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Advancement in the fields of electrification, automation, and digitalisation and emerging social trends are fuelling the transformation of
road transport resulting in the introduction of various innovative mobility solutions. Yet the reaction of people to many of the new
solutions is still vastly unknown. $is creates an unprecedented quandary for transport planners who are requested to design future
transport systems and create the related investment plans without fully validatedmodels to base the assessment upon. As some evidence
on citizens’ behaviour concerning new mobility solutions starts to be progressively made available, first attempts to update the existing
models begin to emerge. Nevertheless, a lotmore is needed as some of the transpiringmobility solutions have not yet reached themarket,
making the corresponding behaviour changes imponderable. In this context, the main purpose of this paper is to provide a review on
how travel behaviour changes linked to the deployment of new mobility solutions have been considered in travel demand models. $e
new mobility solutions studied include carsharing, dynamic ridesharing, micromobility sharing services, and personal and shared
autonomous vehicles. An overview and comparison of relevant studies implementing activity or trip-based demand models and other
methodologies are presented. $e analysis shows that the results of the different studies heavily depend on the extent to which
behavioural changes are considered.$e results of the review thus point to the need for holistic demandmodels that carefully mimic the
urban reality with everything it has to offer and account for the importance of individual traits in the decision-making processes. Such
models need an in-depth understanding of the microscopic mechanisms leading to the travel behaviour shifts linked to the most
innovative mobility solutions. To achieve this level of detail, mobility living labs and their real-life experiments and experience with
citizens, which are flourishing in Europe, are suggested to play a crucial role in the years to come.

1. Introduction

To say that the world has always been evolving is a banality;
however, the changes have never been more rapid than
nowadays. Globalisation and colossal technological ad-
vancements in a plethora of fields have driven us away from
the countryside towards densely urban populated areas [1].
Nevertheless, the current rate of urbanization leads to nu-
merous issues in spreading metropolis, such as congestion,
air pollution, or an urban sprawl. Given that up to 2050, 68%
of global population is said to live in cities [2], we must
quickly learn how to tackle and prevent urban problems,

which we often do through better city planning and inno-
vation. Regarding innovation, current advancement in the
fields of electrification, automation, and digitalisation has
allowed for the development of new mobility solutions
(NMSs) in the form of public or private transport. As for
successful city planning, applied transport modelling has
proven to be a suitable instrument supporting planners in
their decision-making processes.

Nonetheless, the existing modelling methods are often
not agile enough to respond to a quickly updated offer of
NMS [3]. Moreover, our mobility preferences and behaviour
change once new transport options become available. For
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instance, Uber, a ride-hailing application that was non-
existent 15 years ago, is claiming to operate 14 million trips
each day in more than 700 cities worldwide [4]. Sharing
economy solutions bridges the gap between using and
owning a vehicle. Electric scooter sharing, a service first
introduced in 2017, has a market size estimated at $18.6
billion [5]. Carsharing users are discouraged from buying an
additional vehicle [6], whereas bike-sharing market could
grow as much as 30% annually in the coming years [7]. Each
of the NMS introduced could trigger additional behavioural
changes, by extending the offer available to the end user and
presenting new usage opportunities.

Nevertheless, transport innovation is not necessarily
linked to lowering of negative externalities, either envi-
ronmental or societal. For instance, dynamic ridesharing or
carsharing services could discourage users from frequenting
the more sustainable public transport or micromobility
resulting in more congestion and higher CO2 emissions.
Moreover, NMS such as electric scooter sharing if not
managed and used properly could become dangerous not
only to its users but also to other vulnerable social groups
[8]. European associations that help visually impaired have
already started campaigns raising awareness about potential
hazards of riding those scooters on pavements and aban-
doning them blocking tactical paths leading the visually
impaired [9–11].

Profitability of those new business models and added
technological advancement will result in further update of
transport services [3]. It is a major challenge for transport
planners who must learn how to respond quicker and more
effectively with the aim to lowering the negative externalities
caused by the introduction of NMS.$erefore, to ensure that
transport models remain useful, not only the supply side of
the models needs to be updated. We need to also project the
imponderable behaviour changes triggered by the deploy-
ment of NMS and represent them in the demand side of the
models, to better understand the consequences of innova-
tion deployment.

$e well-known transport demand model is often based
on a sequential decision-making process of individuals:
whether to make a journey, what the destination of the
journey should be, the mode of transport to be used, and
lastly the route to follow. $e sequence is known as a trip-
based model (TBM), with steps being trip generation, spatial
(or zonal) distribution, modal choice and route choice, or
assignment. Over the years, complementary modelling steps
have been added to the model (such as time departure
model) and a plethora of new techniques for existing
modelling steps were developed to improve the overall
quality of the methodology. $ere are numerous methods
used to model each step; however, all of TBM results are
obtained in aggregated form, often with omission of the
personal characteristics that could influence individual’s
decision-making processes [12].

In response to the limits of an aggregated approach and
to denote travel demand more realistically, novel agent-
based models and especially activity-based models (ABMs)
were developed. ABMs are based on a theory that travel
demand derives from people’s needs or desires to participate

in variety of activities. Some of those could occur at homes,
but in many cases, these activities are located outside their
homes, resulting in the need to travel [13]. ABMs try to
mimic how an analysed population plans and schedules their
daily travels. $erefore, those models are based on behav-
ioural theories concerning decision processes about whether
to participate in an activity, where to participate in those
activities, when to participate in activities, and how to get to
these activities. $e forecasting of rational decision-making
processes incorporated into ABM models is generally done
using discrete choice models. $ese statistical methods are
used to recognize factors influencing the decision and assess
their impact on the decision-making process [14].

$e main purpose of this paper is to comprehensively
explore and efficiently present the research field of incor-
porating travel behaviour changes linked to the deployment
of NMS into demand models. $ose behavioural changes
could be numerous and significantly impact the trans-
portation system as a whole. Nevertheless, they are often
omitted by modellers who focus on updating the supply side
of models. $is overview aims to be useful for the scientific
community and urban planners in the development of more
accurate demand estimations. $e summary of all behav-
ioural changes linked to the NMS that causes them, and a
following methodologies for their implementation in de-
mandmodelling frameworks is the main contribution of this
article in hope of easing the task of representing behavioural
shifts more accurately.

$e NMS concerned in the paper includes carsharing,
dynamic ridesharing, micromobility sharing, and personal
and shared autonomous vehicles (all definitions of NMS
services are provided in Section 3.2). $e authors have
decided to consider those NMSs and omit others (such as the
hyperloops, urban air mobility, or cable cars), as they are the
first modelling results already available for the chosen NMS.
Furthermore, only studies that concerned autonomous ve-
hicles (AVs) of level 4 and level 5 of automation according to
the SAE were included in the review [15]. $e reason is that
self-driving cars (either in slightly limited or full capacity)
would have the highest influence on travel behaviour
changes, freeing the driver from cautiously steering the
wheel.

$e paper is structured in the following manner. $e
next section presents the methodology used in the study.
Furthermore, third section exemplifies NMS and their im-
pact on travel behaviour in Sections 3.1 and 3.2, overview of
applied modelling practices is given in Section 3.3, and a
comparison of results is given in Section 3.4. Finally, con-
clusions and plausible further research steps are described in
the fourth section.

2. Methodology

$e methodology was set to best fit the research aim. A
comparison and analysis of studied papers are presented in the
hope of adding value beyond a review. $e authors have fo-
cused on finding relevant studies with database searches
(Scopus and Google Scholar) and so-called backward snow-
balling, in which references and citations of previously found
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studies are used to identify additional relevant research. $e
database queries comprised of combinations of keywords
describing the analysed new mobility services and the demand
estimation methods or a concrete behaviour change.

Keywords that concerned the NMS were the following:
“autonomous vehicles,” “automated vehicles,” “bike shar-
ing,” “carsharing,” “dynamic ridesharing,” “micromobility
sharing,” “newmobility services,” “ridesharing,” and “shared
autonomous vehicles.” Keywords that concerned the de-
mand estimation methods or the qualitative estimation of
implications of travel behaviour changes were the following:
“activity-based model,” “agent-based model,” “car owner-
ship,” “demand estimation,” “demandmodelling,” “four step
model,” “induced demand,” “mobility impaired,” “parking
behaviour,” “travel behaviour,” and “trip-based model.” $e
keywords were either used standalone or in combination to
make sure that found results matched the aim of the search.

$e search resulted in plethora of studies; however, only
those subject to certain criteria were reviewed for the
purpose of this analysis. Following criteria were used while
selecting the studies appropriate for the review:

(i) C1: consideration of one or more of the following
NMS: AVs of minimum level 4 automation, either
private or shared, dynamic ridesharing, carsharing,
and micromobility sharing.

(ii) C2: demand estimation based on TBM or ABM or
other partial methodology that allows to qualita-
tively estimate the demand induction due to con-
crete behaviour change.

(iii) C3: incorporation of behaviour change (studies that
assume a full or partial, randomly allocated, cov-
erage of current demand and studies that do not
incorporate any other behaviour change are not
reviewed).

$e relevance of the study was assessed upon examination
of title, abstract, and key components and deepened during the
full text assessment.$e review only considered studies written
in English and published in English language journals. $e
previously describedmethodology of search for relevant studies
is presented in a visual manner in Figure 1.

34 studies were reviewed for the purpose of this analysis.
A review study on impact of AVs on transport behaviour
and land use has been conducted by Soteropoulos, et al. [16].
Nevertheless, the scope of the studies varies, as this review
proposes a categorisation of the behaviour changes caused
by NMS, adds on other widely adapted NMS, and reviews
other results from the studies apart from behaviour changes,
such as environmental or policy implications.

Moreover, it is worthmentioning that the authors decided
to omit studies that focused on stated preference survey (SP)
development, unless the results were used to estimate and
quantify the impacts of behavioural changes for the wider
population (to satisfy C2). Excellent reviews of conducted SP
experiments concerning AVs and shared autonomous vehi-
cles (SAVs) have already been made by Becker and Axhausen
[17] as well as Gkartzonikas and Gkritza [18].

3. Impact of NMS on Travel Behaviour and Its
Incorporation into Travel Demand Models

To best understand how NMSs are incorporated into travel
demand models, it is worth to look at the key aspects of the
studies: location, considered population, objective, and
software and data used. $e analysis shows that the de-
ployment of NMS is global, and the behavioural changes
caused by it in principle are universal, as the reviewed studies
were done in Asia, Australia, Europe, and North America.

Moreover, it is worth to look at the population size for
each study, to grasp the potential differences in results
obtained from studies from variously populated areas.
Majority of the studies focus on the current population of
analysed areas, although notably some try to project the
future population, to better represent the usage of NMSs that
are not yet available such as AVs or SAVs. For that case, the
studies assume year 2030 [19, 20], although the horizon of
adoption and implementations of AVs and SAVs in cities is
disputed in literature [21]. Moreover, majority of the studies
analyse the entire population of metropolitan areas; how-
ever, several studies decided to simulate a fraction of the
population for the purpose of lowering the computational
costs of the analysis [22–24].

As for the objective of the study, two main goals are
identified. Firstly, the study could assess the impact that
NMS could have on traffic or other transport externalities,
often analysing various policy or adoption scenarios. Sec-
ondly, the study could be an implementation framework
either for the modelling methodology (TBM or ABM) or for
an open-source platform.

$e software programs most prominently used across
the studies are the agent-based simulation platforms:
MatSim, developed at ETH Zurich and TU Berlin, that
supports ABM and SimMobility, an activity-based agent
model developed at MIT.

As for the used datapoints, the researchers most often
used rather traditional datasets and data collection tools for
demand modelling (such as census data for the purpose of
population synthesis in agent-based model and zonal allo-
cation for TBM and household travel survey or trip diaries to
generate the actual demand for trips). Nonetheless, a
number of studies opted for a more innovative approach by
using data sources that only recently became available such
as GPS trace data, smart card data, or NMS statistics
[20, 23, 25].

Table 1 provides characteristics of all studies that tried to
methodologically estimate and represent the behaviour
changes linked to deployment of NMS, sorted alphabetically
according to the name of first author. For each study in-
formation on the location, population size, objective, soft-
ware and used datapoints.

$e remaining parts of this chapter lay out the key
takeaways from the comparative review of studies on in-
corporation of travel behaviour changes linked to deploy-
ment of NMS into travel demand estimation. $e
comparison of reviewed studies is made according to the
considered NMS (Section 3.1), incorporated travel
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behaviour changes (Section 3.2), and demand estimation
methodologies along with modelling practices and as-
sumptions (Section 3.3) and obtained results (Section 3.4).
�e studied dimensions were chosen not to be exhaustive
but rather to capture how modelling techniques and as-
sumptions are used to represent various behaviour changes
and the extent of their impact on the results.

3.1. Review of New Mobility Solutions. Technological and
even more so connectivity advancements of the 21st century
have brought a paradigm shift to the seemingly stable
transport sector. �e technological possibilities, guaranteed
demand for transport services, and pro�table business
market have resulted in a plethora of new players and in-
novators disrupting the market. Upon their arrival, NMS
starts to change the demand patterns of individuals, often
shifting modal or schedule preferences.

In the majority of the studies, only one NMS is con-
sidered, but some of the researchers have considered amix of
available services, most often analysing SAVs and dynamic
ridesharing (7) or SAVs and private AVs (3). Most of the
studies analysing a single NMS focused on privately owned
AVs (8) and SAVs (7), as a potentially disruptive new mean
of transport, followed by dynamic ridesharing (6), car-
sharing (4), and micromobility (2). In Table 2, the reader will
�nd a summary of NMS considered in reviewed studies.

3.1.1. Autonomous Vehicles. AV is a vehicle capable of
performing all driving functions under all conditions [21].
Although there is great uncertainty regarding the deploy-
ment horizon and market penetration of AVs, the research
related to their adoption has been sprouting.

�ere is already a speculation of plausible market ad-
aptations. Researchers predict that AVs could be privately-
owned or shared (SAVs) that are expected to be a taxi-like
service allowing users to reserve the vehicle for a single ride.
It is also predicted that rides could be private, shared, or the
whole service could be handled with higher occupancy
vehicles, such as minibuses [54, 55].

�e uncertainty of market adoption is also re�ected in
the analysed studies. Out of 23 studies that included demand

estimation for autonomous driving, 10 assumed that AVs
would be privately owned and 12 assumed that the vehicles
would be a shared �eet. Moreover, the study of Martinez
et al. [42] considered two services that SAVs could provide: a
taxi-like service and autonomous minibuses on-demand.
Another exemplary solution tested only in one study was
that analysed by Wen et al. [50] who considered a �rst and
last mile service supplementary to public transport. �is
non-uniform approach suggests that the future AV de-
ployment strategy is yet to be determined, with researchers
analysing how the autonomy of the vehicle will impact the
rate and preference towards ownership. Moreover, the
implementation strategy for the AVs could vary not only
across countries but also across cities, which could incor-
porate national or regional policies and environmental
strategies, as already suggested by review and backcasting
studies [21, 56–59].

3.1.2. Carsharing. Carsharing provides its users with ac-
cess to a �eet of vehicles on an hourly or minutely basis.
�e service could be twofold: station based or free-
�oating. Station-based carsharing requires users to pick
up a car from the designated station and drop it o�, at the
same station (round trip), or a di�erent one of the same
provider (one-way) [60]. Free-�oating carsharing service
allows users to book and return a car at any location within
the operational area [61]. A substantive amount of re-
search regarding carsharing has already been made. �e
trends include optimization of the operation of carsharing
systems and analysis of successful business models [60],
with recent focus on user preferences. �e �ndings of
survey-based studies show that carsharing users are often
young [62], well-educated [63], environmentally con-
scious [64], and high-income individuals from high-
density areas [65].

As for the reviewed studies, only 4 out of 35 tried to
estimate the demand for carsharing under behaviour change
assumptions. Nevertheless, carsharing is likely to be replaced
by SAVs in the future, which could explain the small in-
terests in including carsharing services in future-oriented
demand estimations.

C3: Paper incorporates
analysis of behaviour

changes

C2: Demand estimation is
based on trip-based or

activity-based
methodology or other

qualitative methodology
that allows to assess

demand changes

C1: Paper concerns at
least one of the following

NMS: carsharing,
micromobility sharing,
personal AVs or shared

AVS

New Mobility Services
keywords:

Autonomous vehicles,
automated vehicles, bike

sharing, carsharing, dynamic
ridesharing, micromobility

sharing, new mobility
services, ridesharing and

shared autonomous vehicles

Demand estimation
keywords:

Activity based model, agent
based model, car ownership,
demand estimation, demand
modelling, four step model,
induced demand, mobility

impaired, parking behaviour,
travel behaviour, trip based

model

Selection of Demand
estimation keywords

Selection of New Mobility
Services keywords

Keywords combination
database query in Scopus

and Google Scholar

Title and abstract
screening against criteria:

C1, C2, C3

Full text assessment
against criteria: C1, C2, C3

Analysis of reference and
citation of studies found

relevant

Figure 1: Methodological framework of the search for studies relevant for the analysis.
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Table 1: Characteristics of reviewed studies.

Reference Location Population size Objective Software Demand related data

Azevedo et al.
[25]

Singapore,
Singapore 4.06 million (m)

Assess the performance of
SAVs under various regional
transport and service policies.

SimMobility

Land use data: residential
building, firm, and school

locations and characteristics,
household travel survey (2008
and 2012), GPS taxi trace data,
public transport smart-card

data

Balac et al.
[26] Zurich, Switzerland 1.62m

Assess the performance of
carsharing under various

regional transport and service
policies.

MatSim Census and travel diaries

Basu et al. [24] Singapore,
Singapore

351 000 (∼10% of
Singapore)

Evaluate the impact of SAV
introduction on mass transit. SimMobility NA

Bischoff et al.
[27]

Charlottenburg,
Berlin, Germany 37 000

Evaluate the impact of AV
parking strategies on waiting
times and parking search time.

MatSim Census and travel diaries

Caggiani et al.
[28] Molfetta, Italy 60 000

Estimate revenues from
congestion road tolls to finance
a free-floating bike-sharing

system along with
repositioning.

Matlab Census

Chen and
Kockelman
[29]

Grid city based on
Austin, USA 2.3m Estimate SAV market shares. MatSim Census, regional trip data

Chen et al.
[30] Sioux Falls, USA 182 000

Assess the performance of
dynamic ridesharing under

various regional transport and
service policies.

NA Modified Sioux Falls static OD
matrices

Childress et al.
[31]

Puget Sound
region, USA 4.2m Evaluate the impact of AVs on

transport system. Daysim NA

Ciari et al. [32] Metropolitan area
of Berlin, Germany 4.5m

Assess the performance of
carsharing under various

service policies.
MatSim Census data and on travel diary

surveys

Coulombel
et al. [33]

Metropolitan area
of Paris, France

13.1m (assumed
8% grow)

Estimate environmental
rebound effect linked to
dynamic ridesharing.

TransCAD
Regional trip survey (Enquête
Globale Transport) and road

count data

Dias et al. [34] NCTCOG area,
USA 6.5m

Develop a framework to
represent AVs and their

behavioural implications in
TBM.

TransCAD Census and household travel
survey

Harper et al.
[19] USA

74m seniors
(2030 estimation)
and 20.1m non-

drivers

Estimate increase in travel due
to extra activity of mobility
impaired in the presence of

AVs.

NA Census and household travel
survey

Hebenstreit
and Martin
[35]

NA NA

Implement station-based
electric and regular bike-
sharing systems in MatSim

platform.

MatSim NA

Heilig et al.
[36]

Metropolitan area
of Stuttgart,
Germany

2.5m

Implement carsharing services
in an agent-based model for
the first time for a period
longer than a day (a week).

mobiTopp Census and household travel
survey

Heilig et al.
[37]

Metropolitan area
of Stuttgart,
Germany

2.3m
Estimate SAV fleet size

necessary to handle projected
travel demand.

mobiTopp Census and household travel
survey

Hörl et al. [38] Sioux Falls, USA 84 110
Assess the performance of

SAVs under various regional
transport and service policies.

MatSim Census data and static OD-
matrices

Lavieri et al.
[39]

Puget Sound
region, USA NA Estimate adoption rates of

personal AVs and SAVs. NA Census and household travel
survey
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Table 1: Continued.

Reference Location Population size Objective Software Demand related data

Levin and
Boyles [22]

Downtown Austin,
USA NA

Develop a framework to
represent AVs and their

behavioural implications in
TBM.

NA Household travel survey

Liu et al. [40] Grid city based on
Austin, USA 2.3m

Evaluate the impact of SAV
pricing levels on travel

demand.
MatSim

CAMPO’s travel demand
predictions for 2020.

OpenStreetMap (OSM) file

Mart́ınez and
Viegas [41]

Metropolitan area
of Lisbon, Portugal 2.8m

Estimation of city impacts
related to deployment of two
SAV services: taxi-like one and

on-demand autonomous
minibus.

NA Census, household travel
survey, and travel diaries

Mart́ınez et al.
[42]

Metropolitan area
of Lisbon, Portugal 2.8m

Assess the performance of
carsharing under various

regional transport and service
policies.

Aimsun Census, household travel
survey, and travel diaries

Millard-Ball
[43]

San Francisco Bay
area, USA NA

Evaluate the impact of personal
AV parking strategies on

transport system.

SF-CHAMP
ABM

SF-CHAMP ABM demand
input

Nahmias-
Biran et al.
[23]

Singapore,
Singapore

351,000 (∼7%
that of Singapore)

Evaluate the impact of SAVs
on accessibility levels. SimMobility

Land use data: residential
building, firm, and school

locations and characteristics,
household Interview travel
survey (2012), Uber statistics

Oh et al. [20] Singapore,
Singapore

6.7m (2030
projected
population)

Evaluate the impact of SAV
pricing and adoption levels on

transport system.
SimMobility

Land use data: residential
building, firm, and school

locations and characteristics,
household Interview travel
survey (2012), SP results

Rodier et al.
[44]

San Francisco Bay
area, USA 883 000

Evaluate the impact of
dynamic ridesharing adoption
on vehicle miles travelled

(VMT).

SF-CHAMP
ABM

2000 public use Microdata
sample and 2010 census data

and 2-day travel diaries

Truong et al.
[45] Victoria, Australia NA

Estimate additional daily trips
generated by closing the gap in
travel need at different life

stages through AV
introduction.

NA
Victorian Integrated Survey of
Travel and Activity (VISTA)

2007–2010

Vyas et al. [46] Metropolitan area
of Columbus, USA 2 m Evaluate the impact of AVs on

transport system. CT-RAMP2 $e Columbus ABM demand
data

Wadud et al.
[47] NA NA

Evaluate the impact of SAVs
on travel demand and GHG

emissions.
NA Household travel survey

Wang et al.
[48]

Yarra Ranges,
Australia 158 000

Implement people’s preference
to their social networks’ friends
and the flexibility of daily
activities to improve the

dynamic ridesharingmatching.

NA
Census, Victorian Integrated
Survey of Travel and Activity

(VISTA) 2009–2010

Wang et al.
[49]

Yarra Ranges,
Australia 158 000

Implement of the flexibility of
space and time of daily
activities to improve the
ridesharing matching.

NA
Census, Victorian Integrated
Survey of Travel and Activity

(VISTA) 2009–2010

Wen et al. [50] Major European
city 159 000

Develop a framework for the
design, simulation, and

evaluation of integrated AVs as
first and last mile supporters of

public transportation.

NA
Census, household travel

survey, and travel diary surveys
from 2005 to 2014

Yin et al. [51] Metropolitan area
of Paris, France

13.1m (assumed
8% grow)

Estimate environmental
rebound effect linked to
dynamic ridesharing.

TransCAD
Regional trip survey (Enquête
Globale Transport) and road

counts
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3.1.3. Dynamic Ridesharing. Ridesharing allows users to
share a trip with others preventing usage of more than one
vehicle to reach a similar destination, whereas dynamic
ridesharing is arranged on a per-trip basis, securing flexi-
bility for its users [66]. Incorporation of ridesharing into
travel models has mostly focused on optimization of
matching algorithm, with randomly generated demand.

Nevertheless, 13 out of 35 reviewed studies tried to
estimate the demand for dynamic ridesharing services along
with the consideration of its impact on overall demand. As
SAV-based services could increase their efficiency by of-
fering shared rides for their users, 7 of the 13 studies

considered dynamic ridesharing of SAVs. Moreover, two
studies focused on another innovative dynamic ridesharing
concept that matches users who live in close proximity or
could know each other through social media community
[48, 49]. Remaining studies looked at the currently available
dynamic ridesharing services, which simply connect the user
with the driver.

3.1.4. Micromobility Sharing Systems. Micromobility refers
to a variety of small transport modes operating at low speeds,
typically below 25 km/h, such as bicycles, electric bicycles, or

Table 1: Continued.

Reference Location Population size Objective Software Demand related data

Zhang et al.
[52]

Metropolitan area
of Atlanta, USA

2.1m of
households

Evaluate the impact of AVs on
vehicle ownership.

CPLEX
optimizer

2011 travel survey data from
Atlanta Metropolitan Area and
synthesized Atlanta trip profile

from the Atlanta ABM

Zhang et al.
[53] Sioux Falls, USA NA

Evaluate the impact of various
AV parking strategies on a

transport system.

CPLEX
optimizer

Census data and static OD-
matrices

Table 2: Classification of reviewed studies according to the considered new mobility services.

Study Carsharing Dynamic ridesharing Micromobility sharing Private AVs SAVs
Azevedo et al. [25] X X
Balac et al. [26] X
Basu et al. [24] X X
Bischoff et al. [27] X
Caggiani et al. [28] X
Chen and Kockelman [29] X
Chen et al. [30] X
Childress et al. [31] X X
Ciari et al. [32] X
Coulombel et al. [33] X
Dias et al. [34] X
Harper et al. [19] X
Hebenstreit and Martin [35] X
Heilig et al. [36] X
Heilig et al. [37] X X
Hörl et al. [38] X
Lavieri et al. [39] X X
Levin and Boyles [22] X
Liu et al. [40] X
Mart́ınez et al. [42] X X
Mart́ınez et al. [42] X
Millard-Ball [43] X
Nahmias-Biran et al. [23] X X
Oh et al. [20] X X
Rodier et al. [44] X
Truong et al. [45] X X
Vyas et al. [46] X
Wadud et al. [47] X
Wang, Winter and Tomko [48] X
Wang et al. [49] X
Wen et al. [50] X X
Yin et al. [51] X
Zhang et al. [52] X
Zhang et al. [53] X
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scooters [67]. In this paper, the authors focus on novel
shared micromobility systems and their impact on everyday
mobility choices. Research related to micromobility sharing
systems has mostly focused on software enhancement, as
well as city regulation of those systems [68].

Micromobility is often omitted in transport models,
hence representing the smaller interests in demand esti-
mation studies. Out of the 35 reviewed studies, only two
looked at the behavioural implications of micromobility and
tried to incorporate them into demand estimation meth-
odology [28, 35]. In light of electric micromobility boom as
well as regional and urban policy direction towards car-free
zones and rising interest in sustainable living trend, more
studies should consider this modal choice.

3.2. NMS Impact on Travel Behaviour. Travel demand
models try to reproduce the mechanisms influencing travel
choices and behaviour of a certain population in response to
the transport opportunities available and based on various
studied assumptions. $e new options that transport in-
novators propose change our mobility patterns and impact
the everyday life in cities. It is crucial for policymakers and
regional governors to predict how individuals could behave
under various scenarios to best accommodate the needs of
citizens. $e first step towards that prediction is the un-
derstanding of plausible behavioural implication of
innovation.

Upon the review of numerous articles that focused on
the subject, the authors have classified those changes to be
the following: (i) acceptance of longer trips, (ii) change in
daily activity timing, (iii) increased number of non-man-
datory trips, (iv) increased number of trips of mobility
impaired, (v) modal change, (vi) relocation, (vii) shifts in
parking habits, and (viii) shifts in vehicle ownership. None
of the reviewed studies has considered all of the identified
behavioural changes, with study by Vyas et al. [46] omitting
just the relocation aspect, and study by Childress et al.
considering 5 behavioural shifts [31]. Moreover, the most
frequently considered behavioural shift was a modal change
with 31 studies incorporating it, followed by the acceptance
of longer trips (12 studies), changes in daily activity timing (7
studies), shifts in parking habits (5 studies), increased
number of non-mandatory trips (4 studies), increased
number of trips of mobility impaired (4 studies), shifts in
vehicle ownership (4 studies), and relocation (2 studies).$e
incorporation of found changes in travel behaviour in the
reviewed studies is summarised in Table 3.

3.2.1. Acceptance of Longer Trips. $e reduced travel times
decrease in perceived value of in-vehicle travel time (VOT)
or drop of travel costs, resulting in an increase in accessibility
levels and following higher tolerance of travelling.$erefore,
certain individuals might decide to travel to areas further
away to satisfy the journey purpose, prolonging the trip.

As an AV allows for multitasking, the value of in-vehicle
time could be perceived as less burdensome than in other
modes resulting in a decrease of VOT [69]. Additionally, it is
expected that efficient driving as well as platooning could

lead to an increase in road capacity and a decrease in travel
times [31]. Moreover, it is expected that automation of
vehicles would lead to operational cost reduction [21].
Likewise, the reduced travel time and decrease of VOTcould
lead to elongation of the trips. A hypothesis confirmed by an
experiment tried to capture behaviour changes caused by
autonomous driving by giving individuals access to chauffer
services [70].

Due to the split of monetary costs between users, dy-
namic ridesharing is expected to lower the cost of travelling,
whereas potential congestion reduction caused by higher
vehicle occupancy could shorten travel times. $e reduction
of costs and potential reduction in travel time will increase
the accessibility and possibly encourage people to travel
further away and elongate the trips [33].

3.2.2. Change in Daily Activity Timing. $e reduction in
VOT as well as the decrease of costs could also trigger in-
dividuals to tolerate travelling in more congested conditions,
altering the schedule of a given individual [31]. Additionally,
as users of SAVs and private AVs will not have to worry
about finding a parking location for their vehicles and
reaching the final destination from it by foot, the daily
schedule could change as well, allowing those individuals to
leave the households later without risking being late [53].
$erefore, the deployments of AVs, SAVs, and dynamic
ridesharing could cause people to change the daily activity
timings.

3.2.3. Increased Number of Non-Mandatory Trips. $e
behavioural studies predict that a decrease in VOTand travel
times as well as lower travel costs could also encourage users
to participate more often in non-mandatory, leisure activ-
ities [31, 33, 70]. $erefore, the deployment of personal AVs
as well as SAVs and dynamic ridesharing could result in an
increased number of non-mandatory, leisure trips. However,
predicted behavioural change is not often considered in the
studies, as only 4 studies that analysed AVs, SAVs, or dy-
namic ridesharing have decided to implement the behav-
ioural change in the demand model.

Nevertheless, the demand estimation studies should look
for methodologies to implement the increase in number of
non-mandatory trips in their calculations, as the experi-
ments that try to investigate the behaviour changes caused
by AVs suggest that individuals will indeed increase the
number of their non-mandatory trips. $at is because they
are willing to use an AV more often than regular car as it
allows them to use the vehicle under the influence of alcohol
or at night when they would be too tired or sleepy to drive
themselves [70].

3.2.4. Increased Number of Trips of Mobility Impaired.
Elderly, youth, mobility and visually impaired, and others
without a driver’s license could use AVs for travelling alone
as it does not require driving abilities. $erefore, AVs (as
well as SAVs) could increase the number of trips people
from those groups generate [45].$e increase of accessibility
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Table 3: Classification of reviewed studies according to the considered behavioural changes.

Study Acceptance of
longer trips

Change in
daily activity

timing

Increased number
of non-mandatory

trips

Increased number
of trips of mobility

impaired

Modal
change Relocation

Shifts in
vehicle

ownership

Shift in
parking
habits

Azevedo et al.
[25] X X X

Balac et al. [26] X
Basu et al. [24] X X X
Bischoff et al.
[27] X

Caggiani et al.
[28] X

Chen and
Kockelman [29] X

Chen et al. [30] X
Childress et al.
[31] X X X X X

Ciari et al. [32] X
Coulombel
et al. [33] X X X

Dias et al. [34] X X X
Harper et al.
[19] X

Hebenstreit and
Martin [35] X

Heilig et al. [36] X
Heilig et al. [37] X X
Hörl et al. [38] X
Lavieri et al.
[39] X

Levin and
Boyles [22] X X

Liu et al. [40] X
Mart́ınez et al.
[42] X

Mart́ınez et al.
[42] X

Millard-Ball
[43] X

Nahmias-Biran
et al. [23] X X X

Oh et al. [20] X X X
Rodier et al.
[44] X

Truong et al.
[45] X X

Vyas et al. [46] X X X X X X X
Wadud et al.
[47] X X

Wang et al. [48] X X
Wang et al. [49] X X
Wen et al. [50] X
Yin et al. [51] X X X
Zhang et al.
[52] X X

Zhang et al.
[53] X X
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for those individuals is often mentioned as one of the most
significant advantages of AVs. Nevertheless, the impact of
this increased accessibility on demand estimation is often
omitted in the analysis made as of today (only 4 out of 23
studies on AVs decided to fully or partially consider this
demand induction in their analysis).

3.2.5. Modal Change. Modal change is the most obvious
behaviour change caused by introduction of all consid-
ered NMSs. $erefore, majority of the studies reviewed
for the purpose of this analysis have introduced it in their
models. For this analysis, it is assumed that the modal
change behaviour was considered if the study tried to
understand the factors that determine the modal choice. If
the study did not include any behavioural modal choice
model, but rather assumed that the demand would be fully
covered by AVs, this review does not consider the study to
incorporate modal change as a behavioural change. $e
same is true for the studies that consider a partial demand
covered by AVs but rather than analysing which indi-
viduals are prone to shift to other modes draw the sample
randomly.

$e reduction of VOT, travel costs, and travel times
could further influence user preferences towards dynamic
ridesharing and AVs resulting in additional modal shifts
from more sustainable options such as public transport or
micromobility [31]. A similar outcome can be seen with
carsharing, as carsharing tends to attract people that use
public transport for their commute rather than private car
[32, 42].

$e observed change in travel behaviour related to the
implementation of micromobility sharing system is a
modal shift, often on short walking distances [71]. How-
ever, bike-sharing can also replace public transport, private
car, or taxi [72].

3.2.6. Relocation. A number of studies predict that with the
decrease in in-vehicle value of travel time, costs, or travel
times, caused by AV deployment and adoption of dynamic
ridesharing services, individuals may choose to relocate
further from their main activity location, which could po-
tentially result in urban sprawl [25, 33]. Nevertheless, re-
location was only considered in two of the reviewed studies,
namely, by Coulombel et al. [33] and Yin et al. [51], who
tried to assess the environmental rebound effect of dynamic
ridesharing services in Paris.

Nevertheless, studies predict that the sprawl and relo-
cation could be stopped if we adopt a shared model of AVs,
in which the imbalance between demand and supply of
SAVs would result in price increase of services in sprawled-
out areas, as more empty rebalancing trips would be needed
to fulfil all travel request, increasing the operational costs for
the fleet manager [29]. $at means that per mile costs in
densely populated areas would be lower than in those
sprawled [73]. $is outcome could stop individuals from
relocating, provided that the shared mobility would sig-
nificantly impact the vehicle ownership rates.

3.2.7. Shift in Parking Habits. $e fact that an AV does not
require the driver to be present in the car enables new
parking options for personal AV users. $e reviewed lit-
erature suggests that the user could potentially choose one of
the following four strategies [22, 43, 46, 74]:

(i) $e vehicle could drop off its user and start looking
for an available parking spot nearby, relocating if
there is a limit on permitted duration of parking.

(ii) $e vehicle could drop off its user and park in a
dedicated garage area on the outskirts of city or
central business district.

(iii) $e vehicle could drop off its user and return to the
home location to serve other household members or
wait for the principal user’s orders.

(iv) $e vehicle could drop off its owner and start
driving in nearby locations until called again by the
user, in so called cruising strategy.

$e latter three strategies could potentially result in an
increase in-vehicle miles travelled (VMT) and CO2 emis-
sions. Shifts in parking preferences have been the focus of
five of the reviewed studies, with three of those placing their
solemn focus on investigation of shifts in parking behaviour.

3.2.8. Shifts in Vehicle Ownership. In response to NMS
deployment, preferences for vehicle ownership could shift.
Researchers agree that vehicle ownership could change as
result of carsharing and SAV deployment [6, 39, 63, 75].
Wide availability of mobility as a service in form of SAVs
could discourage numerous users from owning a personal
AV. SP survey studies have confirmed that in presence of a
SAV on-demand service, multivehicle household would be
willing to dispose of one or more of their vehicles [76] and
that highly educated, young individuals living in dense
urban areas are more drawn to SAVs rather than personal
AVs [39, 75].

Moreover, surveys conducted among carsharing users
prove that access to carsharing services impacts vehicle
ownership, as users tend not to buy an additional vehicle [6]
or even dispose their old one [63].

3.3. Review of Modelling Practices. Behaviour changes cause
a struggle for demand modellers, as the current demand
estimation methodologies keep proving to be not agile
enough to the changing mobility offer and its implications
[3]. Furthermore, the deployment and adoption of NMSs,
especially AVs, could mean a major paradigm shift for all
transportation and could be a disruptor when it comes to
behaviour changes, hence the utmost importance of mir-
roring the foreseeable behaviour in the demand estimation
models.

In this section, the review of modelling techniques and
key assumptions used in reviewed studies are presented to
the reader. $e studies are categorised according to the
modelling framework used.$e categories stand as ABM (21
studies), TBM (4 studies), and other estimation methods (9
studies).
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For each of the categories, the key modelling changes or
assumptions that try to incorporate behaviour changes
caused by NMS are presented for various parts of the
modelling activity.

$us, TBM is traditionally divided into a four-step
modelling sequence (i–iv) with an extra vehicle ownership
model (v) and other notable changes:

(i) Trip generation
(ii) Trip distribution
(iii) Modal choice
(iv) Route assignment
(v) AV ownership
(vi) Other changes

Activity-based models are divided into following mod-
elling steps:

(i) Activity scheduling
(ii) Modal choice
(iii) Destination choice
(iv) Time of day choice
(v) AV ownership
(vi) Other changes

As for the demand estimation methodologies outside of
the TBM and ABM frameworks, each model is reviewed
individually as their approaches often vary.

$e key modelling techniques and assumptions used in
TBM, ABM, and other identified methodologies that con-
cern behaviour change estimation are presented in
Tables 4–6, respectively.

3.3.1. Trip-Based Models. Not many studies have decided to
implement the NMS behavioural changes into TBM, as the
aggregated nature of those models limits the potential of
implementing shared services.

On the trip generation level, the behavioural changes
that lead to induced travel demand (such as increase in non-
mandatory activities and increased number of non-man-
datory trips) are represented. $is is reflected in one of the
TBM-based reviewed studies, which implemented this
behavioural change in the model, through the scenario-
based assumption of the increase in number of trips for AV
owners [34].

$e changes made in trip distribution step of the model
could reflect the higher acceptance for longer trips. $e
implementation of this behaviour change was performed in
the reviewed studies, through assuming a lower generalised
cost (or time) of travel in the generalised cost origin-des-
tination (OD) matrix [33, 34, 51].

$e modal choice level of the model incorporates the
modal changes caused by introduction of new services. In
the reviewed papers, the researchers have developed either
multinomial logit models (MNL) [33, 51] or nested logit
models (NL) [22] which allowed to determine the modal
choice. Reflection of changes caused by introduced NMSwas

made through assumed reduction of VOT (for AVs) [34]
and assumed lower cost of travel (dynamic ridesharing)
[33, 51].

Shifts in vehicle ownership were also analysed in
reviewed studies that implemented the TBM. Certain re-
searchers based their studies on the assumption that high-
income individuals are more likely to adopt innovation.
Based on income classes, the AV availability was assigned to
households. $e penetration rate was either subject to
scenario analysis [22] or assumed [34]. Nevertheless, this
approach could be misleading, as the tendency to switch for
an innovative solution could be motivated by other factors
such as age, costs, or perceived safety and sustainability
[77, 78], with SP-based study even concluding that income
levels are not significant for the AV adoption [76].

3.3.2. Activity-Based Models. Behaviour changes related to
NMS deployment are more often implemented in ABMs,
which allow to better represent decisions of individuals
based on their socioeconomic profile. A share of reviewed
studies was agent-based developed in simulation platforms
such as MatSim, SimMobility, or mobiTopp. Agent-based
models are used for precision in spatial and temporal
representation of the supply side, a key for a faithful rep-
resentation of shared services. $e activity-based model
(ABM) is a string of decision-making processes imple-
mented in the form of a series of discrete choice models
(typically MNL or NL); therefore, some of the changes
implemented (such as decrease of VOT) could be made on
all levels of the model with a single assumption.

A small share of researchers have decided to implement
changes on the activity scheduling step of the model, which
reflect an increased number of non-mandatory trips and
increased number of trips of mobility impaired. Imple-
mentation of increased number of non-mandatory trips was
made through assumed decrease in VOT (in a range from 25
to 50%) [31, 46]. Changes in activity timing, caused by AVs
deployment, were implemented analogically.

Increased number of trips of mobility impaired was not
studied sufficiently in the ABMs, as only one study decided
to consider any changes. Vyas et al. [46] assumed that AVs
would be available as a modal choice for children with a
scenario-based minimal age requirement. No other demand
inductions caused either by additional activity of the elderly
or those with no driving license or disabled were considered
in the reviewed studies that implemented an ABM.

On the destination choice level of the model, usually a
MNL or NL, acceptance of longer trips was considered.
Several researchers have decided to implement this behav-
ioural change in their ABMs. For Avs, the implemented
changes consisted of assumed VOTreduction (25–50%) with
a VOT considered as in regular car [31, 38, 40, 46]. If the
utility of the choice was modelled after a taxi service, only a
change of cost was assumed (30–40% decrease due to
elimination of driver) [20, 23–25, 37].

$e modal choice step of the ABM, which incorporated
modal changes, was most often modified by the researchers.
Nevertheless, the reviewed models often did not consider
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socioeconomic attributes and individual preferences as
factors that could influencemodal shifts.$emodal choice is
frequently determined by a MNL, following the maximal
utility theory, determining the choice based on overall utility
of each option. However, utility functions often included
only assumed perceived VOT, and monetary cost
[29, 38, 40, 46], for which the changes in behaviour were
often implemented through assumption of VOTdecrease as
compared to the regular car (25%–50%). Omitting the
importance of individual preferences could be crucial, es-
pecially when it comes to unfamiliar modal choices such as
AVs.

Alternatively, the utility of the SAV option was modelled
as a taxi or as “private car as passenger,” by reducing the
costs of travel (40–70%) [20, 23–25, 37].$e cost of SAV and
AV operation was often assumed as a fraction of taxi service
or private car, or subject to scenario analysis. Nevertheless,
constant cost assumption could be misrepresentative as SAV
services could function, with costs varying based on current
supply and demand, whereas the cost of private electric AV
operation is also difficult to determine as it highly depends
on national energy transformation and electricity mix.

Furthermore, the assumption that VOT is constant for
all trip purposes could be misleading, as survey-based
studies suggest that it could vary depending on trip purpose,
estimating VOT decrease at 30–40% for commuting trips
[79] and zero for leisure trips [69]. Only one study imple-
mented a differentiation of VOTsubject to the purpose of the
trip, claiming VOTto be 100% of wage for business trips and
50% for leisure trips [29]. $e variety of perceived value of
travel time in different modes was also insufficiently rep-
resented as only one study implemented the alteration in
value of time in regard to waiting for SAV service or being

inside. Hörl et al. [38] assumed that waiting for an AV is
twice as valuable as riding inside.

Modal choice for studies focusing on carsharing often
incorporated more socioeconomic attributes to utility
functions based on survey-based responses—an already
available solution for which an adequate SP study could be
more straightforward and subject to less bias as it is a mode
users could be already familiar with, as opposed to not yet
available mobility options like AVs [36, 42]. Moreover, the
costs of carsharing were also easier to determine as simply
the costs of available services were implemented in the utility
functions [26, 32, 36, 42]. $e difference in VOT was also
exemplified in some of the studies, as the value of access and
egress time was modelled as value of walking and value of
using the service as value of travelling with regular car
[26, 32].

Modal choice in studies that focused on dynamic
rideharing was subject to numerous additional limitations
and requirements such as the latest arrival time, the max-
imum income of users, and departure time and group size
[44, 48–50].

Finally, changes in parking habits were studied only in
two of the reviewed studies in a modal choice step in NL
models, where one of the nests contained various AV
parking possibilities [27, 46]. $e parking option was de-
termined based on the maximal utility. $e utility of parking
covered the costs of each parking strategy. $e approach,
however, could be misleading, as individuals may opt for a
given parking strategy for reasons other than financial.

Additionally, a share of studies implemented an as-
sumption of an increase in road capacity, which impacts the
utility functions by changing the travel time. Assumptions
can vary for different road types and AV market penetration

Table 4: Modelling techniques used in trip-based models.

Study Considered
NMS

Modelling
step Behaviour change Modelling practice

Dias et al. [34] AV

Trip
generation

Increased number of
non-mandatory trips

Assumed scenario-based 5%/10% increase in number of
trips for households owning an AV.

Trip
distribution

Acceptance of longer
trips

Reduction of generalised travel cost between zones by
25% for AV owners.

Modal choice Modal change Reduction of VOTfor AV owners by 25% as compared to
the regular car.

AV
ownership

Shifts in vehicle
ownership

Binary logit model based on individuals’ household
income (survey-based study) with assumed 40%

penetration rate.

Levin and Boyles [22] AV
Modal choice Modal change and

shifts in parking habits

Nested logit model of choice between AV parking
nearby, AV repositioning, and transit. Utility functions

made of parking fees, fuel costs, and VOT.
AV

ownership
Shifts in vehicle

ownership
Scenario analysis of AV availability for five classes of

population divided by VOT (1.15$ to 22$).

Coulombel et al. [33]
and Yin et al. [51]

Dynamic
ridesharing

Trip
distribution

Acceptance of longer
trips

Assumed lower average travel time due to reduction of
congestion.

Modal choice Modal change, shifts in
parking habits

Multinomial logit model with utility functions of each
mode made of VOT and monetary costs.

Monetary cost is split evenly between ridesharing users.

Other
changes Relocation

$e potential relocation assessed in a coupled land-use
model by incorporating a decrease in average travel time

and cost.
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Table 5: Modelling techniques used in activity-based models.

Study NMS Modelling
step Behaviour change Modelling practice

Azevedo et al. [25]; Basu
et al. [24]; and Nahmias-
Biran et al. [23]

SAV with
ridesharing

Modal choice Modal change Change in the utility functions. Utility of
SAV based on individual preferences

towards taxis with 40% [24, 25] or 33%
[23] monetary cost.

Destination
choice Acceptance of longer trips

Bischoff et al. [27] AV Other
changes Shifts in parking habits

Private AVs choose from three parking
strategies: parking on a free but time

limited parking spot, parking at a garage
with unlimited capacity nearby, and

cruising in range of 2000 m while waiting
for the user. Parking strategy and

assumed AV penetration (10% or 20%)
are subject to scenario analysis.

Chen and Kockelman
[29] SAVs Modal choice Modal change

Modal choice between private vehicle,
transit, and SAV determined by MNL
model. $e utility functions consist of
VOT and monetary costs. VOT is

assumed to be 50% of hourly wage of
modelled individual for personal trips
and 100% of hourly wage for business or
work trips. VOT in SAV is decreased to
35% of regular private vehicle ride.
Monetary costs of SAV subject to

scenario analysis: simple distance-based,
origin-based, destination-based, and
combination of origin and destination

pricing. $e origin pricing and
destination pricing are designed to

minimise the empty rides required for
relocation.

Childress et al. [31] AV and SAV

Activity
scheduling

Increased number of non-
mandatory trips $ree AV scenarios: in all 30% assumed

capacity increase and VOT reduced to
65% of regular car for AV owners. In the
SAV scenario where all vehicles are

shared, the flat cost of travel is assumed
at $1.65/mile.

Modal choice Modal change
Destination

choice Acceptance of longer trips

Time of day
choice

Changes in daily activity
timing

AV
ownership Shifts in vehicle ownership

Simulated population divided by income.
Scenario-based analysis of AV

availability. AVs are either available to
high-income households (with VOT
higher than $24) or a full market

penetration is assumed. Last scenario
assumes that all vehicles are shared.

Heilig et al. [37] SAV with
ridesharing

Modal choice Modal change Mode and destination choices
determined in a nested logit model (NL),
in which private car is unavailable. $e
utility of using SAV is modelled as the
utility of “private car as a passenger”
option with a reduction of monetary

costs by 70% per mile.

Destination
choice Acceptance of longer trips

Hörl et al. [38] SAV Modal choice Modal change

Modal choice based on MNL model in
which utility functions consists of VOT
andmonetary costs. VOTfor SAV option
modelled at 65% of a private car. Waiting
for an AV modelled at twice the VOT of
car travel. SAV monetary costs assumed

at $0.85/mile.
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Table 5: Continued.

Study NMS Modelling
step Behaviour change Modelling practice

Liu et al. [40] SAV Modal choice Modal change

Modal choice based on MNL model in
which utility functions consists of VOT
and monetary costs. In-vehicle VOT for
SAV option modelled at 50% of a private
car in-vehicle VOT. Waiting for AV

modelled at twice the VOT of car travel.
Cost of SAV is subject to scenario

analysis and consists of distance-based
fee of $0.50, $0.75, $1, or $1.25 per mile
and a fixed cost of $1, $2, and $3 subject
to the starting location of the trip (urban,

suburban, and extra urban areas).

Martinez and Viegas
[41]

SAV (two services:
taxi-like and
minibuses)

Modal choice Modal change

SAVs replace private cars, buses, and
taxis which are not available as modal
choices. A modal choice determined by a
nested logit model along with a series of
sequential rules that form a rational

decision-making process. Rules concern
length of the trip, transit pass ownership,

and a number of transfers.

Oh et al. [20] SAV with
ridesharing

Modal choice Modal change $e alternative specific constants in the
utility function and willingness-to-pay
for SAV are based on current taxi

utilities, tuned so that the proportion of
SAV mode shares to rail shares is similar
to that predicted by the estimated mode
choice model on the weighted stated
preference sample under different

pricing assumptions. $e price of SAV is
subject to scenario analysis and studied
at 75%, 100%, and 125% fare of a taxi.

Destination
choice Acceptance of longer trips

Vyas et al. [46] AV

Activity
scheduling

Increased number of non-
mandatory trips, Increased
number of trips for mobility

impaired

Assumed scenario-based 25%/50%
decrease in VOT as compared to a

regular car.
$e mobility impaired are allowed to use
the AV if they are a part of a household

that owns one. AV availability for
children subject to the scenario analysis
of age required for a child to use AV by

themselves.

Modal choice Modal change NL model to assess modal choice along
with parking strategy.

Destination
choice Acceptance of longer trips

Assumed scenario-based 25%/50%
decrease in VOT as compared to a

regular car.
Time of day

choice
Changes in daily activity

timing

Modal choice Shifts in parking habits

NL model to assess parking behaviour
implemented on a modal choice level.
Traveller can park an AV in close

proximity or send the car back home
making it available to other household

members.
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Table 5: Continued.

Study NMS Modelling
step Behaviour change Modelling practice

Balac et al. [26] Station-based
carsharing Modal choice Modal change

Modal choice determined by MNL. $e
utility functions include the VOT and

travel time as well as monetary costs. For
carsharing, in-vehicle travel time is

modelled as a regular car, and access and
egress times are modelled at value of

walking time. Monetary costs include fixed
rental fee, rental time fee, and distance fee.

Ciari et al. [32] Free-floating
carsharing Modal choice Modal change

$e utility functions include the VOT
and travel time as well as monetary costs.
For carsharing, in-vehicle travel time is
modelled as a regular car, and access and
egress times are modelled at value of
walking time. Monetary costs include
fixed rental fee, rental time fee, and

distance fee. $ere is a cap on rental time
fee to represent available services.

Heilig et al. [36]
Station-based and

free-floating
carsharing

Modal choice Modal change

Modal choice determined by MNL based
on the results of SP. Carsharing option is
available for individuals without private
vehicles. $e utility functions include
socio-demographic variables, land use,

travel time, and cost. $e cost of
carsharing is based on available services:
0.29€ for free-floating service and 2.80€
per hour and 0.23€ per kilometre for

station-based service.

Mart́ınez et al. [42] Station-based
carsharing Modal choice Modal change

Modal choice determined by MNL based
on the results of SP. $e utility functions
include socio-demographic variables,

land use, travel time, and monetary cost.
$e cost of carsharing is based on

available services: 0.29€/min and 0.19€/
min when the car is reserved.

Rodier et al. [44] Dynamic
Ridesharing Modal choice Modal change

Identification of trips that meet the
maximum income and minimum trip

length conditions for which ridesharing is a
modal option. Ridesharing mode

determined upon individual acceptance of
departure time flexibility, proximity, and

group size.

Chen et al. [30] Dynamic
Ridesharing Modal choice Modal change

Agents divided between those with mode
set and those with mode choice. Final
ridesharing mode choice for flexible

agents based on the earliest arrival time
at destination.

Wang et al. [49] and
Wang et al. [48]

Dynamic
Ridesharing

Modal choice
Destination

choice

Modal change

$e number of shared rides is
maximised, subject to time and space
limitations and detour tolerance. Priority

is given to social network friends.

Acceptance of longer trips
Ridesharing users are changing the

destination if a driver is heading for a
similar activity location.

Hebenstreit and Martin
[35] Micromobility Modal choice Modal change

Modal choice determined by MNL
model. $e utility of bike-sharing

consists of access and egress times as well
as the likelihood of finding a bicycle on
an origin station and available parking

place at the destination station.
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Table 6: Modelling techniques used in studies based on other methodologies of demand estimation.

Study Considered NMS Behaviour change Modelling practice

Lavieri et al.
[39] AV, SAV Shift in vehicle ownership

Multinomial probit kernel for the discrete choices to assess what
factors and attributes impact the level of interest of individual in
owning AV or using a SAV service. $e level of interest was

measured at 5-point grading scale.

Truong et al.
[45] AV, SAV

Modal change

Scenario-based analysis. In the first scenario, 10% of public
transport trips made by members of households, where there are
fewer motor vehicles than people of driving age, are assumed to
switch to AVs and 20% of public transport trips by members of no
car households are assumed to switch to AVs. Second scenario also

introduces an assumption that 10% of travellers switch from
walking and cycling to AVs.

Increased number of trips
of mobility impaired

$e behaviour of population betweeen 30-65 is assumed to be
natural and unchanged. Gaps in travel need for the 12–17 age group
and for the 18–24 and 25–29 age groups are measured by the
differences between the actual travel need curve and the linear

extrapolation of the natural increase trend, and gaps in travel need
for the 66–75 and 76+ age groups are measured by the differences
between the actual travel need curve and the linear extrapolation of

the natural decline trend.

Wadud et al.
[47] SAV

Increased number of non-
mandatory trips

Assumed scenario based on 50–80% reduction in VOTand 60–80%
reduction in insurance costs, a fraction of operational costs.

Increased number of trips
of mobility impaired

$e decline in travel activity between ages 44 and 62 represents the
natural rate of decline in travel needs, and that the accelerated
decline after age 62 represents travel that is foregone due to

impaired driving abilities. $e demand that could be filled through
automation is calculated as the difference between the actual
demand and the linear extrapolation of the age 44–62 trend.

Wen et al.
[50]

Public transport
compliment with SAV Modal change

NL model based on the historical observations, simulated level of
service, and fare and AV preference assumptions. $e fare is

estimated based on a similar Uber service with base fare: $0.83,
distance fare: $0.55/km, and time fare: $0.11/min. System

performance is evaluated and returned to the mode choice in a
feedback loop. $e level-of-service indicators are service rate, wait

time, and detour factor.

Harper et al.
[19] AV Increased number of trips

of mobility impaired

Assumptions: non-drivers travel as much as the drivers within each
age group and gender. Elderly drivers without any travel-restrictive
medical condition in the youngest elderly cohort (65–74) travel as
much as working age adults (19–64) within each gender. Elderly
drivers with and without any medical conditions will travel as much
as a person 65 years of age within each gender. Working age
mobility impaired adult drivers (19–64) will travel as much as
working age adults without medical conditions in each gender.
Elderly drivers with travel restrictive medical conditions in the

youngest elderly cohort (65–74) will travel as much as working age
adults within each gender.

Millard-Ball
[43] AV Shifts in parking habits

Private AV owner can choose from three parking strategies: parking
on a free but time limited parking spot and changing a spot after
required time, returning home to park, and cruising. $e chosen
strategy is the one minimising the costs. Cost of the first strategy is
modelled as the cost of drive towards a parking location in a free on-
street space and return back to the owner. $e cost of repositioning is
assumed as marginal. In the second strategy, the cost consists of
driving home and back to the user. Driving cost of $0.13/mile is

assumed for both strategies. For the cruising strategy, the cost is speed
dependent and minimised by finding the routes with lowest travel

speeds.
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or could be constant. However, those assumptions could be
optimistic as driving efficiency of AVs could be subject to
regional policies for instance in the case of dedicated lanes
for platooning [21], a situation not considered in reviewed
studies.

3.3.3. Other Methodologies. Although TBM and ABM are
usedmost often for demandmodelling, a number of reviewed
studies have drawn from other methodologies to estimate the
behaviour shifts. Incorporation of those methodologies into
TBM or ABMmight not be straightforward, either because of
aggregation of population (in case of TBM) or because of
necessity to include an additional modelling step supported
by supplementary assumptions (in case of ABM). $e
behavioural changes that were studied in methodologies
outside of the typical demand estimation were (i) the in-
creased number of trips of mobility impaired, (ii) shifts in
parking habits, and (iii) shifts in vehicle ownership.

$e studies that focused on estimating the demand
induction caused by increase in accessibility for mobility
impaired followed a string of assumptions about the needs of
travel for three demographic groups, which could potentially
have the highest impact: elderly, disabled, and non-drivers.
For instance, Harper et al. [19] assumed that non-drivers and
disabled would travel as much as their age and gender non-
disabled driving counterparts in the population, whereas the
elderly were assumed to travel as much as the younger
working adults in the population. To better denote the
natural demotion of travel needs, Truong et al. [45] following
Wadud et al. [47] proposed to analyse the current travel
demand for population and assumed that early age increase
in travel and late age decrease represent the natural changes
in the need to travel.$e induction of demand was estimated
to be the difference between the natural travelling needs and
the current demand. Nevertheless, both approaches neglect

the fact that the travelling patterns may change drastically
once AVs are introduced, encouraging the population to
participate in more leisure, non-mandatory activities, in-
cluding the mobility impaired.

An assumption that the travel demand will not change
was also made by studies trying to assess the future vehicle
ownership. Zhang et al. [52] proposed a model that analysed
the current travelling patterns of household to see if reduced
number of AVs could satisfy the demand by relocating the
vehicle between the household members. Nevertheless, the
proposed approach ignored the possibility of development
of alternative business models and a shift in vehicle own-
ership towards sharing economy, a factor considered by
Lavieri et al. [39] who developed a multinomial probit kernel
model based on survey data to assess the future vehicle
ownership vs. sharing preferences in the USA.

Researchers that chose to look beyond the TBM or ABM
methodologies also focused on assessing the future shifts in
parking habits caused by vehicle automation. $e studies
followed an assumption that users would choose the most
cost-effective parking strategy. $e costs were modelled as
operational driving costs (distance based) and an assumed
parking fee [43, 53]. Moreover, Zhang et al. [53] tried to
analyse the changes in daily activity timings caused by the fact
that AV can drop off its user in front of the activity location,
and no extra time is needed for egress or looking for a parking
spot. Nevertheless, the adopted cost minimising approach
ignores entirely the personal preferences for parking, as users
might prefer to make the vehicle available to other household
members or otherwise would prefer it to keep it parked
nearby because of environmental concerns or other factors.

3.4. Review of Results and Impact of NMS on Mobility.
$is section provides a wider look at the results that
reviewed studies presented. $e purposes of reviewed

Table 6: Continued.

Study Considered NMS Behaviour change Modelling practice

Zhang et al.
[52] AV Shift in vehicle ownership

100% of AV market penetration is assumed. $e greedy scheduling
algorithm is used to minimise AVs needed to satisfy the travel

demand of all household members in each household. If there is not
enough time to relocate the AV to serve all household trips, the

vehicle could not be replaced. Otherwise, if all trips generated by the
household could be met with less vehicles, the vehicle ownership of
the household is reduced. For households that can reduce vehicle
ownership, an optimization mixed-integer programming problem is
used to determine the minimum amount of unoccupied VMT

generated during AV repositioning process.

Zhang et al.
[53] AV

Change in daily activity
timing

Joint equilibrium of AV route parking location choice.$e AV users
are assumed to omit the walking time for parking location to their
activity location, leaving the house later. $e assumptions are that
for the early arrival commuters, marginal saving in early schedule
delay cost is larger than the marginal increase in the cost of self-

driving AV to find a parking space.

Shifts in parking habits

$eAVs select an appropriate parking location, which will minimise
the total individual travel disutility based on a joint evaluation of
distance travelled and cost. In line with the parking choice and the
willingness to minimise individual travel disutility, the AV chooses

shortest paths with minimal travel time.
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studies varied; therefore, their outcomes are often incom-
parable, although there are linkages between the results. For
this study, the results were divided into four categories:
regional traffic implications, user preferences, findings re-
lated to NMS market potential, and environmental
implications.

3.4.1. Regional Traffic Implications. Reviewed studies tried
to assess the impact of NMS on urban congestion, which is
a major transport negative externality in numerous urban
areas. $e researchers assessed that dynamic ridesharing
could lower traffic volumes during peak hours by more
than 20% [33, 51], whereas deployment of AVs could result
in an increase in congestion of up to 28% [20, 24]. Fur-
thermore, due to the variety of assumptions and selective
behaviour change incorporation, the results tend to
contradict one another. For instance, Dias et al. [34]
predicted 2% increase in average speeds, while Levin and
Boyles [22] argued that the average speeds would in fact
decrease. Chen and Kockelman [29] stated that increase in
VHT is expected in networks with high transit usage and a
decrease in networks with high private vehicle usage.
Nevertheless, despite congestion implications, the cost and
VOT reduction of travelling would result in higher ac-
cessibility levels.

Number of trips could also be used as a proxy for
congestion implications of AV deployment, but the results
are found to be similarly contradictory suggesting 46%
decrease [37] or stability [25] or 2.7% increase. $ose
differences are a result of distinctive assumptions in regard
to the future AV adoption strategies and levels as well as
selective and various behaviour change implementations.
For instance, Heilig et al. assumed that the cost of the SAV
would be 70% lower than a passenger vehicle, while Aze-
vedo et al. opted for a 40% reduction compared to a taxi.
Low cost of SAV service assumed by Heilig could therefore
result in numerous agents to opt out of public transport or
walking towards SAV, which in turn results in higher
congestion.

Analysts, who tried to assess the demand induction
caused by accessibility gains for mobility impaired, agree
that the AV deployment will result in increased number of
trips, with Truong et al. [45] expecting 4.14% increase in
number of trips caused by higher activity of the elderly,
whereas Harper et al. [19] predicted that 9% non-drivers
could increase VMT by 9% while elderly drivers and those
with medical conditions could increase VMT by 2.2% and
2.6%, respectively.

Most often, the estimation of regional traffic implications
of introduction of NMS is reflected through an analysis of
VMT. $e analysed studies state that ridesharing could
decrease VMT by 19% [44]. Papers that study the impact of
AVs on VMT have contradictory results. Martinez and
Viegas [41] state that if private cars, buses, and taxis were
replaced by SAVs, with the possibility of ridesharing, VMT
could decrease by 30%, whereas other studies that incor-
porate additional behavioural shifts implicate that VMT
would increase by 3–20% [31, 34, 46] with two studies

indicating a 60% rise [47], also due to repositioning and
empty rides of SAVs [38]. Basu et al. [24] tried to analyse
how the VMT of SAV services is distributed coming to a
conclusion that 60% of total VMT is spent while travelling
with a passenger, 35% while going for pick-up or parking,
and 5% for empty vehicle cruising. Visibly, the VMT is
higher in the studies that considered numerous behavioural
changes and assumed a lower VOT for SAVs (Table 5),
resulting in a higher uptake of a service.

Nevertheless, the findings of all those studies heavily
depend on the extent to which behavioural changes were
implemented, thus making their results incomparable and
partial.

3.4.2. Regional Policy Implications. Effective policies to-
wards new solutions could alter the behaviour of indi-
viduals, serving the vision of policymakers. $erefore, a
number of reviewed studies have also assessed various
policy measures aimed at transport management and VMT
reduction. Vyas et al. [46] predicted that increasing parking
costs could result in as high as 15% increase in empty AV
trips. Bischoff and Maciejewski [74] also studied the im-
plications of parking policies predicting that with 10 and
20% AV penetration, the average time needed to find a
parking spot will decrease by 5 to 15% if AVs park on
regular spots, 9% to 16% if AVs use garage, and 6 and 20% if
the AVs are cruising. Parking strategies were also assessed
by Millard-Ball [43] who estimated that free on-street
parking with repositioning is preferred by 13% of users,
typically for long stays, returning home is adopted by 8% of
users, mainly by individuals who live close to the centre,
and 40% of users would adopt cruising which is the
cheapest option.

Oh et al. [20] tried to assess the impact of a different
policy measure in presence of SAV service intro-
duction—capping the vehicle population, which resulted in
a 4% decrease in VMT.$e regional policy driven results did
not only focus on AV and SAV deployment, as Balac et al.
[26] claim that carsharing is used three times more often
provided one-way trips are allowed.

3.4.3. User Preferences. In terms of user preferences,
reviewed studies most often focus on the modal shifts. In-
troduction of AVs and SAVs could have the largest impact
on the change of modal preferences, with studies predicting
that around 80% of public transport trips could be replaced
by SAV [25, 38] and more than 60% by AVs [22]. Oh et al.
[20] suggested a more conservative number claiming that
24.8% of public transport users and 75% of taxi users would
opt for SAVs in the future. Basu et al. [24] second the claim
stating that taxi users would benefit from lower cost of SAV
services. Certain reviewed studies also point to the decrease
in walking, claiming that 57% of walking trips could be
replaced by SAVs [38]. Nevertheless, those results could vary
according to the length of the trip, as some researchers
predict that even with SAV services widely available, walking
and cycling could be the preferredmode on short trips under
2 km [37]. $e variety of the resulted impact on the user
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preferences is a result of various VOT, cost, and behavioural
shift assumptions, with studies that assume lower monetary
costs and higher VOT reduction, obtaining higher SAV
market uptake.

It would seem that unrestricted introduction of SAV
services could lead to a significant cannibalization of public
transport. Nevertheless, reviewed studies also point at the
reduction of private car usage with Chen and Kockelman
[29] claiming that 90% of SAV trips were previously handled
by private cars and Oh et al. [20] identifying that 20.2% SAV
users previously chose their private cars. $e difference
could be caused by varied assumption of the cost of SAV
used by Chen and Kockelman [29] which made the SAV
trips more accessible to all income groups basing the price
on agents’ income with simultaneous decrease in VOTspent
in the SAV. Moreover, SAVs do not necessarily have to
replace the public transport services, but could rather
complement them and serve as first and last mile support, as
proven by Wen et al. [50] who found that SAVs with public
transport connection could replace 43% of park and ride
trips and 10% of car trips.

Introduction of AVs and SAVs will also highly impact
the vehicle ownership preferences, with claims that younger
and highly educated individuals living in urban areas are
more inclined to own AV or use SAV services [39].
Moreover, if the current demand was not subject to changes,
automation of vehicles could result in 9.5% decrease in
ownership, as one vehicle could be shared by couple of
household members with self-relocation. Besides, with 15
minutes permissible delay, the vehicle ownership declines
even further (by 12.3%) [52].

$e results also unravel the usage preferences for car-
sharing, suggesting that various types of carsharing are used
for different purposes, free floating carsharing used more
often by young users [42] and commuters and station-based
carsharing used for leisure purposes [32]. Studies that
predict modal shifts changes caused by carsharing indicate
that 26%–30% of car users, 23% of bike users, 22%–32% of
public transport users, and 17% of walking trips could switch
to carsharing [32, 42]. Moreover, the results of analysis of
Heilig et al. [36] prove that carsharing is used provided the
optimization of fleet size and operation.

Dynamic ridesharing preference results prove that a rise
in user trust could be a major enabler for the adoption of
technology, as users prefer to rideshare with someone form
their social network circle [48].

3.4.4. NMS Market Potential and Management. $e studies
that looked at the market potential of NMS focused on
predicting the market penetration of SAV services.
Depending on the assumptions on VOT implications, model
of costs and fares used in the study, and fleet size, the results
varied, estimating the SAV penetration anywhere from 5.8%
to 43% [20, 29, 38, 41]. Moreover, results of Oh et al. [20]
suggest that the achievable sharing rate of SAV rides could
be significant with 65% of trips shared, which potentially
could alleviate negative externalities of transport. $e
sharing rate, however, could be subject to location of SAV

implementation with various preferences across the
continents.

Moreover, a couple of reviewed studies looked at the fleet
management and profitability. Wen et al. [50] have found
that economy of scale relation between the fleet size and
demand for the service. Nevertheless, Chen and Kockelman
[29] who examined the relationship between the profitability
for the fleet manager and the fare levels claim that it is more
appealing to businesses to target the high income earners,
whose VOT is more substantial and would be willing to pay
more for the ability to multitask during the commute. $e
study also proved that zone-dependent fares could be a tool
used for rebalancing of the fleet, minimising the empty rides
and possibly limiting the urban sprawl.

3.4.5. Environmental Implications. Environmental impli-
cations of NMS introduction were not the major concern of
the majority of the studies, as only two studies focused on
AVs and two studies performed by fellows from the same
research group focusing on dynamic ridesharing reported
any environment related results. All those studies report a
positive environmental effect of the innovation introduction
and adoption, through CO2 emission reduction. Never-
theless, Coulombel et al. [33] claim that the reduction could
be three times as high if not for the following behavioural
implications of dynamic ridesharing introduction, while
Wadud et al. [47] claim that a shift from privately owned,
privately used vehicles to SAVs might decrease energy,
vehicle travel, and emissions in several ways, either through
more efficient driving and platooning or through pooling the
rides in higher than 5 occupancy vehicles.

$e extent to which substantial behaviour changes re-
lated to AV introduction will have on CO2 emissions (so
called rebound effect) has not yet been assessed according to
the knowledge of the authors; however, in light of findings
provided by Coulombel et al. [33] that indicate the rates of
the rebound effect, such study needs to be conducted, as our
hopes for achieving more sustainable transportation with
AVs could be premature.

4. Conclusions and Further Research

$is paper is a systematic review of studies that incorporated
behaviour changes caused by deployment of new mobility
services. $e study summarised and categorised the be-
haviour changes caused by the introduction of NMS as well
as reviewed a variety of applied modelling practices and
assumptions from existing studies. Additionally, the paper
provides an overview of results that the studies obtained,
underlining the impact and importance of adequate
behavioural modelling. $e authors believe that this review
will prove to be useful to the scientific community and
transport modellers as an exhaustive and easy to navigate
content repository and field summary.

$e representation of behavioural shifts gains impor-
tance especially in light of arising long-lasting paradigm shift
caused by COVID-19 pandemic we are currently experi-
encing. $e pandemic could result in significant long-term
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travel behaviour changes, caused by a shift towards tele-
working or avoidance of transit that requires contact with
strangers. Nevertheless, as the consequences of the pan-
demic are yet to be determined, the travel behaviour changes
caused by it are omitted in the paper, although they should
not be recognized as irrelevant.

$e analysis highlights that all NMS could alter be-
haviour by extending the offer of available transport modes,
shifting the modal choices of individuals. Nevertheless, the
ability to let go off the wheel in the AVs could be truly
revolutionary. $e autonomy means lower travel costs not
only for private vehicles but also for ride-hailing services, as
well as overall increase in road capacity, introduction of new
parking strategies, ability to multitask in the vehicle, and
potential harvest of users currently not able to drive a
conventional vehicle. Innovations that lower travel cost-
s—autonomous vehicles and dynamic ridesharing—have the
highest potential impact on travel behaviour, encouraging
users to participate in additional activities or to accept
destinations further away either in the short or long term,
possibly leading to relocation. Finally, NMSs that offer fully
available vehicle replacement services such as carsharing or
SAVs could also alter the vehicle ownership rates. For the
purpose of this article, categorisation and summary of be-
haviour changes caused by deployment of NMS were made,
and its summary is presented in Figure 2.

$e analysed studies have mostly focused on assessing
one of the considered NMSs, the majority of which inves-
tigated AVs either private or shared (with potential possi-
bility to share a ride in some cases). Limiting the analysis to
one innovation could bring insights into its impact on the
urban area, and it does not however reflect the actual state of
modern and future cities, where all innovations are mixed
and available at the same time. To better represent the urban
environment and provide a more realistic assessment, fur-
ther research should include a variety of NMSs to choose
from. $ose could include privately owned AVs and SAVs
with the opportunity to share a ride. Additionally, it is
crucial to adequately represent privately owned and shared
micromobility, which are gaining importance in urban areas
which aim to limit private car dependency. Of the NMS
considered in this paper, carsharing services could be
omitted as the service could be replaced by SAVs in the
future.

$e behaviour changes linked to the deployment of
NMS are often modelled as a fraction of followed demand
estimation framework—TBM or ABM. However, ABMs
are more widely used because of their disaggregation
which allows to better represent individual preferences.
$e behaviour changes linked to AVs are most often
implemented in scenario-based analysis that follows as-
sumptions on future travel costs and decrease in VOT
linked to the possibility to multitask in the vehicle.$e said
assumptions are changing the utilities of new options and
therefore the behaviour of modelled subjects that seek
utility maximisation. Nevertheless, the used utility func-
tions that consist of assumed VOT and costs often omit
important individual traits, lifestyle choices, and personal
preferences which could heavily impact future decisions

about NMS usage. Ideally, each step of the model (each
discrete choice model) could consider socioeconomic at-
tributes as well as user preferences to better mimic the
individual, plausible human behaviour, contributing to a
more adequate representation of the entire demand
estimation.

$is could be achieved by using data coming from
stated preferences experiments that gather respondents’
choices, socioeconomic information, and lifestyle traits,
such as environmental concern and internal innovativeness
of individuals, through specifically altered revealed pref-
erence questions. However, stated preference experiments
often lead to biased results, especially when the choices are
strictly hypothetical because the analysed services are not
yet ready for implementation, and respondents do not have
any experience with them. Alternatively, the studies that
focus on NMS still in development and testing phases could
harvest user data and feedback from living labs, in which
users are able to experience and co-create the innovative
solutions in realistic environments. Acknowledging the
importance of testing the interaction between people and
NMS, of involving citizens in the co-design of future cities
and of providing innovation players with safe as well as
defined environments to test their behavioural assump-
tions, living labs are currently flourishing in Europe. $ey
therefore promise to play an important role in shaping the
future of European cities [80]. Both qualitative and
quantitative experimental data collected from living labs
could indeed be used coupled with data analytic techniques,
such as machine learning, to predict the demand to better
represent individual preferences for innovation lowering
the risk of unrealistic results.

$e methodologies from outside the TBM and ABM
focus on behavioural changes linked to deployment of AVs,
which are often omitted in TBM and ABM framework—
shifts in vehicle ownership, shifts in parking habits, and
increased number of trips of mobility impaired. $e pro-
posed approaches use available data on vehicle ownership,
parking costs, and travel gaps to predict the future behav-
iour. Nevertheless, those studies do not take into account
remaining behaviour changes analysed in ABMs and TBMs
that could heavily impact the results. Future studies could
strive to implement those already proposed frameworks into
an ABM to achieve a fully comprehensive study that would
predict the results of NMS most realistically.

$e remaining NMSs are also incorporated within the
ABM and TBM framework. $e implementation is often
more adequate and concerns the impact of individual
characteristics, as the researchers did not need to assume
the costs of services which are already available and were
more willing to use stated preference experiments with a
known service. Nevertheless, the reviewed studies often
decide to omit some of the behavioural changes, which
could result in misleading results and misguide the poli-
cymakers in their decisions. In future studies, researchers
could strive to represent all the identified behavioural
changes caused by NMS to avoid the risk of omitting
significant rebound effects caused by changing everyday
mobility patterns.
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Even though certain studies already start to implement
scenario-based analysis of regional policies concerning
parking and limiting the overall number of vehicles, much
more could be done in the �eld. Further studies could
consider simulating dedicated platooning lanes, super-
blocks, car restricted zones, or tradable credit schemes
used for mobility management. Provided su�cient data
are available, the studies could be developed corre-
spondingly for various countries or density areas (urban,
rural, etc.) to assess the in�uence of regional, national, or
geographical factors that also impact the demand for
transport services. Comparison of scenarios of plausible
policy developments in a given area would be of utmost
importance to policymakers that often struggle to identify
the e�ect of their policies in light of innovation
deployment.

Finally, not many of the reviewed studies report results
of environmental impact of NMS deployment, with only two
studies focusing on the rebound e�ect of dynamic ride-
sharing. Research conducted by Coulombel et al. [33]
suggests that rebound e�ects caused by behavioural shifts
could lower the bene�ts of innovation deployment to one
third of its potential. In light of current environmental focus
of numerous urban areas, there is an arising need of impact
assessment of NMS deployment on transport environmental
externalities such as energy consumption, CO2 emission, or
air quality. Furthermore, an understanding of how each
identi�ed and studied behaviour change, caused by de-
ployment of AVs and SAVs, contributes to environmental
factors could be of utmost importance for regional and
national policymakers aiming at achieving greener andmore
sustainable regions.
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