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Local Principal Component Analysis can be performed over 
small domains of an embedded Riemannian manifold in order 
to relate the covariance analysis of the underlying point set 
with the local extrinsic and intrinsic curvature. We show 
that the volume of domains on a submanifold of general 
codimension, determined by the intersection with higher-
dimensional cylinders and balls in the ambient space, have 
asymptotic expansions in terms of the mean and scalar 
curvatures. Moreover, we propose a generalization of the 
classical third fundamental form to general submanifolds 
and prove that the local eigenvalue decomposition (EVD) 
of the covariance matrices have asymptotic expansions that 
contain the curvature information encoded by the traces of 
this tensor. This proves the general correspondence between 
the local EVD integral invariants and differential-geometric 
curvature for arbitrary embedded Riemannian submanifolds, 
found so far for curves and hypersurfaces only. Thus, we 
establish a key theoretical bridge, via covariance matrices at 
scale, for potential applications in manifold learning relating 
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the statistics of point clouds sampled from Riemannian 
submanifolds to the underlying geometry.
© 2020 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Integral invariants based on local principal component analysis have been introduced 
in the literature, [1], [2,3], [4,5], [6,7], as theoretical tools to perform manifold learning 
in computer graphics and geometry processing of low-dimensional submanifolds, like 
curves in the plane and surfaces in space. This approach aims to provide a theoretical 
link between the statistical covariance analysis of the underlying point-set of a domain 
and the differential-geometric invariants at a point of the domain inside the manifold. 
These local domains are usually defined by intersecting the submanifold with a ball in 
the ambient space to cut out a point-set whose covariance matrix has an eigenvalue 
decomposition that asymptotically expands with the scale of the ball. The relevance 
of this analysis lies in the fact that the local eigenvalue decomposition series encode 
information on the dimension, tangent and normal spaces and, hopefully, the curvature 
information of the submanifold at the center of the ball.

The integral invariant viewpoint has been developed theoretically and numerically 
especially in [8], [9], [4,5], [10], [6], [11], in order to process discrete samples of points to 
determine features and detect shapes at scale, or study descriptor stability with respect 
to noise [12], [13,14]. Voronoi-based covariance matrices have been also been of interest 
[15,16]. The discretization and numerical analysis to apply this approach to point clouds 
is a complementary development to the analytical establishment of this type of corre-
spondences, e.g., see [17,18], [19,20] or [21]. The eigenvalue decomposition of covariance 
matrices of spherical intersection domains was introduced by [22,23] and [24,25] in order 
to obtain local adaptive Galerkin bases for the invariant manifold of large-dimensional 
dynamical systems. However those studies did not develop the second order structure 
of the local eigenvalue asymptotic series to relate covariance analysis to curvature. The 
present work precisely accomplishes that goal. We have shown, [26], that for regular 
curves in Rn the Frenet-Serret frame is recovered in the scale limit, and ratios of the 
covariance matrix eigenvalues provide descriptors at scale of the generalized curvatures. 
In the present work, first introduced in [27], we generalize to embedded Riemannian 
manifolds of general codimension our previous study of local eigenvalue decomposition 
for hypersurfaces [28], that followed the theoretical study of surfaces in [13]. We shall in-
troduce a generalization to arbitrary codimension of the classical third fundamental form 
in order to encapsulate all the curvature information hidden in the local eigenvalues at 
second order. Our main results show how the eigenvalue decomposition of the covariance 
of cylindrical and spherical intersection domains has an asymptotic expansion with scale 
given in terms of the dimension, and the extrinsic and intrinsic curvature, as encoded in 
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the traces of the third fundamental form. When the eigenvalues are different the limit 
eigenvectors are also shown to converge to a frame of generalized principal directions 
from these tensors.

The structure of the paper is as follows: in section 2 we define the integral invari-
ants in the context of general Riemannian submanifolds, along with the two types of 
kernel domains on which we will perform the local eigenvalue decomposition (EVD) in 
the Euclidean case. In section 3, the study of the geometry of submanifolds via the 
second fundamental form is briefly reviewed and the little known third fundamental 
form is generalized to submanifolds of general codimension. In section 4 we compute the 
volume, barycenter and covariance matrix of a cylindrical domain inside an embedded 
submanifold. In particular, we show that the scaling of the eigenvalues of the covariance 
matrix singles out the tangent and normal spaces of the manifold at the point by the 
span of the corresponding limit eigenvectors, and how the next-to-leading order term 
in the asymptotic series of the eigenvalues is determined by those of traces of the third 
fundamental form. In particular this gives a closed formula for the integrals appearing in 
the eigenvalue expansions of [24,25]. In section 5 an analogous analysis is carried out for 
the domain determined by the intersection of a ball in ambient space with the manifold, 
which introduces considerable correction terms with respect to the previous case. This 
leads to an eigenvalue decomposition of the covariance matrix with tangent part given 
in terms of the Weingarten operator corresponding to the mean curvature normal vec-
tor; the normal part coincides with the cylindrical case. Finally, in section 6 we obtain 
the limit ratios of the eigenvalues in terms of this curvature information, and invert the 
asymptotic series to get descriptors at scale for the case of hypersurfaces. The cylindrical 
descriptors complement the spherical ones of [28] due to better error bounds.

These results show how local eigenvalue decomposition can be carried out on an 
embedded Riemannian submanifold to probe its local geometry. It establishes the most 
general relationship between the statistical covariance analysis of the underlying point-
set of the manifold and the classical differential-geometric curvature tensors, furnishing 
a conceptual dictionary between covariance eigenvalues and eigenvectors and generalized 
principal curvatures and principal directions. Potential applications to manifold learning, 
optimization and geometry processing are promising, e.g. by providing an algorithm to 
characterize geometric descriptors at scale via this correspondence, cf. [28].

2. Integral invariants of Riemannian submanifolds

In our context, integral invariants are local integrals in ambient-space variables over 
domains of an n-dimensional submanifold M ⊂ N determined by intersection with 
spheres or cylinders sitting in N . Two such objects are the volume of the domain and 
the point in the ambient manifold that represents the center of mass of the region. A 
more interesting object is the covariance matrix obtained by integrating the relative 
covariance of the degrees of freedom of the points in the domain, i.e., the products of 
the coordinates of the points with respect to a chosen frame. In order to get a frame 
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independent invariant, one takes the eigenvalue decomposition of the covariance matrix. 
Since the kernel domains have a natural scale, e.g., the radius of the sphere, it is useful 
to think of them as a matrix-valued function of scale at every point. Therefore, these 
invariants correspond to eigenvalues and eigenvectors that can be interpreted respectively 
as a set of scalar- and frame-valued functions of scale at every point. We define here these 
general intersection domains in terms of the exponential map expp : TpN → N , i.e., by 
using the Riemann normal coordinates of N around p ∈ M. Our computations however 
will be performed in the Euclidean case, N = Rn+k, but these definitions cover possible 
future extensions to matrix manifolds, e.g., to relate this work to information geometry. 
Here, rp denotes the injectivity radius of N , cf. [29].

Definition 2.1. The spherical component of radius ε ≤ rp, at a point p of a submanifold 
M of a Riemannian manifold N is the domain given by:

Dp(ε) := M∩ {q ∈ N : ‖ exp−1
p (q)‖ ≤ ε ≤ rp}. (1)

In the Euclidean case this is just the set of points of M inside a Euclidean (n +k)-ball 
centered at p.

An element V in the Grassmannian Gr(m, n + k) is an m-dimensional linear subspace 
of Rn+k. Fixing a point and m-dimensional ball inside V , the standard three dimensional 
cylinder over the xy-plane can be generalized to an V -cylinder by taking all points in 
the ambient space that project down onto the ball inside V .

Definition 2.2. The cylindrical component of radius ε ≤ rp, at a point p of a submanifold 
M of a Riemannian manifold N over the m-plane V ∈ Gr(m, n + k), upon a fixed 
identification of TpN ∼= Rn+k, is the V -cylinder intersection:

Cylp(ε,V ) := M∩ {q ∈ N : ‖projV (exp−1
p (q))‖ ≤ ε ≤ rp}, (2)

where projV (·) is the orthogonal projection onto V as a linear subspace of TpN . We shall 
write Cylp(ε) when V = TpM is assumed.

In the Euclidean case this is the set of points of M whose projection to the linear space 
V is inside the n-dimensional ball centered at p. For Riemannian manifolds embedded 
in Euclidean space, M ↪→ N = Rn+k, we have exp−1

p (q) = q − p as usual vectors, and 
one recovers the common definition of local PCA invariants studied in the literature 
(e.g., [13]). Thus, we shall compute the following objects for the domains above, D =
Dp(ε) or Cylp(ε), asymptotically with the scale ε:

Definition 2.3. Let the domain D ⊂ Rn+k be a subset such that the induced measure 
dVol on D by restriction of the Euclidean volume form is well-defined, for example a 
compact subset of a Riemannian submanifold, then the integral invariants of D are to 
be defined as: the volume or mass
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V (D) = E[1 · χD(X)] =
∫
D

1 dVol, (3)

the barycenter, or center of mass,

s(D) = E[X · χD(X)] = 1
V (D)

∫
D

X dVol, (4)

and the eigenvalue decomposition {λμ(D), eμ(D)}n+k
μ=1 of the tensor or inertia, or covari-

ance matrix centered at q ∈ D, (where usually q = s(D) is chosen):

Cq(D) = E[(X − q) ⊗ (X − q)T · χD(X)] =
∫
D

(X − q) ⊗ (X − q)T dVol, (5)

where the tensor product is to be understood as the outer product of the components 
in a chosen basis. E represents taking the expectation value over all possible X in the 
ambient space, and χD is the set-theoretic characteristic function of D (i.e., 1 if and only 
if X ∈ D, zero otherwise).

By an integral invariant descriptor F (D) of some geometric feature F of a measurable 
domain D, we mean any approximation of F given in terms of V (D), s(D) and the 
eigenvalue decomposition {λμ(D), eμ(D)}n+k

μ=1 of Cq(D). Our domain D of will possess 
a natural scale ε determined by the size of the ball or cylinder that defines it, we shall 
talk about descriptors at scale, cf. [28].

Our purpose is to establish the most general correspondence between the local eigen-
value decomposition, in this covariance analysis sense, and differential-geometric curva-
ture. In particular this dictionary is very well represented by the asymptotic relationship 
of Corollary 6.1, which generalizes to any Riemannian submanifold the formula for curves 
[26] and hypersurfaces [28]. Thus, this work shall confirm the universality of the idea 
that ratios of local eigenvalues are proportional to curvature information, a potentially 
promising approach for manifold learning and geometry processing. We encourage the 
reader to check the detailed toy example of section 3 of [28], and section 5 of that paper 
for an introduction to the type of steps needed in the proofs of this type of integrals, 
which are of the same essence but more involved in the present paper.

3. Third fundamental form of a Riemannian submanifold

For a complete analysis of the geometry of Riemannian submanifolds see [29], [30], 
[31], [32]. Let (M, g) be an n-dimensional manifold isometrically embedded in an (n +k)-
dimensional Riemannian manifold (N , g), and let ∇, ∇ be the respective Levi-Civita 
connections. We shall write g(·, ·) = 〈 ·, · 〉, classically called the first fundamental form
of M in N . Then, at any point p ∈ M and for any vector y ∈ TpM, and vector field 
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X ∈ Γ(TM), the metric connection of M is the projection of the metric connection of 
N : ∇yX = (∇yX)�, where ( · )� : TpN → TpM is the projection to the tangent space. 
The second fundamental form II of M in N is defined to be the normal projection of the 
ambient covariant derivative when acting on vectors fields tangent to M, i.e., denoting 
( · )⊥ : TpN → NpM for the normal space projection,

II(x,y) = (∇yX)⊥, i.e., ∇yX = ∇yX + II(x,y), (6)

for all x, y ∈ TpM, and X ∈ Γ(TM) such that X|p = x. It is a symmetric bilinear form 
on the tangent space at every point taking values in the normal space, II : TpM ⊗TpM →
NpM. Fixing a normal vector n ∈ NpM, the scalar-valued bilinear form 〈 II(x,y), n 〉
has a corresponding self-adjoint map Ŝn ∈ End(TpM), called the Weingarten map at n, 
such that:

〈 II(x,y), n 〉 = 〈 Ŝn x, y 〉 = 〈x, Ŝn y 〉. (7)

Fixing orthonormal bases {eμ}nμ=1 of TpM, and {nj}kj=1 of NpM, the components of 
the second fundamental form at point p are:

II(eμ, eν) =
k∑

j=1
IIj(eμ, eν)nj =

k∑
j=1

〈 II(eμ, eν), nj 〉 nj =
k∑

j=1
〈 Ŝj eμ, eν 〉 nj . (8)

The geometric meaning of II lies in the fact that the Weingarten map measures the 
tangential rate of change of normal vectors to M when moving in tangent directions, 
cf. [29, Eq. II.2.4], Ŝn x = −(∇xN)�, for any N ∈ Γ(NM) such that N |p = n. From 
this, [31, Ch. 4, Cor. 9, 10], II(x, x) is to be interpreted as the curve acceleration in N
of a geodesic inside M at p with tangent velocity x. Therefore, II naturally measures 
the extrinsic curvature of the embedding since it represents the forced curving of the 
straightest lines inside M due to the bending of M itself inside N .

The inverse function theorem and [30, Ch. VII, Ex. 3.3] establish the following lemma 
of fundamental importance for the computations of the present work.

Lemma 3.1. Let M be an n-dimensional submanifold of an (n +k)-dimensional Rieman-
nian manifold (N , g), with the induced metric g|M. For any point p ∈ M and orthonor-
mal basis {eμ}nμ=1 of TpM, it is possible to choose normal coordinates (y1, . . . , yn+k)
in N such that the coordinate tangent vectors at the origin Y 1, . . . , Y n coincide with 
{eμ}nμ=1, and Y n+1, . . . , Y n+k are an orthonormal basis {nj}kj=1 of NpM. Moreover, 
M is locally given by a graph manifold y1 = x1, . . . , yn = xn, yn+1 = f1(x), . . . , yn+k =
fk(x), such that the components of the second fundamental form at p can be expressed 
as:

II(eμ, eν) =
k∑[

∂2f j

∂xμ∂xν
(0)
]
nj . (9)
j=1
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The invariance of the trace of II for any orthonormal tangent frame {eμ}nμ=1 leads to 
the definition of the mean curvature vector:

H =
n∑

μ=1
II(eμ, eμ) =

k∑
j=1

Hjnj , where Hj =
n∑

μ=1
IIj(eμ, eμ). (10)

The study of the intrinsic geometry of (M, g) depends only on the metric and is given 
in terms of the Riemann curvature tensor: R(x, y)z = (∇x∇y−∇y∇x−∇[x,y])Z, for any 
x, y, z ∈ TpM and Z ∈ Γ(TM) such that Z|p = z. This fundamental tensor equivalently 
measures the integrability of parallel transport, geodesic deviation and local flatness. Its 
traces yield the Ricci tensor Ric(x, y) =

∑n
μ=1〈R(eμ, x)y, eμ〉 = 〈 R̂x, y 〉, and the 

scalar curvature, R =
∑

μ Ric(eμ, eμ). Here, R̂ ∈ End(TpM) is the Ricci operator
associated to the Ricci tensor with respect to the metric.

The previous lemma and Gauß Theorema Egregium below establish an expression
of the intrinsic curvature as particular combination of products of the local Hessians 
through the second fundamental form, which along with equation (9) yields a local 
expression for the Riemann curvature tensor in terms of the local Hessian matrices.

Theorem 3.2 (Gauß equation). The Riemann curvature tensor of a submanifold M is 
related to the curvature R of the ambient manifold N via

〈R(x,y)z, w〉 = 〈R(x,y)z, w 〉 + 〈 II(x,w), II(y, z) 〉 − 〈 II(x, z), II(y,w) 〉 (11)

for all x, y, z, w ∈ TpM.

In classical differential geometry, [32, vol. 3], [33], the third fundamental form is a 
natural object to consider after the first fundamental form, I(x, y) = 〈x, y〉, and the 
second fundamental form II(x, y) = 〈Ŝ x, y〉, so it is defined for hypersurfaces, e.g. in 
[34], as

III(x,y) = 〈 Ŝ x, Ŝ y 〉 = 〈Ŝ2
x,y〉.

However, it does not provide new information since it is completely determined by Gauß 
equation, [30, vol. 2, prop. 5.2], so inside ambient Euclidean space it is:

〈 Ŝ2
x, y 〉 = H〈 Ŝ x, y 〉 −Ric(x,y), (12)

or, in terms of the Ricci operator, Ŝ
2

= HŜ − R̂. For a manifold M of higher codimen-
sion k, there are k linearly independent normal vectors at every point and, as mentioned 
before, the generalized second fundamental form takes values in the normal bundle pre-
cisely to reflect this structure in terms of the corresponding Weingarten operators at 
every normal vector. Therefore, the natural generalization of 〈 Ŝ x, Ŝ y 〉 to this context 
is
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Definition 3.3. The third fundamental form of a Riemannian submanifold M ⊂ N is the 
fourth-rank tensor III ∈ (TpM∗)2 ⊗NpM∗ ⊗NpM, given at every point p ∈ M by

〈 III(x,y)n, m 〉 = 〈 Ŝm x , Ŝn y 〉, (13)

for any x, y ∈ TpM, and n, m ∈ NpM.

At any specific point, and because the Weingarten maps are self-adjoint, the linear 
operator III(x, y) ∈ End(NpM) is written as the following linear combination, when a 
particular orthonormal basis {nj}kj=1 of the normal space is fixed and ηj = g(·, nj) is 
the dual basis:

III(x,y) =
k∑

i, j=1
〈 Ŝi Ŝj x , y 〉 ηi ⊗ nj . (14)

This is due to the linearity of the map n → Ŝn : NpM → End(TpM); if n =
∑

j n
jnj

then

〈 Ŝn x, y 〉 = 〈 II(x,y), n 〉 =
k∑

j=1
nj〈 II(x,y), nj〉 = 〈

⎛⎝ k∑
j=1

njŜj

⎞⎠x, y 〉,

for all x, y ∈ TpM.
Let us define the tangent trace of a tensor A ∈ (TpM∗)2 ⊗ NpM∗ ⊗ NpM as the 

operator sum of the evaluations at an orthonormal basis {eμ}nμ=1 of TpM:

tr ‖A =
n∑

μ=1
A(eμ, eμ) ∈ End(NpM); (15)

and let the normal trace of such a tensor be the bilinear form

tr⊥A =
k∑

j=1
〈 III(·, ·)nj , nj 〉 ∈ (TpM∗)2, (16)

for any orthonormal basis {nj}kj=1 of NpM. These tensors are well-defined since these 
sums can be easily shown to be independent of the orthonormal basis chosen.

Lemma 3.4. At any point p ∈ M, for any x, y ∈ TpM, and n, m ∈ NpM, the normal 
trace of the third fundamental form is

tr⊥III(x,y) =
k∑
〈 Ŝ2

j x, y 〉 = 〈 (ŜH − R̂ + R)x, y 〉, (17)

j=1
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where R̂ and R are the Ricci operators of M and N respectively. In particular, the sum 
of squares of the Weingarten operators Ŝj, for an orthonormal basis {nj}kj=1 of NpM, 
is independent of the basis. The tangent trace of the third fundamental form is a linear 
operator on NpM whose components with respect to the metric are the Frobenius inner 
products of the corresponding Weingarten operators:

〈 (tr ‖III) n, m 〉 = tr (ŜnŜm). (18)

The total trace is

tr III = tr⊥tr ‖III = ‖H‖2 −R + R. (19)

Proof. The normal trace bilinear form has components

tr⊥III(eμ, eν) =
k∑

j=1
〈 Ŝj eμ, Ŝj eν 〉 =

k∑
j=1

n∑
α=1

〈 Ŝjeα, eμ 〉〈 Ŝjeα, eν 〉

=
k∑

j=1

n∑
α=1

IIj(eα, eμ)IIj(eα, eν) =
n∑

α=1
〈 II(eα, eμ), II(eα, eν) 〉, (20)

that using Gauß equation lead to the corresponding linear operator with respect to the 
metric:

tr⊥III(eμ, eν) =
n∑

α=1
〈 II(eα, eα), II(eν , eμ) 〉 +

n∑
α=1

〈R(eα, eν)eμ, eα 〉

−
n∑

α=1
〈R(eα, eν)eμ, eα 〉

= 〈 II(eμ, eν), H 〉 + Ric(eμ, eν) −Ric(eμ, eν)

= 〈 ŜH eμ, eν 〉 + 〈Reμ, eν 〉 − 〈 R̂eμ, eν 〉.

This is the generalization of the operator of the classical third fundamental form, equation 
(12). The tangent trace is trivial by definition of trace of a linear operator with respect 
to the metric and the self-adjointness of the Weingarten operators:

〈 (tr ‖III) n, m 〉 =
n∑

μ=1
〈 ŜmŜn eμ, eμ 〉 = (Ŝm, Ŝn)F .

In a fixed orthonormal basis this tensor is the linear combination

tr ‖III =
k∑ n∑

〈 Ŝi Ŝj eμ , eμ 〉 ηi ⊗ nj =
k∑

tr (Ŝi Ŝj) ηi ⊗ nj ,

i, j=1 μ=1 i, j=1
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whose components can be expressed in terms of the second fundamental form as

tr (ŜiŜj) =
n∑

μ, ν=1
〈 Ŝi eμ, eν 〉〈 Ŝj eμ, eν 〉 =

n∑
μ, ν=1

IIi(eμ, eν)IIj(eμ, eν). (21)

Taking the total trace of III is analogous to the complete contraction of the Riemann 
curvature tensor indices to obtain the scalar curvature:

tr III = tr ‖tr⊥III =
n∑

μ=1
〈 (ŜH − R̂ + R)eμ, eμ 〉 = tr ŜH − tr R̂ + trR

=
n∑

μ=1
tr⊥III(eμ, eμ) =

n∑
α, β

‖II(eα, eβ)‖2, (22)

where tr ŜH =
∑n

μ=1〈 II(eμ, eμ), H 〉 = ‖H‖2, and the traces of the Ricci operators are 
by definition the scalar curvatures. �

The asymmetry of the components of the third fundamental form operator III(x, y)
encodes the curvature information of the connection defined on the normal bundle NM
by (∇xN)⊥, for any x ∈ TpM, N ∈ Γ(NM), where an analog to Gauß equation holds, 
so we can write [29, Ex. II.11] as:

Lemma 3.5 (Ricci equation). The Riemann curvature of the induced normal connection, 
R⊥, satisfies:

〈R⊥(x,y)n,m 〉 = 〈R(x,y)n,m 〉 + 〈 III(x,y)n,m 〉 − 〈 III(x,y)m,n 〉, (23)

for all x, y ∈ TpM, and n, m ∈ NpM, at any point p ∈ M.

Equations (20) and (21) will be recognized inside the elements of the tangent and 
normal matrix blocks in our covariance matrices to express its eigenvalues in terms of 
the third fundamental form.

4. Cylindrical covariance analysis

In this section we compute the integral invariants of the cylindrical domain around 
a point on an n-dimensional submanifold M of Rn+k (i.e., R = 0). This serves as a 
warm-up exercise for the more involved spherical computations, whereas at the same 
time it provides descriptors with better error bounds (cf. sec. 6), and the normal block 
calculations here are valid in both cases. When the cylinder is not normal to the manifold 
at the point, we can only establish the leading order terms, but that is sufficient in the 
generic case to be able to detect the tangent space of the manifold by the scaling behavior
of the eigenvalues of the covariance matrix. Once the cylinder is fixed to be normal to this 
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tangent space, the local EVD can be computed to next-to-leading order in scale to see 
how it encodes the geometric information of III. We shall solve the normal eigenvalue 
integrals in [25], which requires to compute the covariance matrix with respect to p
instead of the barycenter.

We shall always work in a neighborhood U ⊂ Rn+k of p ∈ M, sufficiently small so 
that U ∩M is given by a graph representation X = [x1, . . . , xn, f1(x), . . . , fk(x)]T over 
its tangent space, i.e., 0 represents p, x = [x1, . . . , xn]T ∈ TpM, and ∇f j(0) = 0, so that 
the manifold is approximated at p by its osculating paraboloid, [32, vol. 3, p. 42]. The 
following local expressions of the metric and induced volume element for graph manifolds 
are an easy exercise in these coordinates.

Lemma 4.1. The first fundamental form components of a graph manifold M ⊂ Rn+k, 
parametrized by X = [x1, . . . , xn, f1(x), . . . , fk(x)]T ∈ TpM ⊕NpM ∼= Rn+k, are:

gμν(x) = 〈 ∂X
∂xμ

,
∂X

∂xμ
〉 = δμν +

k∑
j=1

∂f j

∂xμ

∂f j

∂xν
. (24)

Thus, the induced measure on M is given by the volume element (cf. [32, vol. 1, pp. 
311–312]):

dVol =
√

det g(x) dnx =

⎛⎜⎝1 + 1
2

k∑
j=1

n∑
α=1

⎡⎣ n∑
β=1

(
∂2f j

∂xα∂xβ
(0)
)
xβ

⎤⎦2

+ O(x3)

⎞⎟⎠ dnx.

(25)

Proof. Equation (24) follows from the definition of tangent space of a graph. Equation 
(25) is immediate from equation (24) by usual expansion of a determinant of the form 
det[I + H] in terms of 1 + trH + . . . , which then yields the leading order contribution 
in xβ after Taylor-expanding the functions f j(x). �

In the rest of this paper we shall abbreviate second derivatives at the origin by

κj
αβ = κj

βα := ∂2f j

∂xα∂xβ
(0),

motivated by the notation of hypersurface principal curvatures, which are the eigenvalues 
of the local Hessian. We can now compute the Taylor expansion of the integral invari-
ants in the chosen coordinates, and then relate the terms to the curvature differential 
invariants which are always combinations of second derivatives.

Theorem 4.2. The n-dimensional volume of the cylindrical component for a generic V ∈
Gr(n, n + k), such that V⊥ ∩ TpM = {0}, is to leading order the volume of the ellipsoid 
of intersection between the V -cylinder and TpM:
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V (Cylp(ε,V )) = Vn(1)
n∏

μ=1
	μ + O(εn+1), (26)

where 	μ are the principal semi-axes of the ellipsoid. When V = TpM, the volume is

V (Cylp(ε)) = Vn(ε)
[
1 + ε2

2(n + 2) tr III + O(ε4)
]

(27)

where tr III = ‖H‖2 −R, and Vn(ε) is the volume of the n-dimensional ball of radius ε
(cf. Appendix).

Proof. To compute the leading term of V (Cylp(ε, V )) we can approximate M near p by 
its tangent space, such that, fixing local coordinates with a basis for TpM ⊕ NpM, a 
point is specified by X = [x, 0]T , with x ∈ TpM, 0 ∈ NpM. Since V⊥∩TpM = {0}, we 
have TpM ⊕V⊥ = Rn+k, and of course V⊕V⊥ = Rn+k. Let {eμ}nμ=1 be an orthonormal 
basis of TpM, and {uα}nα=1∪{vj}kj=1 an orthonormal basis of V⊕V⊥, then the elements 
of the former are a linear combination of the latter, so there are matrices A, B such that:

eμ =
n∑

α=1
Aα

μuα +
k∑

j=1
Bj

μvj .

We need to find the region ‖projV (X)‖ ≤ ε, and since X =
∑

μ x
μeμ when X ∈ TpM, 

the projection is

projV (X) =
n∑

α=1
〈X, uα 〉 uα =

n∑
α=1

n∑
μ=1

xμAα
μuα,

hence, the domain of integration in x in this approximation is

‖projV (X)‖2 =
n∑

α=1

(
n∑

μ=1
xμAα

μ

)2

≤ ε2.

This is a quadratic equation that can be written as

n∑
μ, ν

xμ

[
n∑

α=1
Aα

μA
α
ν

]
xν = xT [A ·AT ]x = yT · y = ‖y‖2 ≤ ε2,

where y = ATx. The matrix [A ·AT ] is positive definite since it is clearly nonnegative from 
the last equation, and if x ∈ kerAT for nonzero x, then projV (X) = 0, thus X ∈ V⊥, 
which contradicts X ∈ TpM under our assumption V⊥ ∩ TpM = {0}. Therefore, the 
cylindrical domain is an n-dimensional ellipsoid in the tangent space at p, whose volume 
is given in terms of its principal semi-axes 	μ:
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V (Cylp(ε,V )) = πn/2

Γ(n2 + 1)

n∏
μ=1

	μ + O(εn+1).

When V = TpM, the local graph approximation of M over TpM yields

projTpM(X) = ‖projTpM([x, f1(x), . . . , fk(x)]T )‖ = ‖x‖ ≤ ε,

thus, we are integrating 
√

det g(x) in equation (25) over the ball B(n)
p (ε) ⊂ TpM, which 

can be computed in spherical coordinates using the integrals in the appendix, as it will 
be done from here onwards in the rest of the paper:

V (Cylp(ε)) =
∫

Sn−1

dS

ε∫
0

ρn−1

⎛⎜⎝1 + 1
2

k∑
i=1

n∑
α=1

⎡⎣ n∑
β=1

κi
αβ ρx

β

⎤⎦2

+ O(x3)

⎞⎟⎠ dρ

= Vn(ε) + εn+2

2(n + 2)

k∑
i=1

n∑
α=1

n∑
β,γ

κi
αβκ

i
αγ

∫
Sn−1

xβxγ dS + O(εn+4)

= Vn(ε) + C2 ε
n+2

2(n + 2)

k∑
i=1

n∑
α,β

(κi
αβ)2 + O(εn+4).

Here the spherical integral is only nonzero when β = γ, and the sums of the last equality 
are the component expression of equation (19). �
Proposition 4.3. The barycenter of the cylindrical component, for V as in the previous 
theorem, is

s(Cylp(ε,V )) = 0 + O(ε2). (28)

In the case V = TpM, the barycenter is:

s(Cylp(ε)) = [ 0, ε2

2(n + 2) H ]T + O(ε4). (29)

Proof. For generic V , approximating the manifold again by its tangent space, X =
[x, 0 + O(ε2)]T , the normal component does not contribute until order two and the 
tangent component also vanishes at order 1 in ε. When V = TpM, we saw that the 
integration domain reduces to a ball. The integrals of the tangent components xμ weighed 
by 

√
det g are of order O(εn+4), since the first terms in the expansion have odd powers 

in the coordinates. Abbreviating V = V (Cylp(ε)) and s = s(Cylp(ε)), cf. equation (4), 
the normal components integrate to leading order as:
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V · [s]j =
∫

Sn−1

dS

ε∫
0

f j(x)
√

det gρn−1 dρ

=
∫

Sn−1

dS

ε∫
0

ρn−1

⎛⎝1
2

n∑
α, β=1

κj
α βρ

2xαxβ + O(x3)

⎞⎠ dρ

= εn+2

2(n + 2)

n∑
α,β=1

κj
αβ

∫
Sn−1

xαxβdS + O(εn+4) = C2 ε
n+2

2(n + 2) H
j + O(εn+4).

Dividing by V cancels C2ε
n = Vn(ε) to leading order. �

In order to study the eigenvalue decomposition of the covariance matrix we need to 
establish how to determine the limit eigenvectors and the first two terms of the series 
expansion of the eigenvalues, so that computing the integrals in an arbitrary orthonormal 
basis produces blocks identifiable in terms of the coordinate expressions of the second 
and third fundamental forms in that basis.

Lemma 4.4. Let C(ε) be an (n + k) × (n + k) real symmetric matrix depending on a real 
parameter ε with convergent series expansion in a neighborhood of 0 such that:

C(ε) = ε2

(
a Idn 0n×k

0k×n 0k×k

)
+ ε4

(
An×n Bn×k

Bk×n Γk×k

)
+ O(ε5),

where a �= 0, and the blocks A,B, Γ are not completely zero. Let [V ]�, [V ]⊥ denote the 
first n and last k components of a vector in Rn+k. If C(ε) has no repeated eigenvalues the 
series of eigenvectors of C(ε) form a unique orthonormal basis of Rn+k that converges 
for ε → 0. The first n eigenvalues are λμ(ε) = aε2 + λ

(4)
μ ε4 + O(ε5), where λ(4)

μ and the 
corresponding limit eigenvectors {V (0)

μ }nμ=1 satisfy the eigenvalue decomposition of A:

(λ(4)
μ Idn − A) [V (0)

μ ]� = 0n×1, [V (0)
μ ]⊥ = 0k×1.

The last k eigenvalues are λj(ε) = λ
(4)
j ε4 +O(ε5), where λ(4)

j and the corresponding limit 
eigenvectors {V (0)

j }n+k
j=n+1 satisfy the eigenvalue decomposition of Γ:

(λ(4)
j Idk − Γ) [V (0)

j ]⊥ = 0n×1, [V (0)
j ]� = 0n×1.

Therefore, the fourth-order term of the eigenvalues is given by the eigenvalues of the 
blocks A and Γ, with the respective eigenvectors as the limit eigenvectors of C(ε) for 
ε → 0.

Proof. The eigenvalue decomposition C(ε)V (ε) = λ(ε)V (ε) can be written as a con-
vergent series expansion in ε within a neighborhood of 0 for all Hermitian matrices of 
converging power series elements [35]:
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[ ε2

(
a Idn 0n×k

0k×n 0k×k

)
+ ε4

(
An×n Bn×k

Bk×n Γk×k

)
+ O(ε5) ] · [V (0) + V (1)ε + V (2)ε2 + . . . ] =

= (λ(1)ε1 + λ(2)ε2 + λ(3)ε3 + λ(4)ε4 + . . . )[V (0) + V (1)ε + V (2)ε2 + . . . ].

The zero matrix C(0) is the limit when ε → 0, with λ(0) = λ(0) = 0 as a totally 
degenerate eigenvalue of multiplicity (n +k). By [35, ch. I, Th. 1], for ε > 0, this eigenvalue 
branches out into (n +k) eigenvalues λi(ε) with (n +k) orthonormal eigenvectors V i(ε), all 
convergent in a neighborhood of 0. Thus, if C(ε) has no repeated eigenvalues, the vectors 
V

(0)
i = limε→0 V i(ε) form an orthonormal basis of Rn+k that is uniquely determined by 

the perturbation matrix.
The eigenvalue difference between C(ε) and its full diagonalization is bounded by the 

matrix norm difference between them, which implies λ(1) = λ(3) = 0, and also λ(2)
i = a, 

for i = 1, . . . , n, and λ(2)
i = 0, for i = n + 1, . . . , n + k, since C(ε) is already diagonal up 

to that order. One can obtain the relations satisfied by λ(4) and V (0) equating order by 
order. At second order, λ(2)

i = a is nonzero for i = 1, . . . , n, hence

[
(
a Idn 0n×k

0k×n 0k×k

)
− λ

(2)
i Idn+k ]V (0)

i =
(

0n×n 0n×k

0k×n −a Idk

)
V

(0)
i = 0

implies that [V (0)
μ ]⊥ = 0k×1, for the limit of the first n eigenvectors. At fourth order we 

have

[λ(4)
i Idn+k −

(
An×n Bn×k

Bk×n Γk×k

)
]V (0)

i = [
(
a Idn 0n×k

0k×n 0k×k

)
− λ

(2)
i Idn+k ]V (2)

i ,

which in the present case, i = 1, . . . , n, makes the right-hand side become 0 for the first 
n rows. On the other hand, [V (0)

i ]⊥ = 0k×1 makes B not contribute in the left-hand side, 
hence the first n rows lead to the equation:

(λ(4)
i Idn − A) [V (0)

i ]� = 0n×1.

When i = n +1, . . . , n +k, an analogous argument using λ(2)
i = 0, leads to [V (0)

i ]� = 0n×1, 
and in turn to:

(λ(4)
i Idn − Γ) [V (0)

i ]⊥ = 0k×1.

Since the limit eigenvectors are an orthonormal basis they cannot be zero and, therefore, 
the previous equations establish λ(4)

i and the nonzero components of [V (0)
i ] as the eigen-

value decomposition of A and Γ, which always has a solution due to being symmetric 
matrices. �

The previous lemma is a fundamental step to establish the main theorem of this and 
the next section.
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Theorem 4.5. For V ∈ Gr(n, n + k) such that V⊥ ∩ TpM = {0}, i.e. for non-normal 
transversality, and when V (Cylp(ε, V )) is finite, its covariance matrix centered at p, 
Cp(Cylp(ε, V )), has as limit eigenvectors spanning TpM those corresponding to the first 
n eigenvalues, which scale as ε2. The other k eigenvalues scale at higher order and have 
limit eigenvectors that span NpM:

λμ(Cylp(ε,V )) = ε2

n + 2	
2
μ Vn(1)

n∏
α=1

	α + O(εn+3), μ = 1, . . . , n, (30)

λj(Cylp(ε,V )) = 0 + O(εn+3), j = n + 1, . . . , n + k, (31)

where 	μ are the principal lengths of the ellipsoid in 4.2. When V = TpM, let λl[·]
denote taking the l-th eigenvalue of a linear operator at p, or of its associated bilinear 
form with respect to the metric. Then the eigenvalues of the covariance matrix of the 
cylindrical component are:

λμ(Cylp(ε)) = Vn(ε)
[

ε2

n + 2 + ε4

2(n + 2)(n + 4)(tr III + 2λμ[ tr⊥III ]) + O(ε6)
]

(32)

λj(Cylp(ε)) = Vn(ε)
[

ε4

4(n + 2)(n + 4)λj [H ⊗H + 2 tr ‖III ] + O(ε6)
]

(33)

for all μ = 1, . . . , n, and j = n + 1, . . . , n + k. Moreover, the corresponding first n
eigenvectors converge to the principal directions of the operator tr⊥III = ŜH − R̂, and 
the last k eigenvectors to those of H ⊗H + 2 tr ‖III.

Proof. For generic V the manifold is again approximated by its tangent space as X =
[x, 0]T , which produces no contribution to the normal block at leading order O(εn+2). 
Choosing the tangent orthonormal basis to be aligned with the principal axis of the 
ellipsoid, and changing variables so that xμ = yμ	μ, the tangent block becomes an 
integration over an n-dimensional ball:

[Cp(Cylp(ε,V ))]μν =
∫

xTA·ATx≤ε2

xμxν dnx =
∫

∑
μ y2

μ≤1

yμyν	μ	ν

n∏
α=1

	α dny

= δμν
εn+2

n + 2	μ	νVn(1)
n∏

α=1
	α + O(εn+3).

Thus, the covariance matrix leading term is proportional to diag(	21, . . . , 	2n, 0, . . . , 0), 
which has limit eigenvectors corresponding to the first n eigenvalues spanning TpM, and 
the other k eigenvectors spanning NpM, by a straightforward extension to Lemma 4.4 at 
order ε2. For V = TpM, we shall compute the integrals of the matrix blocks [xμxν ]nμ,ν=1, 
and [f if j ]ki, j=1, so the next-to-leading order elements of those blocks will suffice to obtain 
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the eigenvalues and limit eigenvectors by the results of the previous lemma. The tangent 
block is:

[Cp(Cylp(ε))]μν =
∫

B(n)(ε)

xμxν
√

det g(x) dnx

=
∫

Sn−1

dS

ε∫
0

ρn+1xμxν

⎛⎜⎝1 + 1
2

k∑
i=1

n∑
α=1

⎡⎣ n∑
β=1

κj
αβρ x

β

⎤⎦2

+ O(x3)

⎞⎟⎠ dρ

= εn+2

n + 2

∫
Sn−1

xμxνdS + εn+4

2(n + 4)

k∑
i=1

n∑
α,β,γ

κi
αβκ

i
αγ

∫
Sn−1

xμxνxβxγdS + O(εn+6),

and the last integral is only nonzero for the following combination of indices using the 
notation explained in the appendix:∫

Sn−1

xμxνxβxγ dS = C4(μνβγ) + C22

[
(μνβγ) + (μνβγ) + (μνβγ)

]
. (34)

This simplifies the sums using the relationship between C4, C22 and C2, and writing 
(1 − δμν) to enforce μ �= ν in the last two terms of C22:

δμνC2ε
n+2

n + 2

+ C2ε
n+4

2(n + 2)(n + 4)

k∑
i=1

⎡⎢⎢⎣3δμν
n∑

α=1
(κi

αμ)2 + δμν

n∑
α, β
β �=μ

(κi
αβ)2 + 2(1 − δμν)

n∑
α=1

κi
αμκ

i
αν

⎤⎥⎥⎦+ ...

= Vn(ε) ε2

n + 2δμν + Vn(ε)ε4

2(n + 2)(n + 4)

⎡⎣δμν k∑
i=1

n∑
α,β

(κi
αβ)2 + 2

k∑
i=1

n∑
α=1

κi
αμκ

i
αν

⎤⎦+ O(εn+6).

Using equation (9), the component expression of equations (20) and (22) identify this 
block matrix at order O(εn+4) as the matrix elements of the operator [(tr ‖tr⊥III)Idn +
2tr⊥III] in our chosen orthonormal basis, whose eigenvalues are then by Lemma 4.4 the 
next-to-leading order contribution to the first n eigenvalues of Cp(Cylp(ε)), and whose 
eigenvectors are the limit eigenvectors of Cp(Cylp(ε)).

We perform now the integration of the normal block, which truncated to leading order 
is 
∫
B(n)(ε) f

i(x)f j(x)dnx, therefore:

[Cp(Cylp(ε))]ij =
∫

Sn−1

dS

ε∫
0

ρn+3

4 dρ
n∑

α,β

n∑
γ, δ

κi
αβκ

j
γδx

αxβxγxδ + O(εn+6),
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where the angular integral is only nonzero in the same cases as in equation (34) above, 
but with the indices relabeled accordingly. This again simplifies every summation by 
matching the combination of indices and using the relations among the constants:

[Cp(Cylp(ε))]ij = εn+4

4(n + 4)

⎡⎢⎢⎣C4

n∑
α=1

κi
αακ

j
αα + C22

⎛⎜⎜⎝ n∑
α, γ
α �=γ

κi
αακ

j
γγ + 2

n∑
α, β
α �=β

κi
αβκ

j
αβ

⎞⎟⎟⎠
⎤⎥⎥⎦

+ O(εn+6),

in which the first sum precisely completes the elements missing from the other two, which 
written in terms of the components of the second fundamental form yields:

= Vn(ε)ε2

4(n + 2)(n + 4)

⎡⎣( n∑
α=1

IIi(eα, eα)
)(

n∑
γ=1

IIj(eγ , eγ)
)

+ 2
n∑

α,β

IIi(eα, eβ)IIj(eα, eβ)

⎤⎦
+ O(εn+6).

In this last expression we clearly identify the components in our orthonormal normal basis 
of [H ⊗H]ij , and those of 2 tr ‖III, using the definition of H and equation (21). �

We shall see below that the spherical covariance matrix has the same normal eigenval-
ues, to leading order, as the cylindrical case above. In [24,25] these were expressed as an 
average of the squares of the curvatures of curves inside the manifold M. Therefore, our 
previous computation provides an explicit formula for this interpretation of the normal 
eigenvalues.

Corollary 4.6. Let M be an n-dimensional submanifold of Euclidean space Rn+k, then 
the first generalized curvatures κ(γ, x, nj) of curves γ ⊂ M passing through p with 
tangent vector x and principal normal vectors any of the eigenvectors nj , j = 1, . . . , k, 
of [H ⊗H + 2 tr ‖III ], integrate to:

∫
B(n)(ε)

κ2(γ,x,nj) dnx = ε4 Vn(ε)
(n + 2)(n + 4)λj [H ⊗H + 2 tr ‖III ]. (35)

In particular:

k∑
j=1

∫
(n)

κ2(γ,x,nj) dnx = 3‖H‖2 − 2R
(n + 2)(n + 4)ε

4 Vn(ε). (36)

B (ε)
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5. Spherical covariance analysis

The difference between the cylindrical and spherical intersection domains for a graph 
manifold lies in the irregular projection onto the tangent space: by definition the cylinder 
is the extension in the normal directions of the ball B(n)

p (ε) ⊂ TpM, so the points of 
the graph manifold satisfy ‖projTpM([x,f(x)]T )‖ = ‖x‖ ≤ ε, and thus the integration 
region is a perfect ball. However, in the spherical case the domain of integration is 
‖x‖2 + ‖f(x)‖2 ≤ ε2, which is nontrivial and in general cannot be parametrized exactly. 
One can straightforwardly apply the same procedure as done originally in [13] and [28]
to find the leading order corrections to the ball domain in the tangent space coordinates.

Lemma 5.1. For ε > 0 small enough so that M is a graph manifold over TpM, using 
cylindrical coordinates, the radial parametric equation of a point X = [ρx1, . . . , ρxn,

f1(ρx), . . . , fk(ρx)]T in ∂Dp(ε) = M ∩ Sn
p (ε) is

r(x) := ρ(x1, . . . , xn) = ε− K(x)2

8 ε3 + O(ε4), (37)

where x ∈ Sn−1 ⊂ TpM, and

K(x)2 := ‖II(x,x)‖2 =
k∑

i=1

n∑
α,β

n∑
γ,δ

κi
αβκ

i
γδ x

αxβxγxδ (38)

is the square of the ambient space acceleration of a geodesic curve of M with tangent 
vector x at p (cf. [31, ch. 4, Cor. 10]).

This allows us to perform the same type of integrals over the radial coordinate as 
before but over an irregular tangent domain in order to obtain explicitly the higher-order 
contributions to the tangent eigenvalues, as studied to leading order in [23], [24,25].

Proposition 5.2. The n-dimensional volume of the spherical component is

V (Dp(ε)) = Vn(ε)
[
1 + ε2

8(n + 2) (2 tr III − ‖H‖2) + O(ε3)
]
. (39)

Proof. In contrast to the proof of the cylindrical domain, the radial integration intro-
duces new angular corrections due to r(x):

V (Dp(ε)) =
∫

Sn−1

dS

r(x)∫
0

ρn−1
√

det g(ρx) dρ

=
∫

Sn−1

r(x)n

n
dS +

∫
Sn−1

r(x)n+2

2(n + 2)

k∑
i=1

n∑
α,β,γ

κi
αβκ

i
αγx

βxγ dS + O(εn+3),
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the second integral is the same to leading order as in the cylindrical case, hence

=
∫

Sn−1

dS
εn

n

[
1 − n

K(x)2

8 ε2 + O(ε3)
]

+ Vn(ε) ε2

2(n + 2)tr III + O(εn+3)

= Vn(ε) − εn+2

8

k∑
i=1

n∑
α,β

n∑
γ,δ

κi
αβκ

i
γδ

∫
Sn−1

xαxβxγxδ dS + Vn(ε) ε2

2(n + 2)tr III + O(εn+3),

where the integral is only nonzero as in equation (34), thus

= Vn(ε) − C2 ε
n+2

8(n + 2)

k∑
i=1

⎡⎢⎢⎣3
n∑

a=1
(κi

αα)2 +
n∑

α,γ
α �=γ

κi
αακ

i
γγ + 2

n∑
α,β
α �=β

(κi
αβ)2

⎤⎥⎥⎦
+ Vn(ε) ε2

2(n + 2)tr III + O(εn+3)

Collecting terms and using the first summation in the braces to complete the other two 
double sums, we can recognize a term as 〈 

∑
α II(eα, eα), 

∑
γ II(eγ , eγ) 〉 = ‖H‖2, and 

the another term as tr III. �
Remark 5.3. Notice that it is not known the dependence of the error generated by the 
irregular radius r(x), O(εn+3) in the previous proof, and whether it cancels at that order 
upon spherical integration, so the spherical component invariants may have error terms 
at lower order than the cylindrical ones.

Proposition 5.4. The barycenter of the spherical component is to leading order the same 
as for the cylindrical component:

s(Dp(ε)) = [ 0, ε2

2(n + 2) H ]T + O(ε4). (40)

Proof. The new contributions from r(x) to the cylindrical computations are at least of 
the same order as the overall error, O(ε4), so they can be neglected. �

The covariance integral invariants for the spherical domain were obtained for hyper-
surfaces in [28] by performing the computations in the basis of principal and normal direc-
tions. In arbitrary codimension, the different osculating paraboloids of f i(x), i = 1, . . . , k, 
cannot be diagonalized simultaneously to a common basis in general. The amount of 
terms and simplifications needed in this general case is of much higher complexity than 
for hypersurfaces but, nevertheless, an analogous result for the eigenvalue decomposition 
obtains.
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Theorem 5.5. Let λl[·] denote taking the l-th eigenvalue of a linear operator at p, or of its 
associated bilinear form with respect to the metric. Then the eigenvalues of the spherical 
component covariance matrix, Cs(Dp(ε)), with respect to s(Dp(ε)) are:

λμ(Dp(ε)) = Vn(ε)
[

ε2

n + 2 + ε4

8(n + 2)(n + 4)(2 tr III − ‖H‖2 − 4λμ[ ŜH ]) + O(ε5)
]

(41)

λj(Dp(ε)) = Vn(ε)
[

ε4

2(n + 2)(n + 4) λj [ tr ‖III −
1

n + 2H ⊗H ] + O(ε6)
]

(42)

for all μ = 1, . . . , n, and j = n + 1, . . . , n + k. Moreover, the corresponding first n
eigenvectors converge to the principal (tangent) directions of the Weingarten operator at 
H, and the last k eigenvectors to those of [tr ‖III − 1

n+2H ⊗H ] in the normal space.

Proof. From Lemma 4.4 again, only the tangent and normal blocks need to be computed. 
Now, however, the covariance matrix is taken with respect to the barycenter, so there is 
an extra matrix contribution from the tensor product,

Cs(Dp(ε)) =
∫

Dp(ε)

X ⊗X dVol −
∫

Dp(ε)

X ⊗ s dVol,

because the other two products cancel each other upon integration. From the proof of 
the barycenter formula, this integral is to leading order:

∫
Dp(ε)

X ⊗ s dVol = V (Dp(ε))s⊗ s =
(
O(εn+8)n×n O(εn+6)n×k

O(εn+6)k×n
Vn(ε)ε4
4(n+2)2H ⊗H

)

There is no difference in the normal block computations of this covariance matrix and 
the cylindrical case proved before, since the corrections coming from r(x) are O(εn+6). 
Thus, subtracting the barycenter contribution:

Vn(ε)ε4

4(n + 2)(n + 4)(H ⊗H + 2 tr ‖III) −
Vn(ε)ε4

4(n + 2)2H ⊗H

= Vn(ε)ε4

2(n + 2)(n + 4)( tr ‖III −
1

n + 2H ⊗H).

For the tangent block, the number of correction terms due to the spherical domain 
irregularities in the coordinate boundary makes a substantial contribution at O(εn+4)
compared to the cylindrical case:

[C(Dp(ε))]μν =
∫
n−1

dS

r(x)∫
0

ρn+1xμxν

⎛⎜⎝1 + 1
2

k∑
i=1

n∑
α=1

⎡⎣ n∑
β=1

κi
αβ ρ x

β

⎤⎦2

+ O(x3)

⎞⎟⎠ dρ
S
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= εn+2

n + 2

⎡⎣δμνC2 − (n + 2)
∫

Sn−1

xμxν K(x)2ε2

8 dS + O(ε3)

⎤⎦
+ εn+4

2(n + 4)

k∑
i=1

n∑
α,β,γ

κi
αβκ

i
αγ

∫
Sn−1

xμxνxβxγdS + O(εn+5)

= δμν
Vn(ε)ε2

n + 2 + εn+4

2(n + 4)

k∑
i=1

⎡⎣ n∑
α,β,γ

κi
αβκ

i
αγC(μνβγ) −

n + 4
4

n∑
α,β

n∑
γ,δ

κi
αβκ

i
γδC(μναβγδ)

⎤⎦
+ O(εn+5),

where we have made use of equation (38), and written C(αβ... ) for the integral over 
Sn−1 of the monomial product xαxβ . . . , (notice here the indices are not exponents 
but contravariant coordinate components). The first summation simplifies again with 
equation (34) to yield the cylindrical tangent block, but the other set of sums comprises 
the 31 spherical integrals of all possible monomials of degree six:

C(μναβγδ) =
∫

Sn−1

xμxνxαxβxγxδdS = C6(μναβγδ) +

+ C24

[
(μναβγδ) + (μναβγδ) + (μναβγδ) + (μναβγδ) + (μναβγδ) + (μναβγδ)+

(μναβγδ) + (μναβγδ) + (μναβγδ) + (μναβγδ) + (μναβγδ) + (μναβγδ) + (μναβγδ)+

(μναβγδ) + (μναβγδ)
]

+ C222

[
(μναβγδ)+ (μναβγδ) + (μναβγδ) + (μναβγδ) + (μναβγδ) + (μναβγδ)+

(μναβγδ) + (μναβγδ) + (μναβγδ) + (μναβγδ) + (μναβγδ) + (μναβγδ) + (μναβγδ)+

(μναβγδ) + (μναβγδ)
]

Each of these contractions are only nonzero when the connected indices are equal, and 
at the same time different from the indices of the other connected groups, for instance:

n∑
α,β

n∑
γ,δ

κi
αβκ

i
γδ(μναβγδ) = δμν

n∑
α �=μ

n∑
γ �=μ
γ �=α

κi
αακ

i
γγ .

Matching all the indices in this way for each of the terms just found, and taking into 
account the relation of C6, C24 and C222 to C2 in the appendix, we take out a common 
factor C2 , and abbreviate the sum notation to produce all the terms of order O(εn+4):
4(n+2)
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[C(Dp(ε))]μν = δμνVn(ε)ε2

n + 2 + C2 ε
n+4

8(n + 2)(n + 4)
∑
i

⎡⎢⎢⎣4δμν
∑
α, β
β �=μ

(κi
αβ)2 + 8�δμν

∑
α

κi
αμκ

i
αν

+ 12δμν
∑
α

(κi
αν)2 − 15δμν(κi

νν)2 − 3

⎧⎨⎩ δμν
∑
α �=μ

(κi
αα)2 + �δμν(κi

μνκ
i
νν + κi

νμκνν + κi
ννκ

i
μν

+ κi
ννκ

i
νμ + κi

νμκ
i
μμ + κi

μνκ
i
μμ + κi

μμκ
i
νμ + κi

μμκ
i
μν) + δμν

⎛⎝∑
α �=μ

κi
αακ

i
νν +

∑
α �=μ

(κi
αν)2

+
∑
α �=μ

(κi
αν)2 +

∑
β �=μ

(κi
νβ)2 +

∑
β �=μ

(κi
νβ)2 +

∑
γ �=μ

κi
γγκ

i
νν

⎞⎠⎫⎬⎭
− δμν

⎛⎝∑
α �=μ

∑
γ �=μ,α

κi
αακ

i
γγ +

∑
α �=μ

∑
β �=μ,α

(κi
αβ)2 +

∑
α �=μ

∑
β �=μ,α

(κi
αβ)2

⎞⎠− �δμν

⎧⎨⎩ ∑
γ �=μ,ν

κi
μνκ

i
γγ

+
∑

β �=μ,ν

κi
μβκ

i
νβ +

∑
β �=μ,ν

κi
μβκ

i
βν +

∑
γ �=μ,ν

κi
νμκ

i
γγ +

∑
α �=μ,ν

κi
αμκ

i
να +

∑
α �=μ,ν

κi
αμκ

i
αν

+
∑

β �=μ,ν

κi
νβκ

i
μβ +

∑
α �=μ,ν

κi
ανκ

i
μα +

∑
α �=μ,ν

κi
αακ

i
μν +

∑
β �=μ,ν

κi
νβκ

i
βμ +

∑
α �=μ,ν

κi
ανκ

i
αμ

+
∑

α �=μ,ν

κi
αακ

i
νμ

⎫⎬⎭
⎤⎦+ O(εn+5)

Many of the resulting summations are the same after relabeling indices and using κi
αβ =

κi
βα, so they can be gathered into common factors to yield:

= δμν
Vn(ε)ε2

n + 2 + Vn(ε)ε4

8(n + 2)(n + 4)
∑
i

⎡⎣8
∑
α

κi
αμκ

i
αν − 12κi

μν(κi
μμ + κi

νν) − 4κi
μν

∑
α �=μ,ν

κi
αα

− 8
∑

α �=μ,ν

κi
αμκ

i
να + δμν

⎧⎨⎩4
∑
α, β

(κi
αβ)2 − 3

∑
α �=μ

(κi
αα)2 + 21(κi

μμ)2 − 2κi
μμ

∑
α �=μ

κi
αα

−12
∑
α

(κi
αμ)2 −

∑
α �=μ

∑
γ �=α,μ

κi
αακ

i
γγ − 2

∑
α �=μ

∑
β �=α,μ

(κi
αβ)2 + 8

∑
α �=μ

(κi
αμ)2

⎫⎬⎭
⎤⎦+ O(εn+5).

Some terms inside the curly braces complement the missing elements of other summa-
tions:

21(κi
μμ)2 − 2κi

μμ

∑
κi
αα − 12

∑
(κi

αμ)2 + 8
∑

(κi
αμ)2
α �=μ α α �=μ



44 J. Álvarez-Vizoso et al. / Linear Algebra and its Applications 604 (2020) 21–51
= 15(κi
μμ)2 − 2κi

μμ

∑
α

κi
αα − 4

∑
α

(κi
αμ)2,

and

−3
∑
α �=μ

(κi
αα)2−

∑
α �=μ

∑
γ �=α,μ

κi
αακ

i
γγ−2

∑
α �=μ

∑
β �=α,μ

(κi
αβ)2 = −

∑
α,γ �=μ

κi
αακ

i
γγ−2

∑
α,β �=μ

(κi
αβ)2.

Now, notice that this last type of double sum decomposes as follows

−
∑

α,γ �=μ

[ · ]αγ = −
∑
α, γ

[ · ]αγ +
∑
γ

α=μ

[ · ]αγ +
∑
α

γ=μ

[ · ]αγ − [ · ]μμ,

therefore, the right hand side of the previous two equations complement each other:

[C(Dp(ε))]μν = δμνVn(ε)ε2

n + 2 + Vn(ε)ε4

8(n + 2)(n + 4)
∑
i

[
8
∑
α

κi
αμκ

i
αν − 12κi

μν(κi
μμ + κi

νν)

− 4κi
μν

∑
α �=μ,ν

κi
αα − 8

∑
α �=μ,ν

κi
αμκ

i
να

+δμν

⎧⎨⎩4
∑
α, β

(κi
αβ)2 + 12(κi

μμ)2 −
∑
α, γ

κi
αακ

i
γγ − 2

∑
α, β

(κi
αβ)2

⎫⎬⎭
⎤⎦+ ...

To simplify further, use 12(κi
μμ)2 to complete the remaining sums and cancel terms:

8
∑
α

κi
αμκ

i
να − 8κi

μν(κi
μμ + κi

νν) − 8
∑

α �=μ,ν

κi
αμκ

i
να + 8(κi

μμ)2δμν = 0,

and

−4κi
μν(κi

μμ + κi
νν) − 4κi

μν

∑
α �=μ,ν

κi
αα + 4(κi

μμ)2δμν = −4κi
μν

∑
α

κi
αα.

Finally, all these computations lead us to the simple expression:

[C(Dp(ε))]μν = δμνVn(ε)ε2

n + 2

+ Vn(ε)ε4

8(n + 2)(n + 4)
∑
i

⎡⎣δμν
⎧⎨⎩2
∑
α, β

(κi
αβ)2 − (Hi)2

⎫⎬⎭− 4κi
μνH

i

⎤⎦+ O(εn+5)

where 
∑

i κ
i
μνH

i = 〈 II(eμ, eν), H 〉 = 〈 ŜH eμ, eν 〉, and 
∑

i(2 
∑

α, β(κi
αβ)2 − (Hi)2) =

2 tr III−‖H‖2 identify the covariance tangent block to be the component matrix of the 
Weingarten operator at the mean curvature normal, plus a constant, in the orthonormal 
basis chosen. �
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Making k = 1 in the previous theorem recovers part of the results of [28]; setting 
n = 2 as well recovers the patch domain equations of [13]. When the generalized principal 
directions of the Weingarten operator and the [tr ‖III− 1

n+2H⊗H ] operator are different, 
the limit eigenvector obtained from the covariance analysis play the role of an adapted 
Galerkin basis in the sense of [23] and [25].

6. Correspondence between local EVD and curvature

Curvature descriptors in terms of the covariance eigenvalues were introduced for sur-
faces in [13] and in [28] for hypersurfaces. The formulas of the previous section recover 
those results for n = 2 and k = 1 respectively. A limit formula for the ratio of the eigen-
values was found for curves in [26], establishing a direct relationship between the local 
covariance analysis of a domain containing the point p and the Frenet-Serret curvature 
information at p, which in the case of curves completely determines the curve locally up 
to rigid motion [36, Th. 2.13]. This furnishes a reconstruction correspondence between 
local eigenvalues of covariance and curvature descriptors at scale. The two main theo-
rems of the present work generalize this type of result to general submanifolds by directly 
taking the limits with ε of the covariance matrix eigenvalue expansions obtained.

Corollary 6.1. Writing λμ(p, ε) for the tangent eigenvalues of the cylindrical covariance 
matrix C(Cylp(ε)), they satisfy the asymptotic ratio

lim
ε→0

Vn(ε)λμ(p, ε) − λν(p, ε)
λμ(p, ε)λν(p, ε)

= n + 2
n + 4 (λμ[tr⊥III] − λν [tr⊥III] ) , (43)

and the normal eigenvalues satisfy

lim
ε→0

Vn(ε)
λμ(p, ε)λν(p, ε)

n+k∑
j=n+1

λj(p, ε) = n + 2
4(n + 4)

(
‖H‖2 + 2 tr III

)
, (44)

for any μ, ν = 1, . . . , n. Let λ̃μ(p, ε) denote the eigenvalues in the case of the spherical 
domain covariance matrix, C(Dp(ε)), then the corresponding limits are

lim
ε→0

Vn(ε) λ̃μ(p, ε) − λ̃ν(p, ε)
λ̃μ(p, ε)λ̃ν(p, ε)

= n + 2
2(n + 4)

(
λ̃ν [ŜH ] − λ̃μ[ŜH ]

)
, (45)

and

lim
ε→0

Vn(ε)
λ̃μ(p, ε)λ̃ν(p, ε)

n+k∑
j=n+1

λ̃j(p, ε) = n + 2
2(n + 4)

(
tr III − 1

n + 2‖H‖2
)
. (46)

The operators on the right-hand sides are understood to be evaluated at the point p.
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Notice that normalizing the covariance matrix to the volume of the ball in equation 
(5) simplifies our results further, since Vn(ε) would disappear from these asymptotic 
relations.

For hypersurfaces, the obtained terms of the series expansion of the eigenvalue de-
composition can be inverted to extract the curvature descriptors upon truncations of the 
series. In the spherical case, the descriptors of the cited works are recovered.

Corollary 6.2. [28] Let us write λ(p, ε) ≡ λ(Dp(ε)), Vp(ε) ≡ V (Dp(ε)) for the integral 
invariants of a spherical domain on a hypersurface S, then the corresponding scalar, 
mean and principal curvature descriptors, at scale ε > 0 and point p ∈ S, for any 
μ = 1, . . . , n, are:

R(Dp(ε)) = 2(n + 2)2(n + 4)λn+1(p, ε)
n ε4 Vn(ε) − 8(n + 1)(n + 2)

n ε2

(
Vp(ε)
Vn(ε) − 1

)
(47)

H(Dp(ε)) = (±)

√
4(n + 2)2(n + 4)λn+1(p, ε)

n ε4Vn(ε) + 8(n + 2)2
n ε2

(
1 − Vp(ε)

Vn(ε)

)
, (48)

κμ(Dp(ε)) = 2(n + 2)
ε2H(D+

p (ε))

[
Vp(ε)
Vn(ε) + n + 4

ε2

(
ε2

n + 2 − λμ(p, ε)
Vn(ε)

)
− 1
]
, (49)

where the overall sign can be chosen by fixing a normal orientation from

(±) = sgn〈 en+1(Dp(ε)), s(Dp(ε)) 〉.

The eigenvectors eμ(Dp(ε)) and en+1(Dp(ε)) are descriptors of the principal and normal 
directions respectively. The errors are:

|H2(p) −H2(Dp(ε))| ≤ O(ε), |R(p) −R(Dp(ε))| ≤ O(ε),

|κ2
μ(p) − κ2

μ(Dp(ε))| ≤ O(ε).

However, the cylindrical domain descriptors of the present work may determine in 
general the squares of the principal curvatures with better truncation error than their 
spherical domain counterparts.

Corollary 6.3. Denote λ(p, ε) ≡ λ(Cylp(ε)), Vp(ε) ≡ V (Cylp(ε)) the integral invariants of 
a cylindrical domain on a hypersurface S, then the corresponding curvature descriptors 
at scale ε > 0 and point p ∈ S, for any μ = 1, . . . , n, are:

R(Cylp(ε)) = 2(n + 2)
ε2

[
2(n + 4)

ε2
λn+1(p, ε)
Vn(ε) + 3

(
1 − Vp(ε)

Vn(ε)

)]
(50)

H(Cylp(ε)) = (±)

√
2(n + 2)

ε2

[
2(n + 4)

ε2
λn+1(p, ε)
V (ε) + 2

(
1 − Vp(ε)

V (ε)

)]
, (51)
n n
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κ2
μ(Cylp(ε)) = n + 2

ε2

[
n + 4
ε2

(
λμ(p, ε)
Vn(ε) − ε2

n + 2

)
− Vp(ε)

Vn(ε) + 1
]
, (52)

where the overall sign can be chosen by fixing a normal orientation from

(±) = sgn〈 en+1(Cylp(ε)), s(Cylp(ε)) 〉.

The eigenvectors eμ(Cylp(ε)) and en+1(Cylp(ε)) are descriptors of the principal and 
normal directions respectively. The truncation errors are:

|H2(p) −H2(Cylp(ε))| ≤ O(ε2), |R(p) −R(Cylp(ε))| ≤ O(ε2),

|κ2
μ(p) − κ2

μ(Cylp(ε))| ≤ O(ε2).

Proof. Solving for the next-to-leading order term in the volume formula (27), and for 
the normal eigenvalue in equation (33), we get a system of two equations H2 − R =
A(ε), 3H2 − 2R = B(ε), whose solution is H2 = B − 2A and R = B − 3A, where

A(ε) = 2(n + 2)
ε2

(
Vp(ε)
Vn(ε) − 1

)
+ O(ε2), B(ε) = 4(n + 2)(n + 4)

ε4
λn+1(p, ε)
Vn(ε) + O(ε2).

Finally, solving for κ2
μ from the tangent eigenvalue equation (32), and using A(ε) =∑

α κ2
α, the last formula obtains. �

A concrete algorithm using hypersurfaces to implement this procedure to estimate 
the Riemann curvature tensor of a Riemannian submanifold of arbitrary codimension is 
presented in [28].

7. Conclusions

We have studied kernel domains of local principal component analysis determined by 
the intersection of embedded Riemannian submanifolds with higher-dimensional cylin-
ders and balls in the ambient space. We have introduced a generalization of the classical 
third fundamental form to submanifolds of any codimension and showed how it relates 
to the Weingarten and Ricci operators. Then the covariance analysis of these domains 
was found to have local eigenvalues encoding curvature in terms of the third funda-
mental form. For cylindrical domains the first n eigenvalues are related to those of the 
normal trace of the third fundamental form operator and the corresponding eigenvectors 
converge to its principal directions, whereas the last k eigenvalues and eigenvectors are 
related to the tangent trace of this tensor. In the case of the spherical domain the tan-
gent eigenvalues and eigenvectors of the covariance matrix are related to the Weingarten 
operator at the mean curvature normal vector, and the normal eigenvalue decompo-
sition is the same as in the previous case. These results show how integral invariants 
in terms of the local eigenvalue decomposition at scale relate to curvature information 
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traditionally characterized by differential-geometric invariants. We have expressed the 
most general form of this correspondence as an asymptotic equality between the ratio 
of the difference and product of local eigenvalues and the difference of generalized prin-
cipal curvatures. These results represent a fundamental step towards understanding the 
underlying connection between the statistics of point clouds sampled from Riemannian 
submanifolds and their geometry, a core goal of manifold learning, e.g., for optimization 
inside higher-dimensional matrix manifolds.
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Appendix A. Integration of monomials over spheres

Let x = [x1, . . . , xn]T ∈ Rn, and denote unit the sphere and ball of radius ε in Rn by:

Sn−1 = {x ∈ Rn : ‖x‖ = 1}, Bn(ε) = {x ∈ Rn : ‖x‖ ≤ ε}.

All the integrals in the text are separated into radial and angular parts using general 
spherical coordinates, (ρ, φ1, . . . , φn−1), where ρ = ‖x‖. However, to integrate monomials 
over the unit sphere, it is sufficient to work with the direction cosines xμ := xμ/ρ ∈ Sn−1, 
instead of the angles, so that the formulas below apply straightforwardly.

Definition A.1. For any integers p1, . . . , pn ∈ {0, 1, 2, . . . }, the integrals of the monomials 
(x1)p1 · · · (xn)pn over the unit sphere are denoted by:

C(n)
p1...pn

=
∫

Sn−1

(x1)p1 · · · (xn)pn dSn−1, (A.1)

where d Sn−1 = sinn−2(φ1) sinn−3(φ2) · · · sin(φn−2)dφ1 · · · dφn−1, is the induced Eu-
clidean measure on the sphere, abbreviated to d S in the text since our dimension n
is arbitrary but fixed throughout.

The following formula is crucial to the computations of the present paper.
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Theorem A.2. [37] Let bi = 1
2 (pi + 1), then the values of the integrals (A.1) over spheres 

are

C(n)
p1...pn

=

⎧⎨⎩0, if some pi is odd,

2 Γ(b1)Γ(b2) · · ·Γ(bn)
Γ(b1 + b2 + · · · + bn) , if all pi are even.

(A.2)

Example A.3. We shall need the relations among integrals of monomials of even powers:

C2 =
∫

Sn−1

(x1)2 dS = 2
Γ(3

2 )Γ(1
2 )n−1

Γ(3
2 + n−1

2 )
= πn/2

Γ(n2 + 1) , C22 =
∫

Sn−1

(x1)2(x2)2 dS = C2

n + 2 ,

C4 =
∫

Sn−1

(x1)4 dS = 3C2

n + 2 = 3C22, C222 =
∫

Sn−1

(x1)2(x2)2(x3)2 dS = C2

(n + 2)(n + 4) ,

C24 =
∫

Sn−1

(x1)2(x2)4 dS = 3C2

(n + 2)(n + 4) = 3C222

C6 =
∫

Sn−1

(x1)6 dS = 15C2

(n + 2)(n + 4) = 15C222.

The volume of a ball of radius ε, and the area of the unit sphere satisfy Vn(ε) =
Vol(Bn(ε)) = εnC2, Sn−1 = Area(Sn−1) = n C2.

The integral of a general combination of coordinates depends on the superindices 
involved, which must not be confused with exponents. For instance

∫
Sn−1

xμxνxβxγ dS = C4(μνβγ) + C22

[
(μνβγ) + (μνβγ) + (μνβγ)

]

is the general value of the integral of any product of 4 coordinates, that can be all equal to 
produce C4, or be a couple of different pairs to result in C22. We introduce the following 
notation:

(μνβγ) = δμν δβγ�δμβ ,

so that the symbol is 1 only when the connected indices are equal and the nonconnected 
indices are different, and 0 otherwise, and where �δμβ := (1 − δμβ) is the negation of the 
Kronecker delta, i.e., nonzero only if μ �= β. An example of order 6 is

(μναβγδ) = δμγ δνδ δαβ �δμν �δμα �δνα.
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