A&A 549, A119 (2013)
DOI: 10.1051/0004-6361/201220343
©ES0 2013

A8§tronomy
Astrophysics

Black-hole masses of type 1 AGN in the XMM-Newton bright
serendipitous survey*>**

A. Caccianigal, R. Fanali'2, P. Severgninil, R. Della Ceca', E. Marchese!, and S. Mateos>*

! INAF - Osservatorio Astronomico di Brera, via Brera 28, 20121 Milan, Italy

e-mail: alessandro.caccianiga@brera.inaf.it

4

Received 6 September 2012 / Accepted 15 November 2012

Dipartimento di Fisica, Universitd degli Studi di Milano-Bicocca, Piazza Della Scienza 3, 20126 Milano, Italy
Instituto de Fisica de Cantabria (CSIC-UC), Avenida de los Castros, 39005 Santander, Spain
X-ray & Observational Astronomy Group, Department of Physics and Astronomy, Leicester University, Leicester LE1 7RH, UK

ABSTRACT

Aims. We derive masses of the central supermassive black hole (SMBH) and accretion rates for 154 type 1 AGN belonging to a
well-defined X-ray-selected sample, the XMM-Newton serendipitous sample (XBS).

Methods. We used the most recent “single-epoch” relations, based on HB and MglI12798 A emission lines, to derive the SMBH
masses. We then used the bolometric luminosities, computed on the basis of an SED-fitting procedure, to calculate the accretion rates,
both absolute and normalized to the Eddington luminosity (Eddington ratio).

Results. The selected AGNs cover a range of masses from 107 to 10! M, with a peak around 8 x 10® M, and a range of accretion
rates from 0.01 to ~50 M,/year (assuming an efficiency of 0.1), with a peak at ~1 M/year. The values of Eddington ratio range from

0.001 to ~0.5 and peak at 0.1.
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1. introduction

The nuclear activity of an active galactic nucleus (AGN) is pow-
ered by the accretion of matter into the gravitational well of the
central supermassive black hole (SMBH). It has now become
clear that the majority of galaxies host an SMBH and that they
must have experienced an activity phase during their lifetime
(see Merloni & Heinz 2012 for a review). Much observational
evidence, like the SMBH mass-bulge relations (e.g. Magorrian
et al. 1998; Giiltekin et al. 2009), strongly suggest that this ac-
tivity phase must have played a critical role in galaxy evolution.
For these reasons, a better understanding of the accretion mech-
anism represents a fundamental step not only in improving our
knowledge of the AGN physics, but also for general comprehen-
sion of the galaxy formation and evolution.

X-rays offer a direct probe of the accretion mechanism since
they are produced in the very inner part of the nucleus through a
(still poorly understood) mechanism that probably involves the
electrons in a “hot” corona and the UV photons produced within
the accretion disk (e.g. Haardt & Maraschi 1991, 1993), thus car-
rying direct information on the physics very close to the SMBH.
The highly penetrating capability of X-rays often makes them
the only tool for gathering direct information on the nuclear ac-
tivity when the disk emission, peaked in the UV part of the spec-
trum, is absorbed and unobservable.

* Based on observations collected at the Telescopio Nazionale
Galileo (TNG) and at the European Southern Observatory (ESO),
La Silla, Chile and on observations obtained with XMM-Newton,
an ESA science mission with instruments and contributions directly
funded by ESA Member States and the USA (NASA).

** Table 1 is available in electronic form at http://www.aanda.org

Article published by EDP Sciences

While X-ray observations of single sources can shed light
on the complexity of the emission at these energies, a statistical
approach based on large samples offers the unique opportunity
of studying the link between hot corona and the phenomenon
of accretion on the central SMBH (e.g. see Young et al. 2010;
Vasudevan & Fabian 2009; Grupe et al. 2010; Lusso et al. 2012,
and references therein). To this end, statistically complete and
well-defined samples of AGNs equipped with X-ray spectral
data and with a reliable estimate of the accretion parameters
(SMBH mass, the absolute accretion rate, the accretion rate nor-
malized to the Eddington limit) are required.

The recent availability of statistical relations (see
Vestergaard 2009 for a review) that allow the systematic
computation of the black-hole mass on large numbers of
AGN has made it possible to estimate black-hole masses for
very large samples of AGNs (usually optically selected): for
instance, the last release of the SDSS QSO catalogue contains
a mass estimate for more than 100000 AGNs (Shen et al.
2011). In spite of these large numbers, the samples that contain
information on both black-hole masses and X-ray spectra are
significantly smaller. In particular, if we restrict attention to the
hard X-ray energies (above 2 keV), where the primary X-ray
emission is best observed and studied, the largest samples
available for this kind of study contain a few hundred objects
at most. The largest samples are often built using X-ray data
from the XMM-Newton archive combined with optical data that
come from SDSS (Risaliti et al. 2009; Vagnetti et al. 2010),
from the literature (Bianchi et al. 2009) or from dedicated
observations (Lusso et al. 2012; Grupe et al. 2010). A major
problem affecting many samples is that they are often just a
collection of sources available in both an X-ray and an optical
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catalogue so they do not necessarily represent a statistically
complete and representative sample of AGNss.

To limit the possible biases deriving from this kind of se-
lection, we present here a new data set containing black-hole
masses and accretion rates (both absolute and normalized to the
Eddington limit) for a well-defined flux-limited sample of X-ray
sources selected from XMM-Newton, the Bright Serendipitous
Survey (XBS!, Della Ceca et al. 2004; Caccianiga et al. 2008).
The XBS is now almost completely identified (>98%) after ten
years of dedicated spectroscopic observations, and it contains,
by definition, XMM-Newton data of medium/good quality (from
100 to 10* net counts) that has allowed systematic X-ray spectral
analysis for all the selected AGN (Corral et al. 2011). For most
of the type 1 AGN contained in this sample, the optical/UV spec-
tral energy distribution has been studied and a reliable estimate
(i.e. not based on a bolometric correction) of the bolometric lu-
minosity has already been published (Marchese et al. 2012). In
this paper we present the estimate of the black-hole masses, us-
ing the single-epoch method. In a companion paper we will use
these values, combined with the results of the X-ray analysis, to
study the statistical relationship between X-ray properties and
the accretion rate on the central SMBH (Fanali et al., in prep.).

The structure of the paper is the following. In Sect. 2 we
briefly describe the XBS sample while in Sects. 3 and 4 we
present the derivation of black-hole masses and accretion rates,
respectively. In Sect. 5 we discuss how the presence of the radi-
ation pressure can change the derived quantities, and in Sect. 6
we summarize results and conclusions.

We assume a flat ACDM cosmology with Hy = 65, Q4 = 0.7
and Qy = 0.3.

2. The XBS sample of type 1 AGN

The XBS (Della Ceca et al. 2004; Caccianiga et al. 2008) is a
wide-angle (28 sq. deg), high Galactic latitude (|b] > 20 deg) sur-
vey based on the XMM-Newton archival data. It is composed of
two samples that are both flux-limited (~7 x 10~'* erg s~ cm™2)
in two separate energy bands: the 0.5-4.5 keV band (the BSS
sample) and the 4.5-7.5 keV band (the “hard” HBSS sample).
A total of 400 sources have been selected, 389 belonging to the
BSS sample and 67 to the HBSS sample (56 sources are in com-
mon). Selection criteria and the general properties of the 400 ob-
jects are discussed in Della Ceca et al. (2004).

To date, the spectroscopic identification has nearly been
completed, and 98% of the 400 sources have been spectroscopi-
caly observed and classified. The details of the classification pro-
cess are presented in Caccianiga et al. (2007, 2008). In this paper
we want to derive the mass of the central SMBH for the type 1
AGN:Ss. In total, the XBS contains 276 type 1 AGN but we have
computed the Mgy only for the sub-sample of sources that was
studied by Marchese et al. (2012) in order to have a reliable es-
timate of the bolometric luminosity. The sub-sample considered
by Marchese et al. contains the type 1 AGN that fall in the area
of sky surveyed by GALEX (Martin et al. 2005; Morrissey et al.
2007), therefore it can be considered as representative of the en-
tire XBS sample of type 1 AGN. We have then excluded a few

' The XBS is one of the research programmes conducted by
the XMM-Newton Survey Science Center (SSC, see http://
xmmssc-www.star.le.ac.uk), a consortium of 10 international in-
stitutions, appointed by the European Space Agency (ESA) to help the
XMM-Newton Science Operations Centre (SOC) in developing the soft-
ware analysis system, to pipeline process all the XMM-Newton data, and
to exploit the XMM-Newton serendipitous detections. The Osservatorio
Astronomico di Brera is one of the Consortium Institutes.
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Fig. 1. Redshift distribution for the 154 XBS AGNI discussed in this

paper (continuous black line) compared to the distribution of the total

sample of 276 AGN1 (green short-dashed line). Dotted (red) and long-

dashed (blue) histograms indicate the objects whose black-hole mass

has been derived using the H3 and MgI[12798 A lines, respectively.

sources whose optical spectrum is either not available or without
broad emission lines required to compute the BH mass, leaving
us with a total of 154 AGNSs. In Fig. 1, we compare the redshift
distribution of the 154 type 1 AGN studied here and of the to-
tal XBS sample of 276 type 1 AGN. The two distributions are
similar, as demonstrated by a KS test (KS probability of 98.6%).

3. Black-hole mass

To estimate the black-hole masses of the XBS type 1 AGN, we
used the “single epoch” (SE) spectral method, which is based
on measuring the broad line widths and the continuum emis-
sion in a single spectrum (e.g. see Peterson 2010 and Marziani
& Sulentic 2012, and references therein). The method assumes
both that the BLR traces the gravitational potential due to the
presence of the central SMBH and that the virial theorem can
be applied. The two input quantities, the velocity dispersion and
the size of the system (Rprr), can be inferred directly from the
optical/UV spectrum: the line width yields direct information on
the velocity dispersion, while the continuum luminosity can be
used to estimate the system size through the Rgpr/L “scaling re-
lations” (e.g. Kaspi et al. 2000; Bentz et al. 2009). The unknown
geometry of the BLR is one fundamental source of uncertainty
for this method and, in general, for all methods based on the
BLR kinematics (including the reverberation mapping method,
Vestergaard 2009). The average value of the “virial factor” that
takes the particular geometry of the system into account can be
assumed “a priori” (e.g. McLure & Jarvis 2002) or it can be esti-
mated through a comparison with the Mgy-o empirical relation
observed in non-active galaxies (Onken et al. 2004; Woo et al.
2010; Graham et al. 2011). That the BLR geometry is probably
different from object to object creates an intrinsic dispersion on
the “virial factor”, which is one of the most important sources
of uncertainty associated to these methods. Besides this “zero
point” uncertainty, the SE method has an additional source of
uncertainty due to the scatter on the size-luminosity relation. All
considered, the total uncertainty on the SE method has been re-
cently estimated to be between 0.35 and 0.46 dex (Park et al.
2012).
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The emission lines used for the Mgy measurement depend
on the redshift of the source. For the XBS sample, the type 1
AGN:Ss cover a redshift range between 0.02 and 2, therefore, the
emission lines that can be used for the mass estimate are the HB
(up to z ~ 0.8) and the MglIl12798 A (from z ~ 0.3). In a number
of cases both lines are included in the observed spectral range.

In this paper we adopt the relationships that are anchored to
the virial factor estimated by Onken et al. (2004). For the HB, we
used the relation discussed in Vestergaard & Peterson (2006):

FWHM(HB) ALgo0
PIAUIR) | .50 Log Z=3104
1000 kms 1 0008 Ta e, (D

For the MgI112798 A line we used the relation presented in Shen
et al. (2011):

Log Mgy = 6.91+2 Log

FWHM(MgIT) ALy
Log My = 6.74 + 2 Log ~ i AMII) () 62 1.0g 3000 A
08 MeH T2 000 kms T % 10 erg

(2)

this equation has been obtained by Shen et al. (2011) in such a
way that the zero-order point (i.e. the virial factor) is the same as
in the HB relation presented above (Eq. (1)) so that the masses
are consistently derived from these two equations. In both re-
lations, the line widths refer to the broad component, and it is
assumed that a narrow component has been subtracted during
the fitting procedure.

In the following sections we describe in detail the meth-
ods adopted to compute the two critical input quantities of the
equations reported above, i.e. the line widths and the continuum
luminosity.

3.1. Line width measurements

The different dependence of Mgy on line width and luminosity
(see Egs. (1) and (2)) means that the statistical (i.e. not including
the intrinsic dispersion of the relation and the uncertainty on the
virial factor) uncertainty of the final Mgy estimate will mostly
come from the uncertainty on the line width. The line width mea-
surement is then particularly difficult owing to the presence of
different spectral components and considering the average qual-
ity of our spectra (average S/N ~ 10—11 in the spectral regions
close to HB and MglI12798 A emission lines, with ~25% of ob-
jects having S/N below 5).

In particular, the correct determination of the width of the
broad component of the emission line is hampered by a nar-
row component (which is particularly important for the HS line)
and by the iron pseudo-continuum (which is critical for the
MglI12798 A line). A simple component fit, not considering the
possible presence of a narrow component, would lead to a sys-
tematic under-estimate of the broad line width (Denney et al.
2009). At the same time, not considering the existence of the
iron pseudo-continuum may lead to an over-estimate of the line
width. A common practice for taking this spectral complexity
into account is to subtract a Fell template from the spectrum
and, then, fit the subtracted spectrum with a number of narrow
and broad components (usually with a Gaussian profile, e.g. see
Shen et al. 2011, for details on the method). In the following, we
discuss separately the methods used to derive the width of the
broad components of the HB and MglI.

3.1.1. HB

For the fit of the HB line we use the method usually adopted
in the literature i.e. we subtract an iron template to the spectra

XBSJ024204.7+000814
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Fig.2. Example of a spectral model used to fit the region around the
Hp line. As described in the text, we first subtract an iron template from
the spectrum (black line) and then we fit the residual (blue line) with a
power-law continuum plus 3 Gaussians describing the narrow HS and
the two [OIII] lines, plus an additional Gaussian to describe the broad
component of the HB line. These components are represented by the
dashed green lines while the total fit is represented by the red continuous
line.

and then fit the residuals. To this end, we use the iron tem-
plate presented in Véron-Cetty et al. (2004) and consider the
3500-6000 A (rest-frame) spectral region. In this procedure
there are three independent parameters that need to be deter-
mined: the normalization of the iron template (Ng.), the line
broadening (o), and velocity offset (Vg.) of the iron lines.
Constraining the lattest two parameters is usually difficult even
for good quality spectra. In medium quality spectra (like the
one of the SDSS spectra considered by Shen et al. 2011, where
S /N ~ 10) these parameters are poorly constrained (e.g. see dis-
cussion in Shen et al. 2011). The quality of our spectra is, on
average, similar to the ones of the SDSS spectra (and in some
cases even lower), so we decided to fix both parameters. After
subtracting of the iron template, we fit the resulting spectrum
around the HB line using a model composed by three compo-
nents: a PL continuum plus four Gaussians representing, respec-
tively, the narrow and the broad components of the HB and the
two [OIII] narrow lines. The width of the component describ-
ing the narrow Hp is constrained to be equal to the width of
two [OIII] lines. We run the fit in two steps: first we freeze the
positions of the Gaussians to the expected wavelengths. In a sec-
ond step, we leave the positions of the Gaussians describing the
emission lines free to vary (with the maximum possible variation
in the position of the iron components fixed to ~30 A to avoid
problems with the fitting procedure). The broad and the narrow
Hp components do not necessarily peak at the same wavelength
to account for possible velocity offsets between the BLR and the
NLR. We show an example of this fitting procedure in Fig. 2.
We note that keeping the iron line width and position fixed
during the fitting procedure may introduce a certain degeree of
uncertainity (even systematic) in the computation of the broad
Hp width. The possibity that the iron lines could be systemat-
ically shifted with respect to the HS line has been investigated
by several authors, and although there have been some claims
of systematic large velocity offsets (up to 2000 kms™!) in the
spectra of SDSS quasars (Hu et al. 2008), the analysis of good
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Fig. 3. Difference between the logarithms of the broad Hf emission line
width derived with two different methods, one based on the subtraction
of an iron template where the line widths are fixed and a second method
that, instead, leaves the iron line widths free to vary (see text for details).
The data are split on the basis of the signal-to-noise around the Hf line.

signal-to-noise ratio (S/N) spectra has recently demonstrated
that the actual offsets are much smaller (<300 km s~! Sulentic
et al. 2012), if present. The impact of such small offsets on our
fitting procedure is not going to be relevant. On the contrary,
keeping the iron line width fixed can have a more significant im-
pact on our mass estimates. To quantitatively evaluate this effect,
we applied a second fitting method, not based on subtraction of
an iron template, using an approach similar to the one used for
fitting the MgII12798 A line (see below). In this method, we
adopted a model composed of six Gaussians plus a power-law
continuum. Two Gaussians are used to model the HB (for the nar-
row and the broad components), while two Gaussians are used
to fit the two [OIII] narrow emission lines. The remaining two
Gaussians are used to account for the two strongest Fell com-
ponents usually observed at 4924 A and 5023 A. The widths of
these two lines are left free to vary. Then we ran the fitting pro-
cedure following the two steps described above and found the
best-fit width of the broad HB component. The resulting widths
were finally compared to those obtained by subtracting the iron
template. We carried out this comparison by splitting the sam-
ple into two sets: a first data set containing only the low S/N (in
the HpB region) spectra (S/N < 7) and a second data set contain-
ing the best spectra we have (S/N > 10). In Fig. 3 we show the
distribution of the difference in the widths (in Log) computed
using the two procedures, for both data sets. In the case of low
S/N spectra there is no systematic difference between the two
estimates. This is expected since, in case of very poor quality
spectra, it is very difficult to detect any real difference in the
iron line width, and all the differences are probably due just to
random fluctuations in the fitting procedure. In contrast, for rel-
atively good spectra (S/N > 10), we do observe a significant
(~30) systematic offset between the line widths, the HB being
typically larger in the iron template subtraction method (where
the iron lines are fixed), when compared to the method where
the iron lines are left free to vary. This is probably because,
in the first method, part of the iron emission may be included
in the broad HB component thus producing larger widths. We
stress, however, that even in the S/N > 10 data set, the average
quality of the spectra (S/N between 10 and 30) is certainly not
comparable to the one typically required for a proper spectral
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Fig.4. Example of a spectral model to fit the region around the
Mgll12798 A line. This method includes the iron lines directly in the
fitting procedure rather than subtracting an iron template from the spec-
trum, as typically done in the literature. The total fit is represented by
the solid red line while the different components (the power-law con-
tinuum, the narrow and the broad components of the line and the iron
humps) are represented by the dashed lines.

deconvolution (>50) and, therefore, there is a high degree of de-
generacy in the fitting process. We cannot exclude, for instance,
that part of the observed offset is related to an underestimate of
the broad HB component in the method where the iron widths are
left free to vary. For this reason, it is difficult to establish which
one of the two methods gives better results. However, the ob-
served offset can be used as an estimate of the possible effect on
the broad HB width because we have fixed the iron width when
subtracting the iron template. The observed offset is 0.057 dex,
which translates into an expected offset in the mass computed
using the HB line of ~0.11. This offset is within the average sta-
tistical uncertainty on the masses computed from the HB line
(~0.18 dex).

We finally note that fitting the HB broad line using only one
Gaussian is certainly a simplification. The analysis of high S/N
spectra of local Seyfert galaxies has revealed a complex phe-
nomenology (e.g. see Sulentic et al. 2000, for a review). Given
the typical S/N of our spectra, however, any attempt to provide a
more complex fit to the broad HB profile would lead to very un-
certain results, except for very few cases. Indeed, this is a general
problem connected with the systematic application of the SE re-
lation to large samples of spectra whose quality is typically much
lower than that of the brightest and best-studied local Seyferts.

3.1.2. Mgll

For the MglI we did not follow the same procedure as adopted
for the HB line due to the difficulty of obtaining a reliable
iron template at these wavelengths. We thus decided to in-
clude the iron components in the fitting procedure. Specifically,
we adopted a model including two Gaussians for the narrow
and broad components of Mgll12798 A plus four additional
Gaussians to reproduce the iron humps at 2630 A, 2740 A,
2886 A and 2950 A plus a power-law continuum (see Fig. 4).
Since, in the case of MgllI, we do not have the two [OIII] line
as a reference for the narrow line widths, we set the MglI nar-
row component to be equal to the instrumental resolution, for
the spectra with a resolution worse than 500 kms™'. For the
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very few spectra with better resolution, the width of the nar-
row component is fixed to 500 kms~'. Again, as a first step we
fix the positions of the components to the expected values and,
then, we left them free to vary (with a maximum possible vari-
ation of 30 A for the iron components). In fitting the MgII line
we have thus assumed that a narrow component is present. It
should be noted, however, that for the MgII12798 A line, the ac-
tual presence of a narrow component is less obvious than for
the HB line. In their work, Vestergaard & Osmer (2009) did
not subtract a narrow component during the fitting procedure
of the MgllI profile (which was modelled with two Gaussians
both attributed to the broad component), while other authors
(e.g. Mc Lure & Dunlop 2004) have considered a narrow plus a
broad component for the MgII1298 A line as in the analysis pre-
sented here. The choice of including the narrow component of
the MgII12798 A is somewhat arbitrary. In our analysis, includ-
ing the narrow MglI12798 A component gives a slightly better
consistency between the masses computed using MgII12798 A
and those computed using HB, so we decided to adopt this type
of model.

3.1.3. Instrumental resolution

Finally, given the moderate resolution of the spectroscopic ob-
servations (~650—1200 kms™'), we applied a correction to the
widths of the broad components of both H3 and MgI112798 A,
resulting from the fitting procedures described above, to account
for the instrumental broadening, i.e.,

Ad= (A2 - AR,

where AA, A, and A, are the intrinsic, the observed, and the
instrumental line width, respectively.

3.2. Monochromatic luminosities

Determination of the monochromatic luminosities at 5100 A and
3000 A also requires some caution. In principle we can use the
fluxes derived directly from the spectra. This procedure, how-
ever, is not accurate for several reasons:

— the absolute spectro-photometric calibration of our spectra
is not always accurate since most of the data have been col-
lected during non-photometric nights;

— the spectra are often contaminated by the host galaxy light
(the slit width used was often relatively large, from 1 to 2 arc-
secs, depending to the seeing conditions);

— the spectra must be corrected for the extinction, both
Galactic and at the source. This is a particularly critical point
since, given the relatively hard X-ray selection band, the
XBS sample contains many type 1 AGNs with moderate lev-
els of absorption (Ay up to 1-2 mag, see Caccianiga et al.
2008).

To account for these points, we used the result of a systematic
study of the optical/UV spectral energy distribution (SED) of
the type 1 AGN of the XBS survey, described in Marchese et al.
(2012). In this work we have collected photometric points, both
in the optical (most from the SDSS) and in the UV band (from
GALEX) and built the SED for each source. In the derivation of
the SED we carefully took the presence of the host galaxy into
account, on the basis of the strength of the 4000 A contrast, and

excluded it from the final SEDs. We also corrected the photomet-
ric points for the extinction, both due to our Galaxy and at the
source, using the values of Ny derived from the X-ray analysis
(Corral et al. 2011) and assuming a Galactic gas-to-dust ratio.
This is certainly an approximation since there are well-known
examples of AGN where the dust-to-gas ratio is significantly
different from what is observed in our Galaxy. However, in the
XBS survey we have found generally good agreement between
the optical classification (typel/type2 AGN) and the measured
levels of Ny (lower or greater than 4 x 102! cm™2), with only
a few (<10%) exceptions (Caccianiga et al. 2004; Corral et al.
2011). Therefore, we expect that this problem is not going to
have a strong impact on our results, at least from a statistical
point of view.

These SEDs have been then fitted with a multi-colour black-
body accretion disk model, which includes corrections for tem-
perature distribution near the black hole (for details see DISKPN
in the XSPEC 12 software package, Arnaud et al. 1996). From
this fit, we computed the rest frame 5100 A and 3000 A lumi-
nosities to be used in Egs. (1) and (2) for the mass estimate.

3.3. Computing the BH masses

Using the methods described in the previous sections, we com-
puted the black-hole masses for all the 154 type 1 AGNs of the
XBS for which we analysed the SED, as described in Marchese
et al. (2012) and for which we acquired an optical spectrum. For
32 objects we only covered the HB emission line while for 70 ob-
jects we have covered only the MgI112798 A line. In 52 cases we
have detected both lines in the spectrum. In these cases we chose
the mass estimate that is considered more accurate, i.e. the one
based on the line with the best S/N and/or with the smallest error
in the measured width (quite often, one of the two lines is at the
edge of the observed spectrum). Overall, the black-hole masses
were derived from the HB, in 62 cases, and from MgII12798 A
line, in 92 cases.

The masses for the 154 type 1 AGN are reported in Table 1,
together with the (statistical) errors. In Table 1 we also report the
full width at half maximum (FWHM) of the lines and the values
of the monochromatic luminosities used for the mass estimate.
The distribution of the masses obtained for the 154 AGN1 of the
XBS sample are reported in Fig. 5.

3.4. Uncertainties on BH masses

Statistical uncertainities on the BH masses were estimated
by combining the statistical errors on both line width and
monochromatic luminosity, assuming that the two errors are
independent:

+- +,— 2 += N2
OLogm = \/ (AO—LogFWHM) + (BO—LogL)

where A = 2 and B is equal to 0.5 for the HB while it is 0.62 for
Mgll12798 A. o~ are the asymmetric errors (at the 68% con-
fidence level) to the logarithm of the FWHM and luminosities,
respectively.

The errors on the HB and MglI12798 A broad components
are derived from the fitting precedure described above, by im-
posing Ay? = +1. Similarly, the errors on the monochromatic
luminosities are computed from the SED fitting procedure by
again imposing Ay?> = +1 from the best-fit value. As described
in Marchese et al. (2012), the SED fitting procedure takes the

Al19, page 5 of 14
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Fig. 5. Distribution of the black-hole masses for the 154 XBS AGNI.
Dotted (red) and dashed (blue) histograms show masses derived from
Hp3 and MglI12798 A lines respectively.
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errors on the photometric points into account. These 1o uncer-
tainities include both the errors on photometry and additional
sources of error due to the correction for the intrinsic extinction
and the long term variability (since the used photometric data
are not simultaneous). The uncertainty due to the correction for
the host galaxy, based on the 4000 A break, is not folded into
these errors. However, in Marchese et al. (2012) we evaluated
that by changing the starting value of the 4000 A break within a
reasonable range of values (from 45% to 55%), the variations in
the photometric points only produce a negligible (<14%) change
in the best fit luminosity.

The statistical 1-0 errors on the broad line widths,
monochromatic luminosities, and on the final black-hole masses
are reported in Table 1. We stress that the errors on black-hole
masses do not include the uncertainity on the SE method that,
as already explained, is expected to be between 0.35 dex and
0.46 dex (Park et al. 2012) i.e. dominant when compared to the
average statistical errors (~0.14 dex).

3.5. Comparison of the black-hole mass estimates

With the derived line widths and monochromatic luminosities
we computed the Mgy for all the AGN1 for which either the HB
or the MgI112798 A lines have been observed. For the 52 sources
where both HB and MgI112798 A are included in the spectrum
it is possible to compare the two Mpy estimates. To evaluate
the presence systematic offsets better, we first considered the
objects with a relatively good spectrum (S/N > 5) and ex-
cluded the sources with large statistical errors on the final mass
estimate (>0.2 dex). The comparison (Fig. 6) shows generally
good agreement, without significant offsets and with a spread
of ~0.28 dex. Considering all the objects, including those with
less accurate determination of the mass the spread increases to
~0.38 dex, and there seems to be a systematic shift probably
related to the difficulty of properly accounting for all the com-
ponents during the spectral fit (in particular the iron lines around
the MgI1.12798 A line and the narrow component of the HB line).
In Table 1 we have flagged the masses derived from a prob-
lematic fit and those resulting from the analysis of poor S/N
(<5) spectra.
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Fig. 6. Comparison between black-hole masses computed on the basis
of the MglI12798 A and the HB lines for the XBS AGNs where both
lines are included in the spectrum. Red points represent sources with a
relatively high S/N (>5) around the line of interest and with lower statis-
tical error bars (<0.2 dex) while grey points are objects with lower S/N
spectra and/or larger error bars. As reference we plot the relation 1:1
(solid line), while the two dashed lines represent a scatter of 0.5 dex.

As a further test of the reliability of our mass estimate we
compared the black-hole masses derived in our work with those
computed in Shen et al. (2011) for the few sources in common.
Since Shen et al. (2011) presents masses computed using differ-
ent formulae, we used the ones computed in the same way for the
comparison, i.e. the VP06 for HB, and the S10 for MgI112798 A.
The result of the comparison is presented in Fig. 7. In some
cases, we used the same SDSS spectrum to derive the BH masses
while in other cases we acquired an independent spectrum. As
before, we first excluded from the test the sources with low S/N
(<5) spectra (used in our analysis) and large errors (>0.2 dex) in
either our estimate or in the Shen et al. estimate. The comparison
shows a spread of ~0.2—0.3 dex and a marginal systematic offset
between the two masses, with the ones computed in this work be-
ing larger on average by a factor ~0.17 dex. The offset is mainly
present in the masses computed from MgII12798 A. By compar-
ing separately the line widths and the monochromatic luminosi-
ties we have established that this offset is mainly attributed to an
offset in luminosity rather than in line width. This offset is prob-
ably due to the method we used to compute the monochromatic
luminosities that corrects for the extinction (both Galactic and at
the source), as explained in the previous sections, thus yelding,
on average, to higher corrected luminosities, in particular in the
blue/UV spectral region. Considering all the sources in common
between the two samples the spread increases to ~0.4 dex.

4. Eddington ratio and i1

An important parameter that is suspected of regulating a number
of observational properties of AGNs is the “normalized” bolo-
metric luminosity, i.e. the so-called Eddington ratio, which is
defined as

A = Lyol/Lgaq 3)
where:
M
Leaa = 1.26 x 103 =2 grg 57! )
Mg
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Fig.8. Distribution of the values of Eddington ratio for the 154
XBS AGNI. Dotted (red) and dashed (blue) histograms show the values

based on masses derived from HB and MgII12798 A lines respectively.

We compute the values of Eddington ratio using the bolometric
luminosities taken from Marchese et al. (2012) which was com-
puted, as explained above, by fitting the optical/UV data with
a disk model. The photometric points, and therefore the bolo-
metric luminosity, were corrected for reddening as detailed in
Marchese et al. (2012). The distribution of Eddington ratios is
reported in Fig. 8.

From the bolometric luminosity we can also derive an esti-
mate of the absolute (i.e. not normalized to the Eddington limit)
accretion rate:

. L
= =% ~ 1.8 % 10-3$ My yr™! 5)
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Fig. 9. Distribution of the values of M for the 154 XBS AGNI. Line
styles as in Fig. 5.

100

where Ly is the bolometric luminosity in units of 10* ergs™!

and 7 is the efficiency of the mass-to-energy conversion. We as-
sume here an efficiency of 0.1 (Marconi et al. 2004). We note that
the bolometric luminosities used to compute M also include the
X-ray emission (in addition to the disk component) as described
in Marchese et al. (2012). Therefore, by using these bolometric
luminosities to compute M we are implicitly assuming that the
energy budget carried by the X-ray emission is directly related
to the accretion process. This is, of course, not an obvious as-
sumption, since the origin of the X-ray emission is still an open
issue. In any case, we stress that the contribution of the X-ray
emission to the bolometric luminosity is, in general, relatively
low (~25% on average in our sample) and, therefore, the values
of M are not going to change significantly (on average) if we use
only the disk emission in Eq. (5).

The distribution of M is reported in Fig. 9. To facilitate the
comparison with previous figures we also show the M separately
for HB and MgI112798 A mass-derived sources, although in this
case, the value of M does not depend on the derived BH mass.

5. The effect of radiation pressure

It has been suggested (Marconi et al. 2008; Marconi et al. 2009)
that the black-hole masses derived from the virial theorem can
be severely underestimated due to the effect of the radiation pres-
sure. This effect, not considered in the usual SE relations, is ex-
pected to be important for accretion rates close to the Eddington
limit according to the following equation (Marconi et al. 2008):

a
1+/10(1 _a+(rTNH)] (6)

where Mgy is the “real” black-hole mass, Mgy o is the black-hole
virial mass computed by neglecting the radiation pressure, A is
the Eddington ratio computed using Mpp, @ = Lion/L (i.e. the
ratio between the ionizing continuum luminosity and the bolo-
metric luminosity), ot is the Thomson cross-section, and Ny
the column density of each BLR cloud along the line of sight.
As noted by Marconi et al. (2008), for reasonable assumptions
on the BLR density (~10%* cm™2) if the accretion is close to the
Eddington limit, the correction could be as high as a factor 10.
The actual importance of the radiation pressure, however, has

Mgn = Mguyp
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Fig. 10. Distribution of the black-hole masses corrected for the radiation
pressure (red continuous line), as described in the text. For comparison
we show the distribution of uncorrected masses (black dashed line).

been debated in the recent literature. Netzer (2009), for instance,
notes that the Eddington ratios of a sample of type 1 AGN from
the SDSS (whose black-hole masses were computed using the
virial method), when corrected for the radiation pressure, turnes
out to be significantly lower when compared to the Eddington ra-
tio distribution of an SDSS sample of type 2 AGN for which the
black-hole masses have been computed using a different tech-
nique (M-o relation). In contrast, if no correction is applied, the
two distributions are similar.

Given the difficulty of assessing the actual importance of the
radiation pressure, we decided to present both the corrected and
the uncorrected masses and Eddington ratios in this paper. The
corrected masses, in particular, were computed using the equa-
tion above and assuming ¢ = 0.6 and Ny = 10%°* cm™ (the
values assumed in Marconi et al. 2008).

In Fig. 10 we show the black-hole mass and in Fig. 11 the
Eddington ratio distributions corrected for the radiation pres-
sure and compared with the uncorrected quantities. As expected,
the corrected masses are shifted towards the higher values, while
the Eddington ratio presents a sharp cut off at 0.1 (see discussion
in Marconi et al. 2008).

The values of masses and Eddington ratios corrected for the
radiation pressure are included in Table 1.

6. Summary and conclusions

We have presented black-hole masses and accretion rates (both
absolute and relative to the Eddington limit) for 154 type 1
AGN:s belonging to the XBS sample. The masses were derived
using the single-epoch method and adopting the most recent
scaling relations involving the HB and the MgI112798 A emis-
sion lines. The selected sources cover a range of masses from
107 to 10'° M, with a peak around 8 x 103 M, and a range of ac-
cretion rates from 0.01 to ~50 My/y (assuming an efficiency of
0.1), with a peak at around 1 My/y. The values of the Eddington
ratio range from 0.001 to ~0.5 and peak at 0.1.

We have verified that the computed masses are in broad
agreement with the ones presented in Shen et al. (2011) although
we found a systematic offset of ~0.17 dex (with our masses
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being higher) probably because of the different methods adopted
in the two works to estimate the continuum luminosity.

We stress that the 154 type 1 AGN presented here constitute
a well-defined flux-limited sample of type 1 AGN and not just
a collection of data from the literature or from public archives.
This characteristic, combined with the systematic availability for
all these objects of crucial X-ray information (based on X-ray
spectral analysis) and on the optical/UV SED, makes this sample
instrumental for statistical studies. In a companion paper (Fanali
et al., in prep.), we will use the results presented here to study the
link between the hot-corona, responsible for the X-ray emission,
and the accretion process onto the central black hole.
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