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Abstract
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1 Introduction

We study the optimal control problem

. 1 [ 5 v [ 2
P min J(u) = = Yy —ya) dxdt + < u” dx de,
uelyg 2 0 Q 2 0 15}

Eduardo Casas was supported by MCIN/ AEI/10.13039/501100011033/ under research Project
PID2020-114837GB-100.

B Karl Kunisch
karl.kunisch@uni-graz.at

Eduardo Casas
eduardo.casas @unican.es
Departmento de Matemadtica Aplicada y Ciencias de la Computacién, E. T.S.I. Industriales y de

Telecomunicacion, Universidad de Cantabria, 39005 Santander, Spain

Institute for Mathematics and Scientific Computing, University of Graz, Heinrichstrasse 36, 8010
Graz, Austria

Johann Radon Institute, Austrian Academy of Sciences, Linz, Austria

Published online: 09 June 2023 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00245-023-10006-4&domain=pdf
http://orcid.org/0000-0003-1113-7355

47  Page2of36 Applied Mathematics & Optimization (2023) 88:47

where v > 0, yg € L2(£2 x (0, 00)) N LP(0, 00; L?(£2)) with p € (%, 00], and

Uaa = {u € L*(0, 00; L>()) : u(t) € Kqq fora.a. t € (0, 00)}.

Above K, denotes a closed, convex, and bounded set in Lz(w), and y,, is the solution
of the following parabolic equation:

ot
o,y =00on X =T x (0,00), y(0) = ypin £2.

0 .

Here £2 is a bounded domain in R"”, 1 < n < 3, with a Lipschitz boundary I", and
£2 is an interval if n = 1, w is a measurable subset of §2 with positive Lebesgue
measure, x, denotes the characteristic function of w, a € L*°(£2),0 < a # 0,
g € L*(Q), and additionally g € LP(0, co; L*(£2)) with p € (52, 0] if n = 2 or
3, and yg € L*°(£2). For every u € Uy, the symbol u x,, is defined as follows:

_Jux, ) if (x,1) € Qp = x (0, 00),
(UX) (x, 1) = { 0 otherwise.

Possible choices for K, include

Kea =By ={ve L*@): [vlp2w) <7} 0 <y < o0, (1.2)
Kia=1{ve L) :a <v(x) < Bforaa. x ew}, —co<a < B <oo. (1.3)
Concerning the nonlinearity f : O x R — R we assume that it is a Carathéodory
function of class C! with respect to the last variable satisfying the following properties:
fx,2,0) =0, (1.4)

af
dM ¢ > 0 such that @(x, t,y)>0and f(x,t,y)y > 0V|y| > My, (1.5)

9
—f(x,t,y)

VM > 0 3Cys such that 5
y

<CuViyl =M, (1.6)
for almost all (x, #) € Q. Let us observe that (1.5) and (1.6) imply
af
B—(x, t,y) > —CM/. Vy € R and for a.a. (x,¢) € Q. (1.7)
y .

Moreover, (1.4) and (1.6) along with the mean value theorem yield

0
| f(x,t,y)|= a—f(x, t,0(x,1)y)y|<CyM V|y|<M and for a.a. (x,1) € Q.
y
(1.8)
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The following generalized Poincaré inequality will frequently be used

1

2
Callyllm @) < (fg[|Vy|2+ay21dx) : (1.9)
All along this paper we will assume that

4
pe (4—,00] if n=2o0r3 and p € [2,00]ifn = I. (1.10)
—n

Remark 1.1 The operator — A can be replaced by any uniformly elliptic operator with
L°°(£2) coefficients. The assumption (1.4) can be relaxed by assuming that f (-, -, 0) €
L%(Q) N L*®(0, oo; L?(£2)) and then redefining f and g as f(x,¢,y) — f(x,t,0)
and g(x,t) — f(x,1t,0), respectively.

By investigating (P) we continue our efforts on studying infinite horizon optimal
control problems with semilinear parabolic equations as constraints. In [8] the nonlin-
earities were chosen of polynomial type, no constraints were enforced on the controls,
and the focus was put on nonsmooth, sparsity enhancing control costs, which entail
that the controls settle down at zero once the states enter into a neighborhood of a
stable equilibrium. Later, in [9] the nonlinearity was not restricted to be a polynomial
and the conditions on f were very similar to those imposed in the present paper. The
same type of control constraints were imposed as well. The major step forward in
the current paper compared to [9] consists in an L°°(Q) estimate of the states for
feasible controls, i.e. for controls with the property that the associated states y, are
in L>(Q). Utilizing this property, well-posedness and C? regularity of the control-to-
state mapping, associating the infinite horizon controls to the infinite horizon states,
can be guaranteed, and a second order analysis of (P) becomes possible. This was
not the case in [9], where the first order conditions of the infinite horizon problem
were obtained as the limit of the associated finite horizon problems, and no second
order analysis was carried out. The authors are not aware about the availability of
the second order analysis for optimal control problems with constraints as in (1.2)
even in the finite horizon case. Along a related, but different line of research we also
investigated infinite horizon optimal control problems with a discount factor on the
state, [11] and [12]. This allows to treat a larger class of nonlinearities at the expense
of less information of the optimal states as time increases.

Most of the literature on infinite horizon problems is carried out for ordinary dif-
ferential equations. Let us mention some of these contributions. In [7] the importance
of infinite horizon problems in applications is stressed. In general, when formulat-
ing optimal control problems, the time horizon can be subject to ambiguity. In such
cases the choice as infinite horizon problem can be a valuable choice. The first article,
focusing on infinite horizon problems may be [15]. More recent contributions all in
the context of ordinary differential equations are available for instance in [1, 2, 4].
Concerning the literature, pointwise constraints as in (1.3) have received considerably
more attention than norm constraints as in (1.2). However, from a practical point of
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view (1.2) appears to be equally important. In the case of optimal control of Navier—
Stokes equations the suitability of this type of constraints was discussed in [14]. The
use of the L! (w) norm replacing the L?(w) was studied in [10]. The last two references
were devoted to final horizon control problems.

Briefly, the paper is structured in the following way. In Sect.2, the existence of
optimal controls and first order optimality conditions are established. Necessary and
sufficient second order conditions for the two choices of K, in (1.2) and (1.3) are
obtained in Sect. 3. Section4 is devoted to convergence results for the finite horizon
problems associated to (P), to the infinite horizon problem. This is not only of intrinsic
interest but also of relevance for numerical realization. In the Appendix the relevant
results for the state equation, and the associated linearized and adjoint equations are
established. The L (Q) regularity result for the state equation, already mentioned
above, may be of interest beyond its application in optimal control.

2 Existence of an optimal control and first order optimality conditions

In this section, we prove the existence of an optimal solution of (P) and derive the
first order optimality conditions satisfied by any local minimizer. For this purpose we
will also address the issue of differentiability of the relation control-to-state and of the
cost functional J. Let us observe that Theorem A.2 implies the existence of a unique
state y, for every control u € U,4. However, it could happen that y, ¢ L2(Q) and,
consequently, J(#) = oo. Therefore, the assumption about the existence of a control
ug € Uyy such that J(ug) < oo is needed. This issue will not be addressed in this
paper, the reader is referred, for instance, to [3] and [8] for this question. We will say
that u is a feasible control if u € U,q and J (1) < oo.

For 0 < T < oo weset W(O,7) = {y € L>0,T;H'(2)) : & «

0=

ﬂ

2
L20.75 H' @) with 1yhwory = (020 7oy + |5 a0 7o)
as norm. It is well known that (W (0, T), || - llw(,r)) is a Banach space. In fact, it is
a Hilbert space because || - || wo,r) is a Hilbertian norm. Furthermore, the embedding
W0, T) C C([0, T]; L*>(£2)) is continuous for T < oo and W (0, T) is compactly
embedded in L2(0, T; L*(£2)) if T < oo.

Theorem 2.1 Let us assume that there exists a feasible control ugy. Then, (P) has at
least one solution.

Proof Let {u;}72, C Uuq be a minimizing sequence of feasible controls with associ-
ated states {y,, }p- ;. Since J(ux) — inf (P) < oo, then the boundedness of {uy}72,
and {y,, },fil in Lz(Qw) and LZ(Q), respectively, follows. Then, taking subsequences
we can assume that (uy, y,, )— (i, y) in L2(Qw) X LZ(Q). Since U, is a closed and
convex subset of L2( 0,),weinferthatu € U,4. Dueto the weak lower semicontinuity
of J withrespectto (y, ) in L?(Q)x L? (Qw),itisenough to establish that y is the state
associated to u to conclude the proof. For this purpose we have to show that y satisfies
(A.2) with g + x,u on the right hand side for every T < oo. The only delicate point
in this respect is to prove the convergence of f(x,t, y,, ) — f(x,t,y)in LQ(QT) for
every T > 0, where Q7 = §2 x (0, T). Using the boundedness of {(uy, y,,k)},f":1 in
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[L2(Q4,)NL>®(0, 00; L%(w))] x L2(Q) we deduce from (A.4)—(A.6) the boundedness
of {yu J72; in W(0, 00) N L®(Q) and {f (-, -, yu)}p2, in L>(Q) N L*(Q). Hence,
using the compactness of the embedding W (0, T) C L?(Qr) the desired convergence
follows. =

Hereafter, the following additional hypothesis on f is assumed:

dmy >0, 357 €[0,1), and 3C ¢ > O such that

d
a—f(x, t,5) > —Cyls| —8ra(x,t) V|s| < my and fora.a. (x,t) € Q. 2.1
y

Let us denote for every p satisfying (1.10)

Uy, = {u € L*(Q) N LP(0, 00; L*(w)) such that y, € L*(Q)},

Y, = {y € W(0,00) N L¥(Q) {;—f _ Ay+ay € L2(Q) N LP(0, 00: LA(2))),

and by G, : U, — Y the mapping G ,(u) = y,, where y, is the solution of (1.1).
Y, is a Banach space when endowed with the associated graph norm. We observe that
Uso C U) and G is the restriction of G, 10 Ueeo.

Theorem 2.2 Let us assume that U, is not empty. Then, U, is an open subset of
L%*(Q.,) N LP(0, 00; L*(w)) and the mapping G, is of class C'. Moreover, given
uecly,andv e Lz(Qw) N LP(0, 0o; L2 (w)), 7y = DG ,(u)v is the unique solution

of

0z aof .
— —Az4az+ —x, 1, y)Z = V) in Q,
ot ay

0pz=0o0n %, z(0) =0in $2.

(2.2)

Proof The proof will be based on the implicit function theorem. For this purpose we
define the mapping

Fp Yy x L*(Qp) N LP(0, 00; L} (w)) —> L*(Q) N LP(0, 00; L*(£2)) x L™(£2)

3
Fply,u) = (a—f —Ay+ay+ (.- y) — & — Xott, y(0) —yo).

By definition of ¥, and using (1.8), we deduce that ), is well defined and is of class
C!. Further, we have that F »(Vu, u) = (0, 0) for every u € U, and

aaﬁ(yu, u): Y, — L*(Q) N LP(0, 00; L*(£2)) x L™(£2)
y

F, dz af
5 = - A s s Yu ) O .
% (v, u)z (—at z+az+ _Z)y( Yu)z, z( ))
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Then, aa—J;p(yu, u) is an isomorphism if and only if the equation

0z d .
— —Aztaz+ —f(x, t,yu)z=hin Q,
ot ay

opz=0o0n %, z(0) =zpin 2

(2.3)

has a unique solution in Y, for every (h, zo) € LZ(Q) N LP(0, 0co; L2(£2)) x L®(£2)
with continuous dependence. This is an immediate consequence of Theorem A.3 with
dx,t,s) = %(x, t,s) and y = y, € L°(Q). Finally, the theorem follows by
applying the implicit function theorem. O

As a consequence of the above theorem, we have that J : I/, —> R is well defined.
The next theorem establishes its differentiability.

Theorem 2.3 Assuming that U, is not empty, the functional J is of class C U and for
everyu € Uy, and v € L2(Qw) N LP(0, 0o; L*(w)) its derivative is given by

J (v = / Yu — Ya)Zu,p dx dt + v/ uvdx dt = / (pu + vu)vdx dt,
Q Q(l)

2}

2.4)
where 7, , = G’p (w)v and ¢, € W(0, 0c0) N L*°(Q) satisfies
0 0 .
- ;;" —A¢u+a¢u+£(x,t,yu)<pu = Yu—YainQ, 2.5)

Iy = 0on X, limy— oo lou (D)l 2(2) = 0.

The fact that J is of class C'! is an immediate consequence of Theorem 2.2 and the
chain rule. Formula (2.4) is deduced in the standard way from Egs. (2.2) and (2.5).
Concerning the well posedness of (2.5) we refer to Theorem A 4.

We conclude this section establishing the first order optimality conditions satisfied
by every local minimizer of (P) and deducing some consequences from them. In this
paper, a local minimizer i is understood in the L?(Q,,) sense and it is assumed that
U €Uso NUyyg.

Theorem 2.4 Let i be a local minimizer of (P). Then, there exist y, ¢ € W(0, o0) N
L*°(Q) such that

ay _ _ _ _ .
E_A)’+a)’+f(x7t’)’)=g+“meQ, (26)
dy =00n X, y(0) = yg in $2,

ap _ _of -
_ T _A ' — 5 _ ;

» <ﬂ+a<p+8y(x,t,y)¢ y—yainQ, @7

@ =0o0n X, lim; 0 [0 12¢2) =0,
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/ @+ vi)(u—i)dxdt >0 Yu € Uy. (2.8)
Qo

This theorem is an immediate consequence of Theorem 2.3 and the inequality
J'()(u — i) > 0forallu € Uyy.

Corollary 2.1 Let ¢ and u satisfy (2.7) and (2.8). If K,q is given by (1.2), then the
following properties hold for almost all t € (0, c0)

/((ZJ(I) +vu(t))(v —u())dx >0 Vv e B, (2.9)
w
fllulp2w <v = ¢@) +vu() =0inow, (2.10)
IO 2w =y:»ﬁ<x,t)=—y”¢(’()f;—”’;)(w, @.11)
lullLe(g,) = %”(ﬁ”Lm(Qw} (2.12)
In the case that K ,q is given by (1.3), then we have
fi(x, 1) = Projg ) (— %([)(x,t)). (2.13)

In both cases we have that u € L*°(Q,,).

Proof For the proof of (2.9) and (2.10) the reader is referred to [9, Lemma 3.2]. Let
us prove (2.11). First, we assume that ||@(¢) + vi(t)|| L2(w) # 0. Then, again from [9,
Lemma 3.2] we obtain

p(x,t i (x,t
u(x,t) =—y gzj(x ) +_vu(x ) fora.a. x € .
o) +vu()llp2(w)

This yields
(W + llo@) + vﬁ(t)llLa(w))a(x, 1) =—y@(x,t) foraa x € w.  (2.14)

Taking the norm in L?(w) in the above expression and using that [|iz(¢) | L2(w) =V We
infer

vy + o) +vu®)ll 2y = 19O 12(0)- (2.15)

Identities (2.14) and (2.15) imply (2.11). In the case [|¢(1) + vu(t)ll;2¢,) = 0 and
()|l 2() = ¥ we have that

1
u(x,t) = ——o@(x,t)foraa.x € w and vy = ||<,Z>(t)||Lz(w). (2.16)
v
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Therefore, (2.11) also holds. Let us prove (2.12). If [|u(#)]l12(,) < v, then (2.10)
implies that |u(x, )| = %|¢(x, )] < l||<ﬁ||Loo(Qw).If||12(t)||Lz(w) = y, the inequality
||g7)(t)||Lz(w) > yv follows from (2.15) and (2.16). Then, (2.11) implies that |u(x, ¢)| <

H@lL<g,)-
Finally, the identity (2.13) is well known.

3 Second order optimality conditions

In this section we address the second order optimality conditions for (P). For this
purpose, in addition to assumptions (1.4)—(1.7) we impose the following hypotheses:
f: 0 xR — Ris of class C? with respect to the second variable and satisfies

9
357 € [0, 1) such that a—f(x, 1,0) > =8 a(x, 1), 3.1)
. y .

2

0
VM > 03Cy; such that 8—£(x, t,y)
y

=CuViyl=M, (3.2)

Ve > 0and VM > 0 3p. p such that
2 f 0’ f
a_yz(x7 t7 )’2) - a_yz(x7 t7 yl)

<& Vlyil, [y2] < M with |y; — y1| < pe, M
(3.3)

for almost all (x,#) € Q. We observe that (3.1) and (3.2) imply (2.1). Indeed, it is
enough to select

my =1 and Cy = max

9% f
—(x, t, .
M | oy2 (x y)‘

Then, using the mean value theorem we infer for almost all (x,7) € Q

—8 (x,1 )_—82f( t,0(x,1)s) —8f( 1,0) > —Cyls| —dra(x,t) V|s| <
—(x,t,5) = x,t,0(x,1)s)s + X, t, Crls a(x,t) Vs mr.
ay dy? ay s f f

Theorem 3.1 Under assumptions (1.4)—(1.7) and (3.1)—(3.2) and supposing that U,
is not empty, G, : U, —> Y, is of class C?. Moreover, given u e Up and
v, V) € Lz(Qw) N LP(0, oo; L*(w)), then Zojy = G;(u)(vl, vp) is the solution
of the equation

az 9 92

/ / :
5 —Az+az+ E(x» Loyu)z = _W(xv 1, Yu)Zv 2wy In Q, (3.4)

opz=00n %, z(0) =0in 2,
where z,; = G;,(u)vi fori=1,2.
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The C? differentiability of G follows from the implicit function theorem applied to
the mapping F, introduced in the proof of Theorem 2.2. It is enough to observe
that now F), is of class C?. The Eq. (3.4) follows differentiating the identity
Fp(Gp(u), u) =0 twice.

As aconsequence of Theorem 3.1 and the chain rule we have the following corollary.

Corollary 3.1 If U, is not empty, then the function J : U, — R is of class C? and
we have

82
J" (W) (vi, v2) = / [1 — 8_yJ;(x’ t, yu)tpu]zvlzvz dx dr + v/ vivy dx dr
0

w

3.5)

for every u € U and vy, va € L*(Q,) N LP(0, oo; L?(w)).

Remark 3.1 Under assumptions (1.4)—(1.7) and (3.1)=(3.2), for every u € U, the
linear form J'(u) : L%(Q,) N L?(0, 00; L%(w)) —> R as well as the bilinear form
J"(u) : [L*(Q,) N LP(0, 00; L%(w))]> —> R can be extended to continuous linear
and bilinear forms J'(u) : L?(Q,) — R and J"(u) : L*(Q,)> — R given
by the same expressions (2.4) and (3.5), respectively. Indeed, this is an immediate
consequence of Theorem A.3 along with the L>°(Q) N L%(Q) regularity of the adjoint
states established in Theorem A.4.

The analysis of second order optimality conditions is carried out in the next two
subsections, where we consider the cases with K,4 given by (1.2) or (1.3).

3.1 Casel:Kgg = By = {v € L2(®) : IVl 2() < V)-
For this case we consider the Lagrange function
0 1 oo 2
L:U, x LT(0,00) — R, L(u,r)=Ju)+ 2 AONu®ll72 ) dr.
0

Theorem 2.3 and Corollary 3.1 imply that £ is of class C? and we have the expressions

oL 1 [
—(u, AM)v = (ou +vu)vdx dt + — A | uvdxds, 3.6)
ou Ow v Jo )

%L
W(u, A)(vy, v2)

9% f 0 1
- [1 AN’ yu)(pu]zvlzvz dedi+ [ w+=2) [ vivrdxds.
0 ay 0 Y Jo
3.7)

The identities (3.6) and (3.7) define continuous linear and bilinear forms on L2(Q,)
and L2( Qw)z, respectively.

@ Springer



47  Page 100f 36 Applied Mathematics & Optimization (2023) 88:47

Letu € UgaNUso satisfy the first oder optimality conditions (2.6)—(2.8). Associated
with u we define A(t) = ||¢(t) + vu(r)||12(,)- From Theorem 2.4 and (2.12) we get
that 2 € L>(0, oo) N L%(0, 00). We also set

I, = {t € (0,00) : lu(t)|l;2(,) = ¥} and 1; ={tel,: A1) # 0}

The choice of A as Lagrange multiplier associated with the control constraint is sug-
gested by (2.10). Actually, next lemma confirms that this is the correct choice.

Lemma 3.1 Let u and ¢ satisfy (2.7) and (2.8). Then we have %(ﬁ, v = 0 for every
v e L*(Qy).

Proof Using (3.6), (2.10), (2.11), and (2.15) we infer

%(ﬁ,i)v: (¢+vﬁ)vdxdr+l/mi(t)/ﬁ(t)u(t)dxdz
ou Ow v Jo 12

/ /(§0+vu)vdxdt+ i /+ i(t)/ i(t)v(r) dx dr
/ / ¢ ) dx d
J53 ||<P(t)||L2(w>

_ z _ dxdr =0.
/1; (”/ ||¢<>||Lz<w>”(t) o

m}

In order to formulate the second order optimality conditions we introduce the cone
of critical directions associated with u:

0ifrel,

Ci = {v € L*(Qu) : J'(@)v = 0 and f (v () dx { Oifrer;

w
Then we have the following second order necessary optimality conditions.
Theorem 3.2 If u is a local minimizer of (P), then (u M2 >0 forall v € Cj.

Proof Since i is a local minimizer of (P), there exists ¢ > 0 such that J(u) < J(u)
forall u € Uyg N Be(it), where B (it) = {u € L>(Qy) : |lu — ullz2(g,) < €} Dueto
i € Uy and since Uy is an open subset of Lz(Qw) NL>®(0, 0o; L2(w)), we can select
¢ small enough so that every control u € B (i) satistying |[u — it 1000 00: 12(w)) < €
belongs to Use.

Let v € Cz N L®(0, 00; L2(w)). The assumption v € L*®(0, 0o; L*(w)) will be
removed later. Let us fix an integer

2 max{||u] .2 s ]| foo 2yt 1
ko > max L*(Qw) - L5°(0,00; L% (w)) .
y'e 14
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and set

0 if L aor,, < y?
vr(x,t) = k L2(w) Vk > ko.

v(x, t) otherwise

Itis obvious that {vg }x>¢, C L( Q0,)NL>(0, oo; L?(w)). Moreover, the convergence
vp — vin Lz(Qa,) follows from Lebesgue’s dominated convergence theorem.
For fixed k > kg, we define

1
min{1, y}e Y=Y 1

2 max{|lv ”Lz(Qw)’ lv ||Loc(o,oo;L2(w))} v ||L00(0,00;L2(w))

O =

and ¢y : (—ay, +ox) —> L?(Q) N L(0, 0o; L? () by

2
P _
Pe(p) = \/1 = IO, i+ v

2
L% ()

t € (0, 00). Moreover, |¢(p)| < || + lel € L%(Q4,) N L®(0, 00; L*(w)).
Hence, the mapping ¢ is well defined and it'is of class C®. Let us prove some
properties of this mapping.

I-¢r(p) € Uyg for all p € [0, +ay). Let us set u, = ¢ (p). Then, we have for
almost all ¢ € (0, c0)

By definition of oy we have )’j—z IAG] < 1forallk > kg, |p| < ag,and almost all

2
P _
It Ol = [1= 31Oz 1O + 2Oz,

2
+2p\/ L= 2SI, / (1) v (1) dx. (3:8)

In the case t € I,,, we have v (t) = v(¢). Then, using that v € C; we deduce that the
last integral in the above inequality is less than or equal to zero and, consequently, (3.8)
2 2 2 1 ~ 2 2 —
leads to ||up(t)||L2(w) <y-.Ifys— T < ||u(t)||L2(w) < y*, then we have vi (1) =0
by definition and, hence, (3.8) implies that ||u p(t)||i2 @

that || (z) ||i2 @ <y?- % Then, we infer from the definition of oy,

/ 1
lwp Ol 220) = y? — % + arllvll Lo (0,00: L2(w)) = V-

< yz. Finally, we assume
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II-\l¢r(p) — ull2¢p,) < €. From the definition of ¢ we get

IA

2
- 14 —
o (o) —ull20,) = |1 — \/1 2 10k 1172, | 1712200, + 10110kl 20,

2
k 2 m
2 1P 0 00r 20 112000 T @klIvll 20,

From the definition of oy and k > kg > % we obtain

k= = .
IVl Lo0(0,00:22()) — KV V1120 (0,00;12(w))

holds. Then, we have

Moreover, o < s————
VK= 220,

_ lullzzc0,)
_ < = \ReJ —
px(p) — ullr20,) < 12y +3

. o 20l 20,
The last inequality is consequence of k > ko > )

Il - ¢r(p) € Us. Arguing as in the previous step and using again the defini-
tion of o, and ko with [[il|z2¢¢,) and [[v]l2(g,) replaced by [[i]l 1o (0,00:12(e)) @0d
V1 o0 (0,00: 12 (a0))» TESPECtIVEly, We infer that ||y (0) — Ul oo (0,00:12(w)) < €- Due to

the choice of ¢ this implies that ¢ (p) € Uso-

Now we define the function ¥ : (—ax, +ax) —> R by ¥ (p) = J(¢r(p)).
From the local optimality of # and the established properties of ¢; we infer that
Yr(0) = J(m) < J(¢dr(p)) = Yi(p) for every p € [0, +ay). Since Yy is of class Cc?,

and ‘pk (0) = 0 then w (0) = 0. Hence, we get
0 < ¥/ 0) = J" (@ (0)$; (0 + T (¢ (0} (0) = J" (W)vi + J' (i) (0)
_0 _
= /Q [1 — w%(x, t, y)]z%k dxdt +v /Qw v,% dx dr

1 [ _ -
_ —2/ ||vk(t)||%2(w)f(g0+vu)u dx dr.
Y= Jo »

Using (2.10), (2.11), (2.15), and (2.16) we obtain that

/ ||vk(t)||Lz(w)f(<ﬂ+vu)u dxdr

¢*(1)
/ ”Uk(t)”LZ(w) / mdx + U“u(t)"Lz(a)))

=y / 1k (= 16O 20y + vy ) de
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—y /1 y 1001122 1) + VO 2 df = ¥ f Ak 025,, dt

1y

o
—y /0 2Ok 0)]172,,, dt-

Inserting this in the above inequality we infer with (3.7)

2L

= 3\.,2
W(M, )\,)Uk.

0=/ =

Now, the convergence vy — v in L%(Q) implies

PL -, L -,
W(H,)\.)U =kli>n;o W(u,k)vk ZO

Finally, we remove the assumption v € L°°(0, oo; Lz(a))). Given v € Cj, we

define vi(x, 1) = 1”(# for every integer k > 1. Then, we have {v; )2, C
I+l 2, -

L0, 00; L*(w)) N L2(Q,) and vy — v in L2(Qy). Using that v € Cj; we get

- 1 _ <0ifrel
u(t)ve(t)dx = —/ u(t)v(r)dx { . 1
/w L+ 10Ol 2 o =0ifrely

Identity (2.11) implies

/ o) (t)dx = —w/ u(t)vg(t)dr =0fora.a.r € I;’.

w

Therefore from (2.10) and the above relations we deduce
J ()vy = f+ / (o) +vu(t))vg(t)dxdr = 0.
Iy Jo

Hence, {vi )32, € Ciz NL*(0, o0 L?(w)) holds and, consequently, 227%(12, )_»)v,f >0

for all kK > 1. Finally, passing to the limit as k — oo we conclude that %27% (i1, Mv? >

0. O
Now, we give a second order sufficient optimality condition.

Theorem 3.3 Letu € U,gNUo satisfy the first order optimality conditions (2.6)—(2.8)

and the second order condition %2712:(51, w2 > 0 for every v € C;\{0}. Then, there
exists k > 0 and ¢ > 0 such that

_ K _ . -
J(u) + §||u — u||%2(Qw) < J(u) Yu € Uyg with |lu — “||L2(Qw <e. (39

Proof We argue by contradiction and assume that (3.9) does not hold. Then, for every
integer k > 1 there exists a control uy € U,y such that
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1 1
pi = g =il 20,y < 7 and J ) < J@ + e = il g, (3:10)

We define v = plk(uk —1u). Since lvkllz2c0,) =1 for every k, taking a subsequence,
we can assume that vy—v in Lz(Qw). From (3.10) we deduce that {yu,(},f‘;1 is a
bounded sequence in LZ(Q), hence {uk},‘(’i1 C Uso. Moreover, given p € (ﬁ, 00)
we have

P2 2
||“k_ﬁ||Lp(o,oo;L2(Q))§||Mk—ﬁ||Lg0(0,oo;L2(Q)) ||Mk—1/_l||£2(0’oo;[‘2(9))_)0 as k — oo.

Then, y,, = G,(ux) — G,(u) = yinY,. Consequently, there exists a ball B, (i) C
L%(Q,) N LP(0, 00; L%(w)) and kg > 1 such that {urlk=k, C Up. The rest of the
proof is split into three steps.

Step I v € Cj. From (2.4) and (2.8) we infer that

0 < J (i) = / (@ + vit)ve dx dt — /Q (@ + vit)v dx dt = J'(it)v.

3.11)

Using the differentiability of the mapping J : U, — R we infer with the mean
value theorem and (3.10)

_ J () = J(u) P

(pg, + vug )vp dx dt = J (ug, ) vx = — 0,
/Qw po : o 2%

where 0 € [0, 1], ug, = it + 6 (ux — i), and gg, is the adjoint state corresponding to
ug, . Since yg, = Gp(ug,) — Gp(u) =y in Y, we deduce from Theorem A.4 that
@g, — @inY, as k — oo. Then, it is straightforward to pass to the limit in the above
expression and to get J'(it)v < 0. This inequality and (3.11) imply that J'(it)v = 0.

Next, taking into account that || (¢) || L2w) =7 for almost all > 0, we have for
almost every ¢ € I,

- 1 — -2 1
[aoua=[ [ domoa- [ @oa]<y [0l - r]<o
® PktJw ® Pk

We define the function ¢ € L°°(0, 00) by ¢(t) = 1 if fwﬁ(t)v(t) dx > 0 and O
otherwise. Then, from the convergence vy—v in L?*(Q,) and the fact that ¢ii €
L*(Q.,) we infer from the above inequality

f ¢(t)/ i(t)o(n) dx dr = lim ¢(t)f i(t)ve(r) dx dr < 0.
I, ® g ®

o [)/
This is possible if and only if fw u(t)v(t)dx < 0 for almost all ¢ € I,,. Finally, we

prove that this integral is 0 if t € Iy+ . For this purpose we use Lemma 3.1, (3.6), and
the fact that J/(it)v = 0 as follows
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AL _ - . 1 [ )
0 = —(u,k)v:J(u)v+—/ A(t)/ i(t)v(r) dx de
du Y Jo w
- l/ X(r)/a(z)u(z)dxdz,
Y I, w

which implies that [ i (r)v(r) dx = 0 for almost all # € L}, and thus v € Cj.
Step 12 (u ) v? < 0. First we observe that

/0 MOk @175, dr = f 2O (D117, At
f AONEWD72,,, di fo MONEW)72,,, dt

This inequality and (3.10) imply

_ - 1 _
E(uk, )") < ‘C(ua k) + ﬂ”uk - u”LZ(Qw)'

Performing a Taylor expansion and using again Lemma 3.1 we infer for some 9 €
[0, 1]

182£<'+z>* (ux — it), ) (uye — it)*
392 u (U —u), Up — U
2

= —(u D =) + 5 a — (it + Op (g — 1), 1) (ug — i)’

= L, ) = L@, 1) < ﬁuuk — 720,
Dividing the above inequality by we get

2 ~ R 1
W(Hﬂk(uk—u),k)vk < = (3.12)

Denoting by uy, = u+ 9 (ux — i), yy, its associated state, and ¢y, the corresponding
adjoint state, we get from (3.7)

2 2
_ - ]
F (u + O (ug — u), A)v,% = /Q [1 — —ayjzc (x, 1, yﬁk)wﬂk]zgk,vk dx dt

1 [
Holuliag, + /0 MO, de, (3.13)
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where zy, v, satisfies the equation

02y, af .
8_/;”/: - Azﬂk,vk + AZYy, vk + @()C, t, yﬂk)Zﬂk,vk = Vk X 1N Q’

Onzog =000 5, 29,.4,(0) = 0in 2.

(3.14)

Now, we study the lower limit of (3.12). From Theorem A.3 and the boundedness of
{vi}P2, and {yg, 172, in L%(Q,,) and L*®(Q), respectively, we infer the boundedness
of {Zﬂkyvk}]?il in W(0, oo). Therefore, we can extract a subsequence, that we denote
in the same way, such that {zgk‘vk},fi | converges weakly in W (0, 0o). Moreover, the
convergence uy, — u in L7 (0, oc; L%(w)) implies yy, = Gp(uy,) — Gp(u) =y
in Y. Using this and the convergence vy—v in LZ(Qw), it is straightforward to pass
to the limit in (3.14) and to deduce that zy, ,,—2z, in W(0, 00), where z, is the
solution of (2.2). Further, the convergence of yy, — ¥ in Y, implies the convergence
in LP(0, 0o; L2(£2)) N L*°(Q). Then, from Theorem A.4 we infer that Yy, — @ in
W (0, oo) N L*°(Q). Indeed, subtracting the equations satisfied by ¢y, and ¢ we get

for Y = @9, — ¢

d d
S s bt S
t ay

= o, =5+ [0 1,9 = F 190 oo, in 0,
Yk =0on X, lim;— o0 |Yk ()l 12(2) = 0.
Then, using (3.3), the established convergence yy, — y, (A.21), and (A.22) we get
the claimed convergence of {¢y, ]2 | to @.
Now, we take the lower limit in (3.12). For this purpose we take into account that

Zop.00—2p in L2(Q), vg—v in L2(Q,,), and . € L>®(Q) with A(t) > 0 for almost all
t € (0, 00). Hence, we get by (3.12)

3L
0> hkm inf —(u + O (ux — u), A)vk
—00

9*f
.. 2 . 2
> hkrglor;f IIZﬂk,vklle(Q)+hkrglor;f/Q—m(x,t,yak)%kzﬁk,vk dx dr
2 1 3 2

+hkn3>£fv||vk||Lz(Qw) +ll](nl>£f;/(; )"(t)”Uk(t)”LZ(w) dt
> |lzll? lim inf 2f t 3 4 dxdr
el ”ZU”LZ(Q) + ]kn—]>101<l> P - 8y2 ()C, s yﬁk)goﬁkzl?k,vk X

2 1 s 2
ol + /0 KOOI, dr. (3.15)

Below we prove that
2

[ i
klgrgo oy 71, yﬁk)tpgkzﬁk v dxdr = Qa—yz(x,t,y)gazv dxdt. (3.16)
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Thus, (3.7) and (3.15)—(3.16) yleld (u Mt <0.

Let us prove (3.16). Given ¢ > O (2.7) implies the existence of T, > 0 such that
le@li2) <& for every t > T;. Further, the convergence zy, ,,— 2, in W(0, co)
implies the convergence zy,,,, — Zp In L2(QTS). Using these properties and (3.2)
with M = ||yl =p) we get

dx dr

32 f 3 f o
/.Q ‘a—yz(x, t, yﬂk)(ﬂﬁkza’vk — 8—)]2()6, t, }’)<PZ%

32]( a2f —_ =
5/ )F(x,t,yﬁk)%?k - a—yz()c,l,y)(P‘Zé“vk dx dt

/ ‘a 5 (x, 1, y)fp)lzﬁk v = Zv 2| dx dr

=N =l1.2 2
—=(x, t, — dx dr
* frg /:2 ‘ dy? x y)(p‘lzﬁk’”k zldx

2

3 f o f - 2
< Ha_y2(x’ LYoy = Gy (. Y)‘PH 120l )

L>(Q)
+ Cmll@llLeoco) 2o v — Zv”Lz(QTS) lzog v + Zv||L2(QT£)

o0
+ CMS/ lzoe. o — 2ol 22y 1200 + 2ol L2y dt =1 + L + I3
T;

The convergence (yy,, ¢s,) = (¥, ) in L%°(Q)? and the boundedness of {Zoeudoes
in W(0, oo) imply that I — 0 as k — oo. The convergence zy, 1, — Zy in LZ(QTE)
implies that I, — 0 as well. For I3 we have

00
113 = Ci CM8/ zo.00 = 2ol 2¢2) 12040 + 20l L2 d2
T;

IA

CiCuéllzog, v — 2ollp2(gy 1o v + 20ll2¢0) = Cae,

where we have used again the boundedness of {zy,,y,}z=; in W (0, 00). Since ¢ > 0
is arbitrarily small, we deduce the convergence I3 — 0 as k — oo.

Step III—Final contradiction The facts proved in Steps I and II along with the
assumption a_(” v > 0 for every v € C;\{0} lead to v = 0 and z, = O.
Therefore, looking at the relations (3.15) we obtain with (3.16) and ||vk|| 12(0,) = 1

2
0> lknigf 8—(u + O (ux — u), k)vk > hm1nfv||vk||L2(Qw) =v
which contradicts the assumption v > 0. O
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3.2 Casell:K;g = {v e L*(®) : a < v(x) < Bfora.a.x € ®).
In this case, the cone of critical directions is defined by

> 0ifii(x,1) =

Ci={ve Lz(Qw) 2 J'(@)v = 0 and v(x, t) { <0ifu(x,t)=p8 )

Analogously to Theorem 3.2 we have the following result.

Theorem 3.4 Ifii is a local minimizer of (P), then J” (i))v? > 0 for all v € Cj.

Proof Since i is a local minimizer of (P), there exists ¢ > 0 such that J(u) < J(u)
forallu € U,q N B.(ut), where Bg (1) = {u € Lz(Qw) Clu— ’ZHLZ(Qw) < ¢}. Given

p € (ﬁ, 00) we have for every u € U,q N Be (i)

2
- ]72 I 1—
=l ociiw) < (B =)' 7 lu =il oy, < (B—a

=
™
<

Therefore, we select ¢ > 0 small enough, such that U,q N B¢ (u) C U, holds. Now,
given v € C; we define for every integer k£ > 1 the function vy by

0 ifoz<ﬁ(x,t)<o{+%0rﬂ—%<ﬁ(x,t)</3,
Projj_g 44 (v(x, 1)) otherwise.

ve(x,t) = {

It is obvious that {v;}2° | C L°°(Qw) NL%(Q,) and vy — vin L3(Q,) as k — oo.

—
2 k ’W} then u + pvy € Uyg N Be(u) for

every p € (0, px). In view of (2.13), it is straightforward to check that the condition
J'()v = 0 in the definition of Cy; is equivalent to (¢ + vit)(x, f)v(x, ) = 0 for
almost all (x, ) € Q. Using this fact, it is immediate that J'(iz) vy = O for every k.
Then, performing a Taylor expansion we get for every p € (0, pk)

Further, if we set py = min{-

2
0 < JGi+pve) — J@) = pJG)vy + %J”(ﬁ +6, 1 vV}
o2
= 7J”(zz + 0.k PV V-

2
Dividing by % we deduce J”(it + 6, kpvk)vk > 0. Since u + 6, xpvx — i in
LP(0, 00; L%(w)) as p — 0, we deduce J”(u)v > 0. Moreover, since vy — v in
L*(Q,,) we infer from Theorem A.3 that z,, — z, in L?(Q,,). Hence, we can pass

to the limit in the previous inequality and obtain J” (it)v> > 0. O
Now, we establish the sufficient second order conditions for local optimality.

Theorem 3.5 Leti € UygNUso satisfy the first order optimality conditions (2.6)—(2.7)
and the second order condition J" (i))v? > 0 for every v € C;\{0}. Then, there exists
k > 0 and e > 0 such that
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_ K - . -
J(u) + §||u — ””i%Qm) < J(u) Yu € Ugq with |u — ull;2p,) <& (3.17)

The proof of this theorem follows by contradiction similarly to the proof of Theorem
3.3 with the obvious simplifications due to the constraints under consideration in this
second case for U,4. For the proof of these results for finite horizon control problems
the reader is also referred to [5, 13]. The difficulties resulting from the infinite horizon
can be overcome by following the arguments used in the proof of Theorem 3.3.

4 Approximation by finite horizon problems

In this section we consider the approximation of (P) by finite horizon optimal control
problems and provide error estimates for these approximations. Forevery 0 < T < oo
we consider the control problem

(Pr) Hll]in Jr(u),

ueUr ad

where Ut g = {u € L>(Q7.0) : u(t) € Kuq fora.a.t € (0, T)},
1 2 v 2
Jru) = = V7, — ya) dxdt 4+ = u”dxdr
2 or 2 07w

with Q7 = 2 x (0, T), Or.» = @ x (0,T), and yr_, denotes the solution of the
equation

ay .
5—Ay+ay+f(x,t,y)=g+uxw1nQT, @
o,y =0on X7 =1 x(0,T), y(0) = ypin £2.

For every control u € L2(QT,Q)) with associated state yr , and adjoint state
@r.u we define extensions to Q, and Q, denoted by #, y7 ,, and @7 ,, by setting
@, r.u)(x,1) = (0,0) if t > T and yr, is the solution of (1.1) associated with
the extension #. In this section, we assume that 0 € K,4. Hence, if u € Ur 44, then
i € U,q holds. Given a local minimizer up of (Pr), we denote by yr and ¢ its asso-
ciated state and adjoint state, respectively. Then, (u7, yr, ¢7) satisfies the optimality
conditions established in Theorem 2.4 with Q and Q,, replaced by O and Qr . As
a consequence, Corollary 2.1 is also satisfied by (ur, yr, ¢7) with the same changes.

In case U,y is given by (1.2), we define A7 (t) = |lor(t) + vur (| 2w for
t € (0, T) and the Lagrange function

L7 :LP0,T: L*(®)) x L0, T) — R

I 5
Lr ) = I+ 5> [ 2Oz, dr
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forevery p € (4f—n, oo]. Arguing as in Lemma 3.1 we also have

3
—aﬁT (ur, r)v =0 Vv e L*(Qr.4). 4.2)
u

The next two theorems establish the convergence of the approximating problems
(Pr)to(P)as T — oc.

Theorem 4.1 For every T > 0 the control problem (Pt)has at least one solution ur.
If (P) has a feasible control u, then the extensions {iiT }7~0 of any family of solutions
are bounded in L*(Q,,). Every weak limit ii in L*>(Q4) of a sequence {ig )72, with
Ty — oo as k — oo is a solution of (P). Moreover, strong convergence i, — i in
LP(0, 0o; L%(w)) holds for every p € [2, 00).

Proof Since Ur 44 is not empty, the existence of solution for (Pr)is a classical result.
Actually, one can easily adapt the existence proof of solution for (P) to (P7). We
denote by yr the extension of y7 by zero in £2 x (T, 00). We point out that y7 # yr.

Let y° be the solution of (1.1) corresponding to ug. By definition of feasible control
we have that J(1p) < oo. Using the optimality of u7 we obtain

1 . v o, 1
57 = yallgagg, + SN W2,y = J7r) + S13al a7 001202y

1 2 1 2

This proves the boundedness of {ii7}7-0 and {¥7}7-0 in LZ(Qw) and LZ(Q), respec-
tively. Let {(ii7;, y7,)}3=, be a sequence with 7 — oo as k — oo converging weakly
to (i1, §) in L*(Qy) x L*(Q). Since {ii7; }?>; C Uyq and Uyg is closed in L?(Q,,) and
convex, we infer that u € U,y. Moreover, we can apply Theorem A.2 to the Eq. (4.1)
and deduce the existence of a constant M independent of k such that for all £ > 1

13520,y + Dvnllicon) < My = C(Ig + iin ol 2oy
+ 18 + dr Xl L 0,00:2(02)) T I¥0llLo(2) + ig[f Iy7 220y + Mf)'
From this estimate and (A.6) we get the existence of a constant M, such that
1F G y1llL20p) + IF G y1 L2 (0g) = M2 Yk = 1.
The two above estimates and (4.1) imply that
Iyrllwo,no + 1ynlleog) = M3 Vk =1

for a constant independent of k. Using the convergence of 3y — ¥ in L?(Q), the com-
pactness of the embedding W (0, T) C L2(QT) for every T < o0, and the above
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estimate, it is obvious to pass to the limit in the equation

ay .
T Ayr, +ayr, + f(x, 1, yn) = g + ur Xo in O,
0y =00on X7y =1 x(0,T), yr,(0) = yoin £2

for each Ty > T, and to deduce that y is the solution of (4.1) associated to u for
arbitrary 0 < T < oo. This proves that y is the solution of (1.1) corresponding to .
Further, since y € LZ(Q), we deduce that u € Uyo. Let us prove that u is a solution
of (P). For every feasible control u of (P) we have

1
J (@) < liminf (-/ Gr, — ya)* dx df + 3/ i3, dx dt)
k—00 2 0 2 0w k

k—o00

1
< lim sup (Ef Gr, — ya)* dx dr + g/ @2, dx dt)
0 0,

. 1 .
= lim sup (JTk (ut,) + Ellydllizm OO'LZ(.Q))) < limsup J7; (u) = J(u).
T k—o00

k—o00

This proves that u is a solution of (P). Moreover, replacing u by u in the above
inequalities we infer

. 1 S N2 v ~2 _ - N2
lim O, — ya)~dx dt + up dxdt) = | (y —yq)°dxdt
2Jo 2Jo, ™ 0

k— 00
+v/ % dx dt
- u X .
2 w

This convergence along with the weak convergence (ii7,, y7,)— (i, ¥) in L2(Qy) %
L*(Q) implies the strong convergence. Finally, for any p € (2, 0o) we have

p=2 2
~ - N - P N -
”uTk - u”LP(O,oo;LZ(w)) S ”MTk - u||L°°(O,oo;L2(w))”uTk - M”LZ(Qw) 0

O

Theorem 4.2 Let u be a strict local minimizer of (P). Then, there exist Ty € (0, 00)
and a family {ur}r~1, of local minimizers to (Pr)such that the convergence it — i
in LP(0, 00; L2(w)) holds as T — oo for every p € [2, 00).

Proof Since i is a strict local minimizer of (P), there exists p > 0 such that J (i) <
J (u) forevery u € Uyq N By (1) withu # it, where B, (ir) is the closed ball in L2(Qw)
centered at u# and radius p > 0. We consider the control problems

(Py) min J(u) and (P7,) min Jr(u),
ueB, (W)NUaq u€Bt ,(W)NUT 44

where Br ,(it) = {u € L*(Q7,0) : llu — il 129, ) < p}. Obviously & is the unique
solution of (P, ). Existence of a solution ur of (Pt ,)is straightforward. Then, arguing
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as in the proof of Theorem 4.1 and using the uniqueness of the solution of (P,), we
deduce the convergence 7 — u in Lz(Qw) as T — oo. This implies the existence
of Tp > 0 such that ||u; — ﬁI|L2(QM) < llar — a2, < p forall T > T.
Hence, ur is also a local minimizer of (Pr)for T > Tp. The strong convergence
dr — @ in LP(0, 0o; L%(w)) follows from the convergence in L?(Q,,) and the fact
that ||i7 || .o (0.00: 12 (a)) < ¥ forevery T > 0. ]

In the previous theorem we proved the existence of local minimizers {u7}7>7,
of problems (P7)converging to & assuming that « is a strict local minimizer of (P).
Moreover, in the proof of the theorem, the existence of an L2(Qw)—closed ball B, (1)
such that the minimum of J7 on the set U,q N B, (it) is achieved at the local minimizer
ur was established. In particular, this implies that J7 (ur) < Jr () forevery T > Tj.
In the next theorem the following question is addressed: if {u7}7-7, is a sequence
of local minimizers of problems (Pr)converging to i, does the inequality Jr (ur) <
Jr (1) hold for T large enough? The positive answer to this question is also important
to establish the estimates in Theorem 4.4 below.

Theorem 4.3 Suppose that U, is defined by (1.2) or (1.3). Let u be a local minimizer
of (P) satisfying the second order sufficient optimality condition given in Theorems
3.3 and 3.5, respectively. Let {ut}71, be a sequence of local minimizers of problems
(Pr)such that iy — i strongly in L*(Qy). Then, there exists Ty € (To, 00) such
that Jr (ur) < Jr(u) for every for every T > TO*.

Proof The proof is carried out under the assumption that U, is given by (1.2). It is
similar, even easier, if U,y is given by (1.3). First, we observe that the convergence
Gr — @ in L?(Q,) and the fact that ldr ()l 2¢) < y for almost every t > 0
1mphes that iy — i strongly in L7 (0, 0o; L%(w)) for every p < oo. Then, for fixed
p > 4 —» there exists T > Ty such that iy € Up for every T > 7. This yields
yr =G,ir) = Gp() =yinY,as T — oo. leen the adjoint state ¢7 associated
with u7, we denote by ¢r its extension byOfort > T.

We proceed by contradiction. If the statement fails, then there exists a sequence
{ur )72, with Ty — oo as k — oo such that

R _ 1 _
llig, — ””LZ(Qw) < z and Jr, (1) < Jp (ugy). “4.3)
Let us set o = iy, — ull 2g,) and vy, = pl—k(ﬁrk — u). Taking a subsequence,

denoted in the same way, we have vz, —v in Lz(Qw).

Now, we split the proof in three steps.

Step I o7 — @ in W(0, 00) N L>®°(Q) as T — oo. Let us set Y7 = ¢r — ¢ and
denote by x7 the real function taking the value 1 if # € [0, T'] and O otherwise. Then,
Y7 satisfies the equation

0 0
—% — Ay +avr + —f<x LT

=[S0 - e, )’T)]W +xrGr =3 = (L= 4G =~ ya) in 0,
d¥r =0o0n X, lim; o [[¥7 (1)l 12(0) = 0.
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Since y7 — yinY,, we deduce that 7 — yin L9 (0, oo; L%(£2))NL>®(Q) for every
q > 2. Hence, with the mean value theorem and (3.2) we obtain that [%(x, t,y) —

%(x, t, )AJT)] — 01in L9(0, oo; LZ(.Q)). Moreover, from Theorem A.4 and the fact

that y; € L?>(Q)NLP (0, 0o; L%(£2)), we get that 7 is bounded in W (0, 0c0)NL>(Q).
Therefore the first term of the right hand side in the above partial differential equation
converges to 0in L4(0, oo; L2(£2)). The same convergence is true for the second term
x7 (37 — ¥). The third term (1 — x7)(¥ — yg) converges to 0 in L9 (0, oo; L(£2))
forq = pif p < oo and ¢ < oo arbitrary if p = oco. Then, from Theorem A.4 the
claimed convergence ¢ — ¢ in W (0, co) N L*°(Q) follows.

Step Il v € Cj. Using the local optimality of u we get

1 . _
J'(@w = lim J'(@)vy, = lim —J' @) (g, — i) > 0.
k—00 k—00 POf

On the other side, using the convergence established in Step I and the convergence
ig, — uin L%( Q) along with the local optimality of u7, we infer

J' (v = klim f (¢, + viir, ) vy, dx dt

Ty
= lim —f /((ka +vur)(ur, —u)dxdt

koo Pk

R S _
— kli)n’olo EJTk (uTk)(uTk - u) S O

The last two inequalities imply that J'(i7)v = 0. Now, the proof continues as in the
Step I of the proof of Theorem 3.3.

Step III—Contradiction Since (u7,, 1) satisfies (2.10), we deduce the inequal-
ity L, (u, A1) < L, (ur, Ar,) with (4.3) and the fact that Ag ()| (1) 12 =<

A @)y = A (D) |lug @)llL2(,- Hence, performing a Taylor expansion and using
(4.2) we infer

- AL,
0> ETk(u, )"Tk) - ‘CTk(uTka )\'Tk) = (uTka )\Tk)(u - uTk)

u
192L _ _
+ 575 T (it + O (g, — @), dg) (@ — )’
192 L, _ _ 2
=592 Yt + Ok (u, — i), Ar) (@ — ur,)”

Dividing the above expression by p,% /2 we get

BZL:T _ _
K (it + O (ug, — D), Ag)vF, <O.
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We observe that for k — o0

||)\Tk - )_\“LZ(O,oo) = ||§5Tk - <Z)||L2(0,oo) + VWTk - ’/_l||L2(0,oo) — 0.

Setting ug, = u + O (ug, — u), we denote by yg, the solution of (4.1) corresponding
to the control ug, and by ¢y, the corresponding adjoint state in Q7 . Then, putting
Yx = @g, — @ we have
Yk af _
— Ta, AWk +a1//k + _(-xv t, )’)wk
at ay
=[50, ) = 31, 300 |+ xm Go, = ) = (1 = x)G = ya)in ©,
Y =0on X, lim;— o0 |Yx (@)l 12(2) = 0.

Arguing as in Step I we obtain that ¥ — 0 in W (0, oo) N L°°(Q). Then, arguing as
in Steps II and III of the proof of Theorem 3.3 and using the established convergences,

. 2p - = .
we infer that %Tf (it, 2)v? < 0 and the contradiction follows. O

Under an extra assumption on f, the following theorem provides estimates for the
difference ti7 — u.

Theorem 4.4 Suppose that U,y is defined by (1.2) or (1.3) and that u is a local min-
imizer of (P) satisfying the second order sufficient optimality condition. We assume
that %(x, t,y) > 0 holds for all y € R and almost all (x,t) € Q. Let {ur}r~7, be

a sequence of local minimizers of problems (Pp)such that iy — i in Lz(Qw). Then,
there exist T* € [Ty, 00) and a constant C such that for every T > T*

lar —ull2c0,) + 1197 = Flw©.00) <

C(H)’T(T)HLZ(Q) + IyallL2(r 00202y + ||g||L2(T,oo;L2(Q))>- (4.4)

Proof We use the inequalities (3.9) or (3.17). For this purpose, we take T* € [T, 00)
such that |ju7 — u|| 12(0,) < € forall T > T*, where Ty is introduced in Theorem
4.3. Then, given T > T*, (3.9) or (3.17), and Theorem 4.3 yield

K A -_— ~ e -
Slir =@l g, < i) = J @ = Jr(ur) = Jr (@)
L[ 2 L e 2
+§A ||YT(I)—)’d(f)||L2(_Q)dt—E/T ||)’(f)_)’d(f)||L2(_Q)df
V o0 _ 2 1 *° A 2
-3 fT 4012 < /T 157) = 3al22 0 dr,
which leads to

. _ L.
lir —ullp20,) < ﬁll)’r — YallL2(r,00:22(2))- 4.5)
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To prove the first estimate of (4.4) we observe that yr satisfies the equation
ayr . . . .
o — Ayr +ayr + f(x, 1, yr) =g in 2 x (T, 00),
oyt =0onI" x (T, 00), y7(T) = yr(T) in L2.

Testing this equation with y7, and using that f (x, ¢, $7)y7 > 0 due to the mono-
tonicity of f with respect to y and (1.4), it follows that

1 . o . . 1
PLLAQLEPES / / V3P +agildxde < Sllyr(Tlja g,
T 2

o
+f f gyr dxdr.
T 2

From this inequality we infer with (1.9) that

1971l L2(7 00: 12 (52)) = C/<||yT(T)||L2(.Q) + ||g||L2(T,oo;L2(9)))~

This inequality and (4.5) imply the estimate of the controls in (4.4). To get the estimate
for the states we observe that ¢7 = 7 — y satisfies the equation

0 0 N _ .
% — A¢r +adr + %(X, t,yr,0)¢T = (U — )Xo in O,

dnpr =0o0n X, ¢r(0) = 0in £2,

where yrg = y + 0r(Jr — ¥) with 67 : Q —> [0, 1] measurable. Then, applying
Theorem A.3 and Remark 5.2 we infer ||¢7 [l w(0,00) < K3lltir —it l22(g,,)- Combining
this estimate with the one established for the controls we deduced (4.4). O
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Appendix

Here we prove L°°(Q) estimates for the solution of the following equation

ay .
E_Ay—i_ay—'—f(xstsy):gan» (A])

opy =0o0n X, y(0) = ypin £2,

assuming that yg € L°°(£2) and g € L%(Q) N LP(0, 0o; L2(£2)) with p satisfying
(1.10).

Definition A.1 We call y a solution to (A.1)if y € L? (0, oo; H!(£2)), and for every

loc

T > 0 the restriction of y to Q7 = 2 x (0, T) belongs to W (0, T) N L*°(Qr) and
satisfies the following equation in the variational sense

ay .
{E‘Ay—i_ay—i‘f(X,f,)’):ngT, (AZ)
oy =0o0n X7, y(0) = ypin £2.

Since y € L®(Qr), we observe that (1.8) implies for M7 = ||yl ~(g,) and for
almost all (x,7) € Or

|fCx, 1, y(x, )| < Cyyp M. (A.3)

Theorem A.2 Under the assumption (1.4)—(1.6), equation (A.1) has a unique solution
y. In addition, if y € L*>(Q), then y € W (0, 00) N L®(Q) and f(-,-,y) € L>(Q) N
L°(Q) holds. Moreover, the following estimates are satisfied
Ille = Ki(Iyoll 2y + Igllz20 + 13200 ) (A4)
IyllLec)
< K2<||)’||L2(Q) + llyollzeec2)y + 18l 20y + 11811 Lr(0,00:22(2)) T Mf), (A.5)

17 G W= = Crollylizey, 1FC W2 = Crollylizzgy.  (A6)
zl—l>nolo ly@®llz22) =0, (A7)

where My is given by (1.5), Koo = ||yllL>(0), Ck., as in (1.6) with M = K, and
7
130 = (1310 00c 2202y + 17200ty )
Proof The existence and uniqueness of a solution y of (A.1) is a consequence of [10,

Theorem 2.1]. Now, we assume that y € L>(Q). The proof is split into several steps.
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Step Iy € L*(0, 00; H'(£2)) N L™(0, oo; L%(£2)). Testing equation (A.2) with y,
integrating in (0, #) with ¢z € (0, T'), using (1.5), and arguing as in (A.3) we get

1 t
—||y<r)||22 + [|Vy|2 +ay*1dx ds
L>(£2)

1
5||yo||Lz(Q)+// ydxds—l—// £, Iyl de ds
2¢(s)

l

where 2¢(t) = {x € £ : |y(x,1)| < My}. This inequality along with (1.9) proves
that y € L2(0, co; H'(§2)) N L®°(0, 0o; L2(£2)) and (A.4) holds.

Step Il y € L°°(Q). Let us first observe that without loss of generality we may
suppose that yp € H'(£2). Indeed, if this is not the case we use the fact that f(,,y) €
L*(Q7) by (A3) and g € L*(Qr) to deduce that y € C([Tp, T]; H'(£2)) for each
0 < Ty < T < oo; see, for instance, [17, Corollary II1.2.4]. Since y € L*°(Qp,) for
each 0 < Ty < oo, it is enough to prove that y € L®(£2 x (Tp, 00)). Then there is
no loss of generality if we assume that yg € H'!(£2) and, consequently, y € H'(Q7r)
for every T < oo; see [17, Proposition I11.2.5].

For every real number p > max{||yollL=(2), M}, M s given by (1.5), we introduce
the function y, (x, 1) = y(x, 1) — Proj_, 4, (y(x, 7). Then, we still have that y, €
HI(QT)forallT < oo.WesetA,(t) ={x € £ : |y(x, )| > p}foreveryt € (0, c0).

First we prove the result for n = 2 or 3. Let us choose a number « € ( 25—f4, n”Tz)

Observe that 2;}’—1‘ < -5 obviously holds if n = 2 and it is also true for n = 3 due

to the assumption p > % Note that « satisfies @ € (1, 00) in case n = 2, and

o € (2, 3) in case n = 3. We will denote o’ = _%*5.

Testmg equation (A.2) with y,, integrating in (0, t) with ¢ € (0, T'), and using that

Sy = 8t 25, Vy - Vy, =|Vyyl% and f(x,1,y)y, > 0dueto (1.5) and p > My,
we infer

1 2 ! 2 2 /t/
= t v dxds < dxd
2||yp<>||Lz(Q)+/O /Q[I yl+afidrds < [ f gy deds

1

t / 7
< lgllLr.co:L202)) f ||Yp(5)”i2<A,,<x))ds)p

1
< 118l Lr 0,002 / 150y Ao @I )7

/

! ’ 3 ! P Tpp/
Cillgllr,00:22(02)) (/0 ||J7p(5)||H1(_Q) ds) </0 |Ap(s)|@=r d5>

p—2

C [ 2 ct 2 ' P »
a 70D
7/0 ||Yp(5)||H1(_Q) ds + 2Ca2 ”g”Ll’(O,oo;Lz(.Q))(/O |A,0(S)| =2 dS) )

IA

IA
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where C, is given by (1.9) and C is the embedding constant of H 1(2) c L>*(Q).
The above estimate leads to

t
150y + €3 [ 13 sy

p—2

Ci. 2 ! _r
< _2I|g||Lp(0,OO,L2(Q))(/ |Ap(s)|0t(17*2) ds)
C; 0

From the above inequalities we get

T , 52
ollor = Callelino ez ([ 14,0755 )T Ay

with C, independent of 7" and p.
On the other hand, taking ¥ = 1 + W,
n

} + 2£ = Z. Then, using [16, Formula II-(3.4)] we obtain the existence of a constant
Cs3 ingependent of T such that

_ _2px _
= wp—2> and g = 2k we get

Iyllzro,1:292)) < C3llyllor- (A9)

Forevery j =0,1,2,... wesetk; = p(2 — 277). We observe that p < kj < 2p,
Ap(t) = Apy(t) D Ag (1) D A, (1) D ..., and Akj(t) D Ap,(t) for every j > 0.
Then, we have

T G
i - 0,7509(52)) = (/0 llvi; ||qu(Akj ) dt)
T 1
r . — .
> (/o ”)’kj“Lq(Aij(t)) d’) = (kj+1 —kj)
. !
X </0 [Ak; (D)]4 dl)
o (p=2)

T _pr 2pk
= (kjy1 —kj) </ [Ag;,, (D] =2 dt>
0

Combining this inequality with (A.8) and (A.9) we deduce

o (p-2)

T P 2pk
([ i a)
0 .

CyC3 r [ — 21
< —— |l 12 </ |Ag; ()]« =2 dt .
kj+1 — kj LP(0,00;L=(2)) o J

K
0~

S

@ Springer



Applied Mathematics & Optimization (2023) 88:47 Page290of36 47

Using that k1 — k; = p2~U*D we infer

p—2

T » 5
( / A, (0|75 dr)
0
20,C : T LY
203 o AN L o
5[ ; ||g||L,,(O’OO;L2(Q)):| (zm)z[(/o |Akj(l‘)|a(172)dt> ] ,

Setting

p—=2
2p

2C,C; & * T _r_
=[P slosray]|”s =27 & = |14, 01707

for j > 0, wehave &1 < cbjé/f’7 for j > 0. Moreover, since o > % we get that
B = § > 1. Then, from [16, Lemmall—5.6] we obtain

g1 J

28} T p-T B
Ej<cFTheD A= & - (A.10)
Let us estimate &y. For this purpose we distinguish two cases. First, we assume that
: 1
n=2and p € (2,4]. Using that |A,(1)| < ?Hy(t)Hiz(Ap(t), we get
T _r % 1 T /(2p72) p27_p2 C4 i/
o = </0 [Ap ()] ¢>=2 dt) = pi /0 Iyl (g d = <7||y||Q> .

The last inequality follows from the fact y € LZ(Q) N L%(0, oo; L*(£2)) and
% > 2 because o’ € (1, %) and % < # for p < 4. For the remaining

2/ (p=2) 2/ (p=2)
Z

> < 6if n = 3. Now, we

cases we observe that
argue as follows

> 1 and additionally

p=2 p=2
T P 2 1 T 5 2p
& = </ |A, (1) dt> <—= / YO 202 dt
0 0 p 0 L p (Ap(t))
< (S 7 < (Sie) T
=\ —IVIIL20,00; H! ) =< (— y ) .
P L2(0,00; H(£2)) 0 0

Selecting

1
p = Cab 7 lyllg +2C2C3l1gll Lr0.00:22(2)) T V0l (2) + M s

we get with (A.10)

ST S U SR I U S I
g f[cﬁ—lbw—wzgo]ﬁ ¢ FTh B-DXpTBT < B-1p B-DXpTET ()
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as j — oo. Finally, we get

p—2

T P 2p
(/0 |A2p(t)|u/(p—z> dt> < lim &; =0.

J—00

Hence, |A2,(t)| = 0 for almost every t € (0, T') holds. Since T > 0 was arbitrarily
selected and all the constants above are independent of 7', we deduce that |y(x, 7)| <
2p for almost all (x, t) € Q and (A.5) follows with (A.4).

Now, we explain the changes in the proof for the case n = 1. To get an analogous
inequality to (A.8), we use the following Gagliardo-Nirenberg inequality

1 1
Iylio@) < vl o) 19112 (q);

see, for instance, [6, P. 233]. Then, we have with Holder and Young inequalities

1 t t
Dy +/ f[Wy |2+ay2]dxdss/ / g yp dx ds
e Ty Jot r 0 Ja®’

t 1
2 2
< U8l 2200, 00122020 /0 152, 7y 95)
f !
= N8l 220,001 2220 /0 195 (e )14, ()] ds )
1

t 1
2
< C||g||L2(o,oo;L2(Q))(/O ||Yp(S)||L2(_Q)||yp(S)||H1(9)|Ap(S)|ds)

1
i

1 1 t
2 2 2
S C”g”Lz(O,oo;Lz(Q))”yp”IZAOO(O’OO;LZ(_Q))”y,OHIZ‘Z(O’OO;HI(_Q))(/0 |A,O(S)| dS)
2 2
= S(Hy,()”LOC(O’OO;LZ(Q)) + ”yp”LZ(O’OO;Hl(_Q)))
! 1
i
+ Cellg g nesr2c ( fo 4P ds )"

From here we infer

T 1
)
I5ollor < Caleliz ([ 1400F ds)’,

On the other side, we apply (A.9) with r = 8 and ¢ = 4 and arguing as for the
cases n = 2 or 3 we obtain

1
r

1 r r
vk llor = C—3(’<j+1 — k) (fo [Ak; (O] df)
1

1 T 2 \°
=C—3(k,,‘+1—k‘;)<f0 Ak @ dt) .
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Thus we get

1
T 2 Callgl om0 r2e0 T 1’
(f |Ak_/+1(t)|2df> < e [(/ |Ak,<s)|2ds)2].
0 (kj1 —kj) 0

To estimate &y we use again that y € L2(Q) N L*(0, co; L2(£2)) and proceed as
follows

T ) % 1 T 4 % C 2
so=</ A, ()] dr) 5—(/ 1ol dr) = (Zlvle) .
o 7 p2 \Jo PTG @) p e

The rest of the proof follows as for the cases n = 2 or 3.
Step III—Proof of (A.6) and (A.7). The inequalities of (A.6) are an immediate
consequence of (1.4), (1.6), and the mean value theorem:

a
[f .1, y(x, )] = ‘a—';c(x, 1,0(x,1)y(x, t))l‘ ly(x, )1, (A.11)

with0 <0(x,t) < 1.

Since y € L2(0, c0; H'(£2)), we have that Ay € L%(0, oo; H'(£2)*). From the
state equation and g, f(-,-, y) € LZ(Q) we infer that %—f € LZ(O, oo; H! (£2)*) and,
hence, y € W (0, co). Finally, the fact that y € W(0, co) implies (A.7); see [9,
Theorem 2.4] for details. ]

Remark 5.1 The proof of the boundedness of y in Q follows some ideas of the proof
of [16, Theorem III—7.1]. In that theorem, the boundedness is established for finite
time horizon and the L*°(Q7) estimates depend on time 7. In our theorem, we have
avoided the dependence with respect to time exploiting the fact that y € L>(Q), which
was used to estimate &y. By a simple modification of our proof, the L>°(Q) estimate
of y can be also obtained in terms of ||g || 1.7 (0,00: L9 (2)) if % + % < 1. We observe that

the assumption y € L?(Q) is natural in the context of our optimal control problem
due to the structure of its cost functional. Another difference of our estimates with
respect to [16, Theorem III—7.1] concerns the choice of the boundary condition. Here
we have treated the Neumann case while the Dirichlet case was considered in the
mentioned reference. The only difference in our proof for the Dirichlet case consists
in the definition of p that should include the L°°(X) norm of the Dirichlet datum, if
it is not zero.

Now, we analyze the following linear equation

0z .
E—Az—l—az—}—d(x,t,y)z:hm 0, (A.12)
0,z =0o0n X, z(0) = zpin £2.
We assume that
o0 3 J—
y € L™(Q) and tl_l)rgo IyOllz22) =0, (A.13)
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and that d : Q x R — R is a Carathéodory function satisfying

VM > 03Cy; such that |d(x, t,s)| < Cy V|s| < M, (A.14)

dmy > 0, 354 € [0, 1), and IC; > O such that (A.15)
d(x7t7s)E_Cd|s|_8da(x7t)v|s|Smda ’

for almost all (x, 1) € Q.
Theorem A.3 Under assumptions (A.13)—(A.15), equation (A.12) has a unique solu-
tion z € W(0, 00) for every h € L*(0, 0o; H'(£2)*) and zo € L*(£2), which satisfies

zllw©,00) < K3,y(||h||L2(o,oo;Hl(Q)*) + ”Z()”LZ(_Q))v (A.16)

where K3 y depends on ||y | L~ (g). In addition, if h € L2(Q) NLP(0, co; L2(2)) with
pE (ﬁ, oo] and zg € L*°(82), then z € L°°(Q) and the estimate

lzllLo(0) = K4,y(||h”L2(Q) + 12l Lr.00:22(2)) T ||ZO||L°°(!2)) (A.17)

holds for a constant K4,y also depending on ||yl L (0).

Proof Due tothe factthaty € L°°(Q) and (A.14) we havethatd(-, -, y) € L*°(Q),and
hence the existence and uniqueness of z € W (0, T)NL*(Q7) holds forevery T < oo.
Let us prove that z € W(0, 00). We put K = ||y|lz(g) and Cg = |ld(-, -, ¥)llL>(0)-
Given §4 € [0, 1) we know that there exists a constant C, s, such that

2
Casllwll @) < (/ [(IVw> + (1 —5d)aw2]dx> Yw e H'(2). (A.18)
2

c? .
We select ¢ > 0 such that max{Cy, rCn—’;}C ]28 < f" , where mg and C; are given

in (A.15) and C is the embedding constant for HY'(2) c L*(2). Using (A.13) we
deduce the existence of T, > 0 such that

IyOl2e) =& Vi =T, (A.19)

Fort > 0 we set £2,,,,(t) = {x € £2 : |y(x,1)| < mg}. Now, we test (A.12) with z
and integrate over £2 x (7T, t) for every t > T, use assumption (A.15), and (A.19)

t
SO gy + R, / 120110 ds

1
§||z<r>||Lz(Q)+/ /[|Vz| + (1= 8paz’]dxds < - ||z(T)||L2(Q)

+f (h(s),z(s))ds+Cd/ / |y|zzdxds+CKf f 2 dxds
T, o J 2, (1) 2 J 2\ 2y ()
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||Z(Ts)||Lz(_Q) + 1Al L20,00: 51 2y 120 L2071 Y (2))

+max{Cd,—K}/ / |y|z dx ds
mgq

2
Ca 5d|

1 2
= EHZ(TS)”LZ(Q) + — C28 ”h”Lz(Ooo HI(Q)* + |Z||L2(T tHl(.Q))
a,

Ck !
+maX{Cd, _}f ”y(s)”Lz(.Q)”Z(S)”%A((D ds
mq Jr,

1
< 12Ty + 7 112200, 00:m11 (209
Ca,Sd

Casa [ Ck !
s ||z||3,1(9)ds+c%max{cd,—}s/ 121 0 ds
T

1 5
EHZ(T )”Lz(ﬂ) C2 ”h”LZ(O 0; Hl(.Q) ) a = / ”Z”HI(Q)

This implies

! 2
121320, + Cas, /T 121510y ds < N12(TN720, + C2—||h||i2(0,oo;,,l(m*).

a,8q

Since z solves (A.12)in (0, Ty ), we have z € W (0, T¢) and ||z|lw(0,7,) can be estimated
by 1Al 220,00 1! (2)%) T 1201l 22(s2)- This along with the above estimate implies the
desired estimate of z in L*(0, oo; H'(£2)) N L™(0, co; L?(£2)). From the equation
(A.12) we infer that g—f € L2(0, co; H'(£2)*) and estimate (A.16) follows.

Finally, under the additional regularity of /& and zo, applying Theorem A.2 to the
equation

9
a—f—Az+aZ—g—h d(x, 1, y)z € LP(0, 00; L2(£22)) N L*(Q)

with f = 0 and My = O there, we infer that z € L°°(Q) and (A.17) holds. Here we
have used that L>(0, oo; L2(£2)) N L?(Q) C LP(0, oo; L*(£2)) for every p > 2. O

We finish this appendix by analyzing the following adjoint equation

ap :
{—E—A<p+a¢.}+d()€,l,y)¢=hm 0, (A.20)
O =00n X, lim— 9@l 12(e) = 0.

Theorem A.4 Under assumptions (A.13)—(A.15), equation (A.20) has a unique solu-
tion ¢ € W(0, 00) for all h € L*(0, oo; H'(£2)*) which satisfies

lellwo,00) < Ks5,y11h ||L2(0,oo;H' (2)%)» (A.21)
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where Ks y depends on ||y|| Lo (). In addition, ifh € L*(Q)NLP (0, co; L*(£2)) with
pE (ﬁ, 0], then ¢ € L*°(Q) and the estimate

el = Koy (111200 + Wl Loo.ociz2c20 ) (A22)

holds for a constant K¢y also depending on ||yl Lo (g).

Proof First, we prove uniqueness. For this purpose we establish that the unique solution
to (A.20) with h = 0 is ¢ = 0. Indeed, in this case, we take z € W (0, co) solution to
(A.12) with h = ¢ and zp = 0. Then we have,

d
/ |<p|2dxdt:/[—z—Az+az+d(x,t,y)z]godxdt
0 0 Jt

0
= / Z[—a—f —Ap+ap+dx,t,y)pldxdt = 0.
Q

To prove the existence of a solution we denote by ¢7 € W (0, T') the solutions of

APt i
{ o7 oT + aQr + d(x7 t, )’)‘PT m QT’ (A23)
anfﬂT:OOH ET, <pT(T)=01n.SZ

The existence and uniqueness of ¢7 is known because the function d(x, ¢, y(x, t)) is
bounded. We extend ¢ by 0to (0, 0o) and estimate this extension in L2(0, o0; H'(£2))
independently of T'. For this purpose we take ¢ € L?(0, oo; H'(£2)*) arbitrary and
denote by z the solution of (A.12) with 4 = ¢ and zo = 0. Then, we have with (A.16)

00 T T a
/O G (0), o1 (1)) di= /O G (0), o1 (1)) di= /0 (55— Aztaz+d(x, 1, )2, or)di
T a(pT T
:/(; <_W _A¢T+G¢T+d(x,tv y)‘PT» Z) dt:[) (hv Z>dt

o0

=/ (h,z)dt = K1l 120,00, 11 2y 121 L2(0,00: 1 (2))
0

< K3y 1hl2200,00: ' (2)) 1911 £2(0,00: H1 (2)%) -

This implies that

lorllL20,00: 11 (2)) = K331l L20,00: 1 (2)) YT > 0.
From (A.23) and the above estimate we deduce the boundedness of {¢7}7-0 in
W(0, c0). Then, there exists a sequence {7}, with Ty — oo and a function

¢ € W(0, oo) such that g7, —¢ in W(0, co) as k — oo. Itis obvious that we can pass
to the limit in (A.23) and deduce that ¢ satisfies (A.20) and estimate (A.21) holds.
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To prove that ¢ € L°°(Q) under the additional regularity assumption on 7 we
introduce the functions z7 (x, 1) = ¢r(x, T —t) forevery T > 0. Thenzy € W(0, T)
and it satisfies (A.12) in Q7 withzg =0 and A7 (x,t) = h(x, T — t). Since

||ZT||L2(QT) = ||§0T||L2(QT) = ||¢T||L2(0,oo;H1(Q)) = K3,y||h||L2(o,oo;H1(_(z)*)7

||hT||L2(QT) = ||h||L2(QT) = ||h||L2(Q) and ||hT||Lp(o,oo;L2(_Q)) = ||h||Lp(o,oo;L2(g)),
we infer from Theorem A.2 that {¢7}7~¢ is uniformly bounded in L°°(Q) and, con-
sequently, estimate (A.22) holds. O

Remark 5.2 If the function f in (A.1) satisfies %(x, t,y) > 0 forevery y € R and
almost all (x,7) € Q, then the term [|y[l;2(p) in the estimates (A.4) and (A.5) can
be removed. Under this assumption on f, the constants My and Cp, in (1.5) and
(1.7) are zero. Then, it is enough to use this in the proof of Theorem A.2 to get the
independence of the estimates with respect to y.

Moreover, by an analogous argument, if the assumptions (A.13)—(A.15) are replaced
by

y e L®(Q) and YM > 03Cy such that 0 < d(x,t,5) < Cy V|s| < M

and almost all (x, t) € Q, then the constants K3 y until K¢ y in the estimates (A.16),
(A.17), (A.21), and (A.22) can be chosen independently of y.
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