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ABSTRACT

We determine explicitly a boundary triple for the Dirac operator H ∶= −iα ⋅ ∇ + mβ + V(x) in R3, for m ∈ R and V(x) = ∣x∣−1
(νI4 + µβ −

iλα ⋅ x/∣x∣β), with ν,µ,λ ∈ R. Consequently, we determine all the self-adjoint realizations of H in terms of the behavior of the functions of
their domain in the origin. When supx∣x∣∣V(x)∣ ≤ 1, we discuss the problem of selecting the distinguished extension requiring that its domain
is included in the domain of the appropriate quadratic form.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5063986

I. INTRODUCTION AND MAIN RESULTS
In this paper, we determine a boundary triple and describe all the self-adjoint realizations of the differential operator

H ∶= H0 + V, (1.1)

where H0 is the free Dirac operator in R3 defined by
H0 ∶= −iα ⋅ ∇ + mβ, (1.2)

with m ∈ R,

β ∶= (
I2 0
0 −I2

), α ∶= (α1,α2,α3), αj ∶= (
0 σj
σj 0) for j = 1, 2, 3,

and σj are the Pauli matrices

σ1 = (
0 1
1 0), σ2 = (

0 −i
i 0), σ3 = (

1 0
0 −1),

and finally

V(x) ∶=
1
∣x∣

(νI4 + µβ + λ(−iα ⋅
x
∣x∣
β)) for x ≠ 0, (1.3)

where ν, λ, and µ are real numbers, and I4 is the 4 × 4 identity matrix.
The operator H0 + V describes the motion of relativistic 1

2 -spin particles in the external potential V. In detail, setting

V = Vel + Vsc + Vam ∶= vel(x)I4 + vsc(x)β + vam(x)(−iα ⋅
x
∣x∣
β)
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for real valued vel, vsc, and vam, the potentials Vel,Vsc, andVam are called electric, scalar, and anomalous magnetic potential, respectively. This
particular class of potentials has the property that, in the case that vel, vsc, and vam only depend on the radial variable, the action of H0 + V
leaves the partial wave subspaces invariant (see below). Moreover, in the case that they have a singularity ∼|x|−1 in the origin, the potential has
the same scaling as the Dirac operator.

The dynamics of quantum systems is described in terms of self-adjoint operators, as shown by Stone’s theorem, see, e.g., Ref. 27. For
this reason, it is a primary task to describe all the self-adjoint extensions (if any exists) of a given symmetric operator associated with a
physical system. Von Neumann gave the first complete solution to this problem: his theory is fully general and completely describes all the
self-adjoint extensions of every densely defined and symmetric operator in an abstract Hilbert space in terms of unitary operators between its
deficiency spaces, see, e.g., Ref. 26. Von Neumann’s theory works at an abstract level: for specific classes of operators, it is desirable to have a
more concrete characterization of the self-adjoint extensions. In many cases, self-adjoint operators arise when one introduces some boundary
conditions for a differential expression: perturbing operators with potentials with a singularity in one point, one would like to establish a
direct link between self-adjoint extensions and behavior in the point of the functions in their domain. Referring to Refs. 5 and 12 for a general
overview on the theories of self-adjoint extensions, we cite here the theory of boundary triples, see Refs. 5, 9, 25, and 31 and references therein,
that gives this desired description. The main result of this paper (Theorem 1.5) is the explicit determination of a boundary triple for the
operator H: thanks to this, we are then able to describe all the self-adjoint realizations in terms of the behavior in the origin of the functions
in the domain.

The vast literature has been dedicated to the problem of the self-adjointness of perturbed Dirac operators. Making reference to the
Introduction of Ref. 7, to the survey,13 and to the book32 for more details, we list here some relevant studies. In Ref. 18, it was observed that
thanks to the Hardy inequality,

1
4 ∫R3

∣f ∣2

∣x∣2
dx ≤ ∫

R3
∣∇f ∣2 dx for f ∈ C∞c (R3

), (1.4)

and the Kato-Rellich theorem, it is possible to prove that, for ∣ν∣ ∈ [0, 1
2), the operator H0 + ν/|x| is essentially self-adjoint on C∞c (R3

)
4 and

self-adjoint on D(H0) = H1
(R3

)
4. In fact, the optimal range for the self-adjointness is ∣ν∣ ∈ [0,

√
3

2 ), as shown in Refs. 16, 28, 30, and 34. For

∣ν∣ >
√

3/2, H0 + ν/|x| is not essentially self-adjoint and infinite self-adjoint extensions can be constructed. Among these, for ∣ν∣ ∈ (
√

3
2 , 1),

there exists one distinguished extension HS such that

D(HD) ⊂ D(r−1/2
)

4
= {ψ ∈ L2

(R3
)

4 : ∣x∣−1/2ψ ∈ L2
(R3

)
4
} (1.5)

or equivalently D(HD) ⊂ H1/2
(R3

)
4: in other words, one requires that all the functions in the domain of the extension are in the form domain

of the potential and the momentum. For details, see Refs. 6, 14, 21, 23, 29, and 35. For |ν| ≥ 1, many self-adjoint extensions can be built, and
for |ν| > 1, none appears to be distinguished in some suitable sense, see Refs. 17, 33, and 36. The definition of a distinguished extension for the
case |ν| = 1 has been given in Ref. 11, where it is considered a potential V : R3

→ R such that for some constant c(V) ∈ (−1, 1), Γ ∶= sup(V) <
1 + c(V) and for every φ ∈ C∞c (R3

)
2,

∫
R3
(

∣σ ⋅ ∇φ∣2

1 + c(V) − V
+ (1 + c(V) + V)∣φ∣2)dx ≥ 0. (1.6)

In particular, for an electrostatic potential V(x) ∶= V(x)I4, −ν∣x∣−1
≤ V(x) < 1 +

√
1 − ν2, 0 < ν ≤ 1, the operator H0 + V is self-adjoint on a

suitable domain. If 0 < ν < 1, the self-adjoint extension described is the distinguished one, as also shown in Ref. 22; for ν = 1, the self-adjoint
extension described is the distinguished one, since continuous prolongation of the sub-critical case can cover it. Recently, in Ref. 10, it is
shown that this extension can be obtained as the limit in the norm resolvent sense of potentials where the singularity has been removed with
a cutoff around the singularity.

The approach of Ref. 18 could be used independently on the spherical symmetry of the potential: H0 +V is self-adjoint when V is a 4 × 4
Hermitian real-valued matrix potential V such that

∣V(x)∣ ≤ a
1
∣x∣

+ b, x ∈ R3
/{0},

with b ∈ R and a < 1/2, see Ref. 20, Theorem V 5.10. In Refs. 3, 4, and 19, more general 4 × 4 matrix-valued measured functions V are
considered, in the assumption that ∣x∣∣V(x)∣ ≤ ν < 1, and a distinguished self-adjoint extension [in the sense of (1.5)] is constructed, exploiting
the Kato-Nenciu inequality

∫
R3

∣ψ∣2

∣x∣
dx ≤ ∫

R3
∣(−iα ⋅ ∇ + mβ + i�)ψ∣2∣x∣dx, for ψ ∈ C∞c (R3

)
4, m, � ∈ R. (1.7)

In our previous work,7 we considered matrix-valued potentials as in (1.3) and we investigated the existence of self-adjoint extensions T
such that
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H̊min ⊆ T = T∗ ⊆ Hmax, (1.8)

where the minimal operator H̊min and the maximal operator Hmax are defined as follows:

D(H̊min) ∶= C∞c (R3
/{0})4, H̊minψ ∶= Hψ for ψ ∈ D(H̊min), (1.9)

D(Hmax) ∶= {ψ ∈ L2
(R3

)
4 : Hψ ∈ L2

(R3
)

4
}, Hmaxψ ∶= Hψ for ψ ∈ D(Hmax), (1.10)

where Hψ in (1.9) is computed in the classical sense and in (1.10), Hψ ∈ L2
(R3

)
4 has to be read in the distributional sense. It is easy to see

that H̊min is symmetric and (H̊min)
∗
= Hmax. The strategy of Ref. 7 consists in considering the self-adjointness of H0 + V on the partial wave

subspaces: such spaces are left invariant by H0 and potentials V as in (1.3). We sketch here this topic, referring to Ref. 7 and Ref. 32, Sec. 4.6
for further details.

Let Y l
n be the spherical harmonics. They are defined for n = 0, 1, 2, . . ., and l = −n, −n + 1, . . ., n, and they satisfy ∆S2 Y l

n = n(n + 1)Y l
n,

where ∆S2 denotes the usual spherical Laplacian. Moreover, Y l
n form a complete orthonormal set in L2

(S2
). For j = 1/2, 3/2, 5/2, . . ., and

mj = −j, −j + 1, . . ., j, set

ψmj

j−1/2 ∶=
1

√
2j

⎛
⎜
⎝

√
j + mj Ymj−1/2

j−1/2
√

j −mj Ymj+1/2
j−1/2

⎞
⎟
⎠

,

ψmj

j+1/2 ∶=
1

√
2j + 2

⎛
⎜
⎝

√
j + 1 −mj Ymj−1/2

j+1/2

−
√

j + 1 + mj Ymj+1/2
j+1/2

⎞
⎟
⎠

,

then ψmj

j±1/2 form a complete orthonormal set in L2
(S2

)
2. Moreover, we set

r = ∣x∣, x̂ = x/∣x∣, and L = −ix ×∇ for x ∈ R3
/{0}.

Then,

(σ ⋅ x̂)ψmj

j±1/2 = ψ
mj

j∓1/2 and (1 + σ ⋅ L)ψmj

j±1/2 = ±(j + 1/2)ψmj

j±1/2,

where σ = (σ1, σ2, σ3) is the vector of Pauli’s matrices. For kj ∶= ±(j + 1/2), we set

Φ+
mj ,±(j+1/2) ∶= (

iψmj

j±1/2
0

), Φ−
mj ,±(j+1/2) ∶=

⎛

⎝

0
ψmj

j∓1/2

⎞

⎠
.

Then, the set {Φ+
mj ,kj

,Φ−
mj ,kj

}j,kj ,mj is a complete orthonormal basis of L2
(S2

)
4. We prescribe the following ordering for the triples (j, mj, kj), for

j = 1
2 , 3

2 , . . . ; mj = −j, . . . , j; kj = j + 1/2,−j − 1/2:

(
1
2

,−
1
2

, 1),(
1
2

,
1
2

, 1),(
1
2

,−
1
2

,−1),(
1
2

,
1
2

,−1),

(
3
2

,−
3
2

, 2),(
3
2

,−
1
2

, 2),(
3
2

,
1
2

, 2),(
3
2

,
3
2

, 2),

(
3
2

,−
3
2

,−2),(
3
2

,−
1
2

,−2),(
3
2

,
1
2

,−2),(
3
2

,
3
2

,−2), . . . ,

(j,−j, j +
1
2
), . . . ,(j, j, j +

1
2
),(j,−j,−j −

1
2
), . . . ,(j, j,−j −

1
2
), . . . .

(1.11)

We define the following space:

Hmj ,kj ∶= {
1
r
(f +

mj ,kj(r)Φ+
mj ,kj(x̂) + f −mj ,kj(r)Φ−

mj ,kj(x̂)) ∈ L2
(R3

) ∣ f ±mj ,kj ∈ L2
(0, +∞)}.

From Ref. 32, Theorem 4.14, we know that the operators H̊min and Hmax leave the partial wave subspace Hmj ,kj invariant and their action can
be decomposed in terms of the basis {Φ+

mj ,kj
,Φ−

mj ,kj
} as follows:
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H̊min ≅
∞

⊕
j= 1

2 , 3
2 ,...

j

⊕
mj=−j

⊕
kj=±(j+1/2)

hmj ,kj , (1.12)

Hmax ≅
∞

⊕
j= 1

2 , 3
2 ,...

j

⊕
mj=−j

⊕
kj=±(j+1/2)

h∗mj ,kj ,

where “≅” means that the operators are unitarily equivalent, with

D(hmj ,kj) = C∞c (0, +∞)
2,

hmj ,kj(f +, f −) :=
⎛

⎝

m + ν+µ
r −∂r + kj+λ

r

∂r + kj+λ
r −m + ν−µ

r

⎞

⎠
(

f +

f −
)

(1.13)

and
D(h∗mj ,kj) = {(f +, f −) ∈ L2

(0, +∞) : h∗mj ,kj(f +, f −) ∈ L2
(0, +∞)

2
},

h∗mj ,kj(f +, f −) :=
⎛

⎝

m + ν+µ
r −∂r + kj+λ

r

∂r + kj+λ
r −m + ν−µ

r

⎞

⎠
(

f +

f −
),

(1.14)

where h∗mj ,kj
(f +, f −) has to be read in the distributional sense as done in (1.10). It is easy to see that h∗mj ,kj

is the adjoint of hmj ,kj .
The main result of Ref. 7 is the classification of all the self-adjoint extensions tmj ,kj such that hmj ,kj ⊆ tmj ,kj = t∗mj ,kj

⊆ h∗mj ,kj
; as an immediate

consequence, we can build up self-adjoint operators T as in (1.8) setting

T ≅
∞

⊕
j= 1

2 , 3
2 ,...

j

⊕
mj=−j

⊕
kj=±(j+1/2)

tmj ,kj .

The self-adjointness of tmj ,kj is related to the quantity

δkj = δkj(λ,µ,ν) ∶= (kj + λ)2 + µ2
− ν2. (1.15)

In Ref. 7, Theorems 1.1, 1.2, and 1.3, we show that if δkj ≥ 1/4, then tmj ,kj is essentially self-adjoint and if δkj < 1/4, then there exists a one
(real) parameter family (t(θ)mj ,kj)θ∈[0,π)

of self-adjoint extensions such that hmj ,kj ⊂ t(θ)mj ,kj = t(θ)∗mj ,kj
⊂ h∗mj ,kj

. In conclusion, we can define
a family of self-adjoint extensions parameterized by d real parameters, with

d ∶= ∑
j,mj ,kj

(kj+λ)2+µ2
−ν2

<1/4

1 = ∑
k∈Z/{0}

(k+λ)2+µ2
−ν2

<1/4

2∣k∣. (1.16)

In this paper, we show that the totality of the self-adjoint extensions is a much richer set. Indeed, they are in one-to-one correspondence with
the unitary matrices

U(d) ∶= {U ∈ Cd×d : U∗U = UU∗
= Id},

that is, they are a family of d2 real parameters. This correspondence relates the self-adjoint extensions to the behavior in the origin of the
functions in their domain. In order to do so, we exploit the theory of the boundary triples: we remind here its definition, following the
notations from Ref. 5, Definition 1.7.

Definition 1.1. Let E : D(E) ⊆ H → H be a closed linear operator in a Hilbert space H, and let G be another Hilbert space. Let
Γ1, Γ2 : D(E) → G be linear maps, and finally define (Γ1, Γ2) : D(E) → G ⊕ G as (Γ1, Γ2)ψ ∶= (Γ1ψ, Γ2ψ) for any ψ ∈ D(E). We say that the
triple (G, Γ1, Γ2) is a boundary triple for E if and only if

⟨ψ, Eψ̃⟩H − ⟨Eψ, ψ̃⟩H = ⟨Γ1ψ, Γ2ψ̃⟩G − ⟨Γ1ψ, Γ2ψ̃⟩G for all ψ, ψ̃ ∈ D(E); (1.17)

the map (Γ1, Γ2) : D(E)→ G⊕ G is surjective; (1.18)

the set ker(Γ1, Γ2) is dense in H. (1.19)
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The theory of the boundary triples is well developed and powerful; the explicit knowledge of a boundary triple for a symmetric and closed
operator can be used to obtain many important results. In this paper, we exploit it to describe all the self-adjoint extensions: the following
proposition is a consequence of Theorem 1.2, Proposition 1.5, and Theorem 1.12 in Ref. 5 or equivalently of Proposition 14.4 and Theorem
14.10 in Ref. 31; hence, the proof is omitted.

Proposition 1.2. Let E0 be a symmetric operator on a Hilbert space H, and let (G, Γ1, Γ2) be a boundary triple for E∗ ∶= (E0)
∗. Then, the

following hold:
(i) if G = {0}, E0 is essentially self-adjoint;

(ii) if G ≠ {0}, E0 has many self-adjoint extensions. They can be classified in the following equivalent ways:

● For any A, B bounded linear operators on G, the extension EA,B with domain

D(EA,B) = {ψ ∈ D(E∗) : AΓ1(ψ) = BΓ2(ψ)} (1.20)

is self-adjoint if and only if
AB∗ = BA∗, (1.21)

ker(
A −B
B A

) = 0. (1.22)

● There exists a one-to-one correspondence between the self-adjoint extensions of E0 and the unitary operators U(G). For U ∈

U(G), the corresponding self-adjoint extension EU has domain

D(EU) = {ψ ∈ D(E∗) : i(IG + U)Γ1(ψ) = (IG −U)Γ2(ψ)}. (1.23)

Remark 1.3. The descriptions of the self-adjoint extensions in (1.20) and (1.23) are equivalent and both useful and interesting. Indeed,
(1.20) is useful for the applications: for example, we will exploit it in Theorem 1.12 to determine the distinguished extension for the Dirac-
Coulomb operator. The description in (1.23) is interesting from a more theoretical point of view, since it gives a one-to-one correspondence
between the self-adjoint extensions and the elements of the unitary operators on G, allowing us to label these extensions with a unique choice
of parameters.

We introduce some notations.

Definition 1.4 Let

ψ(x) = ∑
j,mj ,kj

1
r
(f +

mj ,kj(r)Φ+
mj ,kj(x̂) + f −mj ,kj(r)Φ−

mj ,kj(x̂)) ∈ D(Hmax)

and set fmj ,kj ∶= (f +
mj ,kj

, f −mj ,kj
) ∈ D(h∗mj ,kj

). Following the order given by (1.11), we array the triples (j, mj, kj) such that δkj ∶= (kj +λ)2 +µ2
−ν2

<

1/4 and we denote this ordered set I; we have that I has exactly d elements. Moreover, we set

γkj ∶=
√

∣δkj ∣ for all j =
1
2

,
3
2

, . . . . (1.24)

Then, for any (j, mj, kj) ∈ I,
(i) if 0 < δkj < 1/4 from Ref. 7, Proposition 3.1 (iii), we know that

lim
r→0

∣(
f +
mj ,kj

(r)
f −mj ,kj

(r) ) −Dkj(
A+rγkj

A−r−γkj
)∣r−1/2

= 0, (1.25)

with Dkj ∈ R
2×2 being the invertible matrix

Dkj ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1
2γ(λ+kj−γkj )

(
λ + kj − γkj ν − µ
−(ν + µ) −(λ + kj − γkj)

) if λ + kj − γkj ≠ 0,

1
−4γ2

kj
(
µ − ν 2γkj

2γkj −(ν + µ) ) if λ + kj − γkj = 0,
(1.26)

we set

(
Γ+

mj ,kj
(fmj ,kj)

Γ−mj ,kj
(fmj ,kj)

) ∶= Dkj(
A+

A− ); (1.27)
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(ii) if δkj = 0, from Ref. 7, Proposition 3.1 (iv), we know that

lim
r→0

∣(
f +
mj ,kj

(r)
f −mj ,kj

(r) ) − (Mkj log r + I2)(
A+

A− )∣r−1/2
= 0, (1.28)

being Mkj ∈ R
2×2, M2

kj
= 0 defined as follows:

Mkj ∶= (
−(kj + λ) −ν + µ
ν + µ kj + λ

); (1.29)

we set

(
Γ+

mj ,kj
(fmj ,kj)

Γ−mj ,kj
(fmj ,kj)

) ∶= (
A+

A− ); (1.30)

(iii) if δkj < 0, from Ref. 7, Proposition 3.1 (v), we know that

lim
r→0

RRRRRRRRRRR

(
f +
mj ,kj

(r)
f −mj ,kj

(r) ) − Ekj

⎛

⎝

A+riγkj

A−r−iγkj

⎞

⎠

RRRRRRRRRRR

r−1/2
= 0, (1.31)

being Ekj ∈ C
2×2 the invertible matrix

Ekj ∶=
1

2iγkj(λ + k − iγkj)
(
λ + k − iγkj ν − µ
−(ν + µ) −(λ + k − iγkj)

), (1.32)

we set

(
Γ+

mj ,kj
(fmj ,kj)

Γ−mj ,kj
(fmj ,kj)

) ∶= Ekj(
A+

A− ). (1.33)

Finally, set Γ+, Γ− : D(Hmax)→ Cd as follows:

Γ±(ψ) = (Γ±mj ,kj(fmj ,kj))(j,mj ,kj)∈I
∈ Cd. (1.34)

Then, by definition, for any (j, mj, kj) ∈ I,

(Γ±(ψ))mj ,kj
= Γ±mj ,kj(fmj ,kj) ∈ C. (1.35)

We are now in position to state the main result of this paper.

Theorem 1.5 (Boundary triples for Hmax). Let Hmax be defined as in (1.10), let d ∈ N be as in (1.16) and assume that d > 0. Let Γ+, Γ− be
defined as in (1.34). Then, (Cd, Γ+, Γ−) is a boundary triple for Hmax.

Remark 1.6. In general, boundary triples are not unique (see Ref. 5, Propositions 1.14 and 1.15). For example, a different boundary triple
is determined already by choosing an ordering of the triples different from the one in (1.11).

Thanks to the theory of the boundary triples, we can now describe all the self-adjoint extensions of H̊min: the following theorem is a
consequence of Theorem 1.5 and Proposition 1.2:

Theorem 1.7. Let H̊min be defined as in (1.9) and d ∈ N as in (1.16). The following holds:
(i) if d = 0, H̊min is essentially self-adjoint;

(ii) if d > 0, H̊min has many self-adjoint extensions. They can be classified in the following equivalent ways:

● For any A, B ∈ Cd×d, the extension TA,B with domain

D(TA,B) = {ψ ∈ D(Hmax) : AΓ+
(ψ) = BΓ−(ψ)} (1.36)

is self-adjoint if and only if
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AB∗ = BA∗,

ker(A −B
B A) = 0.

● There exists a one-to-one correspondence between the self-adjoint extensions of H̊min and the unitary matrices U(d). For U ∈

U(d), the corresponding self-adjoint extension TU has domain

D(TU) = {ψ ∈ D(Hmax) : i(Id + U)Γ+
(ψ) = (Id −U)Γ−(ψ)}. (1.37)

Remark 1.8. It is difficult to obtain the results of Theorem 1.7 using Von Neumann’s theory. Indeed, to exploit it, one has to find all the
solutions to (Hmax ± i)ψ = 0 that is hard to do for the general class of potentials considered in (1.3). By the way, Theorems 1.1, 1.2, and 1.3 in
Ref. 7 tell us that hmj ,kj has deficiency indices (1, 1) if δkj < 1/4 and (0, 0) if δkj ≥ 1/4 on C∞c (0, +∞)

2. Consequently, H̊min has deficiency
indices (d, d), with d defined as in (1.16). We can now use Von Neumann’s theory, getting that all the self-adjoint extensions of H̊min are
in one-to-one correspondence with the unitary matrices U(d), but we cannot provide an explicit bijection. Moreover, such correspondence
does not describe the self-adjoint extensions: in Theorem 1.7, we provide a much clearer characterization of them in terms of the boundary
behavior in the origin of the functions in their domain.

In the spirit of Refs. 4, 11, and 22 in Theorem 1.9, we select a distinguished self-adjoint extension among the ones defined in Theorem
1.7, requiring that its domain is included in the domain of an appropriate quadratic form. Let q : C∞c (R3;C4

)→ R be defined as

q(ψ) ∶= ∫
R3

[∣x∣∣−iα ⋅ ∇ψ∣2 − ∣x∣∣Vψ∣2]dx.

If supx∈R3 ∣x∣∣V(x)∣ ≤ 1, this form is symmetric and non-negative as a consequence of (1.7), and hence closable: we denote its closure q (with
abuse of notation) and its maximal domain Q. In Theorem 1.9, we consider V as in the class in (1.3), to exploit the complete description of all
the self-adjoint extensions in Theorem 1.7. We show that the condition D(T) ⊂ Q selects a self-adjoint extension T in the case that V is not a
critical anomalous magnetic potential, i.e., V(x) ≠ ±iα ⋅ x̂β∣x∣−1. Indeed, in this case, this approach does not select any extension, suggesting
that it is not possible to use this criterion for the general case.

Theorem 1.9. Let H̊min be defined as in (1.9), γkj as in (1.24); let d ∈ N be defined as in (1.16) and assume that d > 0. Assume moreover
that

sup
x∈R3

∣x∣∣V(x)∣ ≤ 1, V(x) ≠ ±
iα ⋅ x̂β
∣x∣

. (1.38)

Then, there exists only one self-adjoint extension H̊min ⊆ TA,B ⊆ Hmax such that D(TA,B) ⊆ Q, with A, B ∈ Cd×d determined by the following
conditions for all ψ ∈ D(Hmax):

(i) for all (j, mj, kj) such that 0 ≠ γkj = kj + λ,

(kj + λ + γkj)(Γ
+
(ψ))mj ,kj

= (µ − ν)(Γ−(ψ))mj ,kj
; (1.39)

(ii) for all (j, mj, kj) such that 0 ≠ γkj ≠ kj + λ,

(µ + ν)(Γ+
(ψ))mj ,kj

= −(kj + λ − γkj)(Γ
−
(ψ))mj ,kj

; (1.40)

(iii) for all (j, mj, kj) such that γkj = 0;

(kj + λ)(Γ+
(ψ))mj ,kj

= (µ − ν)(Γ−(ψ))mj ,kj
, (1.41)

or equivalently
(µ + ν)(Γ+

(ψ))mj ,kj
= −(kj + λ)(Γ−(ψ))mj ,kj

. (1.42)

Remark 1.10. In the case that V is a general Hermitian matrix-valued potential such that v ∶= supx∈R3 ∣x∣∣V(x)∣ < 1, a classification of all
the self-adjoint extensions in the spirit of Theorem 1.7 is not available. However, it is still true that there exists only one self-adjoint extension
whose domain is included in Q. Indeed, thanks to (1.7), for all ψ ∈ C∞c (R3

)
4,

q(ψ) ≥ ∫
R3
[∣x∣∣−iα ⋅ ∇ψ∣2 − v2 ∣ψ∣2

∣x∣
]dx ≥ (1 − v2

)∫
R3

∣ψ∣2

∣x∣
dx (1.43)
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that immediately implies Q ⊂ D(r−1/2
). If there exists a self-adjoint extension T such that D(T) ⊂ Q, then it must be the distinguished

one, the only one whose domain is contained in D(r−1/2
), see Ref. 21. Vice versa, constructing a self-adjoint extension with the property that

D(T) ⊆ Q is not trivial, and it is the subject of Ref. 4.

Remark 1.11. In the case that supx∈R3 ∣x∣∣V(x)∣ = 1, the condition D(T) ⊂ Q appears not to be enough to select a self-adjoint extension
T. Indeed, for V(x) = ±iα ⋅ x̂β/∣x∣, condition (3.2) is true for all the functions in all the domains of self-adjointness. A similar phenomenon
was observed in Ref. 7, Remark 1.10.

Remark 1.12. As an application of Theorems 1.7 and 1.9, we describe the distinguished self-adjoint extension of the Dirac-Coulomb
operator H ∶= H0 −

ν
∣x∣ I4, for |ν| ≤ 1,

● for 0 ≤ ∣ν∣ ≤
√

3/2, H is essentially self-adjoint;
● for

√
3/2 < ∣ν∣ < 1, we have that d = 4, δ1 = δ−1 = 1 − ν2

∈ (0, 1/4), and Γ± = (Γ±
− 1

2 ,1, Γ±1
2 ,1, Γ±

− 1
2 ,−1, Γ±1

2 ,−1). Then the distinguished
extension has domain

D(TAν ,I4) = {ψ ∈ D(Hmax) : AνΓ+
(ψ) = Γ−(ψ)}, (1.44)

with

Aν :=

⎛
⎜
⎜
⎜
⎜
⎝

ν
1+

√
1−ν2 0 0 0

0 ν
1+

√
1−ν2 0 0

0 0 − ν
1−

√
1−ν2 0

0 0 0 − ν
1−

√
1−ν2

⎞
⎟
⎟
⎟
⎟
⎠

;

● for |ν| = 1, we have that d = 4, δ1 = δ−1 = 0, Γ± = (Γ±
− 1

2 ,1, Γ±1
2 ,1, Γ±

− 1
2 ,−1, Γ±1

2 ,−1), and the distinguished extension has domain D(Tνβ,I4).

In the case that V = −1/∣x∣, Theorem 1.9 selects the distinguished self-adjoint extension, as defined in Ref. 11. In general, in the case that
V is the same as in (1.3), Theorem 1.9 selects the distinguished extension, as in Ref. 7, Propositions 1.7 and 1.8.

A fundamental tool in the Proof of Theorem 1.9 is the following improved version of (1.7) that we state independently.

Lemma 1.13. Let ψ ∈ C∞c (R3
)

4. Then for all R > 0,

∫
R3
∣x∣∣−iα ⋅ ∇ψ(x)∣2 dx ≥ ∫

R3

∣ψ(x)∣2

∣x∣
dx +

1
4 ∫R3

∣ψ(x) − R
∣x∣ψ(R x

∣x∣)∣
2

∣x∣ log2
(∣x∣/R)

dx. (1.45)

Moreover, the inequality is sharp.

Remark 1.14. Theorem 1.13 can be considered the analogous of Ref. 10, Lemma 18 in the general case (1.38). Indeed, it allows us to
exclude a logarithmic decay in the origin for the functions in the domain of the self-adjoint extension.

This paper is organized as follows: in Sec. II, we prove Theorem 1.5 and in Sec. III, we prove Theorems 1.13 and 1.9.

II. PROOF OF THEOREM 1.5
We first prove the following lemma:

Lemma 2.1. Let j ∈{1/2, 3/2, . . .}, mj ∈ {−j, . . ., j}, kj ∈ {j + 1/2, −j − 1/2} such that (j, mj, kj) ∈ I, and let h∗mj ,kj
be defined as in (1.14). Let

Γ+
mj ,kj

, Γ−mj ,kj
be defined as in Theorem 1.4. Then, (C, Γ+

mj ,kj
, Γ−mj ,kj

) is a boundary triple for h∗mj ,kj
.

Proof. In this proof, we will suppress the subscripts, since j ∈ {1/2, 3/2, . . .}, mj ∈ {−j, . . ., j}, kj ∈ {j + 1/2, −j − 1/2} are fixed. We distinguish
various cases.

In the case 0 < δ < 1
4 , thanks to Ref. 7, Proposition 3.1 (iii), we have that f = (f +, f −) ∈ D(h∗mj ,kj

) if and only if f ∈ H1(�,+∞)2 for any �
> 0, and there exists (A+, A−

) ∈ C2 such that (1.25) holds true, for D ∈ R2×2 defined in (1.26). Moreover, for any f̃ = (̃f +, f̃ −) ∈ D(h∗mj ,kj
), we

have
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lim
r→0

RRRRRRRRRRRR

f +
(r) f̃ +(r)

f −(r) f̃ −(r)

RRRRRRRRRRRR

= ∣D(
A+

A−)D(
Ã+

Ã−) ∣, (2.1)

where, with abuse of notation, we denoted

∣(
a
c )(

b
d )∣ ∶= ∣

a b
c d ∣. (2.2)

Then for f , f̃ ∈ D(h∗mj ,kj
), by the dominated convergence theorem, we have that

∫

+∞

0
f ⋅ h∗mj ,kj

(̃f )dr − ∫
+∞

0
h∗mj ,kj(f ) ⋅ f̃ dr

= lim
�→0∫

+∞

�
f ⋅ h∗mj ,kj

(̃f )dr − ∫
+∞

�
h∗mj ,kj(f ) ⋅ f̃ dr = lim

�→0

RRRRRRRRRRRR

f +
(�) f̃ +(�)

f −(�) f̃ −(�)

RRRRRRRRRRRR

,
(2.3)

where in the last equality, we used the fact that f , f̃ ∈ H1
(�, +∞)

2. We get (1.17) combining in (1.27), (2.1), and (2.3). The surjectivity of the
maps Γ+

mj ,kj
, Γ−mj ,kj

is easy to show: indeed let (A+, A−
) ∈ C2 and let f ∈ C∞(0,+∞)2 such that

f (r) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

D(
A+rγ
A−r−γ ) for r < 1,

0 for r > 2.

Then f ∈ D(h∗mj ,kj
) and Γ±mj ,kj

(f ) are defined as in (1.27). Finally, (1.19) descends from the fact that C∞c (0, +∞)
2
⊂ ker(Γ+

mj ,kj
, Γ−mj ,kj

).
Let us now consider the case that δ = 0. Thanks to Ref. 7, Proposition 3.1 (iv), f = (f +, f −) ∈ D(h∗mj ,kj

) if and only if f ∈ H1(�,+∞)2 for any
� > 0, and there exists (Γ+

mj ,kj
(f ), Γ−mj ,kj

(f )) ∶= (A+, A−
) ∈ C2 such that (1.28) holds true, with M ∈ R2×2, M2 = 0 defined as in (1.29). Moreover,

for any f̃ = (̃f +, f̃ −) ∈ D(h∗mj ,kj
), we have

lim
r→0

RRRRRRRRRRRRR

f +
(r) f̃ +(r)

f −(r) f̃ −(r)

RRRRRRRRRRRRR

=

RRRRRRRRRRRRR

Γ+
(f ) Γ+(̃f )

Γ−(f ) Γ−(̃f )

RRRRRRRRRRRRR

. (2.4)

Reasoning as in the previous case, we get (1.17). Finally, (1.18) and (1.19) are proved as in the previous case.
Let us finally assume that δ < 0. In this case, thanks to Ref. 7, Proposition 3.1 (v), we have that f = (f +, f −) ∈ D(h∗mj ,kj

) if and only if f ∈
H1(�, +∞)2 for any � > 0, and there exists (A+, A−

) ∈ C2 such that (1.31) holds true, with E ∈ C2×2 defined as in (1.32). Moreover, for any
f̃ = (̃f +, f̃ −) ∈ D(h∗mj ,kj

), with the same notation of (2.2), we get

lim
r→0

RRRRRRRRRRRR

f +
(r) f̃ +(r)

f −(r) f̃ −(r)

RRRRRRRRRRRR

= ∣E(A+

A−)E(Ã+

Ã−) ∣. (2.5)

Due to (1.33), one gets (1.17), (1.18), and (1.19) reasoning as before. ◽

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let us start proving the condition (1.17) in Theorem 1.1. Let for any ψ, ψ̃ ∈ D(Hmax) such that

Hmaxψ = ∑
j,mj ,kj

h∗mj ,kj fmj ,kj , Hmaxψ̃ = ∑
j,mj ,kj

h∗mj ,kj f̃mj ,kj (2.6)

for appropriate fmj ,kj and f̃mj ,kj in D(h∗mj ,kj
). Then,

⟨ψ, Hmaxψ̃⟩L2(R3)4 − ⟨Hmaxψ, ψ̃⟩L2(R3)4

= ∑
j,mj ,kj

⟨fmj ,kj , h∗mj ,kj f̃mj ,kj⟩L2(0,∞)2 − ⟨h∗mj ,kj fmj ,kj , f̃mj ,kj⟩L2(0,∞)2

= ∑
j,mj ,kj

(kj+λ)2+µ2
−ν2

<1/4

⟨fmj ,kj , h∗mj ,kj f̃mj ,kj⟩L2(0,∞)2 − ⟨h∗mj ,kj fmj ,kj , f̃mj ,kj⟩L2(0,∞)2 ,

where in the last equality, we used the fact that h∗mj ,kj
is self-adjoint when (kj + λ)2 + µ2

− ν2
≥ 1/4, as proved in Ref. 7, Theorem 1.1. Thanks

to Theorem 2.1, we conclude that
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⟨ψ, Hmaxψ̃⟩L2(R3)4 − ⟨Hmaxψ, ψ̃⟩L2(R3)4

= ∑
(j,mj ,kj)∈I

Γ+
mj ,kj(f ) ⋅ Γ−mj ,kj

(f̃ ) − Γ−mj ,kj(f ) ⋅ Γ+
mj ,kj

(f̃ ) (2.7)

that gives immediately (1.17).
The surjectivity of Γ+ and Γ− descends immediately from the surjectivity of any Γ+

mj ,kj
and Γ−mj ,kj

that has been showed in Theorem 2.1.
Finally, since C∞c (R3

/{0})4
⊆ ker(Γ+, Γ−), we deduce the condition (1.18). ◽

III. PROOF OF THEOREM 1.9
In this section, we provide Proof of Theorem 1.13 and Theorems 3.1 and 1.9.

Proof of Theorem 1.13. By direct computation [see, for example, Ref. 32, Eq. (4.102)]

−iα ⋅ ∇ = −iα ⋅ x̂(∂r +
1
∣x∣

−
1 + 2S ⋅ L

∣x∣
),

where S is the spin angular momentum operator

S =
1
2
(
σ 0
0 σ

). (3.1)

Consider ψ ∈ C∞c (R3;C4
). Since iα ⋅ x̂ is a unitary matrix, we have

∫
R3
∣x∣∣ − iα ⋅ ∇ψ∣ − iα ⋅ ∇ψ2 dx =∫

R3
∣x∣∣(∂r +

1
∣x∣

−
1 + 2S ⋅ L

∣x∣
)ψ∣

2

dx

=∫
R3
∣x∣∣(∂r +

1
∣x∣

)ψ∣
2

dx + ∫
R3

∣
1 + 2S ⋅ L

∣x∣
ψ∣

2

dx

− 2 Re∫
R3

(∂r +
1
∣x∣

)ψ (1 + 2S ⋅ L)ψdx.

It is standard (see, for example, Ref. 8, Lemma 2.1) to show that the last term in the previous equation vanishes, indeed 1 + 2S ⋅ L and ∂r + 1
∣x∣

are symmetric and skew-symmetric, respectively, on C∞c (R3
)

4, and the two operators commute with each other.
Let � ∶= |x|ψ. We have that ∂r� = |x|(∂r + |x|−1)ψ and consequently

∫
R3
∣x∣∣(∂r +

1
∣x∣

)ψ∣
2

dx = ∫
+∞

0
∫
S2

r∣∂rφ(rω)∣2 dωdr.

Thanks to Proposition 2.4 (iii) in Ref. 7,

∫
S2 ∫

+∞

0
r∣∂rφ(rω)∣2 drdω ≥

1
4 ∫S2 ∫

+∞

0

∣φ(rω) − φ(Rω)∣2

r log2
(r/R)

drdω.

This inequality is sharp, as underlined in Ref. 7, Remark 2.5. Observing that |1 + 2S ⋅ L|≥ 1, we finally get the thesis. ◽

Proposition 3.1 For all ψ ∈ Q,

∫
{∣x∣<1}

∣ψ(x)∣2

∣x∣ log2
∣x∣

dx < +∞. (3.2)

Proof. We show that for all ψ ∈ Q,

q(ψ) ≥
1
4 ∫R3

∣ψ(x) − R
∣x∣ψ(R x

∣x∣)∣
2

∣x∣ log2
(∣x∣/R)

dx. (3.3)

J. Math. Phys. 60, 041502 (2019); doi: 10.1063/1.5063986 60, 041502-10

Published under license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/jm

p/article-pdf/doi/10.1063/1.5063986/15835775/041502_1_online.pdf

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Since Q = C∞c (R3)
∥⋅∥q

, with ∥⋅∥
2
q ∶= q(⋅) + ∥⋅∥

2
2, there exists a sequence (ψj)j ⊂ C∞c (R3

) such that ∥ψ − ψj∥q → 0 and ψ − ψj → 0 almost
everywhere as j→ + ∞. Since (1.45) holds for ψj − ψm ∈ C∞c (R3

), (χj)j is a Cauchy sequence in L2
(R3, ∣x∣−1dx), for

χj(x) ∶=
ψj(x) − ψj(Rx/∣x∣)

log(∣x∣/R)
.

Consequently, χj → χ ∈ L2
(R3, ∣x∣−1dx). On the other hand, since ψj → ψ almost everywhere, then χj →

ψ−ψ(R ⋅
∣⋅∣)

log(∣x∣/R) almost everywhere, and we

conclude that χj →
ψ−ψ(R ⋅

∣⋅∣)

log(∣x∣/R) in L2
(R3, ∣x∣−1dx). In conclusion, (3.3) holds for ψ ∈ Q.

Consequently,

∫
{∣x∣<1}

∣ψ(x)∣2

∣x∣ log2
(∣x∣/R)

dx ≤ 2∫
{∣x∣<1}

∣ψ(x) − R
∣x∣ψ(R x

∣x∣)∣
2

∣x∣ log2
(∣x∣/R)

dx + 2∫
1

0

R2

r2 ∫{∣x∣=r}∣ψ(R x
∣x∣)∣

2
dSx

r log2
(r/R)

dr.

The second term at right hand side is finite, since the numerator is constant with respect to r ∈ (0, 1) and (r log2 r)−1 is integrable in the origin,
and the first term at right hand side is finite, as it is shown above. ◽

We can now finally prove Theorem 1.9.

Proof of Theorem 1.9. We first show that γkj ≥ 0 for all j = 1/2, 3/2, . . ., that is, (k + λ)2 + µ2
− ν2

≥ 0 for all k ∈ Z/{0}. Indeed, since
∣x∣∣V(x)∣ = ∣ν∣ +

√
µ2 + λ2 ≤ 1, then ν2

≤ 1 + µ2 + λ2
− 2

√
µ2 + λ2. Moreover, since |λ| ≤ 1, then M ∶= mink∈Z/{0}(k + λ)2 + µ2

− ν2
=

(1− ∣λ∣)2 + µ2
− ν2. Assume by contradiction that M < 0. Then, (1− ∣λ∣)2 + µ2

< ν2
≤ 1 + µ2 + λ2

− 2
√
µ2 + λ2, that is, ∣λ∣ >

√
µ2 + λ2 and this

is absurd. Incidentally, we remark that M = 0 only if µ = 0.
We denote

I1 ∶= {(j, mj, kj) ∈ I : 0 ≠ γkj = kj + λ},

I2 ∶= {(j, mj, kj) ∈ I : 0 ≠ γkj ≠ kj + λ},

I3 ∶= {(j, mj, kj) ∈ I : γkj = 0}.

Following (1.11), we identify

s ∈ {1, . . . , d}↔ (j, mj, kj) ∈ I.

Thanks to this, we have that {I1, I2, I3} is a partition of {1, . . ., d}.
In the following, we determine A, B ∈ Cd×d in such a way that D(TA,B) ⊆ Q. Let ψ be a generic element in D(TA,B). Thanks to Theorem

3.1, the condition D(TA,B) ⊆ Q implies that ψ verifies (3.2). Following the notations of Theorem 1.5, we denote

ψ(x) =
∞

∑
j= 1

2 , 3
2 ,...

j

∑
mj=−j

∑
kj=±(j+1/2)

1
r
(f +

mj ,kj(r)Φ+
mj ,kj(x̂) + f −mj ,kj(r)Φ−

mj ,kj(x̂)),

fmj ,kj = (f +
mj ,kj , f −mj ,kj).

For all (j, mj, kj) ∈ I1 ∩ I2, we have that fmj ,kj verifies (1.25): since the singular behavior is not allowed by (3.2), we have necessarily that
A− = 0. Thanks to (1.27), we have that this is equivalent to (1.39) when (j, mj, kj) ∈ I1 and equivalent to (1.40) when (j, mj, kj) ∈ I2. We define
the matrices A and B accordingly

Ass ∶= kj + λ + γkj , Bss ∶= µ − ν, for s ∼ (j, mj, kj) ∈ I1
Ass ∶= µ + ν, Bss ∶= −(kj + λ − γkj), for s ∼ (j, mj, kj) ∈ I2,
Ast = Bst = 0, for s ∼ (j, mj, kj) ∈ I1 ∪ I2, 1 ≤ t ≤ d, t ≠ s.

For all (j, mj, kj) ∈ I3, we have that fmj ,kj verifies (1.28): since the logarithmic behavior is not allowed by (3.2), we have necessarily that
Ran(Γ+

mj ,kj
, Γ−mj ,kj

) ⊆ ker Mkj . This gives (1.41) and (1.42): they are equivalent since M has rank 1. Using the identification s ∼ (j, mj, kj), we
define A and B accordingly

Ass ∶= kj + λ, Bss ∶= µ − ν for ss ∼ (j, mj, kj) ∈ I3 (3.4)
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or equivalently

Ass ∶= µ + ν, Bss ∶= −(kj + λ) for s ∼ (j, mj, kj) ∈ I3 (3.5)

and Ast = Bst = 0 for s ∼ (j, mj, kj) ∈ I3, t ∈ {1, . . ., d}, t ≠ s.
In order to show that the extension that we have built is self-adjoint, we check the conditions (1.21) and (1.21) in Theorem 1.2: since A

and B are real and diagonal and we have that

AB∗ = AB = BA = BA∗,

that is (1.21). In order to show that (1.22), we show equivalently that det(AA∗ + BB∗) ≠ 0 (see Ref. 1, Sec. 125 and Theorem 4). Indeed,
the matrix AA∗ + BB∗ is diagonal and the elements of the diagonal equal Css ∶= (Ass)

2 + (Bss)
2 for s = 1, . . ., d. For s ∈ I1, we have that

Css = (kj + λ + γkj)
2 + (µ− ν)2

≥ (kj + λ + γkj)
2
= 4γ2

kj
> 0. For s ∈ I2, we have that Css = (µ + ν)2 + (kj + λ + γkj)

2
≥ (kj + λ− γkj)

2
> 0. Finally,

for s ∈ I3, we have that Css = (kj + λ)2 + (µ− ν)2 or Css = (kj + λ)2 + (ν+ µ)2: in both cases, Css = 0 if and only if (ν, µ, λ) = (0, 0, 1) or (ν, µ, λ)
= (0, 0, −1), but this is excluded by (1.38).

The linear relation associated with A, B determines uniquely a unitary matrix U ∈ U(d) such that TA,B = TU , defined as in (1.37), see
Ref. 24, Sec. 2; Ref. 2, Theorem 4.6; and Ref. 15, Theorem 3.1.4. This implies that TA,B is the unique self-adjoint extension with the required
properties and concludes the proof. ◽
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