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Abstract: In the manufacturing of power transformers, the impregnation of the solid electric insula-
tion systems (cellulosic materials) with a dielectric liquid is a key issue for increasing the breakdown
voltage of the insulation, and this prevents the apparition of partial discharges that deteriorate the
insulation system. After introducing the problem, this article presents the theory of impregnation and
later carries out a bibliographical review. Traditionally, mineral oils have been used as the dielectric
liquid in electrical transformers, but for environmental (low biodegradability) and safety (low ignition
temperature) reasons, since the mid-1980s, their substitution with other ester-type fluids has been
studied. However, these liquids have some drawbacks, including their higher viscosity (especially
at low temperatures). This property, among other aspects, makes the impregnation of cellulosic
materials, which is part of the transformer manufacturing process, difficult, and therefore this tends
to lengthen the manufacturing times of these machines.

Keywords: power transformer; solid insulation; dielectric fluid; impregnation

1. Introduction

Electricity is a form of energy that has become a fundamental support of modern
society. Today the industrial, commercial, and residential sectors cannot be understood
without it, since it is employed for very diverse uses, such as motor drives, fluid heating,
lighting, etc.

According to the data offered by the International Energy Agency (IEA) [1], in 2020
there was a global demand equivalent of final energy of 9571 million tons of oil, of which
1958 were in the form of electricity, which represents approximately 20% of the total.

A great part of this energy is generated, transported, distributed, and consumed in
large electrical power systems. In these systems, electricity is generated in power plants. In
conventional plants, it is produced at voltages of 10 to 30 kV, while in other plants, such as
wind power plants, this generation is carried out at a lower voltage, which normally does
not exceed 1 kV.

In the transport of electricity, from the generation to the proximity of the points of
consumption, it is required to carry out at least three voltage changes, for which electrical
transformers are used [2].

Electrical transformers [3] constitute one of the fundamental elements in electrical
power systems. They are responsible for making changes in the voltage/intensity of
electricity, which are produced to reduce losses in transport and distribution (when carried
out at high voltage) and to make consumption safer (when produced at low voltage). The
stability of the electrical network depends to a large extent on its operation.

They are static machines, so in general, they are robust and highly reliable [4]; however,
sometimes they suffer breakdowns, which may be derived from a defective design, a bad
operation, or the excessive aging of components.
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By producing changes in the voltage level of electricity, transformers have parts sub-
jected to two different voltages, so they have to be equipped with an appropriate electrical
insulation system. The materials used to build this system have dielectric, mechanical,
and thermal properties, and those typically used in the manufacture of electrical power
transformers are [5]:

• Paper, which is used to insulate the conductors that make up the high- and low-voltage
electrical windings of the machine.

• Wood, cardboard, or presspaper (rigid), which are used to create small separations in
the electrical windings and thus form channels through which the liquid that cools the
windings circulates (Figure 1 [6]).

• Liquid, which, in addition to fulfilling its function as a coolant, must contribute to
maintaining electrical insulation inside the machine.
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It should be noted that, while an aged or deteriorated liquid can be regenerated or
replaced, changing the solid insulation (both paper and rigid) is practically impossible since
it implies that the transformer must be completely disassembled, which is economically
unfeasible. This means that, in practice, it is the good condition of the solid insulation that
limits the useful life of the transformer.

To date, due to the combination of their dielectric and cooling properties, price, and
availability in the market, oils of mineral origin have been widely used in electric power
transformers. However, this does not imply that their use does not present some drawbacks.

From a purely technical point of view, the main problem with mineral oils is their
relatively low flash point, which is around 150 ◦C [7,8]. Although this temperature is higher
than that which these machines typically work at (it is usually less than 100 ◦C), it implies a
potential fire hazard when an overload occurs in the transformer, and therefore the working
temperature of some points of the transformer can reach the critical value. In this way,
and especially in areas where fire can be a serious risk to people and equipment, such as
transformers located inside urban centers, it is important to limit this risk.

From an ecological point of view, in the event of an accidental spill, mineral oils have
a great impact due to their low biodegradability [8,9]; this aspect is especially relevant
in areas where an accidental spillage of the liquid could generate a great environmental
impact, such as near rivers and lakes.

To try to solve these two effects, in the 1980s the transformer industry was forced to
look for biodegradable dielectric fluids with flash points higher than 250 ◦C, and in some
of them this can exceed 300 ◦C [10]. These new liquids were synthetic esters. These fluids
are synthesized organic compounds, and therefore, in addition to good biodegradability,
they have been endowed with properties such as high dielectric strength, relatively low
viscosity, high combustion point, and thermal and chemical stability.
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In the following decade, and due to strict environmental regulations, vegetable oils and
natural esters began to be studied. Examples of these regulations are Directive 96/59/EEC
on the disposal of polychlorinated biphenyls and polychlorinated terphenyls (PCB/PCT)
(2000/2112(INI)) and the EU Ecolabel regulation. Between 1999 and 2001, three commercial
products based on different plant sources (sunflower, canola, and soybean) were patented
for use in transformers [8]. Figure 2 graphically represents the historical evolution that
dielectric liquids have undergone since the beginning of electrical transformer technology
to the current state [8].
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Figure 2. Timeline: Development of transformer insulating fluids, adapted from [8].

The interest in these liquids since the early years of this century is demonstrated by the
fact that in 2013 a review work was published in which the evolution of the different insu-
lating liquids, as well as their blends, was exposed. In the work, their fields of application
and their main properties were presented [11].

There are currently a few ester-type fluids on the market, especially esters of plant
origin, which can have many different sources (typically sunflower, rapeseed, soybean or
palm). Each manufacturer purposefully adds different additives to their product to improve
their behavior with respect to acidity, and sometimes their products are not “pure”, since
they have a mixture of different fluids. Table 1 includes typical values of the properties of
different dielectric liquids [12].

Table 1. Typical values of dielectrics fluids properties [12].

Property Mineral Sunflower Rapeseed Soybean Palm Synthetic

Density 20 ◦C [g/cm3] 0.839 0.91 0.92 0.92 − 0.97

Kinematic viscosity 40 ◦C [mm2/s] 9.89 39.2 37 32–34 5.062 29

Flash point [◦C] 176 330 >315 320–330 188 260

Fire point [◦C] − 362 >350 350–360 206 316

Pour point [◦C] −48 −25 −31 −18 to −21 −37.5 −56

Acidity [mg KOH/g] <0.01 0.05 ≤0.04 0.01–0.05 <0.01 <0.03

Water content [mg/kg] 15 150 50 4–50 52 50

Dissipation factor 90 ◦C 0.001984 0.03 <0.03 0.01–0.03 0.0029 <0.008

Dielectric Breakdown [kV] 46 65 >75 ≥55 85 >75

Biodegradability [%] − 85 98 >99 77 89
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However, the use of these new dielectric fluids for transformers also has some draw-
backs, among which two stand out:

• Higher viscosity, which makes their flow through the internal channels of the windings
worse; therefore, they have worse characteristics as a cooling fluid. When a mineral
oil is replaced by an ester liquid in a transformer in use, this problem can be solved, at
least in part, with the inclusion of a pump that increases the speed of the new fluid.
For a new transformer, it is possible to design cooling channels that are adapted to the
higher viscosity of the fluid [8,13].

• The impregnation that ester liquids carry out with solid dielectrics is worse; this
impregnation process is important since when the solids are soaked in the dielectric
liquid, the possible air pockets that could be contained inside are eliminated. This,
in addition to improving the dielectric properties, makes the solid insulation more
homogeneous. To solve this inconvenience, the solution adopted is to increase the time
that elapses between the liquid filling of the machines and their start-up [14]. However,
in a competitive environment, reducing manufacturing times for a transformer can
be a decisive aspect when purchasing equipment. In this sense, for manufacturers it
could be important to reduce this time.

Cellulosic materials are polymers whose molecules make up microfibers and fibers
with intra- and inter-fiber pores. These materials are composed of long and short fibers, and
between them there are holes in the form of capillaries and air pockets, which initially are
filled with air [15]. When impregnated by a dielectric liquid, it rises through the capillaries,
displacing the air and filling both the capillaries and the bags, which gives the solid better
dielectric properties (Figure 3).
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Before beginning to develop the theory of impregnation, it should be noted that in [16],
the author, in addition to discussing the reasons why cellulosic dielectrics in electrical
equipment are impregnated, presented different techniques of impregnation used in the
manufacture of electrical machines, analyzing their advantages and disadvantages.

The impregnation of a solid material with a liquid consists of filling its internal cavities,
or pores, which are initially filled with air, with the fluid. In this way, the impregnating
liquid gradually replaces the air that is retained inside the solid.

The simplification of the physics of this impregnation process means that it can be
considered to be carried out by capillarity through the pores of the material, and therefore
it is carried out according to the Hagen–Poiseuille Law [14,17–19]; this implies that it is
subject to both the adhesion forces between the solid and the liquid, as well as the cohesion
forces of the fluid.
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In this way, impregnation can be studied as the phenomenon of capillarity through a
pore of a solid material that is partially submerged in a liquid. If it is considered that the
pore is circular, it can be assumed that it happens as represented in the scheme of Figure 4.
In the figure the liquid level (point E), the same level inside the capillary (point 2) and the
level reached by the liquid inside the capillary (point 1) are marked.
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The volume of liquid that rises through the solid, Volliq (m3), can be expressed accord-
ing to Equation (1):

Volliq = π·r2·L
(

m3
)

(1)

Being:
r—the equivalent radius of the pore considered circular (m);
L—the length of impregnation (m).
Considering that the flow rate of the impregnating liquid can be expressed according

to Equation (2):

Qliq =
Volliq

t

(
m3/s

)
(2)

Being:
t—the time (s)
Equation (2) can be expressed in a differential mode so that the flow rate with the

liquid impregnating the solid in a time interval can be expressed as the product of the
cross-sectional area of the pore, [π. r2] (m2), by the impregnation speed, [dL/dt] (m/s),
Equation (3).

dQliq =
dVolliq

dt
=

d
(
π·r2·L

)
dt

= π·r2·dL
dt

(
m3/s

)
(3)

Taking into account the pressure loss equation, H, in a circular duct, Equation (4), is
expressed by the Darcy Equation.

H =
P
γ
= f· L

D
· v2

2·g (m) (4)

Being:
P—the pressure (Pa);
γ—the specific weight of the fluid (N/m3);
f—the friction factor (dimensionless);
D—the equivalent diameter of the pore considered circular (m);
v—the impregnation speed (m/s);
g—the acceleration due to gravity (m/s2).



Energies 2023, 16, 3673 6 of 24

As the impregnation speed is small, it can be considered that the laminar flow con-
dition is fulfilled, Re < 2000, and therefore the friction factor can be calculated with
Equation (5).

f =
64
Re

(5)

Reynolds (Re) is calculated according to Equation (6).

Re =
v·Lc

n
=

v·D
n

(6)

Being:
Lc—the characteristic length; for a circular pore it is the diameter (m);
ν—the kinematic viscosity of the fluid (m2/s).
In this way, we consider that the relationship between the dynamic and kinematic

viscosities is Equation (7).

n =
µ

ρ
=

µ

γ/g
=

µ·g
γ

(
m2/s

)
(7)

Being:
µ—the dynamic viscosity of the fluid (Pa.s);
ρ—the fluid density (kg/m3).
The flow rate of absorbed liquid can also be expressed according to Equation (8),

which is the Hagen–Poiseuille Law.

dQliq =
dVolliq

dt
=

π

8·µ ·
r4

L
·∆P

(
m3/s

)
(8)

Being:
Volliq—the volume of liquid absorbed (m3);
∆P—the pressure difference in the capillary (Pa).
In this case, the ∆P in the capillary can be expressed according to Equation (9).

∆P = P2 − P1(Pa) (9)

Being:
P2—the pressure on the surface of the liquid inside the capillary (Pa), point 2 in

Figure 3;
P1—the air pressure inside the capillary pore at length L (Pa), point 1 in Figure 3
Thus, Equation (8) can be expressed as Equation (10).

dQliq =
dVolliq

dt
=

π

8·µ ·
r4

L
·(P2 − P1)

(
m3/s

)
(10)

From which it follows that:

• The rate of impregnation decreases as the liquid is introduced into the pore since the
pressure inside the pore increases [19];

• The shorter the pore length, the higher the impregnation rate [18].

Therefore, when porous materials, such as solid dielectrics, come into contact with
a liquid, a phenomenon of solid impregnation occurs because the effect of capillarity is
stronger than that of internal pressure. One way to increase the impregnation rate is by
modifying the ∆P, which can be performed in two ways:

• Producing a vacuum on solid samples before impregnating them [18,19];
• Increasing the pressure of the gas located on the dielectric liquid once the solid is

submerged and has been isolated from the external pressure [20].
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Combining Equations (3) and (8), Equation (11) is obtained.

π·r2·dL
dt

=
π

8·m ·
r4

L
·∆P

(
m3/s

)
(11)

Eliminating the pore area (π.r2) from both sides of the equation—Equation (12),
ordering it—Equation (13), integrating it—Equation (14), and taking the square root—
Equation (15), results in the impregnation length at a given time—Equation (16).

dL
dt

=
1

8·m ·
r2

L
·∆P(m/s) (12)

L·dL =
r2

8·m ·∆P·dt·t (13)

L
2

2
=

r2

8·m ·∆P·t(m) (14)

L√
2
=

r
2·
√

2
·
√

∆P·t
m

(m) (15)

L =
r
2
·
√

∆P·t
m

(m) (16)

Studying the balance of forces that appears in a liquid that rises through a capil-
lary, (Figure 5, Equation (17)), it is possible to determine the present contact angle θ

(Equation (18)).

2·π·r·σ·cosθ+ P2·π·r2 = P1·π·r2(N) (17)
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Being:
σ—the surface tension of the liquid (N/m);
θ—the contact angle between the solid and the liquid.

cosθ = r·P1 − P2

2·σ = r·∆P
2·σ (18)

In this way, the effect of the pressure in the capillary can be expressed according to
Equation (19).

∆P =
2·σ·cosθ

r
(Pa) (19)
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As introduced in Equation (16), the equation that determines the impregnation height
reached by a fluid in a porous material is obtained as a function of the pore radius, the
dynamic viscosity of the fluid, the surface tension of the liquid, and the contact angle, all
under certain pressure conditions (Equation (20)).

L =

√
r·σ·cosθ

2·µ ·
√

t(m) (20)

If the impregnation ratio, λ, is defined according to the expression of Equation (21),
Equation (22) is finally obtained, which offers the relationship between the time and the
height of impregnation under the conditions determined λ.

λ =

√
r·σ·cosθ

2·µ
(
m/
√

s
)

(21)

L = λ·
√

t(m) (22)

Analyzing Equation (20), it is observed that the impregnation length increases with [16]:

• Decreasing the radius (as long as the effect of capillarity is maintained);
• Decreasing the kinematic viscosity; in this sense, it must be considered that a hotter

fluid is less viscous;
• Increasing the surface tension of the liquid;
• Decreasing the contact angle (cos θ).

From a practical point of view, between the different dielectric oils, their capillary
effect pressures, their surface tension, and their contact angle do not differ too much [19].

As both the dynamic viscosity and the surface tension of liquids depend on tem-
perature, an improvement in the impregnation speed of a fluid–solid combination must
consider the control of this last variable.

Although both the dynamic viscosity and the surface tension of the liquid decrease with
increasing temperature, this reduction is more pronounced in the case of viscosity [18,19].
Therefore, it can be said that viscosity is the parameter that has the bigger influence when it
comes to conditioning the impregnation of a certain solid material [19], so its management—
for example, heating the liquid—is the main activity that can be performed to speed up the
impregnation process.

On the other hand, the internal pressure in the pores (vacuum) is also a parameter that
has a certain influence, which is increased in the case of increasing the temperature, since it
would increase the internal pressure of the water vapor retained in the pores [20].

If heat is applied to accelerate the impregnation, the execution of the vacuum is even
more important since, on the contrary, the internal pressure of the pores would be higher
due to the higher pressure of the water vapor contained in them [20].

2. Impregnation of Solid Dielectrics

Regarding the impregnation of solid insulators used in electric power transformers,
this is a topic that has aroused interest in the industry for many years. In 1965, L. E. Feather,
from the Materials and Processes Development Department of the Power Transformer
Division of Westinghouse Electric Corporation, published a paper [21] in which he analyzed
the method and times of the drying and impregnation processes necessary to manufacture
a power transformer. He commented that the modification of these methods can reduce
the time from one day to one week, which undoubtedly helps the manufacturer in meeting
delivery dates. Figure 6 shows the diagram of the vapotherm processing equipment [21].
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A few years later, in 1975, an article [22] was published in which, in addition to offering
the equations that model the phenomenon of impregnation, the authors analyzed how the
breakdown voltage evolved in the pressboard with impregnation time. They tested five
samples, and the results obtained (Table 2) evidenced the significant improvement of this
property with the impregnation time increase.

Table 2. Breakdown voltage obtained during impregnation, from [22].

Time Elapsed from the
Beginning of the
Impregnation

0 13 min 1 h 2 h 4 h
20 min

6 h
40 min

11 h
45 min 48 h 48 h

15 min
48 h

30 min

Breakdown voltage (kV)

32.8 a 69.5 69.5 78.5 89.5 90.5 93.5 90.5 b 89.5 b 95.2

33.6 a 70.5 72.8 80 89.5 96.1 b 92 92.8 90.5 b 93.5 b

34.5 a 70.5 b 73 80 89.5 92.1 93.5 92 b 90.5 89.5 b

35.2 a 71 73.5 85 94 90.5 b 93.5 93.5 93.5 b 90.5 b

34.5 a 71 b 77 89.5 92 b 90.5 91.5 91.5 97 92.5 b

a Test on untreated and unimpregnated samples. b Tests with breakdown spot outside the uniform field area.

In 1984, researchers from the Toshiba Corporation published an article [20] in which
the effects of both temperature and pressure on impregnation were taken into account.
They carried out the impregnation of the transformer board with mineral oil and included
in the work graphs with results of how the temperature and the applied pressure influenced
the evolution of the pressure inside the transformer board and the impregnation height
achieved (Figure 7). These results indicate that the internal pressure increases significantly
more by increasing temperature from 20 ◦C to 50 ◦C than by increasing vacuum pressure to
0.1 MPa; these increases also occur with the impregnation height, but although the changes
in applied pressure have a similar influence on both measurements, the temperature has
more influence on the height than on the internal pressure.

These authors published a second part of the article [17], in which, in addition to en-
gaging in a theoretical study of the equations that govern the phenomenon, they estimated
the coefficients of said equations by adjusting them with the experimental results.
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Figure 7. Pressure change in transformer board and changes in oil impregnation depth. Data
from [20].

An article [23] was published in 1985 in which the author analyzed the impregnation
of a kraft pressboard under different pressure conditions; although the results of the
impregnation length on the substrate (L2) measurement offered a good approximation with
the theoretical prediction, the results of the impregnation length on the filter cake (L1) did
not have a good fit (Figure 8). Unfortunately, the poor quality of the photograph in the
article does not clearly show the impregnated sample.
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In 1988 [24], a paper was presented in which the dielectric properties (dielectric
constant and dissipation factor) acquired by kraft paper and polypropylene film were
analyzed after different impregnation periods (1 and 5 h) and under different temperatures
(23 ◦C, 45 ◦C, and 70 ◦C). Regarding the dielectric constant, the results showed that in
the two materials, it is of the same order of magnitude and increases with impregnation
time, but it is barely influenced by temperature. However, regarding the dissipation factor,
in polypropylene film, it is increased by both time and temperature, while in kraft paper
it is increased by time but shows a somewhat erratic behavior concerning temperature,
although the value is much higher in magnitude than in polypropylene film (Figure 9).
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A few years later, in 2001, a paper was presented in which aspects related to the
manufacture of transformers were also commented on [25]. In the work, an analysis of the
cost of the energy necessary to produce the drying and accelerate the impregnation process
of the machine was carried out. The author studied the use of three different systems to
carry out the heating that favors these processes: a convective system that uses gas to
produce heat, a convective system that heats based on electricity, and a heating system
based on electric induction. The results showed that the induction system was considerably
cheaper (Table 3).

Table 3. Heat loads, from [25].

Gas Convection Electric Convection Induction

Btu/Hr Btu/Hr Btu/Hr

Product Load 36,900 36,900 36,900

Conveyor Load 92,250 92,250 0

Wall Losses 26,875 26,875 0

Opening Losses 9600 9600 0

Exhaust Losses 42,509 20,368 0

Total Heat 208,134 185,993 36,900

A year later, in 2002, a paper was presented [26] in which a study of the effect of
drying, impregnation, and temperature cycles on the clamping pressure of the transformer
windings was carried out. The tests were performed on five radial spacers (from milled
transformer board TIV, 2 mm thickness) separated by bundles of paper-insulated copper
conductors. This pressure is adjusted for the initial moment of the life of the transformer,
but with its operation, it can change substantially due to effects such as changes in tem-
perature or the presence of humidity, which can seriously damage the insulation of the
windings. The study concluded by establishing that the impregnation itself does not influ-
ence the clamping stress (Figure 10, but temperature increases do have important effects
(Figure 11) since the clamping forces can deviate easily by far more than 10 percent from
the theoretical value (for hot windings above and very cold windings below the designated
initial force). This is an aspect to consider when wanting to speed up the impregnation rate
by raising the temperature. The latter is especially relevant when biodegradable oils are
used, which are more viscous than mineral oils and require higher temperatures to reduce
impregnation times.
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from [26].

In 2007, a group from the University of Manchester published a paper [27] in which
they offered data from an impregnation study. They studied the impregnation of cellulosic
insulation for transformers (pressboard and laminated pressboard blocks) with mineral
oil and two biodegradable liquids. The pressboard results (Figure 12) showed that if the
temperature of mineral oil is increased from ambient to 60 ◦C, the same impregnation height
is achieved 70% of the time. If a synthetic ester is used at 60 ◦C, the same impregnation
height is achieved as in the previous case 90% of the time, while if the ester is vegetable,
at 60 ◦C the same impregnation height is achieved at 110% of the impregnation time.
Regarding the laminated pressboard blocks, the tests concluded that at 60 ◦C, a similar
impregnation height is achieved with the esters to that achieved with mineral oil at room
temperature (Figure 13).

The following year, continuing with the work of the previous year, the same group
published a paper [18] in which, in addition to including the equations that model the im-
pregnation process, they compared the impregnation of both synthetic ester and vegetable
ester with the which performs a mineral oil. In this case, samples of pressboard strips
(3 mm thick and 2 cm wide) and two types of pressboard blocks (33 × 70 × 110 mm and
33 × 115 × 115 mm) were impregnated (Figure 14). They found that temperature has a
great influence on impregnation since it is a factor that affects both viscosity and surface
tension. The results showed that in the impregnation of the pressboard strips at 20 ◦C,
40 ◦C and 60 ◦C, there is a linear relationship between the impregnation height and the
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square root of the time, the temperature activates the impregnation process, and the mineral
oil impregnates better than the synthetic ester—the latter better than the vegetable ester
(Figure 15 and Table 4). The results of the impregnation of the two types of pressboard
blocks showed that if the temperature of the esters is increased to around 60 ◦C, they could
achieve impregnations similar to those achieved with mineral oils at 20 ◦C (Figure 16).
Although temperature contributes to increasing the degradation of cellulosic materials, this
thermal level is not significant.
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Table 4. Slopes of oil height against the square root of time in pressboard stick, from [18].

Type of Oil Mineral Oil Synthetic Ester Natural Ester

Slope λ

(m/
√

t)

20 ◦C 1.13 × 10−4 0.64 × 10−4 0.63 × 10−4

40 ◦C 1.41 × 10−4 0.96 × 10−4 0.86 × 10−4

60 ◦C 1.81 × 10−4 1.40 × 10−4 1.10 × 10−4
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More recently, in 2014, another work similar to the previous one [19] was presented
in which impregnation was carried out, in this case with single-layer pressboard (2 mm
thick and 1.5 cm wide) and multi-layer pressboard (150 × 35 × 10 mm) and using veg-
etable oil (rapeseed), and the researchers compared it with impregnation using mineral
oil. The results, shown in Figures 17 and 18, showed that the impregnation is governed
by phenomena such as the viscosity of the oil, the capillarity, and the internal pressure of
the oil in the material; as a direct consequence, impregnation with vegetable oil is worse
than that carried out with mineral oil. However, they carried out impregnations at different
temperatures, demonstrating that if the temperature of the vegetable oil is increased to
around 60 ◦C, an impregnation similar to that carried out by mineral oil at 20 ◦C is achieved,
which corroborates the results obtained by other authors in previous works [18,27].

In 2016, a paper was presented [28] in which the different dielectric properties that
pressboard acquired when impregnated with a natural ester and mineral oil were analyzed.
The authors offered data on breakdown voltage for different thicknesses (1.6 and 3.2 mm)
after different impregnation periods (3, 6, and 9 h) and with different dielectric permittivity
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levels after 3 h of impregnation at different temperatures (35 ◦C to 90 ◦C). The breakdown
voltage results showed that the value increases with increasing impregnation time and
that it is higher when impregnating with the natural ester (Table 5), while the dielectric
permittivity results show that this value decreases with temperature and is lower in the
natural ester (Table 6).
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Table 5. Breakdown voltage of liquid impregnated pressboard, from [28].

Pressboard Thickness
(mm)

Impregnated Time
(h)

Breakdown Voltage (kV)

Natural Ester Mineral Oil

1.6
3 43.9 41.2

6 49.2 46.7

9 57.2 51.7

3.2
3 65.7 62.3

6 75.2 70.6

9 85.6 77.5
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Table 6. Dielectric permittivity of natural ester and mineral oil at different temperatures after using
for 3 h impregnation of pressboard, from [28].

Temperature (◦C) Natural Ester Mineral Oil

35 3.08 2.12

40 3.07 2.12

45 3.06 2.12

50 3.05 2.11

55 3.03 2.11

60 3.01 2.11

65 2.99 2.1

70 2.98 2.1

75 9.96 2.09

80 2.94 2.09

85 2.92 2.08

90 2.91 2.07

In 2017, a paper was presented in which the delta tangent was analyzed for flat
pressboard (0.5 × 3 mm) and wraps with a layer thickness of 6.25 mm, which were made
from kraft paper in cylinders with a thickness of 0.15 mm and an aluminum cylinder as a
rack, when these materials were impregnated with two different liquids: a new oil, based
on the gas-to-liquids process, and another mineral oil. The measurements were made with
two different methods: FDS (frequency domain spectroscopy) and PDC (polarization and
depolarization current) [29]. They obtained similar results with both oils (Figure 19), so
they concluded that the two oils performed a similar impregnation process on both kraft
paper and pressboard.
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That same year, 2017, a paper [30] was presented in which, considering that the size
of the capillaries of solids is a determining parameter for the impregnation process, the
authors carried out a statistical treatment to determine the size of the capillaries present
on pressboard. After analyzing 99 different samples (Figure 20), they determined that the
average radius is 65.37 nm.

In the following year, 2018, the same group presented a work [31] in which the authors
tried to measure the pore size and absorptive capacity of the pressboard. After saturating
the material with mineral oil (Figure 21), the authors concluded that this material has a
capillary diameter of approximately 25.6 nm and that it can absorb 25.6% of its volume.
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In 2018, a paper [32] was published in which the impregnation capacity of four dielectric
fluids (mineral oil, synthetic ester, natural ester, and blended ester of low viscosity) on press-
board was analyzed. The impregnation tests were carried out at four different temperatures:
20 ◦C, 60 ◦C, 80 ◦C, and 100 ◦C. The results corroborated once more the worse impregnation
capacities of the ester-type fluids concerning mineral oil and that the temperature activates
the impregnation. Regarding the low-viscosity ester, as expected, it had better behavior
than the other two esters (Figure 22).

Later, in 2019 [33], a paper was presented in which the influence between the duration
of the vacuum created for the drying and impregnation processes and the appearance of
partial discharges was studied. The authors tested 12 new and identical transformers, and
the results showed that a vacuum contributes to reducing both moisture and air pockets
within the solid insulation, so a longer vacuum duration and impregnation time result in
low partial discharges (Figure 23), which corroborates the conclusions obtained in previous
works by other authors [28].

That same year, 2019, a paper [34] was presented in which the impregnation at 70 ◦C
with mineral oil and a synthetic ester of different rigid materials of cellulosic origin were
analyzed. The authors offered the results of slopes of liquid height vs. square root of time
(Table 7). Once again, the superiority of mineral oil impregnation was shown. The authors
concluded that, in the analyzed materials, the phenolic wood block possesses the maximum
impregnation rate in comparison with the rest of the materials.
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Table 7. Slopes (cm/
√

s) of oil height vs. square root of time, from [34].

Type of Insulating Rigid Component Mineral Oil R Synthetic Ester R

Laminated pressboard T-IV block
Frontal 1.7292 0.9289 1.5326 0.9418

Sideway 0.7634 0.9931 0.7582 0.9968

Laminated pressboard T-IV bushing insulation 1.8348 0.9546 0.5452 0.9982

Laminated pressboard T-IV sheet (thickness 1 mm) 2.0761 0.9955 1.6001 0.9959

Laminated pressboard T-IV sheet (thickness 2 mm) 1.2403 0.9988 0.8140 0.9933

Laminated pressboard T-IV spacer 1.0440 0.9975 0.4456 0.9972

Laminated pressboard T-IV strip
Frontal 1.3120 0.9978 0.7281 0.9959

Sideway 0.6350 0.9939 0.0532 0.9968

Phenolic wood block
Frontal 2.9192 0.9949 1.8334 0.9908

Sideway 5.1290 0.8982 3.4661 0.9172

In 2021, the same research group published a paper [14] in which the impregnation
with mineral oil, natural ester, and synthetic ester of eight solid dielectrics—four papers
(Crepe, DDP, Kraft, and PSP) and four rigid components (Laminated pressboard T-IV
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blocks, Laminated pressboard T-IV bushing insulation, Laminated pressboard T-IV sticks
and Phenolic wood blocks)—were evaluated at different temperatures. The results of the
papers showed that the Crepe and the PSP impregnate easier than the Kraft and the DDP.
Likewise, it was verified that of the rigid components analyzed, the Phenolic wood blocks
are the ones that best impregnate. In the same way, they verified that by increasing the
impregnation temperature of the synthetic ester up to 60 ◦C and of the natural ester up
to 74 ◦C, impregnations similar to those obtained with mineral oil are achieved (Table 8).
The results for the synthetic ester are similar to those offered by some previous works by
other authors [18,19,27]; however, the results for the impregnation with natural ester are at
a higher temperature.

Table 8. Impregnation ratios of the dielectric materials at the equivalent temperatures pointed by the
constraining materials, from [14].

λ 25 ◦C–Mineral Oil 61 ◦C–Synthetic Ester 74 ◦C–Natural Ester

Crepe 3.6848 3.2885 3.3015

DDP 3.1300 1.8372 1.9675

Kraft 2.6531 2.2817 2.3713

PSP 3.7321 2.2817 3.1292

T-IV Block 1.0055 1.0055 1.0837

T-IV Bussing insulation 2.0762 1.8082 1.8185

T-IV Stick 1.4442 1.2838 1.0055

Phenolic Wood 2.4769 2.0287 2.3050

In 2022, this same group, continuing with their previous work, presented a paper [35]
in which they offered the experimental data of the impregnation ratio of mineral oil and
natural ester on Crepe paper, Diamond Dotted Paper (DDP), Kraft, and Presspaper (PSP)
(Figure 24); the tests were carried out between 31 and 80 ◦C. The results, in addition to
corroborating that the impregnation with the natural ester is worse than that carried out
with mineral oil, showed that Crepe and PSP papers impregnate more easily than Kraft
and DDP (Figure 25).
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In 2022, an experimental work was published [36] in which impregnation with a
natural ester and a vegetable ester of three different sizes of cellulose laminated blocks
(40 ×40 × 25.4 mm, 90 × 90 × 25.4 mm and 180 × 180 × 25.4 mm) was evaluated, com-
paring it with the results using a mineral oil. The results once again showed that ester
impregnation lasts a longer time than mineral oil impregnation (Figure 26). However,
impregnation can be activated by increasing the temperature (Figure 27), and in this case,
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at 70 ◦C the authors managed to impregnate the esters in a similar manner to using mineral
oil at room temperature. This agrees with the results that were previously published in [14]
for vegetal esters. They also observed that drying cellulosic materials in a vacuum before
their impregnation accelerated the impregnation process.
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The work also evaluated the breakdown voltage of impregnated pressboard samples
(60 × 60 × 1.6 mm) after 6 and 24 h of impregnation. They also evaluated the relative
permittivity (dielectric constant) at different temperatures of a natural ester, comparing it
with that of a mineral oil in different types of solid insulation. Regarding this value, the
results showed the superiority of the natural ester over the mineral oil (Figure 28).
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Case 1: laminated block samples were placed in glass containers with oil at 60 ◦C, and
the impregnation process was at room temperature.

Case 3: cellulose block samples (180 mm) were placed in an impregnation chamber
with an additional drying process at 0.07 mbar (50 µm) for 8 h.

Finally, in 2022, a study [37] was published regarding the design of transformers that
use biodegradable fluids instead of traditional mineral oils. They studied the designs
required for three different transformers (Table 9) and offered data on the final designs
in terms of physical and electrical dimensions (Table 10). The authors concluded that the
repercussion of the liquid change is not significant in terms of transformer dimensions
(<2%). Regarding the weight, in small powers, the design for the ester type can increase
it by more than 7%, with this increase being less as the power increases (<2.5% for high
powers). Regarding the losses, small power transformers suffer small variations (<2%),
while medium and large ones reach higher values (<7%).

Table 9. Data from the three studies’ transformers, from [37].

Transformer’s Features Case 1 Case 2 Case 3

Power (MVA) 20 50 125/40

Connection configuration YNd11 YNd11 YNYN0 + d11

HV nominal value (kV) 63 132 232

LV nominal value (kV) 30 30 66

Regulation HV winding ±10 × 1.5% ±9 × 0.889% (+6; −10) × 1207%

Cooling method ONAN ONAF/ONAN ONAF/ONAN

BIL (kVp) 325/170 550/170 850/325

Voltage application (kVp) 140/70 230/70 360/140

Case 3: cellulose block samples (180 mm) were placed in an impregnation chamber
with an additional drying process at 0.07 mbar (50 µm) for 8 h.

Case 4: similar to Case 3 but maintaining the fluid at a temperature of 70 ◦C.
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Table 10. Final design of the transformers, from [37].

Case 1 Case 2 Case 3

Feature MO Ester Impact (%) MO Ester Impact (%) MO Ester Impact (%)

Length (mm) 4608 4664 +1.21 5309 5386 +1.45 7600 7698 +1.29

Width (mm) 3443 3445 +0.058 3496 3519 +0.65 4613 4553 −1.30

Height (mm) 4168 4222 +1.29 4639 4711 +1.55 5895 5909 +0.23

Short-circuit
impedance (%)

8.31 8.46 +0.15 9.99 10.68 +0.69 14.96 15.31 +0.35

Installation mass (kg) 52,774 65,056 +6.22 92,239 96,334 +4.43 230,919 235,698 +2.06

Transport mass (kg) 38,108 41,005 +7.6 64,288 68,382 +6.36 150,421 154,077 +2.43

Off-load losses (W) 10,590 10,403 −1.76 20,306 20,140 −0.81 40,897 42,651 +4.29

Load-losses (W) 93,131 94,119 +1.06 204,029 218,195 +6.94 320,176 334,134 +4.36

As a summary of the publications analyzed in this work, Table 11 is included, which
indicates the topics that the published articles deal with.

Table 11. Topics of published works.

Topics Reference Number

Impregnation theory 17 18 19 22

Dielectric properties 22 24 28 29 33 36

Temperature 14 18 19 20 22 24 27 28 32 35 36

Pressure 20 33

Esters fluids 14 18 19 27 28 32 34 35 36 37

Paper 14 24 29 35

Pressboard 18 19 22 23 27 28 29 30 31 32 36

Rigid dielectrics 14 18 19 20 27 34 36

Manufacturing 16 21 25 26 37

3. Conclusions

Solid cellulosic materials are impregnated with dielectric liquids mainly to eliminate
any air pockets that they may contain. This helps to make the dielectric properties of solids
more homogeneous, which reinforces their dielectric strength and therefore hinders the
appearance of partial discharges. As is known, this is one of the main phenomena that
contributes to the deterioration of solid dielectric materials and therefore reduces the useful
life of the machines in which they are used.

If the impregnation procedure is not correct, potentially disastrous failures can result.
Consequently, transformer manufacturers must be cautious, promoting techniques and
methods that ensure adequate impregnation and adapting this process to the type of
fluid used.

It has been known for some time, both in the scientific literature and by transformer
manufacturing companies, that the time required to carry out a correct impregnation is
reduced if the temperature is raised and if a vacuum is created inside the solids. Although
it is difficult to make the initial pressure zero, it is possible to achieve a relative vacuum that
helps speed up the impregnation process. Regarding the increase in temperature, it should
be noted that in addition to improving the impregnation process, it tends to accelerate the
degradation of cellulosic materials, so it is not advisable to exceed temperatures of the
order of 60 ◦C. The use of these two techniques contributes to reducing manufacturing
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times and improving productivity (and with it the economic aspects of manufacturing),
therefore increasing the competitiveness of the company.

Today, esters are a real alternative in distribution transformers. Regarding power
transformers, there are a few companies that are carrying out field tests and trying to
obtain real data on the operation and maintenance of power transformers with esters,
but since these tests have started recently and the lifetime of these machines can exceed
30 years, it is unlikely that in the short term these large machines will begin to use esters
on a massive scale.

Currently, there are very few studies on the impregnation process of different solid
dielectrics with ester-type fluids; and in addition, these studies are carried out under
different conditions (for example, using different initial moisture contents of both solids
and liquids), so it is very difficult to draw conclusions. Much more research is needed in
this regard, and we need to establish standard conditions for conducting the experiments.

In summary, it can be said that both the appearance and evolution of solid dielectrics
of cellulosic origin, as well as the appearance of safer and more ecological alternative liquid
dielectrics, such as esters, make it necessary to adapt impregnation processes to these new
materials. In this sense, although some studies have been carried out, there are gaps in
both knowledge and experience regarding the behavior of the new fluids.
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