

≥ ‖zv‖2L2(Q)
+ lim inf

k→∞

∫
Q

−∂2 f

∂ y2
(x, t, yϑk )ϕϑk z

2
ϑk ,vk

dx dt

+ ν‖v‖2L2(Qω)
+ 1

γ

∫ ∞

0
λ̄(t)‖v(t)‖2L2(ω)

dt . (3.15)

Below we prove that

lim
k→∞

∫
Q

∂2 f

∂ y2
(x, t, yϑk )ϕϑk z

2
ϑk ,vk

dx dt =
∫
Q

∂2 f

∂ y2
(x, t, ȳ)ϕ̄z2v dx dt . (3.16)
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Thus, (3.7) and (3.15)–(3.16) yield ∂2L
∂u2

(ū, λ)v2 ≤ 0.
Let us prove (3.16). Given ε > 0, (2.7) implies the existence of Tε > 0 such that

‖ϕ̄(t)‖L2(Ω) < ε for every t ≥ Tε. Further, the convergence zϑk ,vk⇀zv in W (0,∞)

implies the convergence zϑk ,vk → zv in L2(QTε ). Using these properties and (3.2)
with M = ‖ȳ‖L∞(Q) we get

∫
Q

∣∣∣∂
2 f

∂ y2
(x, t, yϑk )ϕϑk z

2
ϑk ,vk

− ∂2 f

∂ y2
(x, t, ȳ)ϕ̄z2v

∣∣∣ dx dt

≤
∫
Q

∣∣∣∂
2 f

∂ y2
(x, t, yϑk )ϕϑk − ∂2 f

∂ y2
(x, t, ȳ)ϕ̄

∣∣∣z2ϑk ,vk
dx dt

+
∫
QTε

∣∣∣∂
2 f

∂ y2
(x, t, ȳ)ϕ̄

∣∣∣|z2ϑk ,vk
− z2v| dx dt

+
∫ ∞

Tε

∫
Ω

∣∣∣∂
2 f

∂ y2
(x, t, ȳ)ϕ̄

∣∣∣|z2ϑk ,vk
− z2v| dx dt

≤
∥∥∥∂2 f

∂ y2
(x, t, yϑk )ϕϑk − ∂2 f

∂ y2
(x, t, ȳ)ϕ̄

∥∥∥
L∞(Q)

‖zϑk ,vk‖2L2(Q)

+ CM‖ϕ̄‖L∞(Q)‖zϑk ,vk − zv‖L2(QTε )‖zϑk ,vk + zv‖L2(QTε )

+ CMε

∫ ∞

Tε

‖zϑk ,vk − zv‖L2(Ω)‖zϑk ,vk + zv‖L2(Ω) dt = I1 + I2 + I3

The convergence (yϑk , ϕϑk ) → (ȳ, ϕ̄) in L∞(Q)2 and the boundedness of {zϑk ,vk }∞k=1
in W (0,∞) imply that I1 → 0 as k → ∞. The convergence zϑk ,vk → zv in L2(QTε )

implies that I2 → 0 as well. For I3 we have

|I3| ≤ C1CMε

∫ ∞

Tε

‖zϑk ,vk − zv‖L2(Ω)‖zϑk ,vk + zv‖L2(Ω) dt

≤ C1CMε‖zϑk ,vk − zv‖L2(Q)‖zϑk ,vk + zv‖L2(Q) ≤ C2ε,

where we have used again the boundedness of {zϑk ,vk }∞k=1 in W (0,∞). Since ε > 0
is arbitrarily small, we deduce the convergence I3 → 0 as k → ∞.

Step III—Final contradiction The facts proved in Steps I and II along with the
assumption ∂2L

∂u2
(ū, λ̄)v2 > 0 for every v ∈ Cū\{0} lead to v = 0 and zv = 0.

Therefore, looking at the relations (3.15) we obtain with (3.16) and ‖vk‖L2(Qω) = 1

0 ≥ lim inf
k→∞

∂2L
∂u2

(ū + ϑk(uk − ū), λ̄)v2k ≥ lim inf
k→∞ ν‖vk‖2L2(Qω)

= ν,

which contradicts the assumption ν > 0. ��
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3.2 Case II: Kad = {v ∈ L2(!) : ˛ ≤ v(x) ≤ ˇ for a.a. x ∈ !}.

In this case, the cone of critical directions is defined by

Cū = {v ∈ L2(Qω) : J ′(ū)v = 0 and v(x, t)

{≥ 0 if ū(x, t) = α

≤ 0 if ū(x, t) = β
}.

Analogously to Theorem 3.2 we have the following result.

Theorem 3.4 If ū is a local minimizer of (P), then J ′′(ū)v2 ≥ 0 for all v ∈ Cū.

Proof Since ū is a local minimizer of (P), there exists ε > 0 such that J (ū) ≤ J (u)

for all u ∈ Uad ∩ Bε(ū), where Bε(ū) = {u ∈ L2(Qω) : ‖u − ū‖L2(Qω) < ε}. Given
p ∈ ( 4

4−n ,∞) we have for every u ∈ Uad ∩ Bε(ū)

‖u − ū‖L p(0,∞;L2(ω) ≤ (β − α)
1− 2

p ‖u − ū‖
2
p

L2(Qω)
< (β − α)

1− 2
p ε

2
p .

Therefore, we select ε > 0 small enough, such that Uad ∩ Bε(ū) ⊂ Up holds. Now,
given v ∈ Cū we define for every integer k ≥ 1 the function vk by

vk(x, t) =
{
0 if α < ū(x, t) < α + 1

k or β − 1
k < ū(x, t) < β,

Proj[−k,+k](v(x, t)) otherwise.

It is obvious that {vk}∞k=1 ⊂ L∞(Qω) ∩ L2(Qω) and vk → v in L2(Qω) as k → ∞.

Further, if we set ρk = min{ 1
k2

,
β−α
k , ε

‖v‖L2(Qω)
}, then ū + ρvk ∈ Uad ∩ Bε(ū) for

every ρ ∈ (0, ρk). In view of (2.13), it is straightforward to check that the condition
J ′(ū)v = 0 in the definition of Cū is equivalent to (ϕ̄ + νū)(x, t)v(x, t) = 0 for
almost all (x, t) ∈ Qω. Using this fact, it is immediate that J ′(ū)vk = 0 for every k.
Then, performing a Taylor expansion we get for every ρ ∈ (0, ρk)

0 ≤ J (ū + ρvk) − J (ū) = ρ J ′(ū)vk + ρ2

2
J ′′(ū + θρ,kρvk)v

2
k

= ρ2

2
J ′′(ū + θρ,kρvk)v

2
k .

Dividing by ρ2

2 we deduce J ′′(ū + θρ,kρvk)v
2
k ≥ 0. Since ū + θρ,kρvk → ū in

L p(0,∞; L2(ω)) as ρ → 0, we deduce J ′′(ū)v2k ≥ 0. Moreover, since vk → v in
L2(Qω) we infer from Theorem A.3 that zvk → zv in L2(Qω). Hence, we can pass
to the limit in the previous inequality and obtain J ′′(ū)v2 ≥ 0. ��

Now, we establish the sufficient second order conditions for local optimality.

Theorem 3.5 Let ū ∈ Uad∩U∞ satisfy the first order optimality conditions (2.6)–(2.7)
and the second order condition J ′′(ū)v2 > 0 for every v ∈ Cū\{0}. Then, there exists
κ > 0 and ε > 0 such that
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J (ū) + κ

2
‖u − ū‖2L2(Qω)

≤ J (u) ∀u ∈ Uad with ‖u − ū‖L2(Qω) ≤ ε. (3.17)

The proof of this theorem follows by contradiction similarly to the proof of Theorem
3.3 with the obvious simplifications due to the constraints under consideration in this
second case forUad . For the proof of these results for finite horizon control problems
the reader is also referred to [5, 13]. The difficulties resulting from the infinite horizon
can be overcome by following the arguments used in the proof of Theorem 3.3.

4 Approximation by finite horizon problems

In this section we consider the approximation of (P) by finite horizon optimal control
problems and provide error estimates for these approximations. For every 0 < T < ∞
we consider the control problem

(PT ) min
u∈UT ,ad

JT (u),

where UT ,ad = {u ∈ L2(QT ,ω) : u(t) ∈ Kad for a.a. t ∈ (0, T )},

JT (u) = 1

2

∫
QT

(yT ,u − yd)
2 dx dt + ν

2

∫
QT ,ω

u2 dx dt

with QT = Ω × (0, T ), QT ,ω = ω × (0, T ), and yT ,u denotes the solution of the
equation

{
∂ y

∂t
− Δy + ay + f (x, t, y) = g + uχω in QT ,

∂n y = 0 on ΣT = Γ × (0, T ), y(0) = y0 in Ω.
(4.1)

For every control u ∈ L2(QT ,ω) with associated state yT ,u and adjoint state
ϕT ,u we define extensions to Qω and Q, denoted by û, ŷT ,u , and ϕ̂T ,u , by setting
(û, ϕ̂T ,u)(x, t) = (0, 0) if t > T and ŷT ,u is the solution of (1.1) associated with
the extension û. In this section, we assume that 0 ∈ Kad . Hence, if u ∈ UT ,ad , then
û ∈ Uad holds. Given a local minimizer uT of (PT ), we denote by yT and ϕT its asso-
ciated state and adjoint state, respectively. Then, (uT , yT , ϕT ) satisfies the optimality
conditions established in Theorem 2.4 with Q and Qω replaced by QT and QT ,ω. As
a consequence, Corollary 2.1 is also satisfied by (uT , yT , ϕT ) with the same changes.

In case Uad is given by (1.2), we define λT (t) = ‖ϕT (t) + νuT (t)‖L2(ω) for
t ∈ (0, T ) and the Lagrange function

LT : L p(0, T ; L2(ω)) × L∞(0, T ) −→ R

LT (u, λ) = JT (u) + 1

2γ

∫ T

0
λ(t)‖u(t)‖2L2(ω)

dt,
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for every p ∈ ( 4
4−n ,∞]. Arguing as in Lemma 3.1 we also have

∂LT

∂u
(uT , λT )v = 0 ∀v ∈ L2(QT ,ω). (4.2)

The next two theorems establish the convergence of the approximating problems
(PT )to (P) as T → ∞.

Theorem 4.1 For every T > 0 the control problem (PT )has at least one solution uT .
If (P) has a feasible control u0, then the extensions {ûT }T>0 of any family of solutions
are bounded in L2(Qω). Every weak limit ū in L2(Qω) of a sequence {ûTk }∞k=1 with
Tk → ∞ as k → ∞ is a solution of (P). Moreover, strong convergence ûTk → ū in
L p(0,∞; L2(ω)) holds for every p ∈ [2,∞).

Proof SinceUT ,ad is not empty, the existence of solution for (PT )is a classical result.
Actually, one can easily adapt the existence proof of solution for (P) to (PT ). We
denote by ỹT the extension of yT by zero in Ω × (T ,∞). We point out that ỹT �= ŷT .
Let y0 be the solution of (1.1) corresponding to u0. By definition of feasible control
we have that J (u0) < ∞. Using the optimality of uT we obtain

1

2
‖ỹT − yd‖2L2(Q)

+ ν

2
‖ûT ‖2L2(Qω)

= JT (uT ) + 1

2
‖yd‖2L2(T ,∞;L2(Ω))

≤ JT (u0) + 1

2
‖yd‖2L2(Q)

≤ J (u0) + 1

2
‖yd‖2L2(Q)

∀T > 0.

This proves the boundedness of {ûT }T>0 and {ỹT }T>0 in L2(Qω) and L2(Q), respec-
tively. Let {(ûTk , ỹTk )}∞k=1 be a sequence with Tk → ∞ as k → ∞ converging weakly
to (ū, ȳ) in L2(Qω)×L2(Q). Since {ûTk }∞k=1 ⊂ Uad andUad is closed in L2(Qω) and
convex, we infer that ū ∈ Uad . Moreover, we can apply Theorem A.2 to the Eq. (4.1)
and deduce the existence of a constant M1 independent of k such that for all k ≥ 1

‖yTk‖L2(0,Tk ;H1(Ω)) + ‖yTk‖L∞(QTk ) ≤ M1 = C
(
‖g + ûTkχω‖L2(Q)

+ ‖g + ûTkχω‖L p(0,∞;L2(Ω)) + ‖y0‖L∞(Ω) + sup
k≥1

‖ỹTk‖L2(Q) + M f

)
.

From this estimate and (A.6) we get the existence of a constant M2 such that

‖ f (·, ·, yTk )‖L2(QTk ) + ‖ f (·, ·, yTk )‖L∞(QTk ) ≤ M2 ∀k ≥ 1.

The two above estimates and (4.1) imply that

‖yTk‖W (0,Tk ) + ‖yTk‖L∞(QTk ) ≤ M3 ∀k ≥ 1

for a constant independent of k. Using the convergence of ỹk⇀ȳ in L2(Q), the com-
pactness of the embedding W (0, T ) ⊂ L2(QT ) for every T < ∞, and the above
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estimate, it is obvious to pass to the limit in the equation

{
∂ y

∂t
− ΔyTk + ayTk + f (x, t, yTk ) = g + uTkχω in QT ,

∂n y = 0 on ΣT = Γ × (0, T ), yTk (0) = y0 in Ω

for each Tk ≥ T , and to deduce that ȳ is the solution of (4.1) associated to ū for
arbitrary 0 < T < ∞. This proves that ȳ is the solution of (1.1) corresponding to ū.
Further, since ȳ ∈ L2(Q), we deduce that ū ∈ U∞. Let us prove that ū is a solution
of (P). For every feasible control u of (P) we have

J (ū) ≤ lim inf
k→∞

(1
2

∫
Q
(ỹTk − yd)

2 dx dt + ν

2

∫
Qω

û2Tk dx dt
)

≤ lim sup
k→∞

(1
2

∫
Q
(ỹTk − yd)

2 dx dt + ν

2

∫
Qω

û2Tk dx dt
)

= lim sup
k→∞

(
JTk (uTk ) + 1

2
‖yd‖2L2(Tk ,∞;L2(Ω))

)
≤ lim sup

k→∞
JTk (u) = J (u).

This proves that ū is a solution of (P). Moreover, replacing u by ū in the above
inequalities we infer

lim
k→∞

(1
2

∫
Q
(ỹTk − yd)

2 dx dt + ν

2

∫
Qω

û2Tk dx dt
)

=
∫
Q
(ȳ − yd)

2 dx dt

+ν

2

∫
Qω

ū2 dx dt .

This convergence along with the weak convergence (ûTk , ỹTk )⇀(ū, ȳ) in L2(Qω) ×
L2(Q) implies the strong convergence. Finally, for any p ∈ (2,∞) we have

‖ûTk − ū‖L p(0,∞;L2(ω)) ≤ ‖ûTk − ū‖
p−2
p

L∞(0,∞;L2(ω))
‖ûTk − ū‖

2
p

L2(Qω)
→ 0.

��
Theorem 4.2 Let ū be a strict local minimizer of (P). Then, there exist T0 ∈ (0,∞)

and a family {uT }T>T0 of local minimizers to (PT )such that the convergence ûT → ū
in L p(0,∞; L2(ω)) holds as T → ∞ for every p ∈ [2,∞).

Proof Since ū is a strict local minimizer of (P), there exists ρ > 0 such that J (ū) <

J (u) for every u ∈ Uad ∩Bρ(ū)with u �= ū, where Bρ(ū) is the closed ball in L2(Qω)

centered at ū and radius ρ > 0. We consider the control problems

(Pρ) min
u∈Bρ(ū)∩Uad

J (u) and (PT ,ρ) min
u∈BT ,ρ (ū)∩UT ,ad

JT (u),

where BT ,ρ(ū) = {u ∈ L2(QT ,ω) : ‖u − ū‖L2(QT ,ω) ≤ ρ}. Obviously ū is the unique
solution of (Pρ). Existence of a solution uT of (PT ,ρ)is straightforward. Then, arguing
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as in the proof of Theorem 4.1 and using the uniqueness of the solution of (Pρ), we
deduce the convergence ûT → ū in L2(Qω) as T → ∞. This implies the existence
of T0 > 0 such that ‖uT − ū‖L2(QT ,ω)

≤ ‖ûT − ū‖L2(Qω) < ρ for all T > T0.
Hence, uT is also a local minimizer of (PT )for T > T0. The strong convergence
ûT → ū in L p(0,∞; L2(ω)) follows from the convergence in L2(Qω) and the fact
that ‖ûT ‖L∞(0,∞;L2(ω)) ≤ γ for every T > 0. ��

In the previous theorem we proved the existence of local minimizers {uT }T>T0
of problems (PT )converging to ū assuming that ū is a strict local minimizer of (P).
Moreover, in the proof of the theorem, the existence of an L2(Qω)-closed ball Bρ(ū)

such that the minimum of JT on the setUad ∩ Bρ(ū) is achieved at the local minimizer
uT was established. In particular, this implies that JT (uT ) ≤ JT (ū) for every T > T0.
In the next theorem the following question is addressed: if {uT }T>T0 is a sequence
of local minimizers of problems (PT )converging to ū, does the inequality JT (uT ) ≤
JT (ū) hold for T large enough? The positive answer to this question is also important
to establish the estimates in Theorem 4.4 below.

Theorem 4.3 Suppose that Uad is defined by (1.2) or (1.3). Let ū be a local minimizer
of (P) satisfying the second order sufficient optimality condition given in Theorems
3.3 and 3.5, respectively. Let {uT }T>T0 be a sequence of local minimizers of problems
(PT )such that ûT → ū strongly in L2(Qω). Then, there exists T ∗

0 ∈ (T0,∞) such
that JT (uT ) ≤ JT (ū) for every for every T ≥ T ∗

0 .

Proof The proof is carried out under the assumption that Uad is given by (1.2). It is
similar, even easier, if Uad is given by (1.3). First, we observe that the convergence
ûT → ū in L2(Qω) and the fact that ‖ûT (t)‖L2(ω) ≤ γ for almost every t > 0
implies that ûT → ū strongly in L p(0,∞; L2(ω)) for every p < ∞. Then, for fixed
p > 4

4−n , there exists T̂ ≥ T0 such that ûT ∈ Up for every T ≥ T̂ . This yields
ŷT = Gp(ûT ) → Gp(ū) = ȳ in Yp as T → ∞. Given the adjoint state ϕT associated
with uT , we denote by ϕ̂T its extension by 0 for t > T .

We proceed by contradiction. If the statement fails, then there exists a sequence
{uTk }∞k=1 with Tk → ∞ as k → ∞ such that

‖ûTk − ū‖L2(Qω) <
1

k
and JTk (ū) < JTk (uTk ). (4.3)

Let us set ρk = ‖ûTk − ū‖L2(Qω) and vTk = 1
ρk

(ûTk − ū). Taking a subsequence,

denoted in the same way, we have vTk⇀v in L2(Qω).
Now, we split the proof in three steps.
Step I ϕ̂T → ϕ̄ in W (0,∞) ∩ L∞(Q) as T → ∞. Let us set ψT = ϕ̂T − ϕ̄ and

denote by χT the real function taking the value 1 if t ∈ [0, T ] and 0 otherwise. Then,
ψT satisfies the equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∂ψT

∂t
− ΔψT + aψT + ∂ f

∂ y
(x, t, ȳ)ψT

= [ ∂ f
∂ y (x, t, ȳ) − ∂ f

∂ y (x, t, ŷT )
]
ϕ̂T + χT (ŷT − ȳ) − (1 − χT )(ȳ − yd) in Q,

∂nψT = 0 on Σ, limt→∞ ‖ψT (t)‖L2(Ω) = 0.
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Since ŷT → ȳ in Yp, we deduce that ŷT → ȳ in Lq(0,∞; L2(Ω))∩L∞(Q) for every

q ≥ 2. Hence, with the mean value theorem and (3.2) we obtain that
[

∂ f
∂ y (x, t, ȳ) −

∂ f
∂ y (x, t, ŷT )

]
→ 0 in Lq(0,∞; L2(Ω)). Moreover, from Theorem A.4 and the fact

that yd ∈ L2(Q)∩L p(0,∞; L2(Ω)), we get that ϕ̂T is bounded inW (0,∞)∩L∞(Q).
Therefore the first term of the right hand side in the above partial differential equation
converges to 0 in Lq(0,∞; L2(Ω)). The same convergence is true for the second term
χT (ŷT − ȳ). The third term (1 − χT )(ȳ − yd) converges to 0 in Lq(0,∞; L2(Ω))

for q = p if p < ∞ and q < ∞ arbitrary if p = ∞. Then, from Theorem A.4 the
claimed convergence ϕ̂T → ϕ̄ in W (0,∞) ∩ L∞(Q) follows.

Step II v ∈ Cū . Using the local optimality of ū we get

J ′(ū)v = lim
k→∞ J ′(ū)vTk = lim

k→∞
1

ρk
J ′(ū)(ûTk − ū) ≥ 0.

On the other side, using the convergence established in Step I and the convergence
ûTk → ū in L2(Qω) along with the local optimality of uTk we infer

J ′(ū)v = lim
k→∞

∫
Qω

(ϕ̂Tk + νûTk )vTk dx dt

= lim
k→∞

1

ρk

∫ Tk

0

∫
ω

(ϕTk + νuTk )(uTk − ū) dx dt

= lim
k→∞

1

ρk
J ′
Tk (uTk )(uTk − ū) ≤ 0.

The last two inequalities imply that J ′(ū)v = 0. Now, the proof continues as in the
Step I of the proof of Theorem 3.3.

Step III—Contradiction Since (uTk , ϕTk ) satisfies (2.10), we deduce the inequal-
ity LTk (ū, λTk ) < LTk (uTk , λTk ) with (4.3) and the fact that λTk (t)‖ū(t)‖L2(ω) ≤
λTk (t)γ = λTk (t)‖uTk (t)‖L2(ω). Hence, performing a Taylor expansion and using
(4.2) we infer

0 > LTk (ū, λTk ) − LTk (uTk , λTk ) = ∂LTk

∂u
(uTk , λTk )(ū − uTk )

+ 1

2

∂2LTk

∂u2
(ū + θk(uTk − ū), λTk )(ū − uTk )

2

= 1

2

∂2LTk

∂u2
(ū + θk(uTk − ū), λTk )(ū − uTk )

2.

Dividing the above expression by ρ2
k /2 we get

∂2LTk

∂u2
(ū + θk(uTk − ū), λTk )v

2
Tk < 0.
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We observe that for k → ∞

‖λ̂Tk − λ̄‖L2(0,∞) ≤ ‖ϕ̂Tk − ϕ̄‖L2(0,∞) + ν‖ûTk − ū‖L2(0,∞) → 0.

Setting uθk = ū + θk(uTk − ū), we denote by yθk the solution of (4.1) corresponding
to the control uθk and by ϕθk the corresponding adjoint state in QTk ,ω. Then, putting
ψk = ϕ̂θk − ϕ̄ we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∂ψk

∂t
− Δψk + aψk + ∂ f

∂ y
(x, t, ȳ)ψk

= [ ∂ f
∂ y (x, t, ȳ) − ∂ f

∂ y (x, t, ŷθk )
]
ϕ̂θk + χTk (ŷθk − ȳ) − (1 − χTk )(ȳ − yd) in Q,

∂nψk = 0 on Σ, limt→∞ ‖ψk(t)‖L2(Ω) = 0.

Arguing as in Step I we obtain that ψk → 0 in W (0,∞) ∩ L∞(Q). Then, arguing as
in Steps II and III of the proof of Theorem 3.3 and using the established convergences,
we infer that ∂2L

∂u2
(ū, λ̄)v2 ≤ 0 and the contradiction follows. ��

Under an extra assumption on f , the following theorem provides estimates for the
difference ûT − ū.

Theorem 4.4 Suppose that Uad is defined by (1.2) or (1.3) and that ū is a local min-
imizer of (P) satisfying the second order sufficient optimality condition. We assume
that ∂ f

∂ y (x, t, y) ≥ 0 holds for all y ∈ R and almost all (x, t) ∈ Q. Let {uT }T>T0 be

a sequence of local minimizers of problems (PT )such that ûT → ū in L2(Qω). Then,
there exist T ∗ ∈ [T0,∞) and a constant C such that for every T ≥ T ∗

‖ûT − ū‖L2(Qω) + ‖ŷT − ȳ‖W (0,∞) ≤
C

(
‖yT (T )‖L2(Ω) + ‖yd‖L2(T ,∞;L2(Ω)) + ‖g‖L2(T ,∞;L2(Ω))

)
. (4.4)

Proof We use the inequalities (3.9) or (3.17). For this purpose, we take T ∗ ∈ [T ∗
0 ,∞)

such that ‖ûT − ū‖L2(Qω) < ε for all T ≥ T ∗, where T ∗
0 is introduced in Theorem

4.3. Then, given T ≥ T ∗, (3.9) or (3.17), and Theorem 4.3 yield

κ

2
‖ûT − ū‖2L2(Qω)

≤ J (ûT ) − J (ū) = JT (uT ) − JT (ū)

+ 1

2

∫ ∞

T
‖ŷT (t) − yd(t)‖2L2(Ω)

dt − 1

2

∫ ∞

T
‖ȳ(t) − yd(t)‖2L2(Ω)

dt

− ν

2

∫ ∞

T
‖ū(t)‖2L2(ω)

dt ≤ 1

2

∫ ∞

T
‖ŷT (t) − yd(t)‖2L2(Ω)

dt,

which leads to

‖ûT − ū‖L2(Qω) ≤ 1√
κ

‖ŷT − yd‖L2(T ,∞;L2(Ω)). (4.5)
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To prove the first estimate of (4.4) we observe that ŷT satisfies the equation

⎧⎨
⎩

∂ ŷT
∂t

− ΔŷT + a ŷT + f (x, t, ŷT ) = g in Ω × (T ,∞),

∂n ŷT = 0 on Γ × (T ,∞), ŷT (T ) = yT (T ) in Ω.

Testing this equation with ŷT , and using that f (x, t, ŷT )ŷT ≥ 0 due to the mono-
tonicity of f with respect to y and (1.4), it follows that

1

2
‖ŷT (t)‖2L2(Ω)

+
∫ ∞

T

∫
Ω

[|∇ ŷT |2 + a ŷ2T ] dx dt ≤ 1

2
‖yT (T )‖2L2(Ω)

+
∫ ∞

T

∫
Ω

gŷT dx dt .

From this inequality we infer with (1.9) that

‖ŷT ‖L2(T ,∞;L2(Ω)) ≤ C ′(‖yT (T )‖L2(Ω) + ‖g‖L2(T ,∞;L2(Ω))

)
.

This inequality and (4.5) imply the estimate of the controls in (4.4). To get the estimate
for the states we observe that φT = ŷT − ȳ satisfies the equation

⎧⎨
⎩

∂φT

∂t
− ΔφT + aφT + ∂ f

∂ y
(x, t, yT ,θ )φT = (ûT − ū)χω in Q,

∂nφT = 0 on Σ, φT (0) = 0 in Ω,

where yT ,θ = ȳ + θT (ŷT − ȳ) with θT : Q −→ [0, 1] measurable. Then, applying
TheoremA.3 and Remark 5.2 we infer ‖φT ‖W (0,∞) ≤ K3‖ûT −ū‖L2(Qω). Combining
this estimate with the one established for the controls we deduced (4.4). ��
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Appendix

Here we prove L∞(Q) estimates for the solution of the following equation

{
∂ y

∂t
− Δy + ay + f (x, t, y) = g in Q,

∂n y = 0 on Σ, y(0) = y0 in Ω,
(A.1)

assuming that y0 ∈ L∞(Ω) and g ∈ L2(Q) ∩ L p(0,∞; L2(Ω)) with p satisfying
(1.10).

Definition A.1 We call y a solution to (A.1) if y ∈ L2
loc(0,∞; H1(Ω)), and for every

T > 0 the restriction of y to QT = Ω × (0, T ) belongs to W (0, T ) ∩ L∞(QT ) and
satisfies the following equation in the variational sense

{
∂ y

∂t
− Δy + ay + f (x, t, y) = g in QT ,

∂n y = 0 on ΣT , y(0) = y0 in Ω.
(A.2)

Since y ∈ L∞(QT ), we observe that (1.8) implies for MT = ‖y‖L∞(QT ) and for
almost all (x, t) ∈ QT

| f (x, t, y(x, t))| ≤ CMT MT . (A.3)

Theorem A.2 Under the assumption (1.4)–(1.6), equation (A.1) has a unique solution
y. In addition, if y ∈ L2(Q), then y ∈ W (0,∞) ∩ L∞(Q) and f (·, ·, y) ∈ L2(Q) ∩
L∞(Q) holds. Moreover, the following estimates are satisfied

‖y‖Q ≤ K1

(
‖y0‖L2(Ω) + ‖g‖L2(Q) + ‖y‖L2(Q)

)
, (A.4)

‖y‖L∞(Q)

≤ K2

(
‖y‖L2(Q) + ‖y0‖L∞(Ω) + ‖g‖L2(Q) + ‖g‖L p(0,∞;L2(Ω)) + M f

)
, (A.5)

‖ f (·, ·, y)‖L∞(Q) ≤ CK∞‖y‖L∞(Q), ‖ f (·, ·, y)‖L2(Q) ≤ CK∞‖y‖L2(Q), (A.6)

lim
t→∞ ‖y(t)‖L2(Ω) = 0, (A.7)

where M f is given by (1.5), K∞ = ‖y‖L∞(Q), CK∞ as in (1.6) with M = K∞, and

‖y‖Q =
(
‖y‖2L∞(0,∞;L2(Ω))

+ ‖y‖2L2(0,∞;H1(Ω))

) 1
2
.

Proof The existence and uniqueness of a solution y of (A.1) is a consequence of [10,
Theorem 2.1]. Now, we assume that y ∈ L2(Q). The proof is split into several steps.
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Step I y ∈ L2(0,∞; H1(Ω)) ∩ L∞(0,∞; L2(Ω)). Testing equation (A.2) with y,
integrating in (0, t) with t ∈ (0, T ), using (1.5), and arguing as in (A.3) we get

1

2
‖y(t)‖2L2(Ω)

+
∫ t

0

∫
Ω

[|∇ y|2 + ay2] dx ds

≤ 1

2
‖y0‖2L2(Ω)

+
∫ t

0

∫
Ω

g y dx ds +
∫ t

0

∫
Ω f (s)

| f (x, s, y)||y| dx ds

≤ 1

2
‖y0‖2L2(Ω)

+ ‖g‖L2(Q)‖y‖L2(Q) + CM f ‖y‖2L2(Q)
,

where Ω f (t) = {x ∈ Ω : |y(x, t)| < M f }. This inequality along with (1.9) proves
that y ∈ L2(0,∞; H1(Ω)) ∩ L∞(0,∞; L2(Ω)) and (A.4) holds.

Step II y ∈ L∞(Q). Let us first observe that without loss of generality we may
suppose that y0 ∈ H1(Ω). Indeed, if this is not the case we use the fact that f (·, ·, y) ∈
L2(QT ) by (A.3) and g ∈ L2(QT ) to deduce that y ∈ C([T0, T ]; H1(Ω)) for each
0 < T0 < T < ∞; see, for instance, [17, Corollary III.2.4]. Since y ∈ L∞(QT0) for
each 0 < T0 < ∞, it is enough to prove that y ∈ L∞(Ω × (T0,∞)). Then there is
no loss of generality if we assume that y0 ∈ H1(Ω) and, consequently, y ∈ H1(QT )

for every T < ∞; see [17, Proposition III.2.5].
For every real number ρ ≥ max{‖y0‖L∞(Ω), M f },M f given by (1.5), we introduce

the function yρ(x, t) = y(x, t) − Proj[−ρ,+ρ](y(x, t)). Then, we still have that yρ ∈
H1(QT ) for all T < ∞.We set Aρ(t) = {x ∈ Ω : |y(x, t)| > ρ} for every t ∈ (0,∞).

First we prove the result for n = 2 or 3. Let us choose a number α ∈ ( pn
2p−4 ,

n
n−2

)
.

Observe that pn
2p−4 < n

n−2 obviously holds if n = 2 and it is also true for n = 3 due

to the assumption p > 4
4−n . Note that α satisfies α ∈ (1,∞) in case n = 2, and

α ∈ ( 32 , 3) in case n = 3. We will denote α′ = α
α−1 .

Testing equation (A.2) with yρ , integrating in (0, t) with t ∈ (0, T ), and using that
∂ y
∂t yρ = ∂ yρ

∂t yρ , ∇ y · ∇ yρ = |∇ yρ |2, and f (x, t, y)yρ ≥ 0 due to (1.5) and ρ ≥ M f ,
we infer

1

2
‖yρ(t)‖2L2(Ω)

+
∫ t

0

∫
Ω

[|∇ yρ |2 + ay2ρ] dx ds ≤
∫ t

0

∫
Ω

g yρ dx ds

≤ ‖g‖L p(0,∞;L2(Ω))

( ∫ t

0
‖yρ(s)‖p′

L2(Aρ(s))
ds

) 1
p′

≤ ‖g‖L p(0,∞;L2(Ω))

( ∫ t

0
‖yρ(s)‖p′

L2α(Aρ(s))
|Aρ(s)| p′

2α′ ds
) 1

p′

≤ C1‖g‖L p(0,∞;L2(Ω))

(∫ t

0
‖yρ(s)‖2H1(Ω)

ds

) 1
2
(∫ t

0
|Aρ(s)|

p′
α′(2−p′) ds

) 2−p′
2p′

≤ C2
a

2

∫ t

0
‖yρ(s)‖2H1(Ω)

ds + C2
1

2C2
a
‖g‖2L p(0,∞;L2(Ω))

( ∫ t

0
|Aρ(s)|

p
α′(p−2) ds

) p−2
p

,
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where Ca is given by (1.9) and C1 is the embedding constant of H1(Ω) ⊂ L2α(Ω).
The above estimate leads to

‖yρ(t)‖2L2(Ω)
+ C2

a

∫ t

0
‖yρ(s)‖2H1(Ω)

ds

≤ C2
1

C2
a
‖g‖2L p(0,∞;L2(Ω))

( ∫ t

0
|Aρ(s)|

p
α′(p−2) ds

) p−2
p

.

From the above inequalities we get

‖yρ‖QT ≤ C2‖g‖L p(0,∞;L2(Ω))

( ∫ T

0
|Aρ(s)|

p
α′(p−2) ds

) p−2
2p

(A.8)

with C2 independent of T and ρ.
On the other hand, taking κ = 1 + 2α′(p−2)

pn , r = 2pκ
α′(p−2) , and q = 2κ we get

1
r + n

2q = n
4 . Then, using [16, Formula II-(3.4)] we obtain the existence of a constant

C3 independent of T such that

‖y‖Lr (0,T ;Lq (Ω)) ≤ C3‖y‖QT . (A.9)

For every j = 0, 1, 2, . . . we set k j = ρ(2 − 2− j ). We observe that ρ ≤ k j ≤ 2ρ,
Aρ(t) = Ak0(t) ⊃ Ak1(t) ⊃ Ak2(t) ⊃ . . ., and Ak j (t) ⊃ A2ρ(t) for every j ≥ 0.
Then, we have

‖yk j ‖Lr (0,T ;Lq (Ω)) =
(∫ T

0
‖yk j ‖rLq (Ak j (t))

dt

) 1
r

≥
(∫ T

0
‖yk j ‖rLq (Ak j+1 (t)) dt

) 1
r

≥ (k j+1 − k j )

×
(∫ T

0
|Ak j+1(t)|

r
q dt

) 1
r

= (k j+1 − k j )

(∫ T

0
|Ak j+1(t)|

p
α′(p−2) dt

) α′(p−2)
2pκ

.

Combining this inequality with (A.8) and (A.9) we deduce

(∫ T

0
|Ak j+1(t)|

p
α′(p−2) dt

) α′(p−2)
2pκ

≤ C2C3

k j+1 − k j
‖g‖L p(0,∞;L2(Ω))

(∫ T

0
|Ak j (t)|

p
α′(p−2) dt

) p−2
2p

.
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Using that k j+1 − k j = ρ2−( j+1) we infer

(∫ T

0
|Ak j+1(t)|

p
α′(p−2) dt

) p−2
2p

≤
[2C2C3

ρ
‖g‖L p(0,∞;L2(Ω))

] κ
α′

(2
κ
α′ ) j

[ (∫ T

0
|Ak j (t)|

p
α′(p−2) dt

) p−2
2p ] κ

α′
.

Setting

c =
[2C2C3

ρ
‖g‖L p(0,∞;L2(Ω))

] κ
α′

, b = 2
κ
α′ , ξ j =

(∫ T

0
|Ak j (t)|

p
α′(p−2) dt

) p−2
2p

for j ≥ 0, we have ξ j+1 ≤ cb jξ
κ
α′
j for j ≥ 0. Moreover, since α >

pn
2p−4 we get that

β = κ
α′ > 1. Then, from [16, LemmaII−5.6] we obtain

ξ j ≤ c
β j−1
β−1 b

β j−1
(β−1)2

− j
β−1 ξ

β j

0 . (A.10)

Let us estimate ξ0. For this purpose we distinguish two cases. First, we assume that
n = 2 and p ∈ (2, 4]. Using that |Aρ(t)| ≤ 1

ρ2 ‖y(t)‖2L2(Aρ(t)
, we get

ξ0 =
(∫ T

0
|Aρ(t)|

p
α′(p−2) dt

) p−2
2p

≤ 1

ρ
1
α′

(∫ T

0
‖y(t)‖

2p
α′(p−2)

L2(Ω)
dt

) p−2
2p

≤
(C4

ρ
‖y‖Q

) 1
α′

.

The last inequality follows from the fact y ∈ L2(Q) ∩ L∞(0,∞; L2(Ω)) and
2p

α′(p−2) ≥ 2 because α′ ∈ (1, p
2 ) and p

2 ≤ p
p−2 for p ≤ 4. For the remaining

cases we observe that 2α′(p−2)
p > 1 and additionally 2α′(p−2)

p < 6 if n = 3. Now, we
argue as follows

ξ0 =
(∫ T

0
|Aρ(t)|

p
α′(p−2) dt

) p−2
2p

≤ 1

ρ
p−2
p

(∫ T

0
‖y(t)‖2

L
2α′(p−2)

p (Aρ(t))
dt

) p−2
2p

≤
(C4

ρ
‖y‖L2(0,∞;H1(Ω))

) p−2
p ≤

(C4

ρ
‖y‖Q

) p−2
p

.

Selecting

ρ = C4b
1

(β−1)2 ‖y‖Q + 2C2C3‖g‖L p(0,∞;L2(Ω)) + ‖y0‖L∞(Ω) + M f

we get with (A.10)

ξ j ≤ [c 1
β−1 b

1
(β−1)2 ξ0]β j

c− 1
β−1 b

− 1
(β−1)2 b− j

β−1 ≤ c− 1
β−1 b

− 1
(β−1)2 b− j

β−1 → 0
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as j → ∞. Finally, we get

(∫ T

0
|A2ρ(t)|

p
α′(p−2) dt

) p−2
2p

≤ lim
j→∞ ξ j = 0.

Hence, |A2ρ(t)| = 0 for almost every t ∈ (0, T ) holds. Since T > 0 was arbitrarily
selected and all the constants above are independent of T , we deduce that |y(x, t)| ≤
2ρ for almost all (x, t) ∈ Q and (A.5) follows with (A.4).

Now, we explain the changes in the proof for the case n = 1. To get an analogous
inequality to (A.8), we use the following Gagliardo-Nirenberg inequality

‖y‖L∞(Ω) ≤ C‖y‖
1
2
H1(Ω)

‖y‖
1
2
L2(Ω)

;

see, for instance, [6, P. 233]. Then, we have with Hölder and Young inequalities

1

2
‖yρ(t)‖2L2(Ω)

+
∫ t

0

∫
Ω

[|∇ yρ |2 + ay2ρ] dx ds ≤
∫ t

0

∫
Ω

g yρ dx ds

≤ ‖g‖L2(0,∞;L2(Ω))

( ∫ t

0
‖yρ(s)‖2L2(Aρ(s)) ds

) 1
2

≤ ‖g‖L2(0,∞;L2(Ω))

( ∫ t

0
‖yρ(s)‖2L∞(Ω)|Aρ(s)| ds

) 1
2

≤ C‖g‖L2(0,∞;L2(Ω))

( ∫ t

0
‖yρ(s)‖L2(Ω)‖yρ(s)‖H1(Ω)|Aρ(s)| ds

) 1
2

≤ C‖g‖L2(0,∞;L2(Ω))‖yρ‖
1
2
L∞(0,∞;L2(Ω))

‖yρ‖
1
2
L2(0,∞;H1(Ω))

( ∫ t

0
|Aρ(s)|2 ds

) 1
4

≤ ε
(‖yρ‖2L∞(0,∞;L2(Ω))

+ ‖yρ‖2L2(0,∞;H1(Ω))

)

+ Cε‖g‖2L2(0,∞;L2(Ω))

( ∫ t

0
|Aρ(s)|2 ds

) 1
4
.

From here we infer

‖yρ‖QT ≤ C2‖g‖L2(0,∞;L2(Ω))

( ∫ T

0
|Aρ(s)|2 ds

) 1
4
.

On the other side, we apply (A.9) with r = 8 and q = 4 and arguing as for the
cases n = 2 or 3 we obtain

‖yk j ‖QT ≥ 1

C3
(k j+1 − k j )

(∫ T

0
|Ak j+1(t)|

r
q dt

) 1
r

= 1

C3
(k j+1 − k j )

(∫ T

0
|Ak j+1(t)|2 dt

) 1
8

.
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Thus we get

(∫ T

0
|Ak j+1(t)|2 dt

) 1
2

≤
C4‖g‖4L2(0,∞;L2(Ω))

(k j+1 − k j )4

[( ∫ T

0
|Ak j (s)|2 ds

) 1
2
]2

.

To estimate ξ0 we use again that y ∈ L2(Q) ∩ L∞(0,∞; L2(Ω)) and proceed as
follows

ξ0 =
(∫ T

0
|Aρ(t)|2 dt

) 1
2

≤ 1

ρ2

(∫ T

0
‖yρ(t)‖4L2(Aρ(t)) dt

) 1
2

≤
(C

ρ
‖y‖Q

)2
.

The rest of the proof follows as for the cases n = 2 or 3.
Step III—Proof of (A.6) and (A.7). The inequalities of (A.6) are an immediate

consequence of (1.4), (1.6), and the mean value theorem:

| f (x, t, y(x, t)| =
∣∣∣∣∂ f

∂ y
(x, t, θ(x, t)y(x, t))|

∣∣∣∣ |y(x, t)|, (A.11)

with 0 ≤ θ(x, t) ≤ 1.
Since y ∈ L2(0,∞; H1(Ω)), we have that Δy ∈ L2(0,∞; H1(Ω)∗). From the

state equation and g, f (·, ·, y) ∈ L2(Q) we infer that ∂ y
∂t ∈ L2(0,∞; H1(Ω)∗) and,

hence, y ∈ W (0,∞). Finally, the fact that y ∈ W (0,∞) implies (A.7); see [9,
Theorem 2.4] for details. ��
Remark 5.1 The proof of the boundedness of y in Q follows some ideas of the proof
of [16, Theorem III−7.1]. In that theorem, the boundedness is established for finite
time horizon and the L∞(QT ) estimates depend on time T . In our theorem, we have
avoided the dependence with respect to time exploiting the fact that y ∈ L2(Q), which
was used to estimate ξ0. By a simple modification of our proof, the L∞(Q) estimate
of y can be also obtained in terms of ‖g‖Lr (0,∞;Lq (Ω)) if

1
r + n

2q < 1. We observe that

the assumption y ∈ L2(Q) is natural in the context of our optimal control problem
due to the structure of its cost functional. Another difference of our estimates with
respect to [16, Theorem III−7.1] concerns the choice of the boundary condition. Here
we have treated the Neumann case while the Dirichlet case was considered in the
mentioned reference. The only difference in our proof for the Dirichlet case consists
in the definition of ρ that should include the L∞(Σ) norm of the Dirichlet datum, if
it is not zero.

Now, we analyze the following linear equation

{
∂z

∂t
− Δz + az + d(x, t, y)z = h in Q,

∂nz = 0 on Σ, z(0) = z0 in Ω.
(A.12)

We assume that

y ∈ L∞(Q) and lim
t→∞ ‖y(t)‖L2(Ω) = 0, (A.13)
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and that d : Q × R −→ R is a Carathéodory function satisfying

∀M > 0 ∃CM such that |d(x, t, s)| ≤ CM ∀|s| ≤ M, (A.14){∃md > 0, ∃δd ∈ [0, 1), and ∃Cd > 0 such that
d(x, t, s) ≥ −Cd |s| − δda(x, t) ∀|s| ≤ md ,

(A.15)

for almost all (x, t) ∈ Q.

Theorem A.3 Under assumptions (A.13)–(A.15), equation (A.12) has a unique solu-
tion z ∈ W (0,∞) for every h ∈ L2(0,∞; H1(Ω)∗) and z0 ∈ L2(Ω), which satisfies

‖z‖W (0,∞) ≤ K3,y

(
‖h‖L2(0,∞;H1(Ω)∗) + ‖z0‖L2(Ω)

)
, (A.16)

where K3,y depends on ‖y‖L∞(Q). In addition, if h ∈ L2(Q)∩L p(0,∞; L2(Ω))with
p ∈ ( 4

4−n ,∞] and z0 ∈ L∞(Ω), then z ∈ L∞(Q) and the estimate

‖z‖L∞(Q) ≤ K4,y

(
‖h‖L2(Q) + ‖h‖L p(0,∞;L2(Ω)) + ‖z0‖L∞(Ω)

)
(A.17)

holds for a constant K4,y also depending on ‖y‖L∞(Q).

Proof Due to the fact that y ∈ L∞(Q) and (A.14)wehave thatd(·, ·, y) ∈ L∞(Q), and
hence the existence and uniqueness of z ∈ W (0, T )∩L∞(QT ) holds for every T < ∞.
Let us prove that z ∈ W (0,∞). We put K = ‖y‖L∞(Q) and CK = ‖d(·, ·, y)‖L∞(Q).
Given δd ∈ [0, 1) we know that there exists a constant Ca,δd such that

Ca,δd‖w‖H1(Ω) ≤
(∫

Ω

[|∇w|2 + (1 − δd)aw2] dx
) 1

2 ∀w ∈ H1(Ω). (A.18)

We select ε > 0 such that max{Cd ,
CK
md

}C2
1ε ≤ C2

a,δd
4 , where md and Cd are given

in (A.15) and C1 is the embedding constant for H1(Ω) ⊂ L4(Ω). Using (A.13) we
deduce the existence of Tε > 0 such that

‖y(t)‖L2(Ω) ≤ ε ∀t ≥ Tε. (A.19)

For t > 0 we set Ωmd (t) = {x ∈ Ω : |y(x, t)| ≤ md}. Now, we test (A.12) with z
and integrate over Ω × (Tε, t) for every t > Tε, use assumption (A.15), and (A.19)

1

2
‖z(t)‖2L2(Ω)

+ C2
a,δd

∫ t

Tε

‖z(t)‖2H1(Ω)
ds

≤ 1

2
‖z(t)‖2L2(Ω)

+
∫ t

Tε

∫
Ω

[|∇z|2 + (1 − δd)az
2] dx ds ≤ 1

2
‖z(Tε)‖2L2(Ω)

+
∫ t

Tε

〈h(s), z(s)〉 ds + Cd

∫ t

Tε

∫
Ωmd (t)

|y|z2 dx ds + CK

∫ t

Tε

∫
Ω\Ωmd (t)

z2 dx ds
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≤ 1

2
‖z(Tε)‖2L2(Ω)

+ ‖h‖L2(0,∞;H1(Ω)∗)‖z‖L2(Tε,t;H1(Ω))

+ max{Cd ,
CK

md
}
∫ t

Tε

∫
Ω

|y|z2 dx ds

≤ 1

2
‖z(Tε)‖2L2(Ω)

+ 1

C2
a,δd

‖h‖2L2(0,∞;H1(Ω)∗) + C2
a,δd

4
‖z‖2L2(Tε,t;H1(Ω))

+ max{Cd ,
CK

md
}
∫ t

Tε

‖y(s)‖L2(Ω)‖z(s)‖2L4(Ω)
ds

≤ 1

2
‖z(Tε)‖2L2(Ω)

+ 1

C2
a,δd

‖h‖2L2(0,∞;H1(Ω)∗)

+ C2
a,δd

4

∫ t

Tε

‖z‖2H1(Ω)
ds + C2

1 max{Cd ,
CK

md
}ε

∫ t

Tε

‖z(s)‖2H1(Ω)
ds

≤ 1

2
‖z(Tε)‖2L2(Ω)

+ 1

C2
a,δd

‖h‖2L2(0,∞;H1(Ω)∗) + C2
a,δd

2

∫ t

Tε

‖z‖2H1(Ω)
ds.

This implies

‖z(t)‖2L2(Ω)
+ C2

a,δd

∫ t

Tε

‖z(t)‖2H1(Ω)
ds ≤ ‖z(Tε)‖2L2(Ω)

+ 2

C2
a,δd

‖h‖2L2(0,∞;H1(Ω)∗).

Since z solves (A.12) in (0, Tε), we have z ∈ W (0, Tε) and ‖z‖W (0,Tε) can be estimated
by ‖h‖L2(0,∞;H1(Ω)∗) + ‖z0‖L2(Ω). This along with the above estimate implies the
desired estimate of z in L2(0,∞; H1(Ω)) ∩ L∞(0,∞; L2(Ω)). From the equation
(A.12) we infer that ∂z

∂t ∈ L2(0,∞; H1(Ω)∗) and estimate (A.16) follows.
Finally, under the additional regularity of h and z0, applying Theorem A.2 to the

equation

∂z

∂t
− Δz + az = g = h − d(x, t, y)z ∈ L p(0,∞; L2(Ω)) ∩ L2(Q)

with f = 0 and M f = 0 there, we infer that z ∈ L∞(Q) and (A.17) holds. Here we
have used that L∞(0,∞; L2(Ω)) ∩ L2(Q) ⊂ L p(0,∞; L2(Ω)) for every p ≥ 2. ��

We finish this appendix by analyzing the following adjoint equation

{
−∂ϕ

∂t
− Δϕ + aϕ + d(x, t, y)ϕ = h in Q,

∂nϕ = 0 on Σ, limt→∞ ‖ϕ(t)‖L2(Ω) = 0.
(A.20)

Theorem A.4 Under assumptions (A.13)–(A.15), equation (A.20) has a unique solu-
tion ϕ ∈ W (0,∞) for all h ∈ L2(0,∞; H1(Ω)∗) which satisfies

‖ϕ‖W (0,∞) ≤ K5,y‖h‖L2(0,∞;H1(Ω)∗), (A.21)
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where K5,y depends on ‖y‖L∞(Q). In addition, if h ∈ L2(Q)∩L p(0,∞; L2(Ω))with
p ∈ ( 4

4−n ,∞], then ϕ ∈ L∞(Q) and the estimate

‖ϕ‖L∞(Q) ≤ K6,y

(
‖h‖L2(Q) + ‖h‖L p(0,∞;L2(Ω))

)
(A.22)

holds for a constant K6,y also depending on ‖y‖L∞(Q).

Proof First,weprove uniqueness. For this purposewe establish that the unique solution
to (A.20) with h = 0 is ϕ = 0. Indeed, in this case, we take z ∈ W (0,∞) solution to
(A.12) with h = ϕ and z0 = 0. Then we have,

∫
Q

|ϕ|2 dx dt =
∫
Q
[∂z
∂t

− Δz + az + d(x, t, y)z]ϕ dx dt

=
∫
Q
z[−∂ϕ

∂t
− Δϕ + aϕ + d(x, t, y)ϕ] dx dt = 0.

To prove the existence of a solution we denote by ϕT ∈ W (0, T ) the solutions of

{
−∂ϕT

∂t
− ΔϕT + aϕT + d(x, t, y)ϕT = h in QT ,

∂nϕT = 0 on ΣT , ϕT (T ) = 0 in Ω.
(A.23)

The existence and uniqueness of ϕT is known because the function d(x, t, y(x, t)) is
bounded.WeextendϕT by0 to (0,∞) and estimate this extension in L2(0,∞; H1(Ω))

independently of T . For this purpose we take φ ∈ L2(0,∞; H1(Ω)∗) arbitrary and
denote by z the solution of (A.12) with h = φ and z0 = 0. Then, we have with (A.16)

∫ ∞

0
〈φ(t), ϕT (t)〉 dt=

∫ T

0
〈φ(t), ϕT (t)〉 dt=

∫ T

0
〈∂z
∂t

− Δz+az+d(x, t, y)z, ϕT 〉 dt

=
∫ T

0
〈−∂ϕT

∂t
− ΔϕT+aϕT+d(x, t, y)ϕT , z〉 dt=

∫ T

0
〈h, z〉 dt

=
∫ ∞

0
〈h, z〉 dt ≤ ‖h‖L2(0,∞;H1(Ω)∗)‖z‖L2(0,∞;H1(Ω))

≤ K3,y‖h‖L2(0,∞;H1(Ω)∗)‖φ‖L2(0,∞;H1(Ω)∗).

This implies that

‖ϕT ‖L2(0,∞;H1(Ω)) ≤ K3,y‖h‖L2(0,∞;H1(Ω)∗) ∀T > 0.

From (A.23) and the above estimate we deduce the boundedness of {ϕT }T>0 in
W (0,∞). Then, there exists a sequence {Tk}∞k=1 with Tk → ∞ and a function
ϕ ∈ W (0,∞) such that ϕTk⇀ϕ inW (0,∞) as k → ∞. It is obvious that we can pass
to the limit in (A.23) and deduce that ϕ satisfies (A.20) and estimate (A.21) holds.
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To prove that ϕ ∈ L∞(Q) under the additional regularity assumption on h we
introduce the functions zT (x, t) = ϕT (x, T − t) for every T > 0. Then zT ∈ W (0, T )

and it satisfies (A.12) in QT with z0 = 0 and hT (x, t) = h(x, T − t). Since

‖zT ‖L2(QT ) = ‖ϕT ‖L2(QT ) ≤ ‖ϕT ‖L2(0,∞;H1(Ω)) ≤ K3,y‖h‖L2(0,∞;H1(Ω)∗),

‖hT ‖L2(QT ) = ‖h‖L2(QT ) ≤ ‖h‖L2(Q) and ‖hT ‖L p(0,∞;L2(Ω)) ≤ ‖h‖L p(0,∞;L2(Ω)),
we infer from Theorem A.2 that {ϕT }T>0 is uniformly bounded in L∞(Q) and, con-
sequently, estimate (A.22) holds. ��
Remark 5.2 If the function f in (A.1) satisfies ∂ f

∂ y (x, t, y) ≥ 0 for every y ∈ R and
almost all (x, t) ∈ Q, then the term ‖y‖L2(Q) in the estimates (A.4) and (A.5) can
be removed. Under this assumption on f , the constants M f and CM f in (1.5) and
(1.7) are zero. Then, it is enough to use this in the proof of Theorem A.2 to get the
independence of the estimates with respect to y.

Moreover, by an analogous argument, if the assumptions (A.13)–(A.15) are replaced
by

y ∈ L∞(Q) and ∀M > 0 ∃CM such that 0 ≤ d(x, t, s) ≤ CM ∀|s| ≤ M

and almost all (x, t) ∈ Q, then the constants K3,y until K6,y in the estimates (A.16),
(A.17), (A.21), and (A.22) can be chosen independently of y.
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