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ABSTRACT
The detection and flux estimation of point sources in cosmic microwave background (CMB)
maps is a very important task in order to clean the maps and also to obtain relevant astrophysical
information. In this paper we propose a maximum a posteriori (MAP) approach detection
method in a Bayesian scheme which incorporates prior information about the source flux
distribution, the locations and the number of sources. We apply this method to CMB simulations
with the characteristics of the Planck satellite channels at 30, 44, 70 and 100 GHz. With a
similar level of spurious sources, our method yields more complete catalogues than the matched
filter with a 5σ threshold. Besides, the new technique allows us to fix the number of detected
sources in a non-arbitrary way.

Key words: methods: data analysis – techniques: image processing – cosmic background
radiation – radio continuum: galaxies.

1 IN T RO D U C T I O N

The detection and estimation of the intensity of compact objects
embedded in a background plus instrumental noise is a problem of
interest in many different areas of science and engineering. A clas-
sic example is the detection of point-like extragalactic objects – i.e.
galaxies – in sub-millimetric astronomy. Regarding this particular
field of interest, different techniques have proven useful in the lit-
erature. Some of the existing techniques are: the standard matched
filter (MF; Nailong 1992), the matched multi-filter (Herranz et al.
2002; Lanz et al. 2010) or the recently developed matched matrix
filters (Herranz & Sanz 2008). Other methods include continuous
wavelets like the standard Mexican Hat (Sanz et al. 2006) and other
members of its family (González-Nuevo et al. 2006). All these filters
have been applied to real data of the Cosmic Microwave Background
(CMB), like those obtained by the Wilkinson Microwave Anisotropy
Probe (WMAP) satellite (López-Caniego et al. 2007) and CMB
simulated data (Leach et al. 2008) for the experiment on board the
Planck satellite (Tauber 2005). Besides, Bayesian methods (BMs)
have also been recently developed (Hobson & McLachlan 2003;
Carvalho, Rocha & Hobson 2009). A more detailed review on point
source detection techniques in microwave and sub-mm astronomy,
with a more complete list of references, can be found in Herranz &
Vielva (2010).

When an MF or a wavelet is applied to a CMB map in the
blind detection case, i.e. when it is assumed that the number of
point sources, their positions and fluxes are unknown, the most
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common method for detection is based on the well-known idea of
thresholding: the maxima of the filtered map above a given threshold
are selected and considered as the positions of the sources, so that
the number of detected sources is the number of maxima above that
threshold. The fluxes are estimated then by using the corresponding
estimation formulae with the MF or the wavelet. The value of this
threshold remains arbitrary, though a 5σ cut is often applied, since it
guarantees that under reasonable conditions a few detected sources
are spurious. Apart from the arbitrariness of this procedure, the prior
knowledge regarding the average number of sources in the surveyed
patch, the flux distribution of these sources or other properties are
not used, so that useful information is being neglected.

Bayesian detection techniques provide a natural way to take into
account all the available information about the statistical distribution
of both the sources and the noise. Unfortunately, up to this date only
a few works have addressed the problem of detecting extragalactic
point sources in CMB data (Hobson & McLachlan 2003; Carvalho
et al. 2009). The reason for this is twofold: on the one hand, the
statistical properties of extragalactic sources at sub-mm frequencies
are still very poorly known. On the other hand, mapping the full
posterior probability density of the sources is often very difficult
and computationally expensive. These two problems explain, at
least partially, the predominance of frequentist over BMs in the
literature. Let us consider the previous two problems separately.

The microwave and sub-mm region have been until very recently
one of the last uncharted areas in astronomy. Concerning extragalac-
tic sources, this region of the electromagnetic spectrum is where the
total number of counts passes from being dominated by radio-loud
galaxies to being dominated by dusty galaxies. Although a mini-
mum of the emission coming from extragalactic sources is expected
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to occur around 100–300 GHz, they are still considered as the main
contaminant of the CMB at small angular scales at these frequencies
(Toffolatti et al. 1998; de Zotti et al. 2005). The uncertainties about
the number counts at intermediate and low flux, redshift distribu-
tion, evolution and clustering properties of this mixed population of
objects are large. In most cases this has motivated the use of non-
informative priors, which avoid to make adventurous assumptions
about the sources but on the other hand miss part of the power of
the priors that are based on observations and physical intuition.

But, in spite of what has been said above, our knowledge about
the statistical properties of point sources is growing day by day
thanks to the new generation of surveys and experiments. In the
high-frequency radio regime, WMAP observations are in agreement
with the de Zotti model (de Zotti et al. 2005; González-Nuevo et al.
2008). Priors for the number density and flux distributions in the
range of frequencies >5 GHz are more and more reliable thanks to
the information provided by recent surveys such as Combined Radio
All-sky Targeted Eight-GHz Survey (CRATES; Healey et al. 2007),
the Ryle-Telescope 9C at 15.2 GHz (Taylor et al. 2001; Waldram
et al. 2003) or the AT20G survey at 20 GHz (Ricci et al. 2004;
Massardi et al. 2008; Mahony et al. 2010). For a recent review on
radio and millimetre surveys and their astrophysical implications,
see de Zotti et al. (2010). The situation is worse in the far-infrared
part of the spectrum, where relatively large uncertainties remain in
the statistical properties, the evolution and, above all, the clustering
properties of dusty galaxies. Most of the existing dusty galaxy
surveys have been carried out in the near and medium infrared
with IRAS, ISO and Spitzer, but the waveband from 60 to 500 µm
is still virtually terra incognita. The only survey of a large area of
the extragalactic sky at a wavelength above 200 µm is the one
recently carried out by the Herschel pathfinder experiment, the
Balloon Large Area Survey Telescope (BLAST; Devlin et al. 2009).
In the next few months, however, the luminosity function and the
dust-mass function of dusty galaxies in the nearby Universe will
be much better understood thanks to the Herschel-ATLAS Survey
(Eales et al. 2010), which covers the wavelength range between 110
and 500 µm and has already produced interesting results during
the Herschel Science Demonstration Phase (Clements et al. 2010).
Thanks to these and the previously mentioned observations, the
sub-mm gap is narrowing and our knowledge of galaxy populations
in this wave band, albeit far from perfect, is quickly improving.

Apart from the uncertainties on the priors, the other complica-
tion that has traditionally deterred microwave astronomers from
attempting Bayesian point source detection is computational and
algorithmic complexity. Depending on the choice of priors and the
likelihood function, the full posterior distribution of the parame-
ters of the sources may be very complex and in most cases it is
impossible to obtain maximum a posteriori (MAP) values of the
parameters and their associated errors via analytical equations. Nu-
merical sampling techniques such as Monte Carlo Markov Chain
(MCMC) methods are required in order to solve the inference prob-
lem, but these methods are computationally intensive. It is thus
necessary to apply computing techniques specifically tailored for
accelerating the convergence and improving the efficiency of the
sampling (Feroz & Hobson 2008) and/or to find smart approxima-
tions of the posterior near its local maxima (Carvalho et al. 2009).
But these enhancements have the cost of increasing dramatically the
algorithmic complexity of the detection software, introducing new
layers of intricacy in the form not only of additional assumptions
and routines, but also of regularization ‘constants’, hidden vari-
ables, hyperparameters and selection thresholds that in many cases
must be fine-tuned manually in order to be adapted to the specific

circumstances of a given data set. The complexity of the algorithms
can rise to almost baroque levels, having a negative effect on the
portability of the codes and on the reproducibility of the results.

We propose in this paper a simple strategy based on Bayesian
methodology (BM) which incorporates sensible prior information
about the source locations, the source fluxes and the source number
distribution. With these priors and assuming a Gaussian likelihood,
we can obtain an explicit form of the negative log-posterior of the
number of sources and their fluxes and positions. Assuming an
MAP methodology, we introduce a straightforward top-to-bottom
detection algorithm that allows us to determine the number, fluxes
and positions of the sources. We give a simple proof that the po-
sitions of the sources must be located in the local maxima of the
matched–filtered image if there is not a significant overlap between
sources. The main computational requirement of our algorithm is
the solution of a system of non-linear equations. Our method differs
from the one presented by Carvalho et al. (2009) in five main points.

(i) We use a more realistic set of priors for the source number,
intensity and location distributions. In particular, our choice of the
prior on the locations is also flat but depends on the number of
sources n, which later proves to be decisive for the log-posterior.

(ii) We obtain an explicit form of the negative log-posterior and
an explicit solution of the MAP estimate of the source intensities as
the solution of a non-linear system of equations.

(iii) We prove that, for non-overlapping sources and a Gaussian
likelihood, the MAP estimation of the positions of the sources is
given by the location of the local maxima of the matched–filtered
images.

(iv) Since we are interested only in point sources, we fix the size
parameter of the objects to be detected.

(v) We can also find the MAP solution for the number of sources
present in the images with a simple top-to-bottom search strategy.
We do not need to resort to costly evaluations of the Bayesian
evidence.

The layout of the paper is as follows. In Section 2 we present the
method and derive the corresponding posterior which includes the
data likelihood and the priors. In Section 3 we apply the method
to CMB simulations with the characteristics of the Planck radio
channels (from 30 to 100 GHz, where the number count priors are
most reliable) and compare it with the standard procedure of using
an MF with a 5σ threshold. The main results are also presented in
Section 3. The conclusions are given in the final section.

2 ME T H O D O L O G Y

In a region of the celestial sphere, we suppose to have an unknown
number n of radio sources that can be considered as point-like ob-
jects if compared to the angular resolution of our instruments. This
means that their actual size is smaller than our smallest resolution
cell. The emission of these sources is superimposed to a radiation
f (x, y) coming from diffuse or extended sources. In our particular
case this radiation is the CMB plus foreground radiation. A model
for the emission as a function of the position (x, y) is

d̃(x, y) = f (x, y) +
n∑

α=1

aαδ(x − xα, y − yα), (1)

where δ(x, y) is the 2D Dirac delta function, the pairs (xα , yα) are
the locations of the point sources in our region of the celestial
sphere and aα are their fluxes. We observe this radiation through
an instrument, with beam pattern b(x, y), and a sensor that adds a

C© 2011 The Authors, MNRAS 414, 410–417
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/414/1/410/1091800 by U
niversidad de C

antabria user on 28 D
ecem

ber 2022



412 F. Argüeso et al.

random noise n(x, y) to the signal measured. Again, as a function
of the position, the output of our instrument is

d(x, y) =
n∑

α=1

aαb(x − xα, y − yα) + (f ∗ b)(x, y) + n(x, y), (2)

where the point sources and the diffuse radiation have been con-
volved with the beam. In our application, we are interested in ex-
tracting the locations and the fluxes of the point sources. We thus
assume that the fluxes of the point sources are sufficiently above the
level of the rest of the signal plus the noise, and consider the latter
as just a disturbance superimposed to the useful signal. If ε (x, y) is
the sum of the diffuse signal plus the noise, model (2) becomes

d(x, y) =
n∑

α=1

aαb(x − xα, y − yα) + ε(x, y). (3)

If our data set is a discrete map of N pixels, the above equation can
easily be rewritten in vector form, by letting d be the lexicographi-
cally ordered version of the discrete map d(x, y), a be the n-vector
containing the positive source fluxes aα , ε be the lexicographically
ordered version of the discrete map, ε(x, y), and φ be an N × n
matrix whose columns are the lexicographically ordered versions
of n replicas of the map b(x, y), each shifted on one of the source
locations. Equation (3) thus becomes

d = φa + ε. (4)

Looking at equations (3) and (4), we see that, if the goal is to
find locations and fluxes of the point sources, our unknowns are the
number n, the list of locations (xα , yα), with α = 1, . . . , n and the
vector a. It is apparent that, once n and (xα , yα) are known, matrix
φ is perfectly determined. Let us then denote the list of source
locations by the n × 2 matrix R, containing all their coordinates. If
we want to adopt a Bayesian strategy to solve our problem, we must
be able to write the posterior probability density of our unknowns.
A suitable estimation criterion must then be chosen.

2.1 Posterior

By the Bayes rule, the posterior we are looking for has the following
form:

p(n,R, a|d) ∝ p(d|n,R, a)p(n,R, a) (5)

where p(d|n, R, a) is the likelihood function, derived from our data
model (4). To find the prior density p(n, R, a) we need to make a
number of assumptions. Let us first observe that, in principle, both
R and a depend on n, through the number of their elements. On the
other hand, we can safely assume that, once n is fixed, the fluxes a
of the sources are independent of their locations. These assumptions
lead us to write

p(n,R, a) = p(R, a|n)p(n) = p(R|n)p(a|n)p(n). (6)

This expression is valid when we consider extragalactic point
sources, whose fluxes are not related to their positions. This will be
the case in this paper.

2.2 Likelihood function

As mentioned above, the likelihood function derives from the
physics associated with the assumed data model. In general, unfor-
tunately, a data model of type (2) is difficult to describe statistically.
We are going to assume from now on that ε is a random Gaussian
field with zero mean and known covariance matrix ξ. This is true

if we only consider the CMB and the instrumental noise, exclud-
ing other foregrounds. In this paper we will deal with zones of the
sky where the foreground contribution is not important or where
the foregrounds have been conveniently removed by component
separation techniques. The likelihood is thus

p(d|n,R, a) ∝ exp

[
− (d − φa)tξ−1(d − φa)

2

]
. (7)

Observe that the negative of the exponent in (7) is in any case the
squared ξ−1-norm fit of the reconstructed data to the measurements,
and this always carries information about the goodness of our esti-
mate. However, if the Gaussian assumption is not verified, function
(7) is not the likelihood of our parameters, and when it is introduced
in (5), we do not obtain the posterior distribution we are looking
for. In our simulations we will also include the confusion noise due
to faint extragalactic sources. This confusion noise is not Gaussian
but as we will see later, it does not hamper the detections, since
its standard deviation is much lower than that of the CMB plus the
instrumental noise for the frequencies considered in this paper. For
the sake of simplicity, we will defer to further papers the treatment
of the more general case which includes the foregrounds.

2.3 Prior on source locations

A priori, it is reasonable to assume that all the different combinations
of n distinct locations occur with the same probability. Then function
p(R|n) in equation (6) can be written as

p(R|n) = n!(N − n)!

N !
, (8)

since N!/(n!(N − n)!) is the number of possible distinct lists of
n locations in a discrete N-pixel map. This assumption is based
on the fact that the sources considered in this paper are spatially
uncorrelated.

2.4 Prior on fluxes

Experimentally, it has been found that the fluxes of the strongest
sources are roughly distributed as a negative power law, with expo-
nent γ . Conversely, the weak sources have fluxes that are roughly
uniformly distributed. To include these two behaviours into a single
formula, one should first discriminate in some way between weak
and strong sources. This can be done empirically by establishing a
sort of threshold a0 on the fluxes and a conditional prior with the
form of the Generalized Cauchy Distribution (Rider 1957):

p(a|n) ∝
n∏

α=1

[
1 +

(
aα

a0

)p]− γ
p

, (9)

with p a positive number. Distribution (9) obviously assumes that the
fluxes of the different sources are mutually independent. This prior
clearly shows the behaviour required for strong and weak sources.
In order to work with non-dimensional quantities, we define xα =
aα/a0; we also assume that we will detect point sources above a
minimum flux am that leads to the following normalized distribution:

p(x|n) =
n∏

α=1

p

B
(

1
1+x

p
m

; γ−1
p

, 1
p

) (
1 + xp

α

)− γ
p , xαε[xm, ∞) (10)

where B is the incomplete beta function and xm = am/a0. In the
next section, we determine the values of a0, p and γ by fitting this
formula to the point source distribution given by the de Zotti counts
model (de Zotti et al. 2005).
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2.5 Prior on the number of sources

We need to establish a discrete probability distribution that ex-
presses the probability of a number of occurrences in a fixed do-
main once their average density is known, their locations in the
domain are mutually independent and no pair of sources can occur
in the same location. All these assumptions seem reasonable when
applied to the configurations of the point sources in the celestial
sphere, at least for radio-frequencies (Argüeso, González-Nuevo &
Toffolatti 2003; González-Nuevo, Toffolatti & Argüeso 2005). As-
suming a continuous map domain, all the requirements mentioned
are satisfied by the Poisson distribution. Strictly speaking, we have a
discrete N-pixel map, so a binomial distribution should be used, but
if N is not too small, a Poisson distribution should model correctly
the probability of having n occurrences of point sources. The prior
on n appearing in (6) is thus

p(n) = λne−λ

n!
, (11)

where λ, the intensity of the Poisson variable, is the expected number
of sources in the map at hand. The value of λ will depend on the
flux detection limit am, the size of the map and the wavelength of
the observation.

2.6 An explicit expression for the negative log-posterior

If we multiply all the factors which appear in (5) and (6) and
calculate the negative log-posterior, we find (apart from additive
constants)

L(n,R, x) = 1

2

(
xtMx − 2et x

) − log(N − n)! − n log(λ)

− n log(p) + n log B

(
1

1 + x
p
m

;
γ − 1

p
,

1

p

)

+ γ

p

n∑
α=1

log
(
1 + xp

α

)
, (12)

with M = a2
0φ

tξ−1φ and e = a0φ
tξ−1d. The correlation matrix

ξ is computed by using the C
s obtained from the WMAP 5-yr
maps (Nolta et al. 2009) and adding the instrumental noise. We
assume that we know a0, p, xm, γ and λ, in fact we calculate them
by using the de Zotti counts model (de Zotti et al. 2005). Therefore,
the unknowns are: the normalized fluxes x, the number of point
sources n and the positions of the point sources through the matrix
φ(R).

Let us now examine the structure of function (12). The first term
comes from the likelihood, and obviously decreases as much as
our solution fits the data. The second term takes into account the
prior for the source configuration and penalizes large values of n.
The third term comes from the prior on the number of sources and,
depending on the value of λ, favours (λ > 1) or disfavours (λ < 1)
the increase of the number of sources. The subsequent terms come
from the prior on the source fluxes conditioned to n, the last one
introduces an additional cost as soon as a new source is added to the
solution. If N � λ and N � n, what is typical in CMB maps, it can
be proven by using Stirling’s approximation that the second term
is the dominant one coming from the priors. In the next section,
we will analyse with simulations the contribution of each particular
term.

2.7 Maximum a posteriori solution

Formula (12) includes all the information about the positions, fluxes
and number of sources. In order to obtain concrete results, we will

choose the values of R, x and n which maximize the posterior. This
choice will be justified by means of the simulations and results that
we will present in the next section.

Therefore, regarding the flux we minimize (12) with respect to
x, by taking the derivative and equating to zero and we obtain

n∑
β=1

Mαβxβ − eα + γ xp−1
α

1 + x
p
α

= 0. (13)

By solving (13) numerically we would obtain the estimator of x
which yields the maximum posterior probability. However, we know
neither the number of sources nor their positions. In order to deter-
mine the positions, we assume that the point sources are in the local
maxima of e, which is the matched–filtered map of the original
data. In the following, we will show that this assumption can be
safely adopted, since the minima of L must be in the maxima of the
matched–filtered map (we also remark that the MF is not introduced
ad hoc, but it appears naturally as a part of the formalism).

For simplicity, let us assume that we have only one source, in this
case the terms of L which depend on the flux can be written as

L(x) = M11x
2

2
− e1x + γ

p
log (1 + xp) , (14)

where M11 and e1 are the corresponding values of M and e at
the pixel supposedly occupied by the point source. If we take the
derivative of (14) with respect to x and equate to zero, we obtain the
following equation for x̂, the estimator of x:

M11 x + γ xp−1

1 + xp
= e1 ⇒ x̂ = x̂(e1). (15)

If we substitute the last expression in equation (14), we can write
the expression for the negative log-posterior L(x̂(e1))

L(x̂(e1)) = −M11x̂
2

2
− γ x̂p

1 + x̂p
+ γ

p
log (1 + x̂p) . (16)

By taking the derivative of this formula with respect to e1, we finally
find

dL

de1
= dL

dx̂

(
de1

dx̂

)−1

= −x̂(e1), (17)

where we have calculated the derivative in (15). Since the estimated
value of the flux must be positive, this expression shows that the
negative log-posterior at the estimated value of x decreases with e1,
so it is minimum at the highest value of e1, i.e. at the maximum of
the matched–filtered map. Therefore, the posterior, calculated at the
estimated flux value, is maximum when we assume that the point
source is at a peak of the map. This conclusion is valid if we have
more than one source, provided that there is no overlap between
sources, i.e. the areas where the individual images of all the sources
are non-zero must be completely disjoint, because in this case each
source can be treated individually.

In order to determine the number of sources, we sort these local
peaks from top to bottom and solve (13) successively adding a new
source. At the same time, we calculate the negative log-posterior
(12) and choose the number n of sources which produce the min-
imum value of (12). In this way we have constructed an objective
stopping criterion which yields, by combining (12) and (13), the
number of sources and their fluxes which maximize the posterior.
In the next section, we apply the method explained above to the
detection and flux estimation of point sources in CMB maps.

In order to compare this technique with a standard method, we
also calculate the local peaks above a certain threshold, for instance
a 5σ threshold, and solve (13) with γ = 0, that amounts to using an
MF, i.e. a maximum likelihood estimator.
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414 F. Argüeso et al.

Table 1. Values of the power-law exponent γ and the
flux a0 in Jy, as obtained by fitting the De Zotti counts.
λ is the average number of point sources above 0.25 Jy
in the considered patches.

Frequency (GHz) γ a0 λ

30 2.90 0.19 0.69
44 2.87 0.15 0.53
70 2.87 0.15 0.49

100 2.87 0.15 0.47

3 SI M U L AT I O N S A N D R E S U LTS

3.1 The simulations

In order to check the performance of the new technique, we have car-
ried out simulations including CMB, instrumental noise and point
sources. The simulations have the characteristics of the 30, 44, 70
and 100 GHz channels of the Planck satellite: pixel size, beamwidth
and instrumental noise.1 The simulations are flat patches of 32 ×
32 pixels (30 and 44 GHz) and 64 × 64 pixels (70 and 100 GHz),
so that the size of each patch is 3.66 × 3.66 deg2. In order to avoid
border effects, we simulate patches of four times this size and keep
the central part for our analysis. The small size of the simulations
allows us to do our calculations in a fast way. We perform 1000
simulations for each channel.

The CMB maps have been generated by using the power spec-
trum, the C
s, that produces the best fit to the WMAP 5-y maps
(Nolta et al. 2009); we have also added the instrumental noise of the
30, 44, 70 and 100 GHz channels of the Planck satellite. Finally,
we have simulated point sources by taking into account the flux dis-
tribution predicted by the de Zotti model (de Zotti et al. 2005). We
have included the faint tail of the de Zotti distribution, simulating
point sources from 0.01 mJy on. In this way, we have considered
the confusion noise due to unresolved point sources. The standard
deviation of this confusion noise is much lower than that of the
CMB plus instrumental noise in these channels.

For each simulation we consider the negative log-posterior given
by (12). In this equation, we see several magnitudes, γ , a0, am and
λ, which depend on the frequency. By fitting the number counts
given in the de Zotti model by (9), we calculate γ and a0. We have
taken p = 1 in (9), since the goodness-of-fit obtained by changing p
is not better than that of the particular case p = 1. The parameter λ

is the average number of sources per patch and am is the minimum
flux that we consider in our detection scheme, we have chosen am =
0.25 Jy, the typical rms deviation of the CMB plus noise maps at
the frequencies we consider. The values of γ , a0 and λ are shown
in Table 1 for the different frequencies. In Fig. 1 we show as an
example the fit to our extended power law (9) in the case of the
30 GHz channel. It is clear that the extended power law fits very
well the counts predicted by the de Zotti model. The value of χ 2 is
(2 − 3) × 10−3 giving probabilities very close to 1.

3.2 Discussion on the performance of the algorithm

For each simulation we calculate M = a2
0φ

tξ−1φ and e =
a0φ

tξ−1d. We obtain ξ−1 from the WMAP C
s, taking into account
the effects of the pixel and the beam windows and the correspond-

1 For details on the Planck instrumental and scientific performance, see the
Planck web site http://www.rssd.esa.int/index.php?project=PLANCK.

Figure 1. log10 of the differential counts plotted against the flux for the
de Zotti model (solid line) and the fit to the extended power law given by
(9) with the parameters of Table 1 (dashed line). The two lines are nearly
indistinguishable.

ing noise levels for each channel. We calculate the estimated fluxes
x̂α by solving (13) as explained in the previous section: we select
the maxima of e above a certain threshold (we choose a 1σ thresh-
old so that we have a suitable number of peaks) and we perform
a top to bottom strategy, i.e. we sort the local maxima downwards
from higher to lower values and starting from the highest peak we
solve (13) including in each new iteration a new local maximum.
At the same time, we calculate (12) and stop the iterations when
we find the minimum value of the negative log-posterior. In this
way, we obtain the source fluxes and the number of sources that
maximize the log-posterior. We also calculate the local peaks of e
above a 5σ threshold, a standard detection method, and calculate
the source flux by solving (13) with γ = 0; this is equivalent to
using an MF with a 5σ threshold. Our intention is to compare the
BM, with prior information and a natural stopping criterion, and the
standard MF.

According to our simulations, the fundamental contributions to
the posterior come from the likelihood (7) and the prior on source
locations (8). The other terms also contribute, but as can be seen
in Fig. 2, where we show the negative log-posterior plotted against
the number of sources for a particular simulation, their influence
is not so important. The likelihood tends to increase the number
of detected sources, over-fitting the data and the prior (8) tends to
decrease the number of sources. The combination of (7) and (8)
fixes the most probable number of point sources, though the other
two terms, although less important, can have some influence. This
shows the robustness of the method with respect to small changes
in the parameters of priors (10) and (11).

We also raise the question whether the estimated number of point
sources gives us a clearly higher posterior probability, i.e. ∝ exp
(−log L) than other close numbers. The answer can be seen in
Fig. 3, where we show, as an example, the normalized posterior
probability plotted against the number n of point sources for a given
simulation with one real source. The probability is clearly peaked at
the estimated number of sources, which is the real number of point
sources in this case. In our simulations we observe that the posterior
probability is always strongly peaked around the estimated number
of sources.
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Bayesian detection of point sources 415

Figure 2. Negative log-posterior against the number of detected sources for
a simulation at 30 GHz. We have included in the posterior: all the priors (blue
solid line), all the priors but the source flux distribution (dash–dotted line),
all the priors but the Poisson source number distribution (dashed line), and
finally we have excluded both the Poisson and the source flux distribution
(dotted line).

Figure 3. Posterior probability against the number of detected point sources
for a simulation at the 30 GHz channel with one real source.

We analyse 1000 simulations for each of the considered Planck
channels: we calculate the contamination (the number of detected
spurious sources over the total number of detected sources above a
given flux), the completeness (the number of real detected sources
over the number of simulated sources above a given flux) and the
average of the absolute value of the relative error of the estimated
flux with respect to the real flux (reconstruction error). We count
a detected source as real when there is a real simulated source at
a distance no longer than two pixels from the detected one; this
distance is the position error. This real source must have a flux
equal or higher than 0.20 Jy, to fix a threshold close to the 1σ level
of the CMB plus noise map. The same conditions are required for
the MF.

In order to give the uncertainty in the flux, derived from our
Bayesian approach, we will obtain a 95 per cent confidence interval

associated with our probability distribution

P (x) ∝ exp(−L(x)), (18)

where L(x) is given by equation (14). This will be called the esti-
mation error. We can also calculate the expectation value of the flux
from this distribution; this value can be compared with the most
probable value (i.e. our estimated flux).

3.3 Results

Taking into account the above considerations, we have applied our
algorithm to the simulations described in Section 3.1 and obtained
the following results.

At the 30 GHz channel we have 4.9 per cent contamination above
0.2 Jy with the BM, and 0.7 per cent with the MF. However, the
completeness is much better for the BM, 64 per cent, than for the
MF, 22 per cent. From 0.7 Jy on, we do not have any spurious source
(BM) and the completeness is 99 per cent. For the MF there are no
spurious sources from 0.25 Jy on, but the completeness at 0.7 Jy is
only 75 per cent. With regard to the average value of the absolute
value of the relative error (reconstruction error), when we calculate
this error in flux intervals of 0.1 Jy, we obtain similar values for the
BM and the MF. For instance, we obtain errors below 15 per cent
from 0.6 Jy on and below 10 per cent from 1 Jy on for both methods.
Only 14 per cent of the sources have a reconstruction error on the
position of 1 pixel and only 3 per cent have a higher error. These
results are nearly the same for the BM and the MF.

At the 44 GHz channel we have 6.5 per cent contamination for
fluxes higher than 0.2 Jy with the BM, and 4 per cent with the MF.
The completeness is 37 per cent for the BM and 11 per cent for the
MF. From 0.8 Jy on we do not have any spurious source (BM) and
the completeness is 100 per cent. For the MF there are no spurious
sources from 0.30 Jy on, but the completeness at 0.8 Jy is only 70
per cent. As in the 30 GHz case, we obtain similar average values
of the absolute value of the relative error for both methods. For
instance, we obtain errors below 15 per cent from 0.90 Jy on in both
cases. 15 per cent of the sources have a reconstruction error on the
position of 1 pixel and only 3 per cent have a higher error. These
results are nearly the same for the BM and the MF.

At the 70 GHz channel, we have 3.2 per cent of spurious sources
for fluxes higher than 0.2 Jy with the BM, and 1 per cent with the
MF. The completeness is 45 per cent for the BM and 19 per cent
for the MF. From 0.45 Jy on we do not have any spurious source
(BM) and the completeness is 96 per cent. For the MF there are no
spurious sources from 0.30 Jy on, but the completeness at 0.45 Jy is
only 46 per cent. As in the cases above, we obtain similar average
values of the absolute value of the relative error for both methods.
For instance, we obtain errors below 15 per cent from 0.60 Jy on
in both cases. 9 per cent of the sources have a reconstruction error
on the position of 1 pixel and only 1 per cent have a higher error.
These results are similar for the BM and the MF.

At the 100 GHz channel we have 4.7 per cent of spurious sources
for fluxes higher than 0.2 Jy with the BM, and 7.5 per cent with the
MF. The completeness is 89 per cent for the BM and 32 per cent
for the MF. From 0.3 Jy on we do not have any spurious source
(BM) and the completeness is 100 per cent. For the MF there are no
spurious sources from 0.75 Jy on and the completeness at 0.75 Jy
is 94 per cent. As in the above cases, we obtain similar average
values of the absolute value of the relative error for both methods.
For instance, we obtain errors below 10 per cent from 0.5 Jy in
both cases. 1 per cent of the sources have a reconstruction error on
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Figure 4. Contamination plotted against the flux for the BM and the MF
(100 GHz).

Figure 5. Completeness plotted against the flux for the BM and the MF
(100 GHz).

the position of 1 pixel and there are no sources with a higher error.
These results are similar for the BM and the MF.

In order to visualize these results, we have plotted for the 100 GHz
channel the contamination (integrated contamination) against the
flux in Fig. 4, the completeness (integrated completeness) against
the flux in Fig. 5, the completeness against the contamination in
Fig. 6, the average value of the absolute value of the relative error
in Fig. 7 and, finally, the estimated flux against the real flux in
Fig. 8. It is clear that for a given value of the contamination the
completeness is higher for the BM than for the MF. Although the
results are similar at all the studied frequencies, we have chosen
the 100 GHz channel in order not to complicate unnecessarily the
figures.

In Fig. 9, we plot the expectation value of the flux against the
estimated flux for the 100 GHz channel. The expectation value
is nearly the same as the most probable value. We also plot the
95 per cent confidence intervals. In this way, we have an idea of the
uncertainty of our estimates; this confidence interval is �0.20 Jy
(estimation error). The results at other frequencies are similar.

Figure 6. Completeness plotted against contamination for the BM and the
MF (100 GHz).

Figure 7. Average value of the absolute value of the relative error plotted
against the flux for the BM and the MF (100 GHz). We can see in the plot
the low values of the error for both methods.

4 C O N C L U S I O N S

In this paper we propose a new strategy based on BM that can be
applied to the blind detection of point sources in CMB maps. The
method incorporates three prior distributions: a uniform distribution
(8) on the source locations, an extended power law on the source
fluxes (10) and a Poisson distribution on the number of point sources
per patch (11). Together with a Gaussian likelihood, these priors
produce the negative log-posterior (12).

We minimize this negative log-posterior with respect to the source
fluxes in order to estimate them. At the same time, we show that the
detected sources must be in the peaks of the matched–filtered maps.
Finally, we choose the number of point sources which minimizes
(12) for the estimated fluxes.

In this way, we give a non-arbitrary method to select the number
of point sources. Finally, to check the performance of this technique,
we carry out flat CMB simulations for the Planck channels from 30
to 100 GHz. For simplicity, we have excluded the foregrounds in
our simulations, assuming that we are considering zones of the sky
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Bayesian detection of point sources 417

Figure 8. Estimated flux against real flux for the BM (100 GHz). We have
plotted the straight line y = x for comparison.

Figure 9. Expectation value of the flux against estimated flux. The
95 per cent confidence intervals are also plotted (100 GHz).

which have been cleaned by the application of component separation
methods. However, we have included the confusion noise due to
unresolved point sources in our simulations.

We compare our Bayesian strategy with the application of an MF
with a standard 5σ threshold. We calculate the contamination, the
completeness and the relative error for both methods. Though the
percentage of spurious sources is a little higher for the BM at low
fluxes �0.2–0.3 Jy, the completeness is much better, allowing us to
obtain catalogues with a 99 per cent completeness and no spurious
sources from 0.7 Jy (30 GHz), 0.8 Jy (44 GHz), 0.55 Jy (70 GHz)
and 0.3 Jy (100 GHz) on. The reconstruction errors in the estimated
fluxes are similarly low for both methods.
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