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ABSTRACT
We investigate the properties of self-adjointness of a two-dimensional Dirac operator on an infinite sector with infinite mass boundary
conditions and in the presence of a Coulomb-type potential with the singularity placed on the vertex. In the general case, we prove the
appropriate Dirac–Hardy inequality and exploit the Kato–Rellich theory. In the explicit case of a Coulomb potential, we describe the self-
adjoint extensions for all the intensities of the potential relying on a radial decomposition in partial wave subspaces adapted to the infinite-
mass boundary conditions. Finally, we integrate our results, giving a description of the spectrum of these operators.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0089526

I. INTRODUCTION
In this paper, we are interested in the two-dimensional Dirac operator on an infinite sector, subject to infinite mass boundary conditions,

in the presence of a singular potential of Coulomb type, centered in the corner of the sector. The descriptions of the self-adjointness and
spectral properties of the Dirac operator in a sector with infinite mass boundary conditions and of the Dirac operator with a Coulomb-type
perturbation, respectively, are well understood, but a detailed analysis of the coupling of the two features is missing. It is interesting to describe
their interaction since the two share the same singular nature: this is particularly evident in the case of an explicit Coulomb perturbation; see
Remark II.2.

The Dirac operator was introduced in Ref. 1 as the Hamiltonian generating the evolution of a relativistic particle with spin 1
2 on the whole

three-dimensional space, and its analysis has been the subject of many investigations (see the monography by Thaller2). Parallel to that, it has
found many other applications for both quark models in the atomic nucleus or, in its two-dimensional version, in the analysis of materials
with Dirac fermion low-energy excitations, the most famous being certainly graphene; see, e.g., Ref. 3 for a review. For these models, it is
physically meaningful to consider the operator on some domain with boundaries to model either the confining property of quarks or the edge
of a material. From a mathematical point of view, the introduction of boundaries requires that appropriate boundary conditions have to be
considered in order to preserve self-adjointness.

The free Dirac operator in two spatial dimensions is given by the following formal expression:

D0 ∶= −iσ ⋅ ∇ +mσ3 =
⎛
⎜
⎝

m −i(∂x1 − i∂x2)
−i(∂x1 − i∂x2) −m

⎞
⎟
⎠

,
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where m ≥ 0 is the mass of the particle and σ ∶= (σ1, σ2), σ1, σ2, σ3 being the Pauli matrices,

σ1 =
⎛
⎜
⎝

0 1

1 0

⎞
⎟
⎠

, σ2 =
⎛
⎜
⎝

0 −i

i 0

⎞
⎟
⎠

, σ3 =
⎛
⎜
⎝

1 0

0 −1

⎞
⎟
⎠

.

The free Dirac operator in R2 is realized as a self-adjoint operator with domain H1(R2;C2). Its spectrum is purely essential and σ(D0)
= σess(D0) = (−∞,−m] ∪ [m,+∞). In fact, −iσ ⋅ ∇ is equivalent to the multiplication operator σ ⋅ k through a Fourier transform; see Ref. 2,
Chap. 1 for details.

In the analysis of boundary value problems on connected domains, one of the most interesting examples of boundary conditions for the
applications is the one known as infinite mass boundary condition. As its name suggests, it is given by considering the limit case of infinite
mass outside the domain; see Refs. 4 and 5. In detail, let Ω ⊂ R2 be a connected domain such that its boundary ∂Ω is regular enough: we
denote by n the outward normal and by t the tangent vector to ∂Ω chosen in such a way that (n, t) is positively oriented.

The infinite mass boundary condition is defined as

Bnψ = ψ on ∂Ω, (1.1)

where the matrix Bn is given by

Bn = −iσ3 σ ⋅ n.

The regularity ofΩ plays a fundamental role in this sort of problem. WhenΩ is C2-regular, the Dirac operator D0 acting on the set of functions
in H1(Ω;C2) and that verifies (1.1) is self-adjoint; see Ref. 6.

Such a result is not anymore valid if we relax the regularity hypothesis of Ω and consider, for instance, domains with corners. Let
ω ∈ (0, 2π], and let Sω be the two-dimensional open sector of aperture ω,

Sω ∶= {(r cos θ, r sin θ) ∈ R2 : r > 0, 0 < θ < ω}. (1.2)

The problem of self-adjointness for the Dirac operator on Sω with infinite mass boundary conditions is well understood: we resume some of
the results from Refs. 7 and 8 in the following theorem.

Theorem I.1 (Refs. 7 and 8). Let ω ∈ (0, 2π] and Sω be defined as in (1.2). Let Hω be the operator

Hωψ ∶= D0ψ,

D(Hω) ∶= {ψ ∈ H1(Sω;C2) : Bnψ = ψ on ∂Sω}.
(1.3)

Then, the following holds:

(i) if 0 < ω ≤ π, Hω is self-adjoint;
(ii) if π < ω ≤ 2π, Hω admits infinite self-adjoint extensions, and among them, there exists a unique distinguished one whose domain is

included in the Sobolev space H1/2(Sω;C2).

Remark I.2. It is well known that whenΩ is a bounded connected Lipschitz domain, the boundary trace operator tr : H1(Ω) → H1/2(∂Ω)
is well defined and bounded. However, for bounded domains, H1 is not the maximal domain for the differential expression σ ⋅ ∇. For this
reason, it is convenient to introduce

K(Ω) ∶= {u ∈ L2(Ω;C2) : σ ⋅ ∇u ∈ L2(Ω;C2)}.

For this space, a weaker notion of boundary trace can be given. Indeed, when Ω is a curvilinear polygon, then the operator σ ⋅ ntr : H1(Ω;C2)
→ L2(∂Ω,C2) extends to a bounded operator T : K(Ω) → H−1/2(∂Ω;C2); see Ref. 8, Lemma 2.3. Then, for 0 < ω ≤ π, the boundary con-
dition Bnψ = ψ on ∂Sω in (1.3) is intended in the sense of H1/2(∂Sω;C2), while for π < ω ≤ 2π, it has to be intended in the weaker sense of
H−1/2(∂Ω;C2).

We refer to Ref. 8 for the description of the more general quantum dot boundary conditions. Moreover, we refer to Ref. 9 for the analysis
of the self-adjointness in the case of discontinuous infinite mass boundary conditions. Finally, the analogous problem in the three-dimensional
setting, namely, the self-adjointness of the Dirac operator on a three-dimensional cone with MIT bag boundary conditions, can be found in
Ref. 10.
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A strictly related topic is the description of Dirac operators with δ-shell interactions (see, e.g., Refs. 11–17, the review papers,18,19 and
the references therein) in both the two- and three-dimensional settings. In fact, it is possible to describe Dirac operators on domains as Dirac
operators coupled with δ-shell interactions generating confinement; see Ref. 20, Sec. 2.3. In this field of research, there has been a big effort
to lower the regularity assumptions for the boundary of the considered domain: we refer to Refs. 14 and 21 and references therein for the
general case of domains with Lipshitz boundary. In particular, in Ref. 14, it is shown that the Dirac operator on a compact region with a
corner admits a unique self-adjoint realization whose domain is included in H1/2(Sω;C2), but in the particular case of the sector, the authors
of Refs. 7 and 8 provided a more precise description of the domain. In addition, we refer to Ref. 22 for the description of the Dirac operator
with Lorentz-scalar δ-shell interactions supported on star-graphs.

As mentioned before, the analysis of the two-dimensional Dirac equation has attained a certain amount of interest from low-energy
condensed matter physics. The successful experimental isolation of a single plane of graphene provides an interesting test for non-perturbative
quantum electrodynamics.23 In fact, depending on the material graphene is deposited on, electronic excitations can be well described in
terms of a massive or a massless Dirac equation.24 These substrates interact with graphene, resulting in effective potentials that may break
symmetries of the lattice or generate gaps in the electronic spectrum. The analysis of charged impurities is of particular importance as they
play an important role in the transport properties of graphene. In this context, parameters entering the Dirac equation translate in a small
mass and strong interaction characterized by a large value of the effective fine structure constant, and one consequently expects that charge
impurities may lead to phenomena beyond the perturbative description of quantum electrodynamics, such as the “vacuum polarization.”25

These problems are treated in the literature by adding a (critical or, even, supercritical) Coulomb potential to the Dirac equation. Therefore,
we can think of an excitation of graphene to be modeled by a Dirac equation in two spatial dimension with a ν/∣x∣ potential centered in the
position of an impurity.26

Naturally, the history of the Dirac–Coulomb operator begins in the three-dimensional setting as the very first motivation for its intro-
duction was the analysis of the relativistic correction to the spectral lines of the hydrogen atom. We summarize its very interesting and rich
history; see Refs. 28 and 27 or Ref. 29, Sec. 1.3 for more details. Rigorous analysis of the Dirac–Coulomb Hamiltonian devoted to estab-
lishing its self-adjointness dates back to the early 1950s in the works of Rellich30 and Kato;31 only in the early 1970s, it was recognized by
several authors that the operator with purely Coulomb potential was essentially self-adjoint if and only if ∣ν∣ ≤

√

3
2 . In the same years, three

(in principle) distinguished self-adjoint extensions were built by Schmincke,45 Nenciu,33 and Wüst34 in the regime of higher nuclear charge32

(
√

3
2 < ∣ν∣ < 1), and just before the end of the decade, it was recognized that the three extensions were, in fact, the same.35 It took several years

to develop powerful Hardy–Dirac inequalities to push the definition of the distinguished extension up to the value ∣ν∣ = 1 in Refs. 29 and 36.
In the regime

√

3
2 < ∣ν∣, the Dirac–Coulomb operator in three spatial dimension is not essentially self-adjoint, so the research focused

on the classification of all the self-adjoint realizations of the formal operator in this regime. This result was achieved correctly in Ref. 37 for
√

3
2 < ∣ν∣ < 1, in Ref. 38 for ∣ν∣ > 1, and in Refs. 27 and 39 for any ν ∈ Rwith different techniques: the adaptation of Krĕın–Višik–Birman–Grubb

extension scheme, von Neumann extension theory, and the restriction of the domain of the adjoint and boundary triplets, respectively. More
recently, Dereziński and Ruba40 classified and carefully analyzed closed extensions with complex-valued potentials. Leaving the realm of
electrostatic fields generated by one point charge, we mention Ref. 44, where the authors proved the existence of a distinguished self-adjoint
extension for a generic (in a certain sense “subcritical”) charge distribution and Ref. 43 where the authors construct a self-adjoint realisation
of the two-body Dirac-Coulomb operator.

Let us emphasize that the analyses of Refs. 27 and 37–39 rely on the angular decomposition of the Dirac–Coulomb operator; therefore, the
results can be translated directly to the two-dimensional case modifying only the eigenvalues of the angular momentum appearing in the radial
operator. In particular, the two-dimensional Dirac–Coulomb operator ceases to be essentially self-adjoint when ν ≠ 0 and the distinguished
extension exists for ∣ν∣ < 1

2 ; see Ref. 41.

A. Main results
In this paper, we are interested in perturbing the Dirac operator Hω on a sector with a potential of Coulomb-type. To study self-

adjointness, we use two different approaches: the Kato–Rellich theory and the explicit radial decomposition of the operator. In the following,
we assume m = 0 without loss of generality since a bounded perturbation does not influence such a property.

The first and crucial tool in the analysis of perturbations of self-adjoint operators is the Kato–Rellich theorem. Its use has a deep impact
in physical applications being, for example, the key ingredient to prove self-adjointness of atomic Hamiltonians in non-relativistic quantum
mechanics: in this setting, the inter-particle interaction is “small” in a certain sense with respect to the graph norm of an (essential) self-
adjoint Hamiltonian. From an analytical point of view, the smallness of the inter-particle potential requires the validity of a Hardy inequality.
Mimicking this approach for the Dirac operator on a sector, we present, as the first result of this paper, a Hardy inequality for the Dirac
operator on sectors with infinite mass boundary conditions.

Theorem I.3 (Dirac–Hardy inequality). Let ω ∈ (0, 2π] and Sω be as in (1.2), and let Hω be defined as in (1.3). For any ψ ∈ D(Hω), we
have that

∫
Sω
∣σ ⋅ ∇ψ∣2 dx ≥ (π − ω)

2

4ω2 ∫
Sω

∣ψ∣2
∣x∣2 dx. (1.4)
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Remark I.4. We underline that ∥ − iσ ⋅ ∇ψ∥L2(R2 ;C2) = ∥∇ψ∥L2(R2 ;C2). Consequently, a non-trivial Hardy inequality as in (1.4) does not
hold if we replace Sω with the whole R2 since it does not hold for the gradient. Theorem I.3 shows that the Hardy-type estimate (1.4) holds
when we restrict to the domain Sω: such a phenomenon is also known to happen for the Hardy inequality for the gradient.

Thanks to the Kato–Rellich and Wüst theorems (Ref. 45, Theorems X.12 and X.14), Theorem I.3 immediately implies the following
stability result for the self-adjointness of Hω under unbounded perturbations of Coulomb-type.

Corollary I.5. Let ω ∈ (0,π), Sω be as in (1.2), and Hω be defined as in (1.3). Let V : Sω → C2×2 such that V(x) is Hermitian for a.a. x ∈ Sω
and such that for some ν > 0,

∣V(x)∣ ≤ ν
∣x∣ for a.a. x ∈ Sω,

with ∣V(x)∣ being the operator norm of the matrix V(x) ∈ C2×2. Then, the following holds:

(i) if ν < π−ω
2ω , Hω + V is self-adjoint with D(Hω + V) = D(Hω);

(ii) if ν = π−ω
2ω , Hω + V is essentially self-adjoint on D(Hω + V) = D(Hω).

Remark I.6. Hypotheses of Corollary I.5 are satisfied for potentials that locally diverge logarithmically. This is important because the
divergence of the two-dimensional electrostatic field in dimension 2 close to the charge is logarithmic. However, as discussed above, the
interest for potentials of the type 1/∣x∣α arises when restricting a three-dimensional model to a two-dimensional effective one.

In the particular case of the Coulomb potential,

V(x) ∶= ν
∣x∣𝟙2 for all x ∈ Sω/{0},

we can provide a much more detailed description of the self-adjoint realizations of D0 + V exploiting the radial symmetry: in the following,
we extend (and improve) the results in Corollary I.5 to any angle ω ∈ (0, 2π] and ν ∈ R. We define the minimal operator Hmin as follows:

D(Hmin) ∶= {u ∈ C∞c ( Sω/{0} ; C2 ) : Bnu = u on ∂Sω},
Hminu ∶= (D0 + V)u.

(1.5)

The operator Hmin is symmetric, as can be seen with an explicit integration by parts.
Our next result is the classification of the self-adjoint extensions of the minimal operator Hmin. For this purpose, we denote by N the set

of all natural numbers, including zero.

Theorem I.7. Let ω ∈ (0, 2π], Sω be as in (1.2), and Hmin be as in (1.5). Then, the following holds:

(i) If ν2 ≤ π2
−ω2

4ω2 , the operator Hmin is essentially self-adjoint and

D(Hmin) = D(Hω) = {ψ ∈ H1(Sω;C2) : Bnψ = ψ on ∂Sω}.

(ii) If ν2 > π2
−ω2

4ω2 , the operator Hmin has infinitely many self-adjoint extensions and there exists a one-to-one correspondence between the
self-adjoint extensions of Hmin and the space U(d + 1) of the unitary matrices on Cd+1, being

d ∶= max
⎧⎪⎪⎨⎪⎪⎩

k ∈ N : k < ω
π

√
ν2 + 1

4
− 1

2

⎫⎪⎪⎬⎪⎪⎭
. (1.6)

Remark I.8. For ω ∈ (0,π), (π−ω)
2

4ω2 < π2
−ω2

4ω2 , so Theorem I.7 (i) gives a better result than Corollary I.5. This is not surprising: already in
the whole space, a similar phenomenon occurs. In fact, the Dirac–Hardy inequality (1.4) does not allow us to exploit the peculiar matricial
form of the Coulomb potential and provides a more general (and weaker) result. For a discussion on this feature in the three-dimensional
setting, we refer to the introduction of Ref. 46.

When π2
−ω2

4ω2 < ν2 ≤ π2

4ω2 , it is possible to select a distinguished self-adjoint extension among all the self-adjoint extensions given in Theorem
I.7 (ii), requiring that the functions in its domain have the best possible behavior in the origin. For this purpose, for w ∈ L1

loc(R2), set

D(w, B1) ∶= {u ∈ L2(R2) : wu ∈ L2(B1)},

where B1 denotes the ball of radius 1 centered at the origin.
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Theorem I.9. Under the assumptions of Theorem I.7, assume, moreover, that π2
−ω2

4ω2 < ν2. Then, the following holds:

(i) If π2
−ω2

4ω2 < ν2 < π2

4ω2 , there exists a unique self-adjoint extension T(D) of Hmin such that

D(T(D)) ⊂ D(∣x∣−a, B1) for all 0 ≤ a < 1
2
+
√

π2

4ω2 − ν2.

Thus, T(D) is the distinguished extension.
(ii) If π2

4ω2 = ν2, there exists a unique self-adjoint extension T(D) of Hmin such that

D(T(D)) ⊂ D((∣x∣a log2∣x∣)−1, B1) for all 0 ≤ a ≤ 1
2

. (1.7)

Thus, T(D) is the distinguished extension.
(iii) If π2

4ω2 < ν2, there exist infinite extensions T of Hmin such that

D(T(D)) ⊂ D((∣x∣a log2∣x∣)−1, B1) for all 0 ≤ a ≤ 1
2

. (1.8)

Thus, Hmin does not have any distinguished extension.

Remark I.10. If π2
−ω2

4ω2 < ν2 < π2

4ω2 , the distinguished extension T(D) can be characterized in terms of Sobolev regularity. Indeed, combining
Theorem I.9 with Theorem 1.4.5.3 in Ref. 47, T(D) is the unique extension of Hmin that verifies

D(T(D)) ⊂ Hs(Sω;C2) for s < 1
2
+
√

π2

4ω2 − ν2.

Nevertheless, this characterization fails in the case ν2 ≥ π2

4ω2 , where one can see that there exists infinite self-adjoint extension verifying the
following property:

D(T) ⊂ Hs(Sω;C2) for s < 1
2

.

Having established the self-adjointness of Coulomb-type perturbations of Hω, we turn our analysis to a description of their spectrum. In
the following part of the Introduction, we consider, in general, m ≥ 0 in the definition of Hω. Our first result in this direction complements
Corollary I.5 and Theorem I.7, investigating the stability of the essential spectrum of Hω under general Coulomb-type perturbations.

Theorem I.11. Let Hmin be the operator defined in (1.5), and let T be any self-adjoint extension of Hmin. Then,

σess(T) = (−∞,−m] ∪ [m,+∞).

Moreover, when π2
−ω2

4ω2 < ν2, that is, when Hmin is not essentially self-adjoint, for any λ ∈ (−m, m), there exists T a self-adjoint extension of Hmin
for which λ is an eigenvalue.

Remark I.12. The result of Theorem I.11 can be translated immediately to the case of singular potentials as V verifying the hypothesis of
Corollary I.5. In this case, the self-adjoint realization Hω + V has σess(Hω + V) = (−∞,−m] ∪ [m,+∞).

The infinite mass boundary conditions prevent the massive operator Hω to be diagonalized by the unitary transformation of Proposition
A.3. This makes difficult to mimic the computation of eigenvalues or the characterization of the discrete spectrum of Dirac operators with
explicit Coulomb potentials as in Ref. 48. Hence, we cannot provide further details in the case of an explicit Coulomb potential using the
radial decomposition.

II. THE RADIAL OPERATOR AND PROOFS OF THEOREM I.7 AND THEOREM I.9
To prove Theorems I.7 and I.9, we decompose the Dirac operators Hmin for m = 0 in the direct sum of one-dimensional Dirac operators

on the half-line. We introduce some notations: for k ∈ N, set

λk ∶=
(2k + 1)π

2ω
, (2.1)
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and let dν,k be the differential expression

dν,k ∶=
⎛
⎜⎜
⎝

ν
r

−∂r −
λk

r
∂r −

λk

r
ν
r

⎞
⎟⎟
⎠

. (2.2)

We define the following Dirac operators on the half-line:

D(hν,k) ∶= C∞c ((0,+∞);C2),
hν,ku ∶= dν,ku.

(2.3)

Proposition II.1. Let ν ∈ R, ω ∈ (0, 2π], Sω be defined as in (1.2), and Hmin be defined as in (1.5), and for all k ∈ N, let hν,k be defined as in
(2.3). Then,

Hmin ≅ ⊕
k∈N

hν,k,

where “≅” means that the operators are unitarily equivalent.

Remark II.2. The partial wave subspace decomposition of Hω (given by Proposition II.1 for ν = 0) leads us to the analysis of an orthogonal
sum of half-line Dirac operators perturbed by off-diagonal Coulomb potentials, expressed via the eigenvalues of the spin–orbit operator. This
is the reason why we perturb the operator Hω with an external Coulomb-potential. Roughly speaking, the presence of a corner in the origin
and the presence of an external Coulomb perturbation have the same singular nature: they both imply the presence of a singular term of order
∼1/r in the radial operators hν,k.

The Proof of Proposition II.1 exploits the radial symmetry of the problem and takes advantage of the decomposition of the Hilbert space
L2(Sω;C2) in the partial wave subspaces. We omit these details here, and we leave the Proof of Proposition II.1 to the Appendix.

Thanks to Proposition II.1, the Proof of Theorem I.7 follows from the analysis of the same properties on the reduced operators hν,k. For
any k ∈ N, the operator hν,k is a radial Dirac operator and it has been studied in several works. Indeed, the operator hν,k is precisely in the form
of the one defined in Ref. 27, Eq. (2.19) with m = λ = μ = 0 and kj = −λk.

In the following proposition, we study its self-adjointness.

Proposition II.3. Let k ∈ N, and let hν,k be defined as in (2.3). Let, moreover,

χ ∈ C∞c (R; [0, 1]) such that χ′(r) ≤ 0 and χ(r) =
⎧⎪⎪⎨⎪⎪⎩

1 for r ≤ 1,

0 for r ≥ 2.
(2.4)

Thus, the following holds:

(i) If λ2
k − ν2 ≥ 1/4, then hν,k is essentially self-adjoint. Moreover,

D(hν,k) = H1
0((0,+∞);C2) if λ2

k − ν2 > 1
4

,

D(hν,k) ⊋ H1
0((0,+∞);C2) if λ2

k − ν2 = 1
4

.

(ii) If 0 < λ2
k − ν2 < 1/4, then hν,k is not essentially self-adjoint and it admits a one parameter family of self-adjoint extensions {t(α)ν,k }α∈[0,π)

such that

D(t(α)ν,k ) = span{u(α)ν,k } +H1
0((0,+∞);C2),

being

u(α)ν,k (r) = Pν,k ⋅
⎛
⎜
⎝

cos(α)r
√

λ2
k−ν

2

sin(α)r−
√

λ2
k−ν

2

⎞
⎟
⎠
χ(r) for r > 0,
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where Pν,k ∈ R2×2 is the invertible matrix,

Pν,k ∶=
1

2
√
λ2

k − ν2 (−λk −
√
λ2

k − ν2)

⎛
⎜
⎝
−λk −

√
λ2

k − ν2 ν

−ν λk +
√
λ2

k − ν2

⎞
⎟
⎠

.

(iii) If λ2
k − ν2 = 0, then hν,k is not essentially self-adjoint and it admits a one parameter family of self-adjoint extensions {t(α)ν,k }α∈[0,π) such that

D(t(α)ν,k ) = span{u(α)ν,k } +H1
0((0,+∞);C2),

being

u(α)ν,k (r) = (Qν,k log(r) + 𝟙2) ⋅
⎛
⎜
⎝

cos(α)
sin(α)

⎞
⎟
⎠
χ(r) for r > 0,

where Qν,k ∈ R2×2 is the rank 1 matrix and defined as follows:

Qν,k ∶=
⎛
⎜
⎝
λk −ν
ν −λk

⎞
⎟
⎠

.

(iv) If λ2
k − ν2 < 0, then hν,k is not essentially self-adjoint and it admits a one parameter family of self-adjoint extensions {t(α)ν,k }α∈[0,π) such that

D(t(α)ν,k ) = span{u(α)ν,k } +H1
0((0,+∞);C2),

being

u(α)ν,k (r) = Rν,k ⋅
⎛
⎜
⎝

cos(α)ri
√

ν2−λ2
k

sin(α)r−i
√

ν2−λ2
k

⎞
⎟
⎠
χ(r) for r > 0

where Rν,k ∈ C2×2 is the invertible matrix,

Rν,k ∶=
1

2i
√
ν2 − λ2

k (−λk − i
√
ν2 − λ2

k)

⎛
⎜
⎝
−λk − i

√
ν2 − λ2

k ν

−ν λk + i
√
ν2 − λ2

k

⎞
⎟
⎠

.

Before giving the Proof of Proposition II.3, let us now first characterize the closure of hν,k.

Proposition II.4. Let hν,k be defined as in (2.2). Then,

D(hν,k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1
0((0,+∞);C2) if λ2

k − ν2 ≠ 1
4

,
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ L2((0,+∞);C2) :

(λk +
1
2
)(u′1 −

u1

r
) − ν(u′2 −

u2

r
) ∈ L2(0,+∞),

νu1 − (λk +
1
2
)u2 ∈ H1

0(0,+∞)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

if λ2
k − ν2 = 1

4
.

Proof. We denote by C any positive constant. Applying the one-dimensional Hardy inequality (see Ref. 27, Proposition 2.4),

∫
∞

0
∣ f ′(r)∣2 dr ≥ 1

4∫
∞

0

∣ f (r)∣2
r2 dr for f ∈ C∞c (0,+∞),
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we have that

∥hν,ku∥L2 ≤ C∥∂ru∥L2 for u ∈ D(hν,k).

This implies that

H1
0((0,+∞);C2) ⊂ D(hν,k).

Set

λ̃k ∶=
⎧⎪⎪⎨⎪⎪⎩

√
λ2

k − ν2 if λ2
k − ν2 ≥ 0,

i
√
ν2 − λk otherwise,

and let M1, M2 be the matrices defined as

M1 ∶=
⎛
⎜
⎝
−λ̃k − λk −ν

ν λ̃k + λk

⎞
⎟
⎠

M2 ∶=
⎛
⎜
⎝
λ̃k + λk −ν
ν −λ̃k − λk

⎞
⎟
⎠

.

We get with an easy computation that

M1 ⋅
⎛
⎜⎜
⎝

ν
r

−∂r −
λk

r
∂r −

λk

r
ν
r

⎞
⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

0 −∂r −
λ̃k

r

∂r −
λ̃k

r
0

⎞
⎟⎟⎟
⎠
⋅M2. (2.5)

Let h̃ν,k be the operator defined as

D(h̃ν,k) = C∞c ((0,+∞);C2) h̃ν,ku =
⎛
⎜⎜⎜
⎝

0 −∂r −
λ̃k

r

∂r −
λ̃k

r
0

⎞
⎟⎟⎟
⎠
⋅
⎛
⎜
⎝

u1

u2

⎞
⎟
⎠

.

Let us first assume that λ2
k − ν2 ≠ 0. In this case, the matrices M1 and M2 are invertible; thus, u ∈ D(hν,k) if and only if M2u ∈ D(h̃ν,k).

We get the desired result applying Lemma A.1 in Ref. 22. Although this result is stated when λ̃k is real, the same approach can be used for
purely imaginary constants.

Let us now assume λ2
k − ν2 = 0. In this case, one can easily see that

M∗2 ⋅M1 = 02×2 and M1 +M2 = 2λk

⎛
⎜
⎝

0 −1

1 0

⎞
⎟
⎠

.

Then, for any u ∈ D(hν,k), thanks to (2.5) and by the one-dimensional Hardy-inequality, we have that

∥hν,ku∥2
L2 = 1

4λ2
k
∥M1hν,k∥2

L2 + 1
4λ2

k
∥M2hν,k∥2

L2 ≥ 1
4λ2

k
∥h̃ν,kM2u∥2

L2 = 1
4λ2

k
∥∂r(M2u)∥2

L2 ≥ C∥M2

r
u∥

2

L2
.

Thanks to this and by the definition of hν,k, we have that

∥∂ru∥L2 =
XXXXXXXXXXXXX

⎛
⎜
⎝

⎛
⎜
⎝

1 0

0 −1

⎞
⎟
⎠
⋅ hν,k +

M2

r
⋅
⎛
⎜
⎝

0 1

1 0

⎞
⎟
⎠

⎞
⎟
⎠

u
XXXXXXXXXXXXXL2

≤ C∥hν,ku∥L2.
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This proves that

D(hν,k) ⊂ H1
0((0,+∞);C2),

and it concludes the proof. ◻

Proof of Proposition II.3. Let us denote by h∗ν,k the adjoint operator of hν,k. Then, by definition, we have that

D(h∗ν,k) ∶= {u ∈ L2((0,+∞);C2) : dν,ku ∈ L2((0,+∞);C2)},
h∗ν,ku ∶= dν,ku,

where dν,ku has to be read in the distributional sense.
From the analysis of Ref. 27, it turns out that δ ∶= λ2

k − ν2 is the parameter ruling essential self-adjointness of hν,k. Indeed, from Theorem
1.1 in Ref. 27, we know that hν,k is essentially self-adjoint if δ ≥ 1

4 . This consideration together with the explicit characterization of the closure
of Proposition II.4 yields precisely (i).

Let us now assume 0 < δ < 1
4 . By Ref. 27, Theorem 1.2, (i) the operator hν,k is not essentially self-adjoint and it admits a one-parameter

family of self-adjoint extensions {t(α)ν,k }α∈[ 0,π )
. Moreover, u ∈ D(t(α)ν,k ) if and only if u ∈ D(h∗ν,k) and there exists (A+, A−) ∈ C2 such that

A+ sin(α) + A− cos(α) = 0, (2.6)

u(r) = Pν,k

⎛
⎜
⎝

A+r
√

δ

A−r−
√

δ

⎞
⎟
⎠
+ o(r1/2) for r → 0. (2.7)

Let us decompose

u(r) = Pν,k

⎛
⎜
⎝

A+r
√

δ

A−r−
√

δ

⎞
⎟
⎠
χ(r) +

⎡⎢⎢⎢⎢⎢⎣
u(r) − Pν,k

⎛
⎜
⎝

A+r
√

δ

A−r−
√

δ

⎞
⎟
⎠
χ(r)
⎤⎥⎥⎥⎥⎥⎦
=: v(r) +w(r).

Thanks to (2.6), we have that v ∈ span(u(α)ν,k ).
Let us focus on w. By definition, w ∈ D(h∗ν,k). Moreover, by (2.7), w(r) = o(r1/2) as r → 0. Thanks to this and applying Eq. (3.3) in Ref.

27, we have that

∫
∞

0

∣w(r)∣2
r2 dr < +∞.

For this reason,

⎛
⎜
⎝

0 −∂r

∂r 0

⎞
⎟
⎠
w = h∗ν,kw −

⎛
⎜
⎝
ν −λk

−λk ν

⎞
⎟
⎠
w

r
∈ L2((0,+∞);C2),

which proves that w ∈ H1
0((0,+∞);C2). This implies that

D(t(α)ν,k ) ⊂ span{u(α)ν,k } +H1
0((0,+∞);C2).

The other inclusion is obvious, and this concludes the proof of (ii).
Last two points are proved analogously, but they rely on Theorems 1.2 (ii) and 1.3 in Ref. 27, respectively. ◻

We are now ready to prove Theorems I.7 and I.9.

Proof of Theorem I.7. Looking for self-adjoint extensions of Hmin is equivalent to looking for self-adjoint extensions of the massless
problem (as their difference is a bounded operator). The latter can be conveniently expressed in the unitary equivalent form of a direct sum
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(Proposition II.1), which can be exploited for the computation of deficiency indices (see Ref. 49, Sec. 1.6). From Proposition II.3, we know
that the deficiency indices of hν,k are as follows:

dim ker(h∗ν,k ± i) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if λ2
k − ν2 ≥ 1

4
,

1 if λ2
k − ν2 < 1

4
.

It follows immediately that if λ2
0 − ν2 = π2

4ω2 − ν2 ≥ 1
4 , then dim ker(h∗ν,k ± i) = 0 for all k ∈ N, and thus, by the basic criterion of essential self-

adjointness (Ref. 45, Corollary to Theorem VIII.3), Hmin is essentially self-adjoint.
Using the characterization of Proposition II.4, one completes the proof of Theorem I.7. For any k ∈ N such that λ2

k − ν2 < 1
4 , the operator

hν,k is not essentially self-adjoint. Since each non-essentially self-adjoint radial operator contributes to increasing the deficiency indices of 1,
the deficiency index of the total operator will be equal to the number of non-self-adjoint radial operators. For fixed ν and ω, the condition on
k for hν,k being non-essentially self-adjoint is

k < ω
π

√
ν2 + 1

4
− 1

2
.

Calling d the maximum of such k, deficiency indices of Hmin are d + 1, and then, from von Neumann’s theorem of self-adjoint extensions
(Ref. 45, Theorem X.2), we get the thesis. ◻

The Proof of Theorem I.9 follows from Propositions II.1 and II.3 and the analysis of analogous properties on the reduced operators hν,k.
We study them in the following proposition.

Proposition II.5. Let hν,k be defined as in (2.3), and assume that λ2
k − ν2 < 1/4. Let {t(α)ν,k }α∈[0,π) be the family of all the self-adjoint extensions

of hν,k defined, respectively, as in Proposition II.3 (ii)–(iv). Then, the following holds:

(i) If 0 < λ2
k − ν2, hν,k admits a unique self-adjoint extension t(D)ν,k that verifies the property

D(t(D)ν,k ) ⊂ D(r
−aχ{r≤1}) for all 0 ≤ a < 1

2
+
√
λ2

k − ν2. (2.8)

(ii) If 0 = λ2
k − ν2, hν,k admits a unique self-adjoint extension t(D)ν,k that verifies the property

D(t(D)ν,k ) ⊂ D((r
a log2 r)−1χ{r≤1}) for all 0 ≤ a ≤ 1

2
. (2.9)

(iii) If λ2
k − ν2 < 0, all the self-adjoint extensions t(α)ν,k of hν,k verify

D(t(α)ν,k ) ⊂ D((r
a log2 r)−1χ{r≤1}) for all 0 ≤ a ≤ 1

2
. (2.10)

Proof. Thanks to Proposition II.3, with explicit computation, we have that condition (2.8) is verified for t(α)k if and only if α = 0.
Analogously condition (2.9) is verified if and only if α = −(sign ν)π/4. Finally, (2.10) is verified for any α ∈ [0,π ). ◻

Proof of Theorem I.9. Let us first assume that π2
−ω2

4ω2 < ν2 < π2

4ω2 . This implies that d defined in (1.6) is equal to 0. Thus, by Theorem I.7, the
operator Hmin has infinitely many self-adjoint extensions, and there exists a one-to-one correspondence between the self-ajdoint extensions
of Hmin and the space U(1) ∼ [0,π). Since 0 ≤ λ0 − ν2 < 1/4 and λ2

k − ν2 ≥ 1/4 for all k ∈ N/{0}, thanks to Proposition II.3, we have that for
any α ∈ [0,π),

T(α) ≅ t(α)0 ⊕ ⊕
k∈N/{0}

hν,k.

From Proposition II.5 (i), we have that the self-adjoint realization defined through the unitary map in (A3) as

T(D) :≅ t(D)0 ⊕ ⊕
k∈N/{0}

hν,k

is the unique one whose domain in included in D(∣x∣−a, B1). Last two points are proved analogously, but they rely on Proposition II.5 (ii) and
(iii), respectively. ◻
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III. SPECTRAL PROPERTIES, HARDY–DIRAC, AND PROOF OF THEOREM I.11

Proof of Theorem I.3. Let ψ ∈ C∞c (Sω/{0};C2) ⊂ D(Hω). Thanks to Proposition A.3 for ν = 0, there exist u+k , u−k ∈ C∞c ((0,+∞);C2),
k ∈ N, such that (A4) holds true. Thanks to (A6) and (A7), we explicitly compute

∫
Sω
∣σ ⋅ ∇ψ∣2 dx = ∑

k∈N
[∫

∞

0
∣(∂r +

λk

r
)u−k (r)∣

2

dr + ∫
∞

0
∣(∂r −

λk

r
)u+k (r)∣

2

dr]

= ∑
k∈N
[∫

∞

0
∣∂r(rλk u−k (r))∣

2
r−2λk dr + ∫

∞

0
∣∂r(r−λk u+k (r))∣

2
r2λk dr].

(3.1)

Thanks to Proposition 2.4 (i) and (ii) in Ref. 27 and using that u±k (0) = u±k (∞) = 0, we have that for any k ∈ N,

∫
∞

0
∣∂r(r−λk u+k (r))∣

2
r2λk dr ≥ (λk −

1
2
)

2

∫
∞

0

∣u+k (r)∣2
r2 dr,

∫
∞

0
∣∂r(rλk u−k (r))∣

2
r−2λk dr ≥ (λk +

1
2
)

2

∫
∞

0

∣u−k (r)∣2
r2 dr.

(3.2)

Since min
k∈N
(λk ± 1

2)
2 = (π−ω)

2

4ω2 , combining (3.1) with (3.2), we have that

∫
Sω
∣σ ⋅ ∇ψ∣2 dx ≥ (π − ω)

2

4ω2 ∑
k∈N
[∫

∞

0

∣u+k (r)∣2
r2 dr + ∫

∞

0

∣u−k (r)∣2
r2 dr]

= (π − ω)
2

4ω2 ∫
Sω

∣ψ∣2
∣x∣2 dx.

Finally, thanks to the fact that ψ is supported far away from the origin and that the curvature of a straight line is null, applying Ref. 8, Eq. (2.5),
we have that

∫
Sω
∣σ ⋅ ∇ψ∣2 dx = ∫

Sω
∣∇ψ∣2 dx.

This implies that the Hω-norm is equivalent to the H1-norm on Sω, and so, by a density argument, we conclude the proof. ◻

From now on, we denote by H(D)ω the self-adjoint operator Hω defined in (1.3) when 0 < ω ≤ π and its distinguished self-adjoint exten-
sion (the unique one whose domain is included in the Sobolev space H1/2) when π < ω ≤ 2π. We recall a known result, namely, Ref. 7,
Proposition 1.12, that states that

σess(H(D)ω ) = (−∞,−m] ∪ [m,+∞). (3.3)

We are ready now to prove Theorem I.11.

Proof of Theorem I.11. We can always assume that T verifies D(T) ⊂ Hs(Sω;C2) for s < 1/2; see Remark I.10. Indeed, if T̃ is an extension
that does not verify this property, then T̃ is a finite rank perturbation of T in the sense of resolvent differences, and so they have the same
essential spectrum. We use the strategy of Ref. 2, Sec. 4.3.4, exploiting the Weyl theorem (Ref. 50, Theorem XIII.14): we prove that for any
z ∈ C/R, the operator (T − z)−1 − (H(D)ω − z)−1 is compact. Consequently, from (3.3), we have that

σess(T) = σess(H(D)ω ) = (−∞,−m] ∪ [m,+∞).

For this purpose, let χ be defined as in (2.4), and for any n ∈ N, set χn(x) ∶= χ(∣x∣/n) and ζn(x) ∶= 1 − χn(x). Then,

(T − z)−1 − (H(D)ω − z)−1 = (T − z)−1χn − (H(D)ω − z)−1χn

+(T − z)−1ζn − ζn(H(D)ω − z)−1

+ ζn(H(D)ω − z)−1 − (H(D)ω − z)−1ζn

=: S(1)n + S(2)n + S(3)n .
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We claim that S(1)n = (χn(T − z)−1 − χn(H(D)ω − z)−1)
∗

is compact. Indeed, both operators χn(T − z)−1 and χn(H(D)ω − z)−1 are com-

pact since they are both bounded from L2(Sω;C2) to Hs(Sω ∩ B2n;C2) (being B2n the ball of radius 2n) and Hs(Sω ∩ B2n;C2) is compactly
embedded in L2(Sω;C2).

Let us analyze S(2)n . We observe that Vn ∶= ν
∣x∣ ζn ∈ L∞, and so

S(2)n = −(T − z)−1(ζn(Hω − z) − (T − z)ζn)(Hω − z)−1

= −(T − z)−1(Vn)(Hω − z)−1

−(T − z)−1(−iσ ⋅ ∇ζn)(H(D)ω − z)−1.

Using the fact that ∥Vn∥∞ ≤ C
n and ∥ − iσ ⋅ ∇ζn∥∞ ≤ C

n , we can conclude that S(2)n → 0 in the operator norm for n→ +∞.
Let us finally estimate S(3)n . Reasoning as above, we have

S(3)n = −(H(D)ω − z)−1(−iσ ⋅ ∇ζn)(H(D)ω − z)−1 → 0 in the operator norm for n→ +∞.

This concludes the first part of the proof.
Having proved that σess(T) = (−∞,−m] ∪ [m,+∞), one has immediately that σd(T) ⊂ (−m, m). Recalling that σd(T), the discrete

spectrum of T, is the set of isolated eigenvalues with finite multiplicity, we note the following. Pick up λ ∈ (−m, m); then, there are two
possibilities: either λ ∈ σd(T) or λ is in the resolvent set ρ(T), and so there exists a neighborhood of λ that is contained in ρ(T). If the
latter is the case and the operator Hmin is not essentially self-adjoint, since the dimension of deficiency subspaces is constant in the resolvent
set, dim ker(H∗min − λ) ≥ 1. Using the Krĕın–Višik–Birman–Grubb extension scheme (see Ref. 49, Theorem 2.13), one can consider the self-
adjoint extension HO − λ of Hmin − λ corresponding to the Birman parameter O that has domain D(HO) = D(Hmin)+̇ ker((Hmin)∗ − λ).
Shifting the operator by λ does not change its domain, and thus, D(HO) is a domain of a self-adjoint extension of Hmin with eigenvalue λ. ◻
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APPENDIX: PROPERTIES OF THE ANGULAR OPERATOR

In this appendix, we decompose the Hilbert space L2(Sω;C2) into the direct sum of partial wave subspaces, namely, invariant sub-
spaces for the action of the Dirac operator with a potential having spherical symmetry. The topic is very well known, so we give here a light
presentation: for complete details, the reader can see, e.g., Refs. 7–9 and 22 or Ref. 2, Sec. 4.6 for the analogous three-dimensional reduction.

We use the standard notation for polar coordinates: for x = (x1, x2) ∈ R2/{0},

x1 = r cos θ,

x2 = r sin θ,
being

r ∶=
√

x2
1 + x2

2 ∈ (0,+∞),
θ ∶= sign(x2) arccos(x1/r) ∈ [0, 2π).

For all ψ ∈ L2(Sω;C), let φ = φ(r, θ) : (0,+∞) × (0,ω) → C be defined as follows:

φ(r, θ) ∶=
√
(x1(r, θ))2 + (x2(r, θ))2 ψ(x1(r, θ), x2(r, θ)) for all r ∈ (0,+∞), θ ∈ (0,ω).
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The map ψ ↦ φ is a unitary map L2(Sω;C) → L2((0,+∞);C) ⊗ L2((0,ω);C) since

∫
Sω
∣ψ(x)∣2 dx = ∫

ω

0
∫
+∞

0
∣φ(r, θ)∣2 dr dθ.

Repeating this reasoning for every component of the wave-function, we obtain the following decomposition:

L2(Sω;C2) ≅ L2((0,+∞), dr) ⊗ L2((0,ω);C2), (A1)

where “≅” means unitarily equivalent.
It is useful to express the Dirac operators in polar coordinates: setting

er ∶= (cos θ, sin θ) = x
r

, eθ ∶= (− sin θ, cos θ) = ∂er

∂θ
,

we abbreviate

∂r = er ⋅ ∇ and ∂θ = eθ ⋅ ∇.

By means of elementary computations, it is easy to see that

σ ⋅ er =
⎛
⎜
⎝

0 e−iθ

eiθ 0

⎞
⎟
⎠

and that the identity σ ⋅ eθ = iσ ⋅ erσ3 holds. We obtain

− iσ ⋅ ∇ = −iσ ⋅ (er∂r +
1
r

eθ∂θ) = −iσ ⋅ er(∂r +
1
2r
− Kω

r
), (A2)

where Kω is the spin–orbit operator, which is given by

Kω ∶=
1
2
𝟙 − iσ3∂θ.

In order to decompose appropriately L2((0,ω);C2), we recall Lemma 2.4 in Ref. 8 about the properties of Kω.

Proposition A.1 (properties of the spin–orbit operator). Let ω ∈ (0, 2π], Sω be as in (1.2), and {λk}k∈N be as in (2.1). Set

f +k (θ) ∶=
1√
2ω

⎛
⎜
⎝

ei(λk−
1
2 )θ

e−i(λk−
1
2 )θ

⎞
⎟
⎠

, f −k (θ) ∶=
−i√
2ω

⎛
⎜
⎝

e−i(λk+
1
2 )θ

e+i(λk+
1
2 )θ

⎞
⎟
⎠

for θ ∈ (0,ω). (A3)

The spin–orbit operator with infinite mass boundary conditions

Kω ∶=
1
2
𝟙 − iσ3∂θ,

D(Kω) ∶= {ϕ = (ϕ1,ϕ2) ∈ H1((0,ω),C2) : ϕ2(ω) = −eiωϕ1(ω), ϕ1(0) = ϕ2(0)}

has the following properties:

(i) Kω is self-adjoint and has a compact resolvent.
(ii) { f +k , f −k }k∈N is an orthonormal basis of eigenfunctions of L2((0,ω);C2) with eigenvalues {λk,−λk}k∈N.

(iii) −i(σ ⋅ er) f ±k = ± f ∓k for all k ∈ N.
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In the following proposition, we finally decompose the space L2(Sω;C2) into partial wave subspaces.

Proposition A.2 (decomposition in partial wave subspaces). Let ω ∈ (0, 2π] and Sω be defined as in (1.2), and for all k ∈ N, let λk as in (2.1)
and f ±k as in (A3). Then,

L2(Sω;C2) ≅ ⊕
k∈N
[L2((0,+∞), dr) ⊗ span{ f +k , f −k }],

i.e., for any ψ ∈ L2(Sω;C2), there exists {(u+k , u−k )}k∈N ∈ L2((0,∞), dr) ⊕ L2((0,∞), dr) such that

ψ(r, θ) = 1√
r∑k∈N
[u+k (r) f +k (θ) + u−k (r) f −k (θ)] for a.a. r ∈ (0,+∞), θ ∈ (0,ω),

∥ψ∥2
L2(Sω ;C2) = ∑

k∈N
[∥u+k ∥2

L2((0,+∞),dr) + ∥u−k ∥2
L2((0,+∞),dr)].

(A4)

Proof. The proof is immediate from (A1) and (ii) of Proposition A.1. ◻

Thanks to Proposition A.2, it is possible to decompose the Dirac operator Hmin defined in (1.5) as the direct sum of the one-dimensional
Dirac operators on the half-line with Coulomb potentials hν,k defined in (2.3). The following proposition implies Proposition II.1.

Proposition A.3. Let ω ∈ (0, 2π], Sω be defined as in (1.2), and Hmin be defined as in (1.5), and for all k ∈ N, let hν,k be defined as in (2.3).
Then, if m = 0,

Hmin ≅ ⊕
k∈N

hν,k,

where “≅” means that the operators are unitarily equivalent.
In detail, for ψ ∈ L2(Sω;C2), there exists {(u+k , u−k )}k∈N ⊂ L2((0,∞), dr) ⊕ L2((0,∞), dr) such that (A4) holds true and

ψ ∈ dom Hmin ⇐⇒ (u+k , u−k ) ∈ dom hν,k = C∞c ((0,+∞);C2) for all k ∈ N. (A5)

Moreover, for a.a. r ∈ (0,+∞), θ ∈ (0,ω),

(D0 +
ν
∣x∣𝟙2)ψ(r, θ) = 1√

r∑k∈N
[ũ+k (r) f +k (θ) + ũ−k (r) f −k (θ)], (A6)

with

⎛
⎜
⎝

ũ+k
ũ−k

⎞
⎟
⎠
= dν,k

⎛
⎜
⎝

u+k
u−k

⎞
⎟
⎠

. (A7)

Proof. The equivalence in (A5) is immediate since f ±k ∈ C∞c ([0,ω];C2). Using (A2) and the fact that

(∂r +
1
2r
) 1√

r
= 1√

r
∂r ,

we compute

(D0 +
ν
∣x∣𝟙2)ψ(r, θ) = −i(σ ⋅ er)(∂r +

1
2r
− Kω

r
) 1√

r∑k∈N
[u+k (r) f +k (θ) + u−k (r) f −k (θ)]

= −i(σ ⋅ er)√
r ∑

k∈N
[∂ru+k (r) f +k (θ) + ∂ru−k (r) f −k (θ) −

λk

r
u+k (r) f +k (θ) +

λk

r
u−k (r) f −k (θ)]

= 1√
r∑k∈N
[∂ru+k (r) f −k (θ) − ∂ru−k (r) f +k (θ) −

λk

r
u+k (r) f −k (θ) −

λk

r
u−k (r) f +k (θ)].

From this, (A6) and (A7) follow. ◻
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