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This Letter reports a measurement of the top quark mass, Mtop, in data from pp̄ collisions at
√

s =
1.96 TeV corresponding to 2.7 fb−1 of integrated luminosity at the Fermilab Tevatron using the CDF
II detector. Events with the lepton + jets topology are selected. An unbinned likelihood is constructed
based on the dependence of the lepton transverse momentum, PT, on Mtop. A maximum likelihood fit
to the data yields a measured mass Mtop = 176.9 ± 8.0stat ± 2.7syst GeV/c2. In this measurement, the
contribution by the jet energy scale uncertainty to the systematic error is negligible. The result provides
an important consistency test for other Mtop measurements where explicit use of the jet energy is made
for deriving the top quark mass.
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1. Introduction

The top quark is the heaviest known fundamental particle. Since
the discovery of this particle in 1995 at the Fermilab Tevatron [1],
both the CDF and D0 experiments have been improving the preci-
sion of the measurement of its mass Mtop , which is a fundamental
parameter in the Standard Model (SM) of particle physics. Loop
corrections in electroweak theory relate Mtop and the W boson
mass MW to the mass of the predicted Higgs boson [2]. Therefore,
precision measurements of Mtop provide constraints on the value
of the Higgs boson mass as well as a consistency check of the SM
electroweak theory [3].

The largest systematic uncertainties in the measurement of
Mtop are due to uncertainties in the measurement of jets. Jets
are composite objects which must be associated with the partons
produced in tt̄ decays using jet–parton combinatorics and energy
transfer functions derived from Monte Carlo (MC) simulation. Mea-
suring the jet energy requires detailed corrections and an overall
scale calibration. The in situ energy scale calibration with a W
mass constraint used in other Mtop measurement techniques [4]
is not directly applicable to jets produced by b quarks. On the
other hand, charged leptons (electrons or muons) produced in tt̄
decays are directly observable in the detector and their momenta
can be measured with very high precision. Leptons thus provide a
very clean probe of the kinematics of tt̄ decays. The sensitivity of
their momentum on the top quark mass can be used to measure
Mtop without the complexities and related uncertainties which are
inherent to the use of jets, albeit with less statistical precision.
The result reported in this Letter is, therefore, complementary to
the existing precision measurements by having different system-
atic uncertainties than the previously published results.

In pp̄ collisions, top quarks are produced predominantly as tt̄
pairs. Within the SM, the top quark decays almost exclusively into
a W boson and a bottom quark b [5]. The events in which one
of the W bosons decays leptonically to a charged lepton and a
neutrino and the other decays hadronically into two jets define
the “lepton + jets” decay channel, tt̄ → W +bW −b̄ → lνlbqq̄′b̄. In-
cluding the two jets arising from the b quarks, the lepton + jets
topology contains at least four jets. Additional jets may be gener-
ated from gluon radiation or from soft hadron interactions forming
the “underlying event”. Despite this complication, the lepton + jets

5 With visitor from University of California Santa Cruz, Santa Cruz, CA 95064, USA.
6 With visitor from CERN, CH-1211 Geneva, Switzerland.
7 With visitor from Cornell University, Ithaca, NY 14853, USA.
8 With visitor from University of Cyprus, Nicosia CY-1678, Cyprus.
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27 Deceased.
channel provides the best balance of available statistics and sample
purity.

The sensitivity of kinematic variables of the lepton to Mtop has
to be studied using a MC model of tt̄ events. In a preliminary
study of the possibility of using only leptons to measure Mtop it
was found that the optimum variable to use is the lepton trans-
verse momentum PT [6]. This variable is generically used to signify
the transverse momentum of muons measured in the tracker or
the transverse energy of electrons measured in the calorimeter,28

which offers better resolution than the tracker for high energy
electrons.

The only previous analysis using the transverse momentum
of leptons with data of 1.9 fb−1 integrated luminosity from the
CDF experiment [7] explored the mean value of the lepton PT.
That analysis also exploited the mean value of the transverse path
length of b-flavored hadrons produced in tt̄ decays and combined
the two results to measure Mtop in the lepton + jets channel of tt̄
decays. In the measurement reported in this Letter a shape analysis
of the lepton PT spectrum is applied in the same decay channel.
This technique is less sensitive to acceptance related effects, which
alter the mean value of the lepton PT but leave the shape of the PT
distribution unchanged, and thus allows for a measurement with
smaller systematic uncertainties.

2. Detector and event selection

The measurement described in this Letter uses data collected
with the Collider Detector at Fermilab (CDF) II detector [8] at the
Tevatron pp̄ collider corresponding to an integrated luminosity of
2.7 fb−1. CDF is a cylindrically symmetric detector surrounding the
colliding beams. It consists, radially from inside to outside, of an
inner silicon tracker allowing for accurate vertex reconstruction
and an outer wire chamber tracker, both operating in a uniform
magnetic field of 1.4 Tesla which is produced by a supercon-
ducting solenoid surrounding the tracker; scintillators for time-of-
flight measurements; a sampling calorimeter with an inner electro-
magnetic compartment and an outer hadronic compartment; and
wire chambers for muon identification. The tracking system mea-
sures charged particle tracks with a transverse momentum preci-
sion of �PT/P 2

T = 0.07%(GeV/c)−1. The central calorimeters have
an electromagnetic (hadronic) energy resolution of σ(ET)/ET ∼
13.5%/

√
ET(GeV) ⊕ 1.5% (σ(ET)/ET ∼ 50%/

√
ET(GeV) ⊕ 3%) and a

tower segmentation of �η × �φ � 0.1 × 15◦ .
The leptons used in this measurement were detected in the

central region of the CDF detector, covering a pseudorapidity range
of |η| � 1,29 with an inclusive lepton trigger requiring an electron
with ET � 18 GeV or a muon with PT � 18 GeV/c. From this inclu-
sive lepton dataset, events are selected offline in the lepton + jets
channel by requiring one electron with transverse energy ET �
20 GeV or one muon with transverse momentum PT � 20 GeV/c,
at least four jets with transverse energy ET � 20 GeV and pseudo-
rapidity |η| � 2, and missing transverse energy /ET � 20 GeV30 to
account for the unobserved neutrino. Electrons are reconstructed

28 The transverse momentum P T = P sin θ and transverse energy ET = E sin θ of
a particle are defined from its momentum P or energy E , respectively, and the
polar angle θ of its momentum vector in a system of spherical coordinates with
the polar axis along the proton beam. The pseudorapidity of the particle is given by
η = − ln[tan(θ/2)].
29 See footnote 28.
30 The missing transverse energy, measuring the transverse energy inbalance of

the event, is defined by /E T = |∑towers ET n̂T |, where n̂T is the unit vector normal to
the beam and pointing to a given calorimeter tower and ET is the transverse energy
measured in that tower.
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Table 1
Expected and observed lepton + �4 jets sample for an integrated luminosity of
2.7 fb−1. The tt̄ contribution is estimated using a cross section of 6.7 pb [15] and
Mtop = 175 GeV/c2. The uncertainties are statistical only.

Event type Expected number of events

W + heavy flavor 91.3 ± 15.6
W + light flavor 29.6 ± 6.0
Z → ll + jets 5.3 ± 1.3
Dibosons (W W , W Z , Z Z ) 8.6 ± 1.5
Single top 8.6 ± 1.2
Fakes 34.9 ± 22.5
Total background 178.8 ± 28.2
tt̄ signal 634.9 ± 44.8

Total expectation 813.8 ± 53.0

Observed events 858

as isolated energy clusters in the electromagnetic calorimeter31

and matched to tracks fiducial to these clusters. Muons are re-
constructed from tracks fiducial to the muon chambers, matched
to isolated tracks in the central tracker, and are required to de-
posit minimal energy in the calorimeter. Jets are reconstructed as
energy clusters in the hadronic calorimeter towers within a cone
of radius 0.432 around a seed tower. Jet energies are corrected for
non-uniformities in the calorimeter response as a function of the
jet pseudorapidity, for multiple pp̄ interactions in the event, and
for the energy scale of the calorimeter [9]. The expected fraction of
tt̄ lepton + jets events passing the above selection requirements is
approximately 10%. The signal to background fraction is S/B ∼ 0.5.
To enhance this fraction, at least one jet is required to be tagged
as originating from a heavy flavor quark using a secondary vertex
tagging algorithm [10]. The fraction of signal events passing this
additional requirement is reduced to ∼6%, while S/B rises to ∼3.7.
Decays of the W boson to a τ lepton which subsequently decays
to an electron or muon can also pass all selection requirements
and they amount to approximately 7% of the tt̄ signal.

3. Background estimation

Background events from other SM processes passing the se-
lection criteria contain: W boson production associated with jets
from heavy flavor quarks (bb̄, cc̄ or c); W boson production as-
sociated with jets from light flavor quarks; Z boson production
associated with jets where the Z decays leptonically and one lep-
ton escapes detection, thus giving rise to high /ET; diboson events
(W W , W Z , Z Z ) in which one boson decays leptonically and the
other hadronically; single-top events where the W boson pro-
duced by the top quark decays leptonically; and events having a
jet misidentified as a lepton, subsequently referred to as a “fake”
lepton. The tt̄ and diboson events were modeled using the PYTHIA
generator [11]. The W + jets and Z + jets events were modeled
using the ALPGEN generator [12] with the parton hadronization
done by PYTHIA. The single top events were modeled using the
MADGRAPH/MADEVENT generator [13] with the parton hadroniza-
tion done again by PYTHIA. The modeled events were processed
through the detector and trigger simulation and reconstructed us-
ing the CDF II software [14]. The PT distribution of fake leptons
was modeled using a data sample selected by requiring each event
to fail at least one of the criteria of good lepton selection. The
complete sample composition was estimated with a method used

31 The calorimeter isolation is defined as the difference of the total ET in a cone

of radius R = √
(�η)2 + (�φ)2 = 0.4 around the axis of a tower cluster minus the

total ET in the cluster, where φ is the azimuth in the spherical coordinate system.
32 See footnote 31.
Fig. 1. Comparison of the expectations with the data in the lepton + 1 jet and
lepton + 2 jets samples.

for the tt̄ cross section measurement [15]. In this method the
expected rates of tt̄ , Z + jets, diboson and single-top events are
estimated from the MC; the rate of W + heavy-flavored jet events
is estimated from the MC, adjusted to the data in the 1- and 2-jet
control bins using a neural network; the rate of W + light-flavored
jet events is estimated from the MC using a per-jet probability of
mis-tagging; and the rate of events with a fake lepton is estimated
by fitting the total MC + fake leptons /ET spectrum to the /ET spec-
trum of the data in the 4-jet bin with the normalization of all
other components fixed. More details on the method can be found
in [15].

The total expected composition of the selected events is shown
in Table 1. Extensive validation tests of the background model were
made in the control samples of events with one lepton and one or
two jets, where the tt̄ signal is expected to be negligible. Compar-
isons of the expectations with the data in the control samples are
shown in Fig. 1. Only overall shape discrepancies are of concern
for the purpose of this measurement because the normalization of
the total background is varied in the fit to the data, as described
in Section 4. There is a possible shape discrepancy between the
total expectation and the data in the lepton + 2 jets control sam-
ple for PT < 50 GeV/c, attributed to the fake lepton shape being
inaccurate. A systematic uncertainty from the fakes distribution is
assigned to the final Mtop measurement, as discussed in Section 6.

4. Method

A set of 27 PYTHIA tt̄ samples with different central input
Mtop values between 150 and 200 GeV/c2 was analyzed. The lep-
ton PT histograms of the selected events from each sample were
constructed for each central Mtop input value. Rather than us-
ing directly these histograms as binned templates to fit Mtop , an
analytical parametrization of the lepton PT distribution is chosen
for this measurement. All the lepton PT histograms can be accu-
rately modeled by the number of leptons N in the histogram times
an incomplete Γ probability density function:
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Fig. 2. Top: The fit of the incomplete Γ function to the PYTHIA lepton PT histogram
with input Mtop = 175 GeV/c2. Bottom: The fit of the incomplete Γ function to the
lepton PT histogram of the estimated total background.

F (PT; p,q) = 1/q

Γ (1 + p, c/q)

(
PT

q

)p e−PT/q

1 + e(c−PT)/a
,

a, c, p,q > 0, (1)

with two free parameters p and q. The Fermi–Dirac factor 1/[1 +
e(c−PT)/a] gives a finite width a to the event selection threshold
at c = 20 GeV/c and tends to a unit step function ϑ(c − PT) in
the limit of a → 0 of the true, infinitely sharp lepton PT cut.
The fit of this function to any of the lepton PT templates was
insensitive to any choice of a � 0.1 GeV/c, while the χ2 was pro-
gressively increasing for a > 0.1 GeV/c. This parameter was thus
fixed at a = 0.1 GeV/c in the incomplete Γ function. An example
of the fit of this function to the lepton PT template with input
Mtop = 175 GeV/c2 is shown in the top plot of Fig. 2. The de-
pendence of the lepton PT distribution on the input Mtop of the
templates was studied by fitting p and q to each tt̄ signal tem-
plate. The fits are shown in the top plots of Fig. 3. The parameter
p shows significant local fluctuations because it is mostly sensi-
tive to the location of the distribution’s maximum which lies very
close to the cut at 20 GeV/c. Therefore, the individual fit to each
template does not constrain this parameter strongly enough. Apart
from this the fits show an approximately linear dependence of
both parameters on Mtop . Based on this observation, the depen-
dence was modeled by leading order Taylor expansions in terms
of Mtop:

p = α1 + α2Mtop, q = α3 + α4Mtop, (2)

where terms of O (M2
top) were dropped. The zeroth and first order

coefficients α1,2,3,4 were determined from a fit of Eqs. (1) and (2)
to all tt̄ signal templates simultaneously using the program MI-
NUIT [16]. The simultaneous fit smooths out local fluctuations of
the parameters, giving an improved χ2 probability. The results are
shown in Table 2. Coefficient α1 is anti-correlated with α2, and
α3 with α4, at the level of 60% in either case, whereas other cor-
Fig. 3. Top: The parameters q (left) and p (right) of the lepton PT distribution model
as functions of the input Mtop of the Monte Carlo signal templates. The plots show
the linear trends of both parameters. Bottom: The mean (left) and standard devi-
ation (right) of the templates as functions of the input Mtop compared with the
corresponding first two statistical moments of the lepton PT distribution model
(straight lines), computed using the slopes and intercepts of Table 2. The χ2 prob-
abilities are calculated from the deviations of the points from the lines, without
fitting, and are therefore measures of validity of the model.

Table 2
Fit parameters of the lepton PT distribution model for the tt̄ signal (α1,2,3,4) and
for the total background (β1,2).

Parameter Value

Intercept α1 1.72 ± 0.10
Slope α2 [(GeV/c)−1] −0.0009 ± 0.0004
Intercept α3 [GeV/c] 6.19 ± 0.26
Slope α4 0.079 ± 0.001

β1 0.27 ± 0.54
β2 [GeV/c] 26.73 ± 6.79

relations are much smaller. This parameterization encapsulates all
of the Mtop information that the MC signal templates provide. The
incomplete Γ function was also found to model accurately the to-
tal background template which is constructed by adding the lepton
PT histograms of all background contributions, according to the ex-
pected rates of Table 1, and is independent of Mtop . The fit of this
function to the total background template is shown in the bot-
tom plot of Fig. 2. The background lepton PT distribution was,
therefore, modeled using the same constants c = 20 GeV/c and
a = 0.1 GeV/c and fitting the free parameters p and q. The back-
ground fit values β1 of p and β2 of q are also shown in Table 2.
The model was validated by verifying that the first two statistical
moments of both signal and background template histograms were
reproduced, within statistical uncertainties, by the incomplete Γ

function using the fit parameters of Table 2. This is shown for the
signal templates in the bottom plots of Fig. 3, where the two mo-
ments computed directly from the templates are compared with
the values obtained by integrating the incomplete Γ function. It
is worth noting that the two moments depend linearly on Mtop as
well.

An unbinned likelihood, L, was constructed based on the mod-
eling of the lepton PT distributions for signal and background
events:
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L = 1√
2πδb

exp

[
−1

2

(
nb − b

δb

)2]
(ns + nb)

N e−(ns+nb)

N!

×
N∏

i=1

ns F (P (i)
T ; 
α; Mtop) + nb F (P (i)

T ; 
β)

ns + nb
. (3)

The likelihood contains the product of the normalized probabil-
ities of ns leptons to come from the tt̄ signal and nb leptons
to come from the background. By fixing the shape parameters

α = (α1,α2,α3,α4) of the signal and 
β = (β1, β2) of the back-
ground to the values of Table 2, the likelihood becomes a function
of Mtop and of the numbers ns and nb . It contains a Gaussian con-
straint relating nb to the expected total number b of background
leptons, with δb being the uncertainty of this number derived by
adding quadratically the uncertainties of Table 1, and a Poisson
constraint relating the sum ns + nb to the number N of observed
leptons of Table 1.

5. Corrections and tests

A detailed calibration of the lepton PT scale was performed. The
overall scale was calibrated by tuning the reconstructed Z → e+e−
and Z → μ+μ− mass peaks of the data and MC samples to the Z
mass world average [5]. The correction applied to the electron ET
scale is +0.4% for the data and −0.4% for the MC. The correction
to the muon PT scale is +0.4% for the data, while no significant
shift was found in the MC. The local muon PT scale was calibrated
by binning the data and MC samples in 1/PT and reconstructing
the Z → μ+μ− mass peak in each bin. Local changes of the PT
scale were examined by tuning to the Z mass world average. The
top plot of Fig. 4 shows the relative change in the scale as a func-
tion of 1/PT, which is proportional to the muon track curvature
in the magnetic field of the detector. The fit of a constant term
describes the points reasonably well, showing no significant local
change in the PT scale. The local electron ET scale was calibrated
by correcting the slope of the energy to momentum E/P ratio as
a function of ET of electron +1 jet data and MC samples, from
which an ET-dependent correction was derived. The E/P ratio is
assumed to be insensitive to the global electron momentum scale.
The e + 1 jet sample contains W → e + νe events associated with
exactly one jet at the level of ∼80%. It was chosen for best balance
between high statistics, moderate background from jets misidenti-
fied as electrons (“fake”electrons) and wide ET range. The bottom
plot of Fig. 4 shows a linear fit of the data to MC E/P ratio as a
function of ET from which the electron ET calibration parameters
are derived. Although moderately good, the fit suggests a decrease
of the ratio with increasing ET, which can be attributed to energy
leakage in the calorimeter. A possible effect of fake electrons on
the fit was examined by cutting on 0.8 < E/P < 1.2 where the
E/P ratio of true electrons peaks. The E/P ratio of fake electrons
is random, thus adding a flat background to the E/P spectrum. The
cut, therefore, eliminates most fake electrons. No significant differ-
ence between the results of the fit with and without the cut was
observed. In both cases of muon and electron local scale, polyno-
mial fits of higher degree yield coefficients of higher order terms
of sizes well within the errors, having negligible effect on the cal-
ibration relative to the uncertainties of the fits shown in Fig. 4.

Generator level comparisons of lepton PT spectra from PYTHIA
and MC@NLO [17] showed that the lepton PT distribution is most
sensitive to next-to-leading order (NLO) effects in the initial state
of tt̄ events. The signal MC, generated with the leading order (LO)
PYTHIA generator, was thus corrected for NLO effects involving the
initial state. The tt̄ signal events were reweighted from the LO in
αs CTEQ5L [18] set of parton distribution functions (PDF) of the
proton, which is the default in PYTHIA 6.2, to the NLO CTEQ6M set
Fig. 4. Top: The constant term fit of the muon relative change of scale δPT/PT as
a function of 1/PT for Z → μ+μ− data. Bottom: The linear fit of the data to MC
ratio of the electron average E/P over each ET bin for e + 1 jet data and MC. In
each plot, the dashed lines represent ±1σ variations of the respective fit.

[19]. In addition, the LO 6% fraction of gg → tt̄ events of PYTHIA
was scaled up to the NLO fraction of 15% [20].

The robustness of the method over the full range of Mtop val-
ues covered by the MC signal templates was tested with simulated
experiments, using in each experiment the number of events ob-
served in the data and the expected sample composition of Table 1.
The signal and background events were randomly sampled for each
experiment from the respective templates and a new fit was per-
formed each time using the parameters of Table 2 and maximizing
the likelihood defined by Eq. (3). It was found in all cases that
the method is unbiased and the statistical uncertainty of the mea-
sured Mtop is correctly estimated. The expected relative statistical
uncertainty is 4.5% after the lepton PT scale corrections and the
reweighting from LO to NLO PDF are applied.

6. Result

A maximum likelihood fit was performed to the 2.7 fb−1 data
sample consisting of 858 lepton + jets events, 472 of which are
electron + jets events and 386 are muon + jets. The fit is shown
in Fig. 5 and the result is Mtop = 171.9 ± 7.9stat GeV/c2 before any
corrections. The χ2/n.d.f. of the fit is 21.4/27 = 0.79, correspond-
ing to a χ2 probability of 0.77. The total PT scale correction shifts
the result of the fit by +2.6 GeV/c2. The total correction of the re-
sult for the NLO reweighting is +2.4 GeV/c2. The two corrections
add to an overall correction of +5.0 GeV/c2 of the fit result to
give a final result of Mtop = 176.9 ± 8.0stat GeV/c2, where the in-
crease of 0.1 GeV/c2 in the statistical uncertainty follows from the
increase in the central value.

All systematic uncertainties are determined by performing sim-
ulated experiments in which the systematic parameter in question
is varied, the default method and corrections are applied, and the



378 CDF Collaboration / Physics Letters B 698 (2011) 371–379
Fig. 5. The unbinned maximum likelihood fit of Mtop to the data. The inset plot
shows the log-likelihood curve of the fit. The result of the fit before any correction
is Mtop = 171.9 ± 7.9stat GeV/c2.

shift in the average measured top quark mass with respect to the
value measured from the nominal sample is used to quantify the
uncertainty. The systematic uncertainties are summarized in Ta-
ble 3. The uncertainty from the finite MC statistics was estimated
by varying the shape parameters of Table 2 by ±1σ . The un-
certainty from the lepton PT scale was estimated by varying the
lepton PT correction parameters by ±1σ of the respective fit from
which each parameter was derived. This uncertainty is sizeable and
almost entirely originating from the local scale calibration where
the information provided by the data is poor, as seen in Fig. 4. An
estimate of the uncertainty from the choice of the MC event gen-
erator was obtained by comparing the fit to the default PYTHIA tt̄
sample with the fit to a HERWIG [21] tt̄ sample, including the to-
tal background in both cases. The uncertainty from the proton PDF
set was estimated by varying the CTEQ6M eigenvectors and the αs

value within their 90% confidence level intervals. For the gluon ini-
tial and final state radiation, an estimate of the uncertainty was
obtained by comparing the fits to two signal + background MC
samples with higher and lower radiation with the fit to the de-
fault sample. For the multiple hadron interactions, the uncertainty
was estimated by reweighting the default MC sample to the aver-
age number of vertices in the high instantaneous luminosity part
of the data. For the background shape uncertainties, the uncer-
tainty of the W + jets component due to the choice of the Q 2 scale
was estimated by varying the Q 2 scale by a factor of 2 up and a
factor of 2 down relative to the default, and the uncertainty due
to the amount of fakes by varying the expected amount of fakes
of Table 1 by ±1σ , while keeping the normalization of the total
background fixed. The variation of the fakes fraction in the total
background is ∼65% and affects the shape of the total background
distribution to a degree consistent with the shape discrepancy be-
tween data and expectations in the lepton + 2 jets control sample
for PT < 50 GeV/c, seen in Fig. 1. This is the largest source of sys-
tematic uncertainty in this measurement. Finally, an estimate of
the uncertainty from the jet energy scale was obtained by vary-
ing the combined jet energy corrections by ±1σ [9] and it was
found to be negligible. The total systematic uncertainty was esti-
mated by adding all individual uncertainties in quadrature and was
found equal to 2.7 GeV/c2.

7. Summary and conclusions

In summary, the top quark mass has been measured using a
shape analysis of the lepton PT distribution from a sample of
2.7 fb−1 of CDF II data. Events were selected in the lepton+�4 jets
topology with at least one jet tagged as coming from a b quark.
Table 3
Systematic uncertainties of the measurement. All uncertainties are
estimated at Mtop = 175 GeV/c2.

Source Uncertainty (GeV/c2)

MC statistics 0.4
Lepton PT scale 1.1
MC generator 1.2
Proton PDF 0.6
Gluon radiation 0.8
Multiple interactions 0.1
Q 2 scale 0.5
Fakes 1.8
JES negligible

Total 2.7

A MC derived model of the dependence of the lepton PT distri-
bution on Mtop was used in an unbinned maximum likelihood fit
to the data. Corrections for a detailed lepton PT scale calibration
and for NLO effects in the MC model of tt̄ production were ap-
plied to the fit result in order to reduce systematic uncertainties
from these two sources. Uncertainties from the jet energy scale
are negligible. The dominant uncertainty was found to come from
the shape model of the background, due to the large uncertainty
in the expected fraction of fake electrons in the selected events.
The final result is

Mtop = 176.9 ± 8.0stat ± 2.7syst GeV/c2

in good agreement, within errors, with the current world aver-
age [22].

Compared with the previous measurement of exploiting the
mean value of the lepton PT with data corresponding to 1.9
fb−1 integrated luminosity in the lepton + jets channel [7], the
new result shows an appreciable reduction, from 3.8 GeV/c2 to
2.7 GeV/c2, in the total systematic uncertainty. This is achieved
by the use of the shape information of the lepton PT distribu-
tion which is less sensitive to acceptance related effects that can
change the mean PT without altering significantly the shape of the
PT spectrum, such as the JES and multiple interactions, and by the
new lepton PT calibration, which reduced the PT scale uncertain-
ties.
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