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Abstract—In this work, a solution that can be applied to
the RTSS 2022’s Industry Challenge is proposed. It relies on
a real-time system model and a set of schedulability analysis
and optimization tools, enabling the design of safety-critical
applications compliant with timing requirements. The presented
toolchain is enhanced with a novel task allocation technique,
which leverages sensitivity analysis and that can be applied
to heterogeneous systems, to provide promising solutions that
improve state-of-the-art algorithms’ performance.

Index Terms—MAST, Schedulability analysis, Optimization,
Partitioning

I. INTRODUCTION

Nowadays, the design of safety-critical systems is becoming
more and more complex, as the need of high-performance
computing platforms spreads all over the industry. Complex
and concurrent software functions, each of them with its
own timing constraints and safety requirements, need to be
executed within resource-constrained embedded systems, for
instance, in Advanced Driver-Assistance Systems (ADAS)
[11] similar to the visual-based navigation system devised in
this Industry Challenge. Object and obstacle detection or im-
age classification and segmentation duties must be performed
within a bounded time or deadline, as human lives may be
jeopardized in case of any error.

In this context, we propose to use partitioning techniques
[1] [5] [14] in order to isolate software functions that share a
computing platform. As a solution to the proposed challenge,
in this paper we suggest the use of a set of modeling, analysis
and optimization tools, with the aim of providing the means
for guaranteeing that safety critical applications meet their
deadlines even in the worst-case scenario, as part of the
safety certification process. We show that the system model
captures the complexity that these systems exhibit, and we
propose using several schedulability analysis and optimization
techniques. We also propose a novel method to allocate tasks
to processors that produces promising solutions.

After a brief introduction in Section I, Section II presents
the system model, the schedulability analysis technique and
the optimization algorithms. Then, the new task allocation
algorithm is described in Section III, including a description
the sensitivity analysis, the algorithm’s design and its evalua-
tion. Finally, Section IV draws some conclusions and discuses
future research lines.

II. MODELING, ANALYSIS AND OPTIMIZATION

A. System model

This system model captures the time-related features and
complexity of safety critical applications. It is compliant with
the MAST model. The second version of MAST’s metamodel,
MAST 2 [7], adds several novel scheduling policies and
modeling elements, such as time partitioning.

The main element is the end-to-end (e2e) flow, which
consists of a sequence of activities with precedence relations
executed in response to a periodic or sporadic workload event,
with a minimum inter-arrival time (Ti). The main component
of an e2e flow is the event handler called step, which repre-
sents an operation being executed by a schedulable resource
(a task or a message) in a processing resource (a processor
or a network). Processors are denoted as CPUy . Each step is
activated by an input event, and after its execution it generates
an output event. The j-th step in the e2e flow Γi is denoted
as τij , and it has a worst-case and a best-case execution time,
Cij [*** anadir CPU y] and Cb

ij respectively. These execution
times may be different depending on the processor they are
allocated to, so that heterogeneous computing platforms can be
modeled. Each step represents a utilization of the processing
resource of Uij = Cij/Ti, and therefore, the utilization of
an e2e-flow (Ui) is the sum of the utilization of all its steps.
Workload events that activate e2e flows and also the internal
events that activate handlers may exhibit a release jitter, so
any step τij may suffer a release jitter up to a maximum of
Jij . Steps can also have an initial offset Φij .

This model includes other event handlers that do not have
runtime effects and enable the modeling of complex event
combinations like the multipath e2e flows addressed here: 1)
Fork: It generates one event in each of its outputs each time
an input event arrives. 2) Join: It generates an output event
when all of its input events have arrived.

Hierarchical schedulers are composed of a primary sched-
uler and a secondary scheduler. A table-driven scheduling
policy is considered as primary scheduler in every processor,
where temporal partitions are scheduled in a cyclic manner
within a Major Frame (MAF). A temporal partition Px is
composed of one or more partition windows Winxk, defined
as follows: Winxk = { Sxk , Lxk } where Sxk is the start time
relative to the start of the MAF, and Lxk is its length. The
secondary scheduler is based on preemptive fixed priorities,



where Prioij is the priority of the step τij , and where the
highest number represents the highest priority.

B. Response-time analysis

In order to determine whether safety critical applications
meet their deadlines, we need to calculate the steps’ worst-case
response times. To do so, we will make use of the technique
developed in [2]. This is an offset-based schedulability analysis
technique [12] [13], which has been extended in [2] to support
multipath e2e flows. It is the most accurate technique available
to calculate worst-case response times, as it is demonstrated
that the results of the holistic analysis [6] for multipath flows
are notably improved. This technique stands out from the state-
of-the-art approaches in some key features: on the one hand,
it can be applied to event-triggered multipath applications
whose deadlines may be greater than their periods, and on the
other hand, it supports both time-partitioned distributed real-
time systems as well as general distributed real-time systems
(without partitioning) based on fixed priorities. Readers are
encouraged to read the aforementioned references for specific
details on the schedulability analysis and optimization tools.

C. Priorities and partition windows optimization

With the aim of minimizing the worst-case response times
of safety critical applications, we propose a set of scheduling
optimization techniques, that are compliant with the system
model previously described. In this section, we address both
scheduling levels: we show a partition window assignment
algorithm that can be applied to time partitioned distributed
real-time systems [4], and then a collection of 8 non-iterative
priority assignment algorithms, which can be applied to the
secondary scheduler of hierarchical systems and also to gen-
eral fixed-priority based distributed real-time systems [3].
Readers are encouraged to read the corresponding references
for further details on their design, implementation and results.

Partitioning is a key technique for isolating different func-
tions that share the same computing platform. The algorithm
presented in [4] can be used in this challenge in order to
perform an optimized partition window assignment that allows
applications based on hierarchical scheduling to meet their
deadlines. It is shown that schedulable solutions can be found
for a wide range of deadline requirements, taking into account
the overheads produced by partition context switches.

Regarding the priority assignment algorithms, we will rely
on the priority assignment techniques developed in [3], which
can be applied to multipath e2e flows and time-partitioned
distributed real-time systems. These algorithms produce a
single solution by distributing the end-to-end deadline through
all the steps in the e2e flow (called Virtual Deadlines or VDs),
and then transforming such VDs into priorities following the
deadline monotonic algorithm. The main conclusion in [3] is
that there is no algorithm that stands out from the others in
the tested scenarios, which reinforces the idea of evaluating
all of them and choosing the one that produces the best solu-
tion. Notice that there are two algorithms (NPD Global and
NPD Local) that rely on a given step-to-processor allocation,

so they are not going to be applicable in the strategy proposed
for this challenge.

III. SLACK-BASED ALLOCATION ALGORITHM

A. Sensitivity analysis (Slack)

The algorithm developed in this work is based on the Slack
as defined in MAST1 for sensitivity analysis. Thus, a Slack
Factor (SF) is defined as the factor by which the worst-case
execution times of a step or a set of steps may be increased
while keeping the system schedulable (SF is then a positive
value higher than 1), or decreased, in order to make the system
schedulable (SF is then a positive value lower than 1). If SF is
1, the system is just schedulable. This definition of SF can be
applied to different sets of steps, thus obtaining the following
parameters that allow a comparison between different elements
of the system or even the whole system:

• System Slack Factor (SSF), if all the steps in the systems
are considered.

• Processor Slack Factor (CPUSF), if the SF is calculated
by modifying only the steps of a particular processor.

These parameters enable the determination of how close a
particular element is to schedulability, and they are obtained
by a binary search algorithm in which execution times are suc-
cessively increased or decreased. It is assumed that, when the
SF calculation reaches a near-zero threshold, the calculation
will stop, meaning that the system cannot be scheduled even
if this element is removed.

B. Algorithm design

The design of the Slack-Based Allocation (SBA) algorithm,
proposed in Algorithm 1 for step-to-processor allocation in
distributed real-time systems, is inspired by traditional bin-
packing algorithms [9], where tasks are allocated to differ-
ent processors depending on their utilization. Its input is a
distributed system based on preemptive FP scheduling and
composed of steps that are not allocated to any processor.
Its output is the step-to-processor allocation together with
a priority assignment for each step. Instead of considering
processors’ utilization as a reference parameter, with the aim
of capturing the effect on the worst-case response times of
the decisions that the allocation algorithm takes in each stage,
the System Slack Factor (SSF) and the Processor Slack Factor
will be used. These parameters give an idea of the goodness
(in terms of schedulability) of the decision of allocating a step
to a certain processor.

In each stage of the algorithm, a Candidate List is cre-
ated, which gathers the set of processors where the step under
assignment can be allocated. First, steps are sorted according
to their priority (Line 2), and in each allocation stage one of
them (the first one in the sorting) is allocated into a processor.
As will be explained later, the proposed algorithm has to
calculate the slacks at each allocation stage, which implicitly
means that response-time analysis should be carried out. This
kind of analysis has to be executed over different subsets

1https://mast.unican.es/



of steps which must be compliant with the e2e flow model.
Therefore, step-to-processor allocation must be performed in
such a way that steps’ precedence relations are preserved. To
achieve this, priorities must be assigned in a non-decreasing
order from the first step until the end. This particular priority
assignment can be achieved by a subset of the 8 algorithms
mentioned in Section II.C.

Algorithm 1 Slack-based Allocation Algorithm

1: Input: Set of steps τij , set of Processors CPUy

2: Priority Assignment
3: Sort all τij according to Prioij
4: for each τij do
5: MaxSSF = 0 , Clear Candidate List
6: for each CPUy do
7: CPUy ← τij
8: Calculate System Slack
9: if MaxSSF < System Slack then

10: MaxSSF = System Slack
11: Clear Candidate List
12: Candidate List← CPUy

13: else if System Slack = MaxSSF then
14: Candidate List← CPUy

15: end if
16: end for
17: if CPUy ∈ Candidate List >1 then
18: MaxCPUSF = 0
19: for each CPUy ∈ Candidate List do
20: CPUy ← τij
21: Calculate Processor Slack at CPUy

22: if Processor Slack >MaxCPUSF then
23: CPUy ← τij
24: end if
25: end for
26: else
27: CPUy ∈ Candidate List ← τij
28: end if
29: end for

At each stage (Line 4), the algorithm allocates the step in
all processors and calculates the resulting system slacks (Line
8). If there is a single processor where the maximum SSF
(MaxSSF) is achieved, the step is allocated to that processor
(Line 27), whereas if there is more than one, all of them
are added to the Candidate List and their CPUSFs are
calculated (Line 21). The step will be allocated to the proces-
sor where the maximum CPUSF (MaxCPUSF) is achieved,
and if there is still a tie at processor SF, the allocation is
decided randomly, subject to future optimization strategies to
be evaluated.

As said before, a partition window assignment algorithm
can be applied as part of the proposed solution to this
challenge, even if partitioned systems are not going to be
evaluated in this paper. We propose to apply this partition
optimization algorithm right after the allocation is performed,

as the algorithm developed in [4] requires a given step-to-
processor allocation as input.

C. Evaluation

This novel algorithm is conceived for applications compliant
with the system model described before, that is, heterogeneous
platforms based on partitioning. In this work, we show a set
of experiments where the slack is applied to allocate tasks
in homogeneous systems without partitioning. This allows
to characterize the performance of the algorithm on basic
systems. The influence of partitioning and heterogeneous pro-
cessors will require further experiments and is left for future
work.

The experiments are based on randomly generated synthetic
e2e flows, generated following the principles in [10]. A special
purpose generation tool has been developed and it has also
been made publicly available2. It is based on the well-known
DAG model [8] [15], which can be directly transformed to the
multipath flow model described in this work. The utilization of
the generated e2e flows can be provided as input parameters
to the tool, as well as the number of e2e flows and the
steps within them. Test cases consist of different sized e2e
flows, in terms of the number of steps, which are allocated
individually to a varying number of processors. A test case will
be developed through the execution of the proposed algorithm
to allocate a single e2e flow into a set of processors. A hundred
different e2e flows are tested for incremental utilizations in
a specific range with a fixed increasing step. In all experi-
ments, the SBA algorithm is compared against the well-known
Worst-Fit algorithm [9] considering two variations, one where
steps are sorted in decreasing utilization order (WF D) and
the other where steps are sorted in a topological arbitrary
order (WF Topo). If the opposite is not stated, the priority
assignment algorithm used to sort the steps at the beginning
of the algorithm will be PD Global [3].

The first test case consists of small sized e2e flows, where
the number of steps in each e2e flow is in the range [7,10].
The utilization of the e2e flows has been set from 0.25 to 2.5,
with an increasing step of 0.25, and they will be allocated to
3 and 4 processors. The optimal solution, i.e the lowest worst-
case response time among all the possible allocation solutions,
will also be evaluated, in order to see how close the solutions
obtained are to the optimal one.

In the second test case, corresponding to medium-sized e2e
flows, the input value in the generation tool is set so that the
generated e2e flows are composed of a number of steps in
the range [10,25]. For this experiment, the e2e flows will be
allocated to 3, 4 and 5 processors. The e2e flows’ utilizations
are from 0.33 to 3.33 with an increasing step of 0.33. Due
to the larger size of this experiment, the optimal solution’s
reference is no longer available for these results.

Finally, a large-sized e2e flow experiment is performed by
generating e2e flows with a number of steps in the range
[50-100], and with utilization values from 0.75 to 5 with an

2https://github.com/mive93/DAG-scheduling
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Fig. 1: Small-sized test
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Fig. 2: Medium-sized test

increasing step of 0.25. They will be allocated to 4, 5 and 6
processors. In this test case, another feature of interest will be
evaluated. As stated before, steps are initially sorted according
to their priorities, which are assigned following different algo-
rithms. In order to assess the impact of the priority assignment

on the initial sorting, and therefore on the allocation algorithm,
in this experiment the schedulability results will be presented
for different step orderings. The evaluated priority assignment
algorithms will be ED (SBA ED), PD Global (SBA PD) and
UD (SBA UD) [3].

As said before, the SBA algorithm will be compared with
two bin-packing algorithms, WF D and WF Topo, and also
with the optimal solution in small-sized experiments. The
results have been plotted in Figures 1, 2 and 3. They show,
for each utilization value, the percentage of e2e flows that
meet their deadlines after being allocated through the different
methods. In all figures, each graph represents a different
number of processors where the e2e flows have been allocated.
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Fig. 3: Large-sized test

In Figure 1, the SBA algorithm (blue plot) outperforms the
bin packing algorithms and obtains near-optimal solutions for
the small-sized test case. As shown in Figure 2, the proposed
algorithm still produces more schedulable results than the WF
algorithms evaluated for all numbers of processors. Figure 3
shows that the SBA algorithm remains better than the bin
packing algorithms for all the utilization values and number of
processors evaluated. Moreover, it can be seen that the initial
sorting of steps, performed via different priority assignment
algorithms, has a paramount importance in the schedulability
of applications. For any number of processors, the initial step



sorting produced by using the ED algorithm shows the best
performance, so future research experiments should consider
this as a reference.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, a solution applicable to the Industry Challenge
at RTSS is presented. This solution is based on a rich real-
time system model which includes partitioning as a key feature
for safety-critical applications, and also several optimization
algorithms that allow obtaining schedulable solutions for ap-
plications executed in heterogeneous platforms. Future work
will be focused on a deeper characterization of the new
task-to-processor allocation algorithm that has been proposed
here, including thorough experimentation considering realistic
scenarios.
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