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OPTIMAL CONTROL OF A PARABOLIC EQUATION WITH

MEMORY

Eduardo Casas1,*,∗∗ and Jiongmin Yong2,∗∗∗

Abstract. An optimal control problem for a semilinear parabolic partial differential equation with
memory is considered. The well-posedness as well as the first and the second order differentiability of
the state equation is established by means of Schauder fixed point theorem and the implicity function
theorem. For the corresponding optimal control problem with the quadratic cost functional, the exis-
tence of optimal control is proved. The first and the second order necessary conditions are presented,
including the investigation of the adjoint equations which are linear parabolic equations with a measure
as a coefficient of the operator. Finally, the sufficiency of the second order optimality condition for the
local optimal control is proved.
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1. Introduction

In this paper, we study the following optimal control problem

(P) min
u∈L∞(0,T ;L2(Ω))

J(u) :=
1

2

∫
Q

(yu − yd)2 dxdt+
κ

2

∫
Qω

u2 dx dt,

where Q = Ω× (0, T ) with Ω a bounded domain of Rn, 1 ≤ n ≤ 3, 0 < T <∞, Qω = ω× (0, T ), ω a measurable
subset of Ω with positive measure, and yu is the solution of the following Neumann initial-boundary value
problem

{
∂y

∂t
−∆y + f(x, t, y) +K[y] = g + χωu in Q,

∂νy = 0 on Σ, y(0) = y0 in Ω.
(1.1)

∗∗This author was supported by MCIN/ AEI/10.13039/501100011033/ under research project PID2020-114837GB-I00.
∗∗∗This author is partially supported by NSF Grant DMS-1812921. The main part of this work was completed while this author

was visiting the first author at Universidad de Cantabria. This author would like to thank the first author for his hospitality.

Keywords and phrases: Parabolic partial differential equation with memory, optimal control, optimality conditions.
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In the above equation, K[y] denotes the function

K[y](x, t) =

∫
[0,t]

a(x, t, s, y(x, s)) dµ(s) for (x, t) ∈ Q, (1.2)

where µ is a real Borel measure in [0, T ]. Such a term represent the memory. It is easy to understand that
memory exists in almost all applications, in particular, in the diffusion processes described by parabolic partial
differential equations. There are at least two commonly accepted situations that this will happen: (i) As it is
known, the classical heat equation is derived from the Fourier’s law. In the derivation, for simplicity, people
neglect the memory/time delay effect. If one takes this into account, then the memory appears. See [15], as
well as [20, 27]. We see that the situation is actually more difficult since the memory can appear in the highest
derivative terms. Here, we only consider a much simpler version. But it is still meaningful since we may regard
it as an external heat source/sink depending on the past and up to current temperature. (ii) In diffusion of
population/epidemic models, it is easy to understand that the current diffusion situation heavily depends on the
past and up to current concentration of the spices. See [22], and references cited therein. By using the term K[y]
is one way to describe such a situation. If we consider the Lebesgue decomposition of µ: dµ = hdt+ σ, a typical
form of the measure µ corresponds with the case where σ is a combination of Dirac measures, σ =

∑∞
i=1 ciδti ,

with {ti}∞i=1 ⊂ [0, T ] being an increasing sequence, {ci}∞i=1 ⊂ R, and
∑∞
i=1 |ci| <∞. Hence, we have

∫
[0,t]

φ(t) dµ(t) =

∫ t

0

φ(t)h(t) dt+
∑
ti≤t

ciφ(ti) ∀φ ∈ C[0, T ].

In the above, the two terms on the right-hand side represent the continuous and the discrete memories, respec-
tively. We point out that the diffusion process under consideration could have some special memory at some
specific time moments. For example, suppose we are considering a heating process starting from certain initial
temperature distribution y0(x). Then the changing of the temperature distribution at time t might be affected
by the action made by the programmed machine at the previous moments t1, t2, · · · . One could easily cook up
some other similar examples.

The so-called fading memory is a main feature of the memory kernel a(· , · , · , ·). It plays an essential role for
infinite horizon problems, and such a feature could be also interesting for finite horizon problems. The fading
memory can be characterized by the following:

t 7→ a(x, t, s, y) is decreasing on [s, T ], s 7→ a(x, t, s, y) is increasing on [0, t].

Without the term K[y], the semi-linear parabolic equations have been extensively studied. See [19] for the
standard classical theory, and [10, 16, 17] for some further/recent developments. The corresponding optimal
control problems can be found, for instance, in [4, 7, 9] and the references therein. Parabolic equations with
memory have been investigated by a number of authors for various situations [2, 13, 24, 25]. There were some
optimal control problems studied for the abstract evolution equations and some PDEs with memory, see [1, 26].
However, it seems to us that the equation of form (1.1) has not been discussed and of course, the corresponding
optimal control problem has not been touched. The purpose of the current paper is to analyze equations of the
form (1.1), and carry out the corresponding optimal control theory.

The rest of the paper is organized as follows. In Section 2, we present a careful analysis on the state equation.
It turns out that due to the appearance of the memory term K[y] governed by a general memory kernel and
the general signed measure, together with the possibly super-linear growth of the nonlinear term f , the well-
posedness of (1.1) becomes a little technically subtle. Optimal control problem is investigated in Section 3. It
includes the existence of optimal controls, the first and the second order necessary conditions, and the sufficiency
of the second order optimality condition for the local optimal control. We indicate that because of the memory
term involves the real valued measure µ, the adjoint equation has a term of unknown function with µ as a part
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of the coefficient. This bring us a proper Bochner integral interpretation of the term, which makes the first and
the second order necessary conditions very interesting and attractive. Some concluding remarks are collected in
Section 4.

2. Analysis of the parabolic equation with memory

In this section, we perform the analysis of the following semilinear parabolic equation with memory:{
∂y

∂t
−∆y + f(x, t, y) +K[y] = g in Q,

∂ny = 0 on Σ, y(0) = y0 in Ω.
(2.1)

We make the following assumptions on the data of this equation.

(A1) Ω is a bounded domain of Rn, 1 ≤ n ≤ 3, with a Lipschitz boundary Γ; T ∈ (0,∞) is a finite horizon;
Q = Ω× (0, T ); and Σ = Γ× (0, T ).

(A2) The map g belongs to Lr(0, T ;Lp(Ω)) with 1
r + n

2p < 1 and p, r ∈ [2,∞], and y0 ∈ C(Ω̄).

(A3) The map f : Q× R −→ R is Carathéodory function and of class C2 with respect to the third variable,
satisfying

f(x, t, 0) = 0, (2.2)

∃Λf ≥ 0 such that
∂f

∂y
(x, t, y) ≥ −Λf ∀y ∈ R, (2.3)

∀M > 0∃Cf,M such that
∣∣∣∂f
∂y

(x, t, y)
∣∣∣+
∣∣∣∂2f

∂y2
(x, t, y)

∣∣∣ ≤ Cf,M if |y| ≤M, (2.4)

for almost all (x, t) ∈ Q.

(A4) The function a : Q × [0, T ] × R −→ R is measurable and of class C2 with respect to the last variable
and it satisfies:

a(x, t, s, 0) = 0, (2.5)

∃Ca such that
∣∣∣∂a
∂y

(x, t, s, y)
∣∣∣+
∣∣∣∂2a

∂y2
(x, t, s, y)

∣∣∣ ≤ Ca, (2.6)

for almost all (x, t) ∈ Q. Furthermore, we assume that a and ∂ja
∂yj , j = 1, 2, are continuous with respect to the

third variable.

(A5) We assume that µ belongs to M [0, T ], the space of real valued regular Borel measures in [0, T ].

With C[0, T ] we denote the space of continuous real functions defined in [0, T ]. This is a Banach space when
endowed with the supremum norm. It is well-known that M [0, T ] is the dual space of C[0, T ] and

‖µ‖C[0,T ]∗ = ‖µ‖M [0,T ] = |µ|([0, T ]),

where |µ| denotes the total variation measure of µ; see, for instance, Chapter 6 of [21]. In the sequel, we will
simply write ‖µ‖. Given a function y : Ω× [0, T ] −→ R continuous with respect to the second variable, we set

K[y](x, t) =

∫
[0,t]

a(x, t, s, y(x, s)) dµ(s) for (x, t) ∈ Q.
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We denote W (0, T ) = {y ∈ L2(0, T ;H1(Ω)) : ∂y∂t ∈ L
2(0, T ;H1(Ω)∗} endowed with the norm

‖y‖W (0,T ) = ‖y‖L2(0,T ;H1(Ω)) +
∥∥∥∂y
∂t

∥∥∥
L2(0,T ;H1(Ω)∗)

.

Remark 2.1. We observe that the assumption (2.2) can be replaced by the more general hypothesis
f(· , · , 0) ∈ Lr(0, T ;Lp(Ω)). Indeed, it is enough to rename f and g as f −f(· , · , 0) and g−f(· , · , 0), respectively.
Analogously, we can relax the assumption (2.5). If we denote by â : Q −→ R the function defined by

â(x, t) =

∫ t

0

a(x, t, s, 0) dµ(s),

it is enough to assume that â ∈ Lr(0, T ;Lp(Ω)) and to replace a and g by a− â and g − â, and to define K[y]
accordingly. The condition on â holds if sups∈[0,T ] ‖a(· , · , s, 0)‖Lr(0,T ;Lp(Ω)) <∞ is satisfied.

Now, we address the issue of existence, uniqueness, and regularity of a solution to (2.2).

Theorem 2.2. Under the assumptions (A1)–(A5), (2.1) has a unique solution y ∈W (0, T )∩C(Q̄). In addition,
there exist constants CW and C∞ independent of (g, y0) such that the following estimates are satisfied:

‖y‖W (0,T ) ≤ CW
(
‖g‖L2(Q) + ‖y0‖L2(Ω)

)
, (2.7)

‖y‖C(Q̄) ≤ C∞
(
‖g‖Lr(0,T ;Lp(Ω)) + ‖y0‖L∞(Ω)

)
. (2.8)

Finally, if the weak convergence gk ⇀ g in Lr(0, T ;Lp(Ω)) holds, then yk ⇀ y in W (0, T ) and ‖yk − y‖C(Q̄) → 0
as k →∞, where yk and y are the states associated with gk and g, respectively.

Proof. Let {y0,k}∞k=1 be a sequence of Lipschitz functions in Ω̄ such that ‖y0,k‖C(Ω̄) ≤ ‖y0‖C(Ω̄) and ‖y0,k −
y0‖C(Ω̄) → 0 as k →∞. Associated with k, we also define the functions ak(x, t, s, y) = a(x, t, s,Proj[−k,+k](y)),
where Proj[−k,+k](y) = max{−k,min{y,+k}}, and

Kk[w](x, t) =

∫
[0,t]

ak(x, t, s, w(x, s)) dµ(s).

From (2.5) and (2.6) we get |ak(x, t, s, y)| ≤ Cak and, consequently,

‖Kk[w]‖L∞(Q) ≤ Cak‖µ‖ (2.9)

for every Carathéodory function function w : Ω× [0, T ] −→ R. Now, we define the function Fk : C(Q̄) −→ C(Q̄)
by yk,w = Fk(w) solution of the equation{

∂y

∂t
−∆y + f(x, t, y) = g −Kk[w] in Q,

∂ny = 0 on Σ, y(0) = y0,k in Ω.
(2.10)

Due to (2.9), we get that g−Kk[w] ∈ Lr(0, T ;Lp(Ω)). Hence, (2.10) has a unique solution yk,w ∈W (0, T )∩C(Q̄)
and it satisfies, for some α ∈ (0, 1] independent of w

‖yk,w‖W (0,T ) ≤ C
(
‖g‖L2(Q) + Ck‖µ‖+ ‖y0,k‖L2(Ω)

)
,

‖yk,w‖C0,α(Q̄) ≤ C
(
‖g‖Lr(0,T ;Lp(Ω)) + Ck‖µ‖+ ‖y0,k‖C0,1(Ω̄)

)
;
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see [4] or [7] for the existence and uniqueness of solutions and [11] for the Hölder estimate. Above, as along the
proofs in this paper, C will denote a generic constant that could be different from line to line.

Therefore, the image of Fk is a bounded and closed subset of C0,α(Q̄), hence it is a compact subset of C(Q̄).
Then, applying Schauder’s fixed point theorem we infer the existence of a function yk ∈ W (0, T ) ∩ C0,α(Q̄)
satisfying {

∂yk
∂t
−∆yk + f(x, t, yk) +Kk[yk] = g in Q,

∂nyk = 0 on Σ, yk(0) = y0,k in Ω.
(2.11)

Moreover, since y0,k ∈ C0,1(Ω̄) ⊂ H1(Ω) and g − f(·, ·, yk,w)−Kk[w] ∈ L2(Q), we deduce from Proposition III-
2.5 of [23] that yk,w ∈ H1(Q). We prove an estimate for yk in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) independent
of k. First, we observe that with (2.5)–(2.6) we obtain

‖Kk[yk](t)‖L2(Ω) =
(∫

Ω

[ ∫
[0,t]

ak(x, t, s, yk(x, s)) dµ(s)
]2

dx
) 1

2

≤ Ca
(∫

Ω

[ ∫
[0,t]

|yk(x, s)|d|µ|(s)
]2

dx
) 1

2

≤ Ca
∫

[0,t]

‖yk(s)‖L2(Ω) d|µ|(s) ≤ Ca‖µ‖ max
0≤s≤t

‖yk(s)‖L2(Ω). (2.12)

Now, testing (2.11) with e−4Λf tyk, where Λf ≥ 0 is given satisfying (2.3). We infer for every t ∈ (0, T ]

e−4Λf t

2
‖yk(t)‖2L2(Ω) +

∫ t

0

e−4Λfs

∫
Ω

[|∇yk|2 + Λf |yk|2] dxds

+

∫ t

0

e−4Λfs

∫
Ω

[Λfy
2
k + f(x, s, yk)yk] dxds =

1

2
‖y0,k‖2L2(Ω)

+

∫ t

0

e−4Λf t

∫
Ω

gyk dxds−
∫ t

0

e−4Λf t

∫
Ω

K[yk](x, s)yk(x, s) dxds

≤ 1

2
‖y0,k‖2L2(Ω) +

1

2
‖g‖2L2(Q) +

1

2

∫ t

0

∫
Ω

y2
k dx ds+ C2

a‖µ‖2
∫ t

0

max
0≤τ≤s

‖yk(τ)‖2L2(Ω)ds

≤ 1

2
‖y0,k‖2L2(Ω) +

1

2
‖g‖2L2(Q) + (

1

2
+ C2

a‖µ‖2)

∫ t

0

max
0≤τ≤s

‖yk(τ)‖2L2(Ω)ds.

From (2.2)–(2.3) we get that Λfy
2
k + f(x, t, yk)yk ≥ 0. Hence, we infer from the above inequalities and the fact

that t was arbitrarily selected in (0, T ]

max
0≤s≤t

‖yk(s)‖2L2(Ω) +

∫ t

0

∫
Ω

[|∇yk|2 + Λfy
2
k] dxds

≤ C
(
‖y0,k‖2L2(Ω) + ‖g‖2L2(Q) +

∫ t

0

max
0≤τ≤s

‖yk(τ)‖2L2(Ω)ds
)

Applying Gronwall’s inequality to the function h(t) = max0≤s≤t ‖yk(s)‖2L2(Ω) we get

max
0≤s≤t

‖yk(s)‖2L2(Ω) ≤ C
(
‖y0,k‖2L2(Ω) + ‖g‖2L2(Q)

)
.
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Therefore, the last estimates and the fact that y0,k → y0 in L2(Ω) yield

‖yk‖L∞(0,T ;L2(Ω)) + ‖yk‖L2(0,T ;H1(Ω)) ≤ C
(
‖y0‖L2(Ω) + ‖g‖L2(Q)

)
∀k ≥ 1. (2.13)

Combining this estimate with (2.12), using again [4] or [7], and the fact that ‖y0,k‖L∞(Ω) ≤ ‖y0‖L∞(Ω), we
deduce

‖yk‖C(Q̄) ≤ C
(
‖g‖Lr(0,T ;Lp(Ω)) + ‖y0‖L∞(Ω)

)
∀k ≥ 1. (2.14)

Hence, we have that Kk[yk] = K[yk] for every k large enough. Using the above estimates and the fact that
y0,k → y0, it is easy to pass to the limit in (2.11) and to deduce that yk ⇀ y in W (0, T ) and y is a solution
of (2.1). Moreover, the estimates (2.7) and (2.8) are straightforward consequences of the estimates proved for
{yk}∞k=1.

Let us prove the uniqueness of solution. Let y1, y2 ∈W (0, T )∩C(Q̄) be solutions of (2.1) and set y = y2− y1.
Then, subtracting the equations satisfied by y2 and y1, we obtain with the mean value theorem

∂y

∂t
−∆y +

∂f

∂y
(x, t, ŷ)y +

∫
[0,t]

∂a

∂y
(x, t, s, ỹ(x, s))y(x, s) dµ(s) = 0 in Q,

∂ny = 0 on Σ, y(0) = 0 in Ω,
(2.15)

where ŷ = y2 + θ̂(y1 − y2) and ỹ = y2 + θ̃(y1 − y2) with θ̂ and θ̃ measurable functions from Q to [0, 1]. Testing
(2.15) with e−4Λf ty, taking into account (2.6), and arguing similarly as above, we infer from the Gronwall
inequality that y satisfies the inequality (2.13) with g = 0 and y0 = 0 in the right hand side. Then, the equality
y = 0 follows.

Finally, we prove the continuity of the solution with respect to the right-hand-side of the equation. Let gk ⇀ g
in Lr(0, T ;Lp(Ω)) and denote by yk and y the solutions of (2.1) corresponding to gk and g, respectively. From
(2.7) and (2.8) we know that {yk}∞k=1 is bounded in W (0, T ) ∩ C(Q̄). Therefore, for a subsequence, yk ⇀ ỹ in
W (0, T ). Since the embedding W (0, T ) ⊂ L2(Q) is compact and {yk}∞k=1 is bounded in C(Q̄), we can assume,
taking a new subsequence if necessary, that yk(x, t)→ ỹ(x, t) almost everywhere in Q and yk → ỹ strongly in
Lq(Q) for every q <∞. Hence, it is easy to pass to the limit in the equation satisfied by yk and to deduce that
ỹ is the state associated to g. Therefore, the identity ỹ = y follows and the whole sequence {yk}∞k=1 converges
weakly to y in W (0, T ). Now, setting zk = yk − y we have

∂zk
∂t
−∆zk +

∂f

∂y
(x, t, ŷk)zk +

∫
[0,t]

∂a

∂y
(x, t, s, ỹk(x, s))zk(x, s) dµ(s) = gk − g in Q,

∂nzk = 0 on Σ, zk(0) = 0 in Ω,

where ŷk = y + θ̂k(yk − y) and ỹk = y + θ̃k(yk − y) with θ̂k and θ̃k measurable functions from Q to [0, 1]. From
this equation we get that {zk}∞k=1 is bounded in a Hölder space C0,α(Q̄); see [11]. Therefore, the convergence
zk → 0 strongly in C(Q̄) holds.

Now, we define the mapping F : Lr(0, T ;Lp(Ω)) −→W (0, T )∩C(Q̄) by F (g) = yg solution of (2.1) associated
with g. The next theorem analyzes the differentiability of F . First, we introduce the following notation. Given
functions y, z, z1, z2 : Ω × [0, T ] −→ R continuous with respect to the second variable, we denote for (x, t) ∈
Ω× [0, T ]

(K ′[y]z)(x, t) =

∫
[0,t]

∂a

∂y
(x, t, s, y(x, s))z(x, s) dµ(s),
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(K ′′[y](z1, z2))(x, t) =

∫
[0,t]

∂2a

∂y2
(x, t, s, y(x, s))z1(x, s)z2(x, s) dµ(s).

Theorem 2.3. Under the assumptions (A1)–(A5), the mapping F is of class C2. Moreover, given g, h, h1, h2 ∈
Lr(0, T ;Lp(Ω)), the function zh = F ′(g)h satisfies the equation

∂z

∂t
−∆z +

∂f

∂y
(x, t, yg)z +K ′[yg]z = h in Q,

∂nz = 0 on Σ, z(0) = 0 in Ω,
(2.16)

and zh1,h2
= F ′′(g)(h1, h2) satisfies equation


∂z

∂t
−∆z +

∂f

∂y
(x, t, yg)z +K ′[yg]z

−∂
2f

∂y2
(x, t, yg)zh1zh2 −K ′′[yg](zh1 , zh2) in Q,

∂nz = 0 on Σ, z(0) = 0 in Ω,

(2.17)

where zhi = F ′(yg)hi, i = 1, 2.

Proof. We are going to apply the implicit function theorem. To this end, we define the space

Y =
{
y ∈W (0, T ) ∩ C(Q̄) :

∂y

∂t
−∆y ∈ Lr(0, T ;Lp(Ω))

}
and endowed it with the norm

‖y‖Y = ‖y‖W (0,T ) + ‖y‖C(Q̄) +
∥∥∥∂y
∂t
−∆y

∥∥∥
Lr(0,T ;Lp(Ω))

.

Then, Y is a Banach space. We also define the function

F : Y × Lr(0, T ;Lp(Ω)) −→ Lr(0, T ;Lp(Ω))× C(Ω̄),

F(y, g) =
(∂y
∂t
−∆y + f(·, ·, y) +K[y]− g, y(0)− y0

)
.

It is immediate to check that F is of class C2 and F(F (g), g) = (0, 0) for every g ∈ Lr(0, T ;Lp(Ω)). Moreover,
for y, z ∈ Y we have

∂F
∂y

(y, g)z =
(∂z
∂t
−∆z +

∂f

∂y
(·, ·, y)z +K ′[y]z, z(0)

)
.

Since ∂F
∂y (y, g) : Y −→ Lr(0, T ;Lp(Ω))×C(Ω̄) is a linear continuous mapping, it is an isomorphism if and only

if the equation 
∂z

∂t
−∆z +

∂f

∂y
(x, t, yg)z +K ′[yg]z = h in Q,

∂nz = 0 on Σ, z(0) = z0 in Ω
(2.18)
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has a unique solution z ∈ Y for every (h, z0) ∈ Lr(0, T ;Lp(Ω))×C(Ω̄). This property follows from Theorem 2.2.

Indeed, if we define f̂(x, t, z) = ∂f
∂y (x, t, yg(x, t))z, b(x, t, s, z) = ∂a

∂y (x, t, s, yg(x, s))z, and

K̂[z](x, t) =

∫
[0,t]

b(x, t, s, z(x, s)) dµ(s),

taking into account that yg ∈ C(Q̄), we infer that f̂ and b satisfy the assumptions (A3) and (A4), respectively.
Then, Theorem 2.2 applies to the equation{

∂z

∂t
−∆z + f̂(x, t, z) + K̂[z] = h in Q,

∂nz = 0 on Σ, z(0) = z0 in Ω.

Therefore, from the implicit function theorem we deduce that F is of class C2 and (2.16) and (2.17) follow by
diferentiation of the identity F(F (g), g) = 0.

Before finishing this section we are going to carry out a more detailed study of the linearized equation (2.16).

Theorem 2.4. For every g ∈ Lr(0, T ;Lp(Ω)) and h ∈ L2(Q), the equation (2.16) has a unique solution z ∈
H1(Q) ∩ C([0, T ];H1(Ω)). Further, there exists a constant Cg depending of g, but independent of h, such that

‖z‖H1(Q) + ‖z‖C([0,T ];H1(Ω)) ≤ Cg‖h‖L2(Q). (2.19)

Let us mention that, given a function z ∈ C([0, T ];L2(Ω)), the integral defining K ′[yg]z is a Bochner integral
and actually we have that K ′[yg]z ∈ L∞(0, T ;L2(Ω)). Indeed, for every t ∈ [0, T ], we get with (2.6)

‖(K ′[yg]z)(t)‖L2(Ω) ≤
∫

[0,t]

(∫
Ω

∣∣∣∂a
∂y

(x, t, s, yg(x, s))z(x, s)
∣∣∣2 dx

) 1
2

d|µ|(s)

≤ Ca
∫

[0,T ]

‖z(s)‖L2(Ω) d|µ|(s) ≤ Ca‖µ‖‖z‖C([0,T ];L2(Ω)),

which proves that

‖K ′[yg]z‖L∞(0,T ;L2(Ω)) ≤ Ca‖µ‖‖z‖C([0,T ];L2(Ω)). (2.20)

Proof of Theorem 2.4. Let {hk}∞k=1 ⊂ Lr(0, T ;Lp(Ω)) be a sequence converging strongly to h in L2(Q). Denote

by zk the solution of (2.16) corresponding to hk. Then, defining K̂[z] and f̂ as we did at the end of the proof
of Theorem 2.3 and applying Theorem 2.2 we infer the existence of a constant independent of k such that
‖zk‖W (0,T ) ≤ C‖hk‖L2(Q). Hence, {zk}∞k=1 is bounded in W (0, T ). By taking a subsequence, we obtain zk ⇀ z
in W (0, T ). Then, it is easy to pass to the limit in the equations satisfied by zk and to deduce that z is a solution
of (2.16). Observe that W (0, T ) ⊂ C([0, T ];L2(Ω)) and, hence, z ∈ C([0, T ];L2(Ω)). Now, from the boundedness
of yg and (2.20), the regularity z ∈ H1(Q) ∩ C([0, T ];H1(Ω)) follows; see Section III-2 of [23]. Moreover, using
that ‖z‖W (0,T )) ≤ C‖h‖L2(Q) and the estimates of [23], the inequality (2.19) is obtained.

3. Optimal control problem

In this section, we analyze the control problem (P). We prove existence of a solution and derive first and
second order optimality conditions. For this purpose we make the following assumptions:

(A6) The target state yd belongs to L2(Q) and the coefficient κ in the cost functional is strictly positive.
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(A7) In the state equation (1.1), g is an element of L∞(0, T ;L2(Ω)) and the controls u belong to
L∞(0, T ;L2(ω)) with Qω = ω × (0, T ). By ω we denote a measurable subset of Ω with positive Lebesgue
measure. We denote by χω the characteristic function of ω. Hence, we have that (uχω)(x, t) = 0 if (x, t) 6∈ Qω
and equal to u(x, t) if (x, t) ∈ Qω.

Under the assumption (A7) we have that g + uχω ∈ L∞(0, T ;L2(Ω)). Then, we can use Theorem 2.2 with
r =∞ and p = 2 to deduce the existence and uniqueness of a solution yu ∈ W (0, T ) ∩ C(Q̄) for every control
u ∈ L∞(0, T ;L2(ω)). Actually, the mapping G : Lr(0, T ;L2(ω)) −→W (0, T )∩C(Q̄) associating to each control
its corresponding state G(u) = yu is well defined if r > 4

4−n . Moreover, from Theorem 2.3 we get that G(u) =

F (g+uχω) is of class C2. We observe that zv = G′(u)v is the solution of (2.16) with h = vχω. By the chain rule
we infer that the cost functional J : Lr(0, T ;L2(ω)) −→ R is also of class C2. The following theorem provides
the expressions for the first and second derivatives of J .

Theorem 3.1. For every u, v, v1, v2 ∈ Lr(0, T ;L2(ω)) with r > 4
4−n the following identities hold

J ′(u)v =

∫
Qω

(ϕu + κu)v dxdt, (3.1)

J ′′(u)(v1, v2)

=

∫
Q

[(
1− ϕu

∂2f

∂y2
(x, t, yu)

)
zv1zv2 − ϕuK ′′[yu](zv1 , zv2)

]
dxdt+ κ

∫
Qω

v1v2 dx dt, (3.2)

where zvi = G′(u)vi, i = 1, 2, and ϕu is the unique solution in L2(0, T ;H1(Ω))∩L∞(0, T ;L2(Ω)) of the adjoint
equation  −

∂ϕ

∂t
−∆ϕ+

∂f

∂y
(x, t, yu)ϕ+K ′[yu]∗ϕµ = yu − yd in Q,

∂nϕ = 0 on Σ, ϕ(T ) = 0 in Ω
(3.3)

with

(K ′[yu]∗ϕ)(x, t) =

∫ T

t

∂a

∂y
(x, s, t, yu(x, t))ϕ(x, s) ds. (3.4)

Before proving this theorem let us comment about the expression K ′[yu]∗ϕµ. First of all, we observe that for
any function h ∈ C[0, T ] and any real valued measure µ ∈ M [0, T ] the product hµ is defined as an element of
M [0, T ] by the identity

〈hµ, φ〉 =

∫
[0,T ]

h(t)φ(t) dµ(t).

Now, we have that for x ∈ Ω the mapping h(t) =
∫ T
t

∂a
∂y (x, s, t, yu(x, t))ϕ(x, s) ds is continuous in [0, T ] due to

the continuity of yu and the continuity of ∂a
∂y on the last two variables. Hence, for every function z ∈ C(Q̄) the

following identities are fulfilled:

〈K ′[yu]∗ϕµ, z〉Q =

∫
Ω

∫
[0,T ]

(∫ t

0

∂a

∂y
(x, s, t, yu(x, t))ϕ(x, s) ds

)
z(x, t) dµ(t) dx

=

∫
Ω

∫ T

0

(∫
[0,t]

∂a

∂y
(x, t, s, yu(x, s))z(x, s) dµ(s)

)
ϕ(x, t) dtdx
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=

∫
Q

(K ′[yu]z)(x, t)ϕ(x, t) dxdt = 〈K ′[yu]z, ϕ〉Q. (3.5)

Regarding equation (3.3), we have to explain what we mean by a solution.

Definition 3.2. We say that ϕ ∈ L1(Q) is a solution of (3.3) if∫
Q

{
∂z

∂t
−∆z +

∂f

∂y
(x, t, yu)z +K ′[yu]z

}
ϕdxdt =

∫
Q

(yu − yd)z dxdt ∀z ∈ Z, (3.6)

where

Z = {z ∈ H1(Q) :
∂z

∂t
−∆z ∈ L∞(Q), z(0) = 0, ∂nz = 0}.

Remark 3.3. Let us observe that H1(Q) ⊂ C([0, T ];L2(Ω)), hence the initial condition z(0) = 0 makes sense
for very z ∈ Z. Moreover, given z ∈ H1(Q) with ∂z

∂t −∆z ∈ L∞(Q) there exists φ ∈ L∞(Q) such that −∆z(t) =

φ(t) − ∂z
∂t (t) ∈ L

2(Ω) for almost every t ∈ (0, T ). As a consequence, the existence of ∂nz(t) ∈ H−
1
2 (Γ) follows

for almost every t; see, for instance, ([14], Cor. I.2.6). In addition, we have that Z is continuously embedded in
C(Q̄) [11]. Hence, the integrals in (3.6) are well defined.

Lemma 3.4. Equation (3.3) has a unique solution ϕu ∈ L1(Q) for all u ∈ L∞(0, T ;L2(ω)). Moreover, ϕu
belongs to L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) and there exists a constant M depending of ‖µ‖, but independent
of u, such that the following estimate is fulfilled:

‖ϕu‖L2(0,T ;H1(Ω)) + ‖ϕu‖L∞(0,T ;L2(Ω)) ≤M‖yu − yd‖L2(Q). (3.7)

Proof. To prove the uniqueness is enough to show that ϕ = 0 is the unique solution of the homogeneous equation.
To establish this we select z as the solution of (2.18) with yg = yu and h(x, t) = sign(ϕ(x, t)). Then, z ∈ Z and
(3.6) holds with right hand side equal to 0, which implies that ϕ = 0.

To prove the existence of a solution we firstly consider the case where µ ∈ L∞(0, T ). For every integer k ≥ 1
we consider the equation −

∂ϕ

∂t
−∆ϕ+

∂f

∂y
(x, t, yu)ϕ+K ′[yu]∗ Proj[−k,+k](ϕ)µ = yu − yd in Q,

∂nϕ = 0 on Σ, ϕ(T ) = 0 in Ω

Then following the lines of the proof of Theorem 2.2 it is easy to deduce the existence of a solution ϕk ∈
W (0, T ) ∩ C(Q̄) to this equation. Further, the following inequality is satisfied:

‖ϕk‖L∞(0,T ;L2(Ω)) + ‖ϕk‖L2(0,T ;H1(Ω)) ≤ C‖yu − yd‖L2(Q) ∀k ≥ 1. (3.8)

As in inequality (2.13), the constant C depends on ‖µ‖L1(0,T ). Using this estimate in (3.3) we infer that
∂f
∂y (x, t, yu)ϕk+K ′[yu]∗ϕkµ is uniformly bounded in L2(Q). Hence, we have that {ϕk}∞k=1 is bounded in W (0, T ).

Therefore, for a subsequence denoted by itself, we have that ϕk ⇀ ϕ in W (0, T ) and ϕk → ϕ strongly in L2(Q).
Whence, we can pass to the limits as k → ∞ in the equation satisfied by ϕk and to get that ϕ solves (3.3).
Moreover, the estimate (3.7) follows from (3.8).
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Finally, we get rid of the assumption µ ∈ L∞(0, T ). For this purpose, given µ ∈M [0, T ] we consider a sequence

{µk}∞k=1 ⊂ L∞(0, T ) such that µk
∗
⇀ µ in M [0, T ] and ‖µk‖L1(0,T ) ≤ ‖µ‖. Then, we get solutions yk to (3.3)

corresponding to the functions µk. For every k, the estimate (3.7) holds due to the boundedness of ‖µk‖L1(0,T ).

Hence, taking a subsequence, we infer that ϕk
∗
⇀ ϕ in L2(0, T ;H1(Ω))∩L∞(0, T ;L2(Ω)). To prove that ϕ solves

(3.3) it is enough to pass to the limit in the identities

∫
Q

{
∂z

∂t
−∆z +

∂f

∂y
(x, t, yu)z +K ′k[yu]z

}
ϕk dx dt =

∫
Q

(yu − yd)z dx dt ∀z ∈ Z,

where

(K ′k[yu]z)(x, t) =

∫
[0,t]

∂a

∂y
(x, t, s, yu(x, s))z(x, s)µk(s) ds.

Precisely, the unique delicate point to pass to the limit is in the integral∫
Q

(K ′k[yu]z)(x, t)ϕk(x, t) dxdt→
∫
Q

(K ′[yu]z)(x, t)ϕ(x, t) dxdt. (3.9)

To prove this we observe that the convergence µk
∗
⇀ µ in M [0, T ] implies the pointwise conver-

gence (K ′k[yu]z)(x, t) → (K ′[yu]z)(x, t). Moreover, we have |(K ′k[yu]z)(x, t)| ≤ Ca‖µk‖L1(0,T )‖z‖C(Q̄) ≤
Ca‖µ‖‖z‖C(Q̄). Applying the Lebesgue dominated convergence theorem we infer that K ′k[yu]z → K ′[yu]z in

L2(Q). This combined with the weak convergence ϕk ⇀ ϕ in L2(Q) proves (3.9). Therefore, ϕ is solution of
(3.3) and satisfies (3.7).

Remark 3.5. Since L∞(Q) is dense in L∞(0,∞;L2(Ω)) and ϕu ∈ L∞(0, T ;L2(Ω)), the identity (3.6) also
holds if we assume that ∂z

∂t −∆z + ∂f
∂y (x, t, yu)z + K ′[yu]z ∈ L∞(0, T ;L2(Ω)). In particular, this is true if we

take z = zv = G′(u)v for v ∈ Lr(0, T ;L2(Ω)).

Proof of Theorem 3.1. Let us show the formulas (3.1) and (3.2). Given u, v ∈ Lr(0, T ;L2(ω)) and setting zv =
G′(u)v, the chain rule yields

J ′(u)v =

∫
Q

(yu − yd)zv dxdt+ κ

∫
Qω

uv dx dt. (3.10)

From Definition 3.2 and Remark 3.5, we get∫
Q

(yu − yd)zv dxdt

=

∫
Q

{
∂zv
∂t
−∆zv +

∂f

∂y
(x, t, yu)zv +K ′[yu]zv

}
ϕu dxdt =

∫
Qω

ϕuv dxdt.

Identity (3.1) is a straightforward consequence of this identity and (3.10). Let us prove (3.2). For u, v1, v2 ∈
Lr(0, T ;L2(ω)), differentiating the expression (3.10) with v = v1 we obtain

J ′′(u)(v1, v2) =

∫
Q

[(yu − yd)zv1,v2 + zv1zv2 ] dx dt+ κ

∫
Qω

v1v2 dxdt, (3.11)
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where zv1,v2 = G′′(u)(v1, v2) and zvi = G′(u)vi, i = 1, 2. Invoking again Remark 3.5 and using (2.17), we deduce∫
Q

(yu − yd)zv1,v2 dxdt

=

∫
Q

{
∂zv1,v2
∂t

−∆zv1,v2 +
∂f

∂y
(x, t, yg)zv1,v2 +K ′[yu]zv1,v2

}
ϕu dx dt

= −
∫
Q

{
∂2f

∂y2
(x, t, yu)zv1zv2 +K ′′[yu](zv1 , zv2)

}
dxdt.

Combining (3.11) and the above identity, (3.2) follows.

Remark 3.6. We observe that the linear form J ′(ū) : Lr(0, T ;L2(ω)) −→ R can be extended to a continuous
linear form on L2(Qω) by the same expression (3.1). It is an obvious consequence of the fact that ϕu|ω + κu ∈
L2(Qω). The same extension is possible for the bilinear form J ′′(ū) : Lr(0, T ;L2(ω)) × Lr(0, T ;L2(ω)) −→ R.
Indeed, this is consequence of the estimate (2.19) that implies∫

Q

∣∣∣ϕu ∂f
∂y

(x, t, yu)zv1zv2

∣∣∣ dxdt

≤
∥∥∥∂f
∂y

(x, t, yu)
∥∥∥
L∞(Q)

‖ϕu‖L∞(0,T ;L2(Ω))‖zv1‖L2(0;T ;L4(Ω))‖zv1‖L2(0;T ;L4(Ω))

≤ Cu‖v1‖L2(Qω)‖v2‖L2(Qω)

and ∫
Q

∣∣∣ϕuK ′′[yu](zv1 , zv2)
∣∣∣dxdt ≤ Ca

∫ T

0

∫
[0,t]

∫
Ω

|ϕu(x, t)zv1(x, s)zv2(x, s)|dx d|µ|(s) dt

≤ ‖µ‖‖ϕu‖L1(0,T ;L2(Ω))‖zv1‖L∞(0;T ;L4(Ω))‖zv2‖L∞(0;T ;L4(Ω)) ≤ Cu‖v1‖L2(Qω)‖v2‖L2(Qω).

Now, we address the issue of existence of a solution for control problem (P). Since the cost functional J is not
coercive on L∞(0, T ;L2(ω)), the classical approach based on a minimizing sequence does not work to establish
the existence of a solution. An alternative idea is used for the proof.

Theorem 3.7. (P) has at least one solution ū.

Proof. For every integer k ≥ 1 we define the control problem

(Pk) min
u∈Uk

J(u) :=
1

2

∫
Q

(yu − yd)2 dxdt+
κ

2

∫
Qω

u2 dxdt,

where Uk = {u ∈ L∞(0, T ;L2(ω)) : ‖u‖L∞(0,T ;L2(ω)) ≤ k}. Using Theorem 2.2 and the fact that Uk is weakly∗

closed and bounded in L∞(0, T ;L2(ω)), the existence of a solution uk to (Pk) follows. Since the control u ≡ 0
belongs to Uk for every k, we have that 1

2‖yuk − yd‖
2
L2(Q) ≤ J(uk) ≤ J(0) for every k ≥ 1. Hence, {yuk − yd}∞k=1

is a bounded sequence in L2(Q). Then, from (3.7) the boundedness of {ϕuk}∞k=1 in L∞(0, T ;L2(Ω)) follows.
Moreover, uk satisfies the first order optimality condition: J ′(uk)(u − uk) ≥ 0 for all u ∈ Uk. According to
(3.1), this implies that

∫
Qω

(ϕk + κuk)(u− uk) dxdt ≥ 0 for all u ∈ Uk or equivalently uk = ProjUk
(
− 1

κϕk|ω
)
.

Consequently, we have that ‖uk‖L∞(0,T ;L2(ω)) ≤ 1
κ‖ϕuk‖L∞(0,T ;L2(Ω)) ≤ C for every k ≥ 1.
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Select k0 > C and take ū = uk0 . Then, ū is a solution of (P). Indeed, let u be an arbitrary control in
L∞(0, T ;L2(ω)). If ‖u‖L∞(0,T ;L2(ω)) ≤ k0, then we obviously have J(ū) = J(uk0) ≤ J(u). If to the contrary,
‖u‖L∞(0,T ;L2(ω)) > k0, we take an integer k such that k > ‖u‖L∞(0,T ;L2(ω)). Let uk be a solution of (Pk).
Then, as proved above, we have that ‖uk‖L∞(0,T ;L2(ω)) ≤ C < k0. Therefore, uk ∈ Uk0 and u ∈ Uk hold.
Using the optimality of ū = uk0 and uk we obtain: J(ū) ≤ J(uk) ≤ J(u). Hence, J(ū) ≤ J(u) for every
u ∈ L∞(0, T ;L2(ω)).

We continue this section by deriving the optimality conditions. Since (P) is not a convex problem, it is
convenient to deal not only with global minimizers, but also with local minimizers. We will say that ū is a
local minimizer or local solution of (P) in the Lr(0, T ;L2(ω)) sense with r > 4

4−n if there exists ε > 0 such that
J(ū) ≤ J(u) whenever ‖u− ū‖Lr(0,T ;L2(ω)) ≤ ε.

Theorem 3.8. Let ū be a local solution of (P) in the Lr(0, T ;L2(ω)) sense with r > 4
4−n . Then, there exist

ȳ ∈W (0, T ) ∩ C(Q̄) and ϕ̄ ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) such that

{
∂ȳ

∂t
−∆ȳ + f(x, t, ȳ) +K[ȳ] = g + χωū in Q,

∂ν ȳ = 0 on Σ, ȳ(0) = y0 in Ω.
(3.12) −

∂ϕ̄

∂t
−∆ϕ̄+

∂f

∂y
(x, t, ȳ)ϕ+K ′[ȳ]∗ϕ̄µ = ȳ − yd in Q,

∂nϕ̄ = 0 on Σ, ϕ̄(T ) = 0 in Ω
(3.13)

ϕ̄|ω + κū = 0. (3.14)

Moreover, the inequality J ′′(ū)v2 ≥ 0 is fulfilled for every v ∈ L2(Qω).

The optimality system (3.12)–(3.14) is a straightforward consequence of (3.1) and the necessary opti-
mality conditions J ′(ū) = 0. It is also well-known that a local solution must satisfy J ′′(ū)v2 ≥ 0 for every
v ∈ L∞(0, T ;L2(ω)). However, as established in Remark 3.6, J ′′(ū) is a continuous bilinear form on L2(Qω) and
L∞(0, T ;L2(ω)) is dense in L2(Qω). Hence, the inequality J ′′(ū)v2 ≥ 0 also holds for every v ∈ L2(Qω).

The next theorem establishes a sufficient condition for local optimality.

Theorem 3.9. Let ū ∈ L∞(0, T ;L2(ω)) satisfy the first order optimality conditions (3.12)–(3.14) and the second
order condition J ′′(ū)v2 > 0 for every v ∈ L2(Qω) \ {0}. Then, for every r > 4

4−n there exist ε > 0 and δ > 0
such that

J(ū) +
δ

2
‖u− ū‖2L2(Qω) ≤ J(u) if ‖u− ū‖Lr(0,T ;L2(ω)) ≤ ε. (3.15)

Proof. We argue by contradiction. If the statement of the theorem is false, then for every integer k ≥ 1 there
exists a control uk such that

‖uk − ū‖Lr(0,T ;L2(ω)) <
1

k
and J(uk) < J(ū) +

1

2k
‖uk − ū‖2L2(Qω). (3.16)

Let us set

ρk = ‖uk − ū‖L2(Qω) and vk =
1

ρk
(uk − ū). (3.17)
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Since ‖vk‖L2(Qω) = 1, we can take a subsequence, still denoted by itself, such that vk ⇀ v in L2(Qω). Then we
can perform a Taylor expansion and use that J ′(ū) = 0 to get

J(uk) = J(ū) +
1

2
J ′′(ū+ θk(uk − ū))(uk − ū)2.

This equality along with (3.16) and (3.17) leads to J ′′(ū+ θk(uk − ū))v2
k <

1
k . We denote ûk = ū+ θk(uk − ū),

ŷk = G(ûk), zk = G′(ûk)vk, and ϕk the adjoint state corresponding to ûk. Then, recalling (3.2), the above
inequality can be written∫

Q

{[
1− ϕk

∂2f

∂y2
(x, t, ŷk)

]
z2
k − ϕkK ′′[ŷk](zk, zk)

}
dxdt+ κ

∫
Qω

v2
k dx dt <

1

k
. (3.18)

From (3.16) we get that ûk → ū in Lr(0, T ;L2(ω)), therefore ŷk = G(ûk)→ G(ū) = ȳ in W (0, T ) ∩ C(Q̄). This
convergence implies that ϕk → ϕ̄ in L2(0, T ;H1(Ω))∩L∞(0, T ;L2(Ω)). Using the compactness of the embedding
H1(Q) ⊂ L2(0, T ;L4(Ω)), see Proposition III-1.3 of [23], and Theorem 2.4 we infer that zk → zv = G′(ū)v in
L2(0, T ;L4(Ω)). Using all these convergence properties it is easy to pass to the limits in (3.18) and to get

J ′′(ū)v2 ≤ lim
k→∞

∫
Q

{[
1− ϕk

∂2f

∂y2
(x, t, ŷk)

]
z2
k − ϕkK ′′[ŷk](zk, zk)

}
dxdt

+ κ lim inf
k→∞

∫
Qω

v2
k dx dt ≤ 0.

Due to the assumption J ′′(ū)v2 > 0 if v ∈ L2(Qω) \ {0}, we infer that v = 0. Hence, we have zk → 0 in
L2(0, T ;L4(Ω)). Then, passing to the limits in (3.18) and using that ‖vk‖L2(Qω) = 1 we obtain κ ≤ 0, which
contradicts our assumption on κ.

The presence of the Tikhonov regularizing term κ
2 ‖u‖

2
L2(Qω) is crucial in the proof of the above theorem.

When κ = 0, the second order analysis is more complicate; see [3, 6].

4. Concluding remarks

We have presented a general theory of optimal control problem for a class of semilinear parabolic equations
with a possibly super-linear nonlinearity and with a memory term governed by a general memory kernel and
general real valued Borel measure. Here are some remarks that we would like to collect.

− The appearance of a memory term of the form (1.2) makes the well-posedness of the state equation, as
well as that of the adjoint equations, technically difficult. A careful analysis involving the Bochner integral and
some delicate regularity results for parabolic equations help us to overcome the difficult.

− Due to the density of Lr(0, T ;L2(ω)) with r > 4
4−n in L2(Qω) and recalling Remark 3.6, the sufficient

second order condition for local optimality J ′′(ū)v2 > 0 for all v ∈ L2(Qω) \ {0} is equivalent to J ′′(ū)v2 > 0
for all v ∈ Lr(0, T ;L2(ω)) \ {0}. Moreover, this condition is still equivalent to

∃δ > 0 such that J ′′(ū)v2 ≥ δ‖v‖2L2(Qω) ∀v ∈ L2(Qω).

Indeed, it is obvious that this condition implies that J ′′(ū)v2 > 0 for all v ∈ L2(Qω) \ {0}. To prove the converse
implication we use (3.15). We define I : Lr(0, T ;L2(ω)) −→ R by I(u) = J(u) − δ

2‖u − ū‖
2
L2(Qω). From (3.15)

we infer that I(ū) ≤ I(u) if ‖u− ū‖Lr(0,T ;L2(ω)) ≤ ε. Hence, ū is a local solution of I and, consequently, as in
Theorem 3.8 we have that J ′′(ū)v2 − δ‖v‖2L2(Qω) = I ′′(ū)v2 ≥ 0 for every v ∈ L2(Qω). Therefore, (P) enjoys

the so-called two-norm discrepancy: the functional J is differentiable with respect to the (stronger) norm of
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Lr(0, T ;L2(ω)), but the sufficient condition J ′′(ū)v2 ≥ δ‖v‖2L2(Qω) holds for a different (weaker) norm. The

reader is referred to [8] for additional comments on this issue.

− It is possible to include control constraints in the control problem such as

Uad = {u ∈ L2(0, T ;L2(ω)) : u(t) ∈ Kad},

where Kad is a closed, convex, and bounded subset of L2(ω). In this case, the existence of an optimal control and
the first order optimality conditions can be easily obtained following the approach of this paper with obvious
modifications. For the choices

Kad = {v ∈ L2(ω) : ‖v‖L2(ω) ≤ γ}, 0 < γ <∞,
Kad = {v ∈ L2(ω) : α ≤ v(x) ≤ β for a.a. x ∈ ω}, −∞ < α < β <∞,

the second order analysis can be performed by using the techniques of [5].
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