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ABSTRACT

Context. X-ray surveys are a key instrument in the study of active galactic nuclei (AGN). Thanks to their penetrating ability, X-rays
are able to map the innermost regions close to the central super massive black hole (SMBH) as well as to detect and characterize its
emission up to high redshift.

Aims. We present here a detailed X-ray spectral analysis of the AGN belonging to the XMM-Newton bright survey (XBS). The XBS
is composed of two flux-limited samples selected in the complementary 0.5—-4.5 and 4.5-7.5 keV energy bands and comprising more
than 300 AGN up to redshift ~2.4.

Methods. We performed an X-ray analysis following two different approaches: by analyzing individually each AGN X-ray spectrum
and by constructing average spectra for different AGN types.

Results. From the individual analysis, we find that there seems to be an anti correlation between the spectral index and the sources’
hard X-ray luminosity, such that the average photon index for the higher luminosity sources (>10* erg s~!) is significantly (>20-) flat-
ter than the average for the lower luminosity sources. We also find that the intrinsic column density distribution agrees with AGN
unified schemes, although a number of exceptions are found (3% of the whole sample), which are much more common among opti-
cally classified type 2 AGN. We also find that the so-called “soft-excess”, apart from the intrinsic absorption, constitutes the principal
deviation from a power-law shape in AGN X-ray spectra and it clearly displays different characteristics, and likely a different origin,
for unabsorbed and absorbed AGN. Regarding the shape of the average spectra, we find that it is best reproduced by a combination of
an unabsorbed (absorbed) power law, a narrow Fe Ka emission line and a small (large) amount of reflection for unabsorbed (absorbed)
sources. We do not significantly detect any relativistic contribution to the line emission and we compute an upper limit for its equiv-
alent width (EW) of 230 eV at the 30 confidence level. Finally, by dividing the type 1 AGN sample into high- and low-luminosity
sources, we marginally detect a decrease in the narrow Fe Ka line EW and in the amount of reflection as the luminosity increases, the

“so-called” Iwasawa-Taniguchi effect.

Key words. X-rays: general — X-rays: diffuse background — surveys — galaxies: active

1. Introduction

Recent deep X-rays surveys carried out by XMM-Newton and
Chandra have resolved most of the cosmic X-ray background
(CXB) into discrete sources up to energies ~10 keV (although
the resolved fraction decreases with energy; Worsley et al. 2005;
Hickox & Markevitch 2006). The large majority of the sources
that compose the CXB are active galactic nuclei (AGN), and
CXB synthesis models make use of template AGN spectra to re-
produce its shape following the AGN unified model (Antonucci
1993). The unified model, in its simplest version, states that the
differences between the different observed AGN types are due
to an orientation effect, i.e., as the inclination angle to the ob-
server increases, the torus surrounding the central super massive
black hole (SMBH) intercepts more nuclear emission. The CXB

* Appendix and Tables 2, 3 are available in electronic form at
http://www.aanda.org
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is then reproduced by a mixture of AGN spectra with different
amounts of absorption.

However, there are still many unresolved questions regarding
our knowledge about AGN. For example, the predicted fraction
of heavily absorbed AGN (Compton-thick AGN) obtained from
CXB synthesis models can vary from 30% to 9% between differ-
ent works (Gilli et al. 2007; Treister et al. 2009). Besides, a small
number of AGN that seem not to follow the unified scheme are
usually found in X-rays surveys, i.e., their optical characteris-
tics do not match their observed X-ray properties (Panessa &
Bassani 2002; Akylas et al. 2004; Caccianiga et al. 2004; Cappi
et al. 2006; Mateos et al. 2005a,b, 2010). The evolution of these
properties through cosmic time and the possible correlation be-
tween X-ray emission and source properties, like the bolometric
luminosity or SMBH mass, are also a matter of debate.

The frequency and properties of some individual characteris-
tics are also still unknown, such as the Fe Ka emission line. This
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emission line is the most commonly observed line in AGN X-ray
spectra, but its detailed study is strongly limited by the data qual-
ity and therefore, to sources in the local Universe (Nandra et al.
2007). To study its characteristics up to high redshifts, X-ray
spectra have to be stacked to improve the signal-to-noise ratio
(SNR) (Corral et al. 2008; Streblyanska et al. 2005; Brusa et al.
2005). Another intriguing AGN feature is the soft-excess emis-
sion in type 1 AGN, whose origin is still unclear. Possible sug-
gested explanations go from continuum emission (Ross et al.
1992; Shimura & Takahara 1993; Kawaguchi et al. 2001) to
atomic processes (Crummy et al. 2006; Middleton et al. 2007).

Deep and medium surveys often lack good quality X-ray
and multi-wavelength data, which limits the results, while sam-
ples composed by high-quality data are usually not well-defined
flux-limited samples, which limits the applicability of the re-
sults. Given all that, well-defined X-ray samples, that contain
both a significant number of reliable identifications and good
enough X-ray data quality are the key to test the current hy-
potheses and to link the nearby and distant universe. We present
here a detailed X-ray spectral analysis of the AGN within the
XBS sample, which is composed of two flux-limited samples
that are almost completely identified (identification rate ~95%)
and containing more than 300 AGN. Given the availability of
both reliable optical spectroscopic identifications and good qual-
ity X-ray spectral data, this sample is the perfect laboratory to
test AGN models and to better constrain the AGN properties and
their evolution.

We assume the cosmological model Hp = 65 kms™' Mpc~!,
Q, = 0.7 and Qy = 0.3 throughout this paper. Reported errors
are at 90% confidence level unless stated otherwise.

2. The XBS AGN sample

The sample of 305 AGN discussed here (XBS AGN sample
hereafter) has been extracted from the XMM-Newton bright
serendipitous survey'.

The XBS consists of two flux-limited serendipitous (i.e. the
targets of the XMM-Newton pointings were excluded) sam-
ples of X-ray selected sources at high galactic latitude (|b| >
20°): the XMM bright serendipitous survey sample (BSS,
389 sources) and the XMM hard bright serendipitous survey
sample (HBSS, 67 sources, with 56 sources in common with the
BSS sample) having an EPIC MOS2 count rate limit, corrected
for vignetting, of 1072 cts/s and 2 x 1073 cts/s in the 0.5-4.5 keV
and 4.5-7.5 keV energy bands, respectively; the flux limit is
~7 x 107" erg cm™? s~! in both energy selection bands.

The details on the XMM-Newton fields selection strategy and
the source selection criteria of the XMM BSS and HBSS sam-
ples are discussed in Della Ceca et al. (2004), while a descrip-
tion of the optical data and analysis, of the optical classification
scheme and the optical properties of the extragalactic sources
identified so far is presented in Caccianiga et al. (2007, 2008).
The optical and X-ray properties of the Galactic population are
discussed in Lopez-Santiago et al. (2007). Previous X-rays spec-
tral analyses of parts of the XBS sample have already been re-
ported in previous works. In Caccianiga et al. (2004), the X-ray

! The XMM-Newton Bright Serendipitous Survey is one of the re-
search programs conducted by the XMM-Newton Survey Science Center
(SSC, see http://xmmssc-www.star.le.ac.uk) a consortium of
10 international institutions, appointed by ESA to help the SOC in
developing the software analysis system, to pipeline process all the
XMM-Newton data, and to exploit the XMM serendipitous detections.
The Osservatorio Astronomico di Brera is one of the Consortium
Institutes.
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spectral analysis of a subsample extracted form the HBSS sam-
ple is reported. Galbiati et al. (2005) performed an analysis of
the radio-loud AGN within the XBS. Severgnini et al. (2003)
unveiled the AGN-nature of three sources previously considered
as normal galaxies. Finally, Della Ceca et al. (2008) presented
the cosmological properties of the HBSS AGN sample.

2.1. AGN classification

The current classification breakdown of the XBS sample, which
relies on dedicated optical spectroscopy, is as follows: 305 AGN
(including 5 BL Lacs), 8 clusters of galaxies?, 2 normal galaxies
and 58 X-ray emitting stars, see Table 1 for a detailed summary.
For 25 out of the 305 AGN that composed our sample, redshift
and classification are reported here for the first time. These new
identifications are marked in boldface in Table 3 (Cols. 2 and 3).
The XBS AGN sample contains 35 sources that are optically
classified as elusive AGN, i.e., sources for which a classifica-
tion cannot be derived solely from our optical spectroscopy, al-
though the redshift can be measured. These are sources that are
characterized by a significant/dominant contamination of star-
light from the host galaxy in the optical spectrum (Caccianiga
et al. 2007). Even if the presence of an AGN in these sources is
somehow suggested by the detection of a broad or strong emis-
sion line, the “dilution” caused by the host galaxy is critical be-
cause it avoids the quantification of the optical absorption that
is necessary to classify a source as a type 1 or type 2 AGN.
For these sources, the type 1/2 classification is assigned as a
function of the absence/presence of a significant amount of in-
trinsic absorption in their X-ray spectra. There is one case how-
ever, XBSJ012654.3+191246, in which a type 1/2 classification
cannot be inferred from either the optical or the X-ray data,
and accordingly this source is classified as an AGN of uncer-
tain type. At the time of writing, 27 X-ray sources belonging to
the BSS sample are still unidentified. Out of these 27, two also
belong to the HBSS sample, which results in a level of identi-
fication of 93% and 97% for the BSS and the HBSS samples,
respectively.

2.2. X-ray data

The XBS source sample was defined using only the data from the
MOS?2 detector. However, to increase the statistics, the data from
the MOSI1 and the pn detectors were considered when available
and were used for our spectral analysis.

In Table 2 we report the data used for the X-ray spectral anal-
ysis of each source: Source name; XMM-Newton observation
ID; XMM-Newton filter for each detector; the values of Galactic
column densities toward the used XMM-Newton pointings; re-
sulting exposure time for each detector after removing high-
background intervals; total counts for all available detectors in
the 0.3—-10keV band, and corresponding sample. To increase the
number of counts for the lowest quality spectra, we searched the
XMM-Newton archive for additional observations and selected
those with the longest MOS2 exposure times; we preferred not
to combine different observation data sets to minimize possible
problems related to source variability. As a result, some of the
data sets used in this analysis are different from the ones used in
Della Ceca et al. (2004) for the definition of the sample.

2 The sample of cluster of galaxies is neither statistically complete nor
representative of the cluster population because the source detection
algorithm used in the construction of the sample is optimized for point-
like sources.
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Table 1. XBS classification summary.

Sample Type 1 AGN Type2 AGN BLLacs Stars Clusters Galaxies Unidentified AGN uncertain type
BSS 269(41) 19(10) 5 58(2) 8(1) 2 27(2) 1
HBSS 42 20 2 1 2
Total 270 29 5 58 8 2 27 1

Notes. The numbers between parenthesis for the BSS sample correspond to the number of sources in common with the HBSS sample.

The XMM-Newton data were cleaned and processed with the
XMM-Newton Science Analysis Software (SAS) and were ana-
lyzed with standard software packages (Ftools; Xspec, Arnaud
1996). Event files produced from the pipeline were filtered from
high-background time intervals and only events corresponding
to pattern 0-12 for MOS and 0-4 for pn were used. All spectra
were accumulated from a circular extraction region with a ra-
dius of ~20”-30", depending on the source off-axis distance.
Background counts were accumulated in nearby circular source
free regions which an area usually about a factor ~4 larger than
the one used to extract the source counts. To improve the statis-
tics, the MOS1 and MOS?2 spectra obtained with the same filters
were combined a posteriori by using the FTOOLS task mathpha.
The X-ray spectra usually cover the 0.3—10 keV energy range;
the total (MOS1+MOS2+pn) counts range from ~100 to ~10%,
as can be seen in Fig. 1.

The ancillary response matrix and the detector response ma-
trix were created by the XMM-SAS task arfgen and rmfgen at
each source position in the EPIC detectors. For the MOS1 and
MOS2 detectors, and provided that the observations were car-
ried out by using the same filter, ancillary and detector response
matrices for each source were combined by using addrmf and
addarf.

3. X-ray spectral analysis

The availability of good XMM-Newton data for the sources in
the XBS sample, which spans the energy range between ~0.3
and ~10 keV, allow us to perform a reliable X-ray spectral
analysis for almost every AGN studied here. For 111 AGN an
X-ray spectral analysis was already reported and discussed in
Severgnini et al. (2003), Caccianiga et al. (2004, 2007), Galbiati
et al. (2005) or in Della Ceca et al. (2008); for the remaining
AGN the main X-ray spectral properties and parameters are dis-
cussed in detail here for the first time. Note, however, that there
could be small differences in the best-fit model and parameters
already published and the ones presented here owing to the dif-
ferent XMM-Newton observations used and/or our different way
of defining the best-fit model for each source.

We grouped the spectra in bins containing at least 10
to 30 (depending on the spectral quality) source+background
counts to use the y?> minimization technique. We fitted pn and
MOS spectra simultaneously in the 0.3—-10 keV band with
Xspec version 12.5.0. We tied together all pn and MOS pa-
rameters except for a relative normalization, which accounts
for the differences between pn and MOS flux calibrations.
In the following, derived fluxes and luminosities refer to the
MOS?2 calibration.

To ensure a spectral analysis as uniform as possible, we
defined a threshold of 10% for the null hypothesis probability
to distinguish between an acceptable and an unacceptable fit,
i.e., we consider as our best-fit model the simplest model for
which the probability is >10%.

As a starting point for the spectral modeling we first con-
sidered a simple absorbed power-law model that takes into ac-
count both the Galactic hydrogen column density along the
line of sight (from Dickey & Lockman 1990) and a possi-
ble intrinsic absorption at the source redshift (Xspec model:
wabs*zwabs*zpo). In the X-ray spectral modeling we made use
of the redshifts obtained from the optical spectroscopy.

The results for this simple fit are shown in Table 3 along with
the corresponding Galactic de-absorbed flux and intrinsic lumi-
nosity in the standard hard (2—10 keV) energy band. In some
cases, the spectral quality does not allow us to constrain the
power-law photon index (I') and the intrinsic absorption at the
same time. In other cases, the resulting photon index is ~1, much
lower than the typical values for unabsorbed AGN3. In those
cases, we fixed I' to 1.9, a common value for unabsorbed AGN
(Caccianiga et al. 2004; Mateos et al. 2005a,b; Galbiati et al.
2005; Tozzi et al. 2006; Mateos et al. 2010). If there was no in-
trinsic absorption detected, an upper limit, at 90% confidence
level, is given. The simple absorbed power-law model gives a
good fit for 263 sources, but seems to fail in reproducing the
spectral shape for 41 sources, marked with a ” in Table 3. All
X-ray spectra corresponding to sources classified as BL Lacs are
well fitted by the simple power-law model.

For the 41 sources that are not well fitted by an absorbed
power law, we tried several additional components to the ab-
sorbed power law model. We accept any of these additional com-
ponents if the improvement of the fit was larger than 95% as
measured by an F-test. These additional components are

— Leaky absorbed power-law: an additional unabsorbed
power-law component, with the same photon index as the
direct one, representing scattered emission into our line of
sight (Xspec model: wabs (zwabs*zpo+zpo)). This model
can also account for partially covered emission.

— lonized absorption: (Xspec model: wabs*zwabs*absori*
zpo, Magdziarz & Zdziarski 1995), since signatures of ab-
sorption from partially ionized gas have been found to be
a quite common characteristic in the spectra of Seyfert
galaxies.

— Reflected component: to account for a spectral harden-
ing or change of curvature at high energies because of
Compton reflection from neutral material (Xspec model:
wabs (zwabs*zpo+pexrav), Magdziarz & Zdziarski 1995).
We fixed the inclination angle to ~60 deg, an average value

3 An alternative possibility is that these sources with an observed flat
spectrum are Compton-thick AGN (i.e. sources with Ny > 10** cm™) in
which all the direct emission is suppressed and only reflected emission
is observed (in the 2—10 keV band). This effect, combined with the low
statistics, may mimic a flat spectrum. However, this hypothesis does not
seem to be valid in our sources because in all cases we find a significant
amount of absorption (but not in the Compton-thick regime) even when
leaving the photon index as a free parameter (Ny from 3.5 x 10%! to
2 x 10% cm™2). We conclude that the best explanation for the sources
with a very flat spectral index is the combination of (mild) absorption
and the low statistics
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Bottom panels: X-ray intrinsic luminosity ver-
sus redshift for the HBSS (lefr) and the BSS
(right). Squares and circles correspond to
sources classified as type 1 and type 2 AGN,
respectively. Triangles on the BSS sample rep-

for Seyfert galaxies, because the spectral quality does not al-
low us to constrain it and the reflection factor R (R = Q/2r)
at the same time.

— Thermal component to account for soft emission lines that
could arise from ionized material far from the central
source, like the narrow-line region (NLR) (Xspec model:
wabs (zwabs*zpo+mekal), Mewe et al. 1986; Liedahl
et al. 1995). Although the NLR is likely photoionized,
we can approximate the resulting spectral shape by using
this collisional model given the spectral resolution for the
EPIC cameras.

— Lines and edges (zgauss, zegde) to model emission lines
(such as the Fe Ka emission line, the most commonly ob-
served one in AGN X-ray spectra) and absorption edges.
Energies were left free to vary.

— A phenomenological black body model (Xspec model:
wabs (zwabs*zpo+zbb) to account for featureless soft-
excess emission.

If different additional components significantly improved the fit,
we selected the model that was more physically plausible and/or
gave better residuals. These cases, 28 AGN, are discussed in
more detail in the Appendix. There are also two cases in which
more than one additional component are required to obtain an ac-
ceptable fit: in both cases, one of the required additional compo-
nents turned out to be an emission line. A summary of the mod-
els required during the spectral fit is shown in Table 4, while the
results for the additional component fits are presented in Tables 6
to 11. All models that significantly improve the simple absorbed
power-law fit are shown for each source in Tables 6 to 11. The
model we considered as the “best-fit” for each source is marked
in boldface in those tables and its parameters are the ones we
consider in the interpretation of the results.

In 11 cases still no acceptable fit was found. This can be
simply due to a statistical effect given the 10% probability limit
imposed to consider a fit as acceptable. Roughly, 10% of the
sources that actually display a power-law shape are expected
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z resent BL Lacs.

Table 4. X-ray spectral fit.

Model Type 1 AGN  Type 2 AGN  BL Lacs
SPL 243 24 5
Leaky 1 3

PL+T ... 2

PL+BB 13

WAPL 5

PL+R 4

PL+E 3 ..

Leaky+L 1 1

Notes. SPL: absorbed power law; Leaky: absorbed plus unabsorbed
power law. PL+T: absorbed power law plus thermal component;
PL+BB: absorbed power law plus black body component; WAPL: ion-
ized absorbed power law; PL+R: absorbed power law plus neutral re-
flection component; PL+E: absorbed power law plus absorption edge;
Leaky+L: leaky model plus emission line.

to be not acceptably fitted by this model. We did not find
these 11 sources to share any common spectral characteristic.
For 9 of them, we found that no additional component signif-
icantly improved the fit, and we accordingly assume the sim-
ple absorbed power-law fit as our best fit and used the data
in Table 3 in the subsequent analyses. For the remaining two
sources, XBSJ021822.2-050615 and XBSJ153456.1+013033,
a leaky absorber plus an emission line and a black body, respec-
tively, did improve the fit significantly, consequently we con-
sider these models as our best-fit model although the probability
is still <10%.

4. Intrinsic absorption

We measured intrinsic absorption in excess of the Galactic one
for 119 sources, 88 type 1 and 27 type 2 AGN. This absorp-
tion is significant (F-test >95%) in 56 cases (30 type 1 and
26 type 2 AGN). For the remaining 65 sources for which the
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significance is below 95%, the measured amount of absorption
is very low, except for one case, XBSJ161820.7+124116. The
low significance in this case is likely owing to the extremely low
number of counts in the available spectrum. The intrinsic absorp-
tion distribution for both studied samples is shown in Fig. 2.

In 17 cases (3 type 1 and 14 type 2 AGN) and because of
the poor statistics, we fixed the value of I" to 1.9 (which corre-
sponds to the average value found for unabsorbed AGN) to bet-
ter constrain the intrinsic absorption. For 7 out of these 17 AGN,
I' could be determined (although with large errors), but turned
out to be flatter than the flattest I' found for unabsorbed AGN
(' ~ 1.5). This is probably owing to the low statistics available
for the spectral analysis, which do not allow us to adequately
constrain at the same time both the spectral index and the intrin-
sic absorption in these cases. We note here that the best fit Ny
obtained with free I' is usually within the reported errors ob-
tained when fixing I' = 1.9; furthermore the variation of Ny is
such that this problem does not have any effect on the X-ray
source classification used here (absorbed vs. unabsorbed) or on
the Ny distribution.

4.1. X-rays versus optical absorption

Following the criteria described in Caccianiga et al. (2008)*, we
defined a sourced as absorbed if the measured intrinsic column
density is higher than 4 x 10?! cm™. According to this crite-
rion, we find that 31 sources are absorbed, 8 type 1 (3% of
type 1 AGN) and 23 type 2 AGN (80% of type 2 AGN). We
find that the fraction of absorbed sources and the amount of ab-
sorption is much higher for type 2 AGN than for type 1 AGN,
in agreement with the AGN unified picture. However, there is
a number of sources that do not match within this scenario,
8 type 1 AGN are absorbed (3% total) and 6 type 2 AGN are

4 The optimum dividing line between optical type 1/2 classification
is found to correspond to an optical extinction of Ay ~ 2 mag, which,
assuming a Galactic Ay/Ny ratio, implies a column density of Ny ~ 4 X
10?' cm™2 in X-rays.

Log N, (em)

2 23 o4 and unabsorbed sources following the prescrip-

tion of Caccianiga et al. (2007).

unabsorbed (20% total). Nonetheless, for half of the absorbed
type 1 AGN, the errors in the intrinsic column density are con-
sistent with these sources being unabsorbed. It is important to
note that the expected intrinsic column density derived from op-
tical reddening depends on the assumed gas-to-dust ratio. If the
intrinsic gas-to-dust ratio differs significantly from the Galactic
value (the standard gas-to-dust ratio that is usually used), small
differences between the expected value from optical observa-
tions and the measured value from X-rays are expected. Three of
the unabsorbed type 2 AGN are consistent with being absorbed
within errors, but only by low amounts of intrinsic absorption
(<102 cm™?). This implies that the optical/X-ray type mismatch
could be more common for sources that are optically classified
as type 2 AGN. However, it is difficult to quantify how frequent
the “mismatches” between optical and X-ray classification are.

In an X-ray selected sample, the least biased way to esti-
mate the exceptions to the unified models is to compute the
fraction of optically classified type 1/2 AGN among the ab-
sorbed/unabsorbed sources. Elusive AGN have to be removed
because their classification is derived from X-rays. We also ex-
cluded those absorbed/unabsorbed sources that could be unab-
sorbed/absorbed within errors. In this way, we found that there
are only four type 1 AGN among “truly” absorbed sources and
two type 2 AGN among “truly” unabsorbed sources. Therefore,
the resulting fraction of exceptions to the unified models for
the XBS AGN sample turns out to be of ~3%. For the HBSS
only, which is almost completely identified, we find that the
fraction of type 2 AGN among unabsorbed sources is only 3%.
A similarly low value of 1% is obtained for the BSS. For the
fraction of type 1 AGN among absorbed sources, we find 17%
for the HBSS, whereas for the BSS it turns out to be ~30%.
However, if we take into account the larger number of unidenti-
fied sources on the BSS, seven of which are probably absorbed
AGN (see discussion at the end of this section), this number
could decrease to match the one obtained for the HBSS.

To compare our findings with previously reported results,
we selected a 10%> cm™ limit, which is the one that is usually
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used by other authors, to separate between absorbed and un-
absorbed sources. Using this limit and considering the total
XBS sample, we computed a fraction of unabsorbed type 2 AGN
among the total number of type 2 AGN of ~36%. This number
agrees with reported values of unabsorbed type 2 AGN shown
in Panessa & Bassani (2002) and Akylas & Georgantopoulos
(2009) (~10-30% and ~20%, respectively). However, it has to
be pointed out that none of the reported fractions in Panessa
& Bassani (2002) and Akylas & Georgantopoulos (2009) has
been derived from complete samples. For example, if we con-
sider only the HBSS, which is almost completely identified and
that it is less biased against absorbed sources, the value decreases
from 36% to 20%; this is expected to be a more reliable fraction
than that computed using the total XBS sample. Moreover, er-
rors in the resulting Ny values are not usually considered either.
If we remove unabsorbed type 2 AGN that could be absorbed
within 90% confidence errors, the fraction decreases to ~5%.
Therefore, caution must be exercised when computing the frac-
tion of exceptions to unified models; these fractions have proba-
bly been overestimated in the past.

The existence of unabsorbed type 2 AGNs has no clear
explanation so far. Some recent models (Elitzur & Shlosman
2006; Nicastro 2000) show that the BLR could not form un-
der particular condition. For instance, it has been proposed
that the BLR may disappear below bolometric luminosities
of ~10* erg s~! (Elitzur & Shlosman 2006) or below a criti-
cal accretion rate (Lyo/Lgga ~ 1—-4 x 1073 for SMBH masses
ranging from 10° to 10° solar masses; where Ly, and Lggq
are the bolometric and Eddington luminosities, respectively,
Nicastro 2000). Nevertheless, the range of luminosity and ac-
cretion rates covered by the unabsorbed type 2 AGN in our sam-
ple (Lx from 10*? to ~2 x 10* erg s~ and accretion rates from
~1073 up to ~1, Caccianiga et al., in prep.) make these interpre-
tations not applicable to the sources of the XBS sample.

A possible alternative explanation is that unabsorbed
type 2 AGN are indeed Compton-tick (CT) i.e. sources where
the amount of intrinsic absorption is so high (above 10** cm=2)
that the absorption cut-off falls outside the observed spectral
range. Using X-ray data limited in the 2—10 keV energy band,
it would not be possible to compute the actual column density
and we would end up with an optically type 2 AGN with no
sign of absorption in the X-rays. The unabsorbed type 2 AGN
in our sample are XBSJ012057.4-110444, XBSJ031146.1-
550702, XBSJ100032.5+553626, XBSJ141235.8-030909,
XBSJ230522.1+122121 and XBSJ221951.6+120123.
XBSJ100032.5+553626 is an elusive AGN, whose Compton-
thick nature was studied and discarded as a possible explanation
in Caccianiga et al. (2007). To test the Compton-thick hypothe-
sis for the remaining five unabsorbed type 2 AGN, we used the
diagnostic diagram by Bassani et al. (1999), which make use of
the thickness parameter (7') and the Fe Ko line EW to separate
Compton-thick from Compton-thin sources. The thickness pa-
rameter represents the ratio between the 2—10 keV observed flux
(corrected for Galactic absorption) and the reddening-corrected
flux of the [OII[]A5007 A emission line. Compton-thick sources
usually locate at 7 < 1 and large Fe Ka equivalent widths. The
values for the [OIII] fluxes used here were computed following
the prescription and assumptions discussed in Caccianiga et al.
(2007). Regarding the Fe Ka EWs, only upper limits (at the
90% confidence limit) could be derived; we assumed in all cases
an unresolved neutral emission line centered at 6.4 keV.

Our results for the five sources in consideration here are
plotted in Fig. 3; obviously all our sources are well above
the Fx/Fiom = 1 limit. The computed [OII] fluxes are not
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Fig. 4. Photon index distribution for the 27 unidentified sources in the
XBS sample.

corrected for extinction from the host-galaxy. Correcting for the
host-galaxy extinction would increase the [OIII] fluxes thus de-
creasing the resulting 7' values. Nonetheless, the maximum ex-
pected extinction (Ay ~ 1 for galaxies with ongoing intense star-
formation, Calzetti & Heckman (1999)) is not high enough to
place these sources below the 7 = 1 limit. We conclude that
the CT hypothesis is not a valid explanation for the unabsorbed
type 2 AGN in the XBS sample. Further investigations are thus
required to understand the nature of these intriguing sources.
Finally the observed fractions of absorbed AGN (number of
absorbed AGN to total number of AGN) are ~35% for the HBSS
and ~7% for the BSS (34% and 6%, respectively, if we do not
take into account those sources that are consistent with being
unabsorbed within errors). This difference is expected because
the selection at higher energies is less affected by obscuration,
therefore the HBSS is much more efficient in selecting absorbed
sources. To investigate how the larger number of unidentified
sources in the BSS could affect this, we performed a simple
power law X-ray spectral fit over the unidentified AGN in the
XBS sample. The resulting photon index distribution is shown
in Fig. 4. We can see that seven (including the two unidentified
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Fig. 5. Hardness ratios for the unabsorbed (open circles) and absorbed (filled circles) identified sources corresponding to the HBSS (fop panels)
and the BSS (bottom panels), the circle sizes are proportional to the measured intrinsic absorption. Stars correspond to unidentified sources. Filled

squares correspond to sources whose best fit is a leaky model.

sources in the HBSS) out of the 27 unidentified sources display
a photon index below 1.5. If these seven sources turn out to be
absorbed AGN, the fraction of absorbed AGN in the BSS sample
would increase to 10%.

4.2. Hardness ratios

Another way to estimate the source type by using X-rays is to
compute the hardness ratios (X-ray colors). We extracted the
hardness ratios HR2, HR3, and HR4 from the 2XMM-Newton
catalog® (Watson et al. 2009), which are defined as

_ CRn+l - CRn

HRn = R
CR, ;1 +CR,

(1)
where CR,, is the “vignetting”-corrected count rate in the energy
band n. The 2-5 energy bands correspond in our case to the
count rates in the 0.5-1.0, 1.0-2.0, 2.0-4.5, and 4.5-12.0 keV
energy bands, respectively. To compare them with the unidenti-
fied sources, the hardness ratios for the identified AGN are plot-
ted along with the ones for the unidentified sources in Fig. 5.
For clarity errors are not plotted in this figure given the large
number of sources. To see how the hardness ratios relate to

> http://xmmssc-www.star.le.ac.uk/Catalogue/2XMM/

the fitted absorption, we made the symbol sizes proportional
to the measured intrinsic column density. Filled squares refer
to sources for which the best-fit model is a leaky model. If we
do not take into account these latter sources, we can see how
the most absorbed sources concentrate in the upper right in the
HR3 vs. HR2 figures. For the HBSS, one of the unidentified
sources is clearly within that region, whereas the remaining one
is not, although it could be moderately absorbed given its pho-
ton index from the power-law fit. For the BSS, only about two lie
within that region. Evidently also the intrinsic absorption seems
to increase as the hardness ratio HR3 increases.

In Fig. 6 the measured column densities are plotted
against HR3. Obviously there seems to be a correlation be-
tween the amount of intrinsic absorption and HR3 for absorbed
sources, again not taking into account sources with a leaky
shape. To derive an estimate of the intrinsic column density for
unidentified sources, we fitted a linear model to this correla-
tion. In this way, an intrinsic column density can be estimated
even when the X-ray data quality is too poor to carry out a re-
liable spectral analysis. We performed the fit in two different
ways. The first one was to fit a linear model by using y? statis-
tics. We considered only those sources with a detected value of
the intrinsic column density higher than 4 x 102! cm™2, i.e. ab-
sorbed sources, and we excluded sources with a leaky shape.
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Fig. 6. Intrinsic column density against HR3 for unabsorbed (open cir-
cles) and absorbed (filled circles) sources. Filled squares correspond to
sources whose best fit is a leaky model. Dashed and solid lines corre-
spond to different fits to the observed correlation (see text for details).

This selection criterion resulted in a total of 25 sources. With a
Spearman rank correlation analysis we confirmed a strong cor-
relation (p = 0.82, probability = 0.0001). The resulting fitted
relation corresponds to the dashed line in Fig. 6 and it is

Log(Ny) = 22.2(+0.2) + 1.2(+0.2)HR3. 2)

Our second approach was to use all sources with a column den-
sity or upper limit above the 4 x 10! cm~2 threshold and also
all unabsorbed sources whose intrinsic column densities val-
ues were consistent with this limit within 90% errors, which
were 85 sources in total. To perform this analysis, we used
the ASURV package (Astronomy Survival Analysis, Isobe &
Feigelson 1990; which implements the methods presented in
Isobe & Feigelson 1986). Applying a Spearman rank analy-
sis, including the upper limits, we found again that there is a
strong correlation between the intrinsic column density and HR3
(o = 0.84, probability < 0.0001). We performed linear regres-
sion with the parametric EM algorithm, solid line in Fig. 6,
which assumes Gaussian residuals as in y* statistics, obtaining
the relation

Log(Nu) = 22.00(+0.04) + 1.46(+0.10)HR3. 3)

Both relations in Egs. (2) and (3) give similar estimates for the
intrinsic column density and can be applied up to redshift ~1,
given the energy bands considered in the computation of HR3,
and HR3 > 0. Making use of these relations, an estimate of
the intrinsic column density can be obtained for unidentified
sources with small number of collected counts in X-ray surveys.
As an example, we found for our unidentified sources that about
eight out of the 27 unidentified sources could be absorbed AGN,
consistent with what we obtained from the spectral analysis.

5. Photon index

Unfortunately, for half of type 2 AGN (14 out of 29) the pho-
ton index was fixed to 1.9 during the spectral fit to better con-
strain the intrinsic absorption, so we restricted our analysis of
the power law index to those type 1 AGN in the XBS AGN sam-
ple for which we were able to measure I', 267 type 1 AGN.
We computed its mean and its intrinsic dispersion making use
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of Maccacaro et al. (1988) likelihood maximization technique.
Because the errors on the photon index are not symmetric, we
used the average value for the individual errors in each case. We
obtain a mean value of (I') = 2.05 + 0.03 with an intrinsic dis-
persion of o = 0.26 £ 0.02 for the BSS and (I') = 1.98 + 0.08
with an intrinsic dispersion of o= = 0.29 + 0.05 for the HBSS,
in agreement with previous works (Mateos et al. 2010; Young
et al. 2009; Dadina 2008; Mainieri et al. 2007; Page et al. 2006;
Mateos et al. 2005a,b). Errors were extracted from the 1o~ confi-
dence contours. The measured power-law index distribution for
the BSS and the HBSS is shown in Fig. 7 along with the com-
puted mean and intrinsic dispersion and their confidence con-
tours. There are three type 1 AGN for which the resulting pho-
ton index is >3. Two of them are NLSyls (narrow line Seyfert 1
galaxies), known to show these high values for the photon index,
and the remaining one is a Seyfert galaxy with a low number of
counts in its X-ray spectra.

To check for possible dependence of the photon index on
redshift or luminosity, the values for the individual photon in-
dex measurements are presented along with the source redshift
and luminosity in Fig. 9. We find an anti correlation between
the power-law index and the X-ray luminosity (o = —0.21, prob-
ability = 8 x 107*) and marginally redshift (p = —0.10, prob-
ability = 0.09) with the Spearman rank correlation analysis.
We also find a correlation with the 0.5-2 keV flux (p = 0.15,
probability = 0.01), which could be caused by undetected
intrinsic absorption as pointed out in Mateos et al. (2010).
In that work, the authors found a stronger correlation between
the photon index and the source redshift, but in their case it
mainly started above redshift 2 and our sample only contains
3 sources above that redshift. In our case, we find that the anti-
correlation between photon index and luminosity seems to be
the strongest one. Moreover, and given that this is a flux-limited
sample, the dependence on redshift could be merely caused by
the dependence on luminosity. To test this scenario, we selected
two narrow luminosity ranges, 104 to 10* erg s~!, and 10*
to 10% erg s~! (below 10* erg s~! there are not enough sources
to perform a reliable analysis), and applied the same correla-
tion analysis as for the whole type 1 AGN sample. For the low-
est luminosity range, which reaches only z ~ 0.8, we find that
the anti-correlations turns into a correlation between the pho-
ton index and redshift (p = 0.29, probability = 0.006), while for
the high-luminosity bin, which reaches z ~ 1.5, we find that the
correlation disappears (p = 0.06, probability = 0.69). This may
imply that the observed correlation between the source photon
indices and redshifts is mainly driven by an actual correlation
between the photon index and the intrinsic luminosity.

To better explore these correlations, we constructed red-
shift and luminosity bins by dividing the sample into six bins
with an equal number of sources (45 sources per bin, 42 in the
last bin) and applied the likelihood-maximization technique to
each bin. The results are presented in Fig. 9. An anticorrelation
between the photon index and redshift and luminosity seems to
be present, but it is within the intrinsic dispersion at each red-
shift or luminosity bin. A similar result is also found in Mateos
et al. (2010). These authors pointed out that the hardening of the
spectra at higher luminosities and redshifts can be caused by a
decrement in the detection efficiency for softer sources and an in-
crement for harder sources, given that the sample is flux-limited.

To further constrain the correlation of the photon index with
the intrinsic luminosity, which seems to be the strongest corre-
lation in our case, we divided the sample into two subsamples,
the criterion of which was if the intrinsic luminosity was higher
or lower than 10* erg s™!. The results are displayed in Fig. 8.
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subsamples. Right panel: computed mean and intrinsic dispersion for the low- and high-luminosity subsamples along with the 1o (solid line), 20

(dotted line) and 30 (dashed line) confidence contours.

We compute a value of (I') = 2.11 + 0.04 with an intrinsic dis-
persion of o = 0.29 + 0.04 for the low-luminosity subsample and
(I'y = 2.00 = 0.05 with an intrinsic dispersion of o = 0.20 + 0.04
for the high-luminosity subsample. The mean and intrinsic dis-
persion results are different almost at the 30~ confidence level,
although the main difference seems to be on the intrinsic dis-
persion. Applying a Kolmogorov-Smirnov (K-S) test, we find
that the probability for both distributions to be drawn from the
same parent distribution is only ~1%. The opposite is found in
Bianchi et al. (2009a), who analyzed high-quality X-ray spectral
data and found that Seyfert galaxies show a flatter photon index
than quasars.

In principle, the observed correlation of I" with the luminos-
ity could be owing to the presence of an undetected reflection-
emission component that becomes increasingly important with
the luminosity. In Sect. 7 we show that this correlation is present
also when we analyze the average spectra, where the reflection
component is already accounted for. This result excludes that
the flattening of I with the luminosity is due to the reflection
component.

Because the type 1 AGN sample we used in this particu-
lar analysis could be contaminated by radio-loud (RL) sources,

which are expected to have a flatter photon index on average
(Reeves et al. 1997; Reeves & Turner 2000), we performed
a safety test. Making use of the NVSS/XBS cross-correlation
and analysis presented in Galbiati et al. (2005), we removed
all RL sources within these 267 type 1 AGN, which were
14 sources, and applied the same likelihood analysis by dividing
into high- and low-luminosity AGN. We obtained the same result
as for the whole sample, the only difference was a small decre-
ment on the intrinsic dispersion for the high-luminosity subsam-
ple (o = 0.19 + 0.04), and the two samples were still different
almost at the 30 level.

6. Soft-excess emission

We say a source shows a soft-excess emission when the extrapo-
lated 2—10 keV power-law fit displays systematic positive resid-
uals at low energies. We find that 35 AGN out of the 41 sources
that were not well-fitted by an absorbed power law display a soft-
excess. For 29 out of these 35 AGN, we are able to find an addi-
tional component that significantly improves the simple power-
law fit, as measured by F-test. Assuming a fraction of spurious
detections of 0.05, given our F-test significance limit of 95%,
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Fig. 9. Top panel: type 1 AGN photon index versus redshift (/eff) and luminosity (right). The size of the circles indicates the size of the errors on
the photon index. The horizontal dotted line corresponds to the average photon index for the whole sample. Bottom panel: type 1 AGN average
photon index versus redshift (leff) and luminosity (right) for the luminosity and redshift bins. The error bars correspond to the mean error at
1o confidence level, whereas the dashed lines mark the values for the intrinsic dispersion at each bin.

this number corresponds to Sﬁi% of the total XBS AGN sam-

ple (14f(7)% for the HBSS and 43% for the BSS). If we only
take into account sources below z = 0.5 (beyond that value most
of the soft-excess emission is redshifted outside the EPIC en-
ergy range) the fraction of sources increases to 11fg% for the

XBS sample (ZOf}S% for the HBSS and 9’:2% for the BSS),
a value closer to the reported values in recent works (Mateos
et al. 2010; Bianchi et al. 2009a), although still lower. It should
be noted that our computed value has to be considered as a lower
limit because we did not search for soft-excess emission for all
our sources, but only for the ones for which a simple power law
gives a probability < 10%. This could also explain why the frac-
tion of sources showing soft-excess is larger for the HBSS than
for the BSS. The difference in the fraction of detected soft-excess
in both samples is likely caused by differences in the data quality.
The collected number of counts for the HBSS spectra is larger
on average than for the BSS. As the spectral quality increases,
it becomes easier to detect and characterize additional compo-
nents. Undetected soft-excess would also increase the value for
the measured photon index, and this in turn could be contribut-
ing to increase the computed average photon index for the BSS
and resulting in a higher value than the one for the HBSS.
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In the case of absorbed AGN and thanks to Chandra and
XMM-Newton grating spectra, this soft-excess is known to be
associated to scattered emission hundreds of pc far form the cen-
tral source, likely by the NLR clouds (see for example Bianchi
et al. 2006). Indeed, all absorbed AGN that display soft-excess,
five type 2 and two type 1 AGN, are best-fitted either by a leaky
model or by a power law plus a thermal component that could
arise from the host galaxy given its low luminosity.

The case of unabsorbed AGN is more complex. Soft-excess
emission has usually been attributed to the hard tail of the ther-
mal emission from the accretion disk or to optically-thick comp-
tonization of EUV disk photons (Ross et al. 1992; Shimura &
Takahara 1993), but these models are unable to explain either
the higher temperatures usually detected or the fact that these
temperatures seem not to vary with AGN properties such as the
intrinsic luminosity. A recent model, also invoking continuum
emission, explains this soft-excess emission via optically-thin
comptonization of the disk photons (Kawaguchi et al. 2001),
which would explain the non-dependence on the source luminos-
ity. Two alternative models, based on atomic processes within
the accretion disk, have been proposed in recent works: the
soft-excess emission could come form relativistically blurred
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Table 5. Average spectra fit results.

Sample Ny r R E o EW y*/d.o.f.
1022
(cm™) (keV) (eV) (eV)

(1) (2) (3) 4) (5) (6) (7) (8)
BSS type 1 AGN 2.02j§;§§ 0.6j§§ 6.40j§;§% <160 1102%3 21/16
HBSS type 1 AGN 200100 09702 6447005 <140 80*%  15/16
BSS type 2 AGN <Ll 19 107 65301 <200 200110 1316
HBSS type 2 AGN 20003197 10703 642:0% <250 90*N 616
Unabsorbed AGN L 210700 0501 640709 <160 10070 18/16
Absorbed AGN 12904197 1592 64799 <160 100°  9/16
Lf)w-lumi.rlosiFy type 1 AGN 2.1 lf§%§ 0.81’%? 6.43f§:3§ <180 1 101;%8 12/16
High-luminosity type 1 AGN 2.00%50; 037, 63975 <130 80%5, 25/16

Notes. Columns: (1) sample used to construct the average spectrum; (2) intrinsic column density; (3) photon index; (4) reflection scaling factor;
(5) Fe Ka central energy; (6) Fe Ka width upper limit; (7) Fe Ka equivalent width; (8) x? to number of degrees of freedom.

) Fixed parameter.

reflection from a partially ionized accretion disk (Crummy
et al. 2006) or from velocity-smeared absorption from partially
ionized material coming from a disk wind (Middleton et al.
2007), although they are indistinguishable at the EPIC energies.
Besides, the quality of our data prevents us from applying them
in our spectral analysis. Using the additional components de-
scribed in Sect. 3, we find a great variety of best-fit models
within the unabsorbed AGN that show soft-excess in our sample,
27 sources in total: 3 reflection components, 3 ionized absorbers,
13 black body models and two power laws plus an absorption
edge. For six of them no acceptable fit was found, therefore the
simple power law model was adopted as the best-fit model.

As mentioned before, when the soft-excess in unabsorbed
AGN is modeled with a black body model, a value of kT ~
0.1 keV is obtained that does not depend on the source flux, red-
shift or luminosity. To compare our results with previous works,
we also attempted to fit a black body plus a power law to all
unabsorbed sources with a soft-excess (see Table 6). This im-
proved the simple power-law fit, F-test >95%, in all but 6 cases,
21 sources in total. The values obtained for the black body tem-
perature are presented in Fig. 10 against the 2—10 keV luminos-
ity. By using a Spearman rank correlation analysis, we found a
significant correlation between the black body temperature and
the source’s luminosity (p = 0.60, probability = 0.004). This
can be because higher luminosity sources are at higher redshifts,
given that the sample is flux-limited, which means that the soft-
emission is shifted outside the observed energy range. Therefore,
at higher luminosities only black body components of higher
temperatures can be detected. Indeed, if we remove sources at
z> 0.5, the correlation disappears (o = 0.06, probability = 0.78).
Therefore, and given the present statistics, we cannot confirm if
there is an actual correlation between the black body temperature
and the hard X-ray luminosity, although our results suggest that
high black body temperatures can only be reached by sources
with high intrinsic luminosities.

7. Average spectrum

A narrow Fe Ka emission line (6.4—6.9 keV, depending on ion-
ization state of the material) is almost ubiquitously observed
in good quality X-ray spectra of AGN (Nandra et al. 2007;
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Fig.10. Black body temperature versus 2—10 keV luminosity for
unabsorbed AGN. Squares correspond to the temperature values if
a power law plus a black body component is considered the best-fit
model, whereas circles correspond to the temperature values in the re-
maining unabsorbed AGN with a soft-excess emission. The horizontal
dotted line corresponds to the weighted mean.

Bianchi et al. 2009b). To measure a broad and/or a relativis-
tically broadened component requires an even better quality
(Guainazzi et al. 2006). We searched for this emission line in our
sample, but its presence is only suggested in ~20 sources and its
parameters are only well constrained in a couple of cases, all
corresponding to a narrow Fe Ka line. To improve the SNR and
to detect spectral features that would remain hidden otherwise,
such as the Fe Ka line, we averaged the whole sample following
the process described in Corral et al. (2008). The basic steps of
this averaging method are

— Selecting those individual spectra, pn or MOS, with more
than 80 counts in the total 0.2—12 keV EPIC band. For the
XBS AGN sample, this means to exclude 12 sources,
8 type 1 and 4 type 2 AGN.
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E % — Fitting pn and MOS spectra for each source individu_ally by
Sl using a simple ab'sorl?ed. power-law mo'del and leaving the
& ‘O;D = power-lawflndex, intrinsic column density, and the normal-
=2 ization as free parameters.
§ _Tg % — Obtaining the ipcident spectra, i.e. before entering the detec-
%8y tors, in flux units (keV cm™? 57! keV~!) by using the param-
= alwwan| = 3 g eters from the previous spectral fit.
E = 2EZ& 'a'; = — Correcting for the absorption from our Galaxy and shifting
© 8E53Q to rest frame.
o é %% — Rescaling the individual spectra so that every spectrum has
= P I ) g & the same 2—5 keV rest frame flux.
§ SRS X g8 § — Binning every spectrum to a common energy grid so that the
E 2° g final averaged spectrum has at least 1000 counts per bin.
g 2 ; — Averaging by using a standard mean.
“ o
é S g § § g —c§ 5 As a final step and to quantify the significance of any spec-
L T ¥ oA _g',- §% tlr(a)l(l) featuri, we uselcli sfimliilatiogs:l wc(t1 1s(imu.lateci1 each source
=% 9 times by using the fitted model and Keeping the same spec-
3 2 % ; tral quality as for the real data. By averaging all the simulations
S T, |enw Y &g we obtained a simulated “continuum” that should account for
S o0 & w3 £ = g the average of absorbed power laws. Taking one simulation for
g ° < each real spectrum and averaging these, we constructed 100 sim-
- :E‘ = ulated continua from which we can compute 1o and 20 limits
~ %"‘_ig by removing the 32 and 5 extreme values at each bin. In this
% (\l,"’ R . 5 5 8 way, we can say that any excursion over or below these li.mits
SN g2 2Z| 2338 is detected at 1o or 20 confidence lqve}. By using the simu-
<7 & f“j ha E lated “continuum” and the confidence limit and comparing them
© £°S3 to our data, we can determine if there are any significant devi-
ce o % g & ations from a power-law shape and estimate their significance.
N - 352333 ‘; é“ = Only the energies in the 2 to 15 keV rest-frame energy band are
-2 52 used in this spectral analysis. For energies below 2 keV, the av-
S | 8s5% eraging method is highly dependent on the model used to unfold
tomon=| £ e 3 the spectra, and for energies above 15 keV noise becomes too
ol BARASAL E E g important. The r.esultmg best-fit models and parameters for each
s SOG §{< g g case are shown in Table 5.
Z 23 First, and to compare the two samples under study here,
RPN B E 2o ;.E we constructed the average spectra and confidence limits for
2 ECISSS| Fx £°8 the type 1 and type 2 AGN within the BSS and HBSS sepa-
EE & Q rately. The resulting averaged spectrum, simulated continuum,
goes=cz| ¥ > 5 % and confidence limits for the BSS and HBSS samples are shown
. S|uuY| Eiz2 in Fig. 11.
SSS S g g BSS: for the type 1 AGN we find that the best-fit model con-
g9 f;g sists of a power law of ' = 2.02*00% plus a narrow Fe Ka line
. a g ﬁ § gi 23 centered at E = 6.40*00¢ keV and equivalent width EW =
TR =e PrsES 5 110*35 eV and a reflection component with a reflection factor
) . o Lj 2Z% R ~ 0.6. The inclination angle of the reflection component is
é = a 5 % % B é % g always fixed to its default v.alue, i ~ 60 deg, because it cannot
8 = << <| 5223 be determined at the same time as the reflection factor. For the
& © "o :é E '% type 2 AGN the best-fit model turns out to be an a.bsorbed
2 go@| &= Q‘” z power law (I" fixed to 1.9) with an intrinsic column density Ny <
—%‘) a9z 2 ./E\V,D” 5 1.1 x 102 cm~2 plus a narrow emission line (E = 6.53f8:(1)j keV,
g o E E 2 < ?E E EW =200*130 eV) and a reflection component (R ~ 1). The fit-
B £ a2l o 2 EZve ted intrinsic column density does not represent the actual av-
2 A T123F| 5% é% erage absorption of the sources, but it is related to the frac-
G == § §(2 E g tion of absorbed sources among the type 2 AGN as well as
% g g 4 23 % ﬁ their column densities, and as such does not have a meaning-
2 S é‘ & § ful physical interpretation. In any case, and given that not only
— =8 - the statistics are much lower for type 2 AGN but also that we
%’ g "5 % § are fitting above 2 keV, the column density cannot be very well
~ £ &5 constrained.
= ©8 i 2 HBSS: for the type 1 AGN we find that the best-fit model
= é g 2 é consists of a power law of I' = 2.00f8:8§ plus a narrow
& z 83 & Fe Ko line centered at E = 6.44*0:0% keV and equivalent width
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Fig.11. Type 1 (left) and type 2 (right) AGN average spectrum and average spectrum to simulated continuum ratio (bottom) corresponding to the
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HBSS and BSS samples. Error bars: real average spectrum, circles: average continuum, dashed line: 2¢- limit, dotted line: 1o limit.
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Fig. 12. Average spectrum (top) and average spectrum to simulated continuum ratio (bottom) corresponding to the absorbed (/eff) and unabsorbed
(right) sources. Error bars: real average spectrum, circles: average continuum, dashed line: 20 limit, dotted line: 1o limit.

EW = 80’:28 eV and a reflection component with a reflection fac-
tor R ~ 0.9. For the type 2 AGN the best-fit model turns out to
be an absorbed power law (I" fixed to 1.9) with an intrinsic col-
umn density Ny ~ 2 X 10?2 cm™2 plus a narrow emission line
(E = 6.42’:8'?2 keV, EW = 90tgg eV) and a reflection component
R~1).

The small differences between type 2 AGN average spectra
for the BSS and HBSS are caused by the larger number of ab-
sorbed sources for the HBSS. This is expected because selecting
at harder energies makes the sample less biased against absorbed
sources. The relatively low value for the average column density
for the type 2 AGN in the BSS is consistent with it being due
to contribution of unabsorbed type 2 AGN, which are more nu-
merous in the BSS (which contains six unabsorbed type 2 AGN
out of 19 type 2 AGN) than in the HBSS (which only contains
one unabsorbed type 2 AGN out of 20). For both samples and
AGN classes, the detected Fe Ka line turns out to be narrow
and likely comes from neutral material, i.e., far from the central
source.

To better characterize the differences in the spectral shape
from absorbed to unabsorbed sources, we divided the whole
sample into absorbed (31 AGN) and unabsorbed (274 AGN)
sources and constructed the average spectra. The results are
shown in Fig. 12.

For the unabsorbed sources we find that the best-fit model
consists on a power law of I' = 2.10*%%3 plus a narrow Fe Ko line

~0.03
centered at E = 6.40/9% keV and equivalent width EW =
100+3 i

o €V and a reflection component with a reflection factor
R ~ 0.5. A relativistic Fe Ka line is not clearly present and when
we attempted to fit one, we did not obtain a significant improve-
ment, and the line parameters resulted in unphysical values (such
as a very large inclination angle, i ~ 80 deg, or a extremely high
line energy ~8 keV). From the best-fit model, we estimate an
upper limit for the EW of a relativistic Fe Ke line contribu-
tion of 230 eV at the 30~ confidence level for a relativistic emis-
sion line (Laor 1991) centered at 6.4 keV and inclination angle
of 30 deg. For the absorbed sources the best-fit model turns out
to be an absorbed power law (I" fixed to 1.9) with an intrinsic
column density Ny ~ 1 X 10?> cm™2 plus a narrow emission line
(E = 6.47f8:8§ keV, EW = 10028 eV) and a reflection com-
ponent (R ~ 1.5). The main difference between absorbed and
unabsorbed sources seems to be a larger amount of reflection
in the case of absorbed AGN besides the amount of absorption.
This difference is not due to a hidden dependence of the reflec-
tion with luminosity because absorbed and unabsorbed AGN in
the XBS sample display a very similar luminosity distribution
with an average luminosity of (Lx(2—10 keV)) ~ 4 x 10* in
both cases and about the same dispersion. The averaging process
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Fig. 13. Average spectrum to simulated continuum ratio corresponding to the luminosity subsamples. Error bars: real average spectrum, dashed

lines: 20 limit, dotted lines: 1o~ limit.

used here is designed to study the 2 to 10 keV rest-frame range
to study the Fe Ka line properties that minimize the contribution
of the underlying continuum and observational effects. However,
for highly absorbed sources (Ny > 107 cm™2), the way the
rescaling is carried out can give larger weights during the aver-
aging process to the more absorbed sources. In the final average
spectra, this produces a feature that could mimic the shape of a
reflection component (Corral et al., in prep.). However, the num-
ber of highly absorbed sources is too small to be responsible for
the whole amount of observed reflection. As a safety test, we re-
moved the eight most absorbed AGN (N > 10% ¢cm™2) from the
average of absorbed AGN. Given that the remaining number of
sources is small in this case, R cannot be well constrained, but
we obtain a lower limit of R > 1.1 at the 90% confidence level.
In summary, although the values obtained for the reflection com-
ponents reported here have to be taken as tentative, the difference
in the amount of reflection between absorbed and unabsorbed
AGN seems to be real. For unabsorbed sources, our results ex-
cellently agree with those from studies of local AGN (Nandra
et al. 2007), from the average of large samples of distant AGN
(Chaudhary & Brusa 2010) and with the predictions of theoreti-
cal models (Ballantyne 2010).

7.1. Dependence on redshift and luminosity

As we showed in Sect. 5, there seems to be a difference be-
tween the spectral shape for low- (Ly < 10* erg s™') and
high- (L, > 10* erg s~') luminosity type 1 AGN. To explore
this possible difference, we constructed the average spectrum
for both luminosity subsamples. The resulting ratios of the av-
erage spectra to the simulated continua are shown in Fig. 13.
We find that the best-fit model for both samples consists in a
power law with a narrow Fe Ke line centered on ~6.4 keV and
a reflection component. Consistently with the results reported in
Sect. 5 we find the photon index of the average spectrum for the
low-luminosity subsample to be (marginally) larger than the one
for the high-luminosity subsample. The large error on I' in the
low-luminosity subsample is likely caused by the larger disper-
sion of the photon index distribution (see Fig. 8). For the low-
luminosity subsample, the line EW seems to be higher, EW =
110 = 30 eV, than for the high-luminosity subsample, EW =
80 + 30 eV (the so-called Iwasawa-Taniguchi effect, Iwasawa
& Taniguchi 1993), but both values are consistent within errors.
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The resulting reflection fraction also turns out to be marginally
larger for the low-luminosity subsample, R = 0.8*0%, than for
the high-luminosity sample, R = 0.3 + 0.1, although it is not
well constrained for the former sample. These results agree with
models that predicts a decrease of the torus covering fraction as
the luminosity increases (Lawrence 1991), thus decreasing the
reprocessing of the radiation within the torus and also explain-
ing the Iwasawa-Taniguchi effect. Evidence of this decrement of
the covering fraction as a function of the luminosity have been
reported in recent works (Maiolino et al. 2007; Della Ceca et al.
2008), which point out the need for the simplest unified schemes
to be revised.

We also explored the possible dependence of the spectral
shape on redshift. To this end, we again constructed average
spectra by dividing the sample in different redshift bins. In this
case we did not detect any significant trend of the resulting av-
eraged spectral shape with redshift. Nevertheless, we point out
again that our sample only reaches redshift ~2, and it is above
this value where, for example, Mateos et al. (2010) found this
dependence to become stronger.

8. Discussion

In the previous sections we discussed the possible existence of
several statistical correlations. First, we found an anti-correlation
between the photon index and the X-ray luminosity. This corre-
lation is significant in the analysis of the single spectra, but it
is also marginally present in the analysis of the average spectra.
The lower significance in the latter case is likely caused by the
high intrinsic dispersion in the photon index distribution. The
second correlation, found in the analysis of the average spectra,
is the dependence of the intensity of the reflection component
with both the AGN “type” and luminosity. In particular, the re-
flection component seems to be stronger in absorbed AGN and
in low-luminosity AGN.

An anti-correlation between the photon index and the X-ray
luminosity has been recently reported by Green et al. (2009) and
Young et al. (2009), whereas Saez et al. (2008) found a “posi-
tive” correlation. It has to be noted that Saez et al. (2008) took
into account type 1 and type 2 AGN at the same time, the lat-
ter being more numerous than the former, whereas we here only
considered type 1 AGN. The physical explanation for this anti-
correlation is still a matter of debate in the recent literature.
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Several authors (Shemmer et al. 2008; Risaliti et al. 2009; Grupe
et al. 2010) have reported a correlation between the photon in-
dex and the Eddington ratio. This dependence could explain
the correlations we find if the Eddington ratio was the actual
driver of the luminosity/photon index anti-correlation. In that
case, the low-luminosity subsample could be sampling a dif-
ferent AGN population or a mixture of very different accre-
tion states, which could explain the higher dispersion found for
the photon indices. We are currently studying this hypothesis in
deeper detail.

The observed anti-correlation between the reflection compo-
nent intensity and the luminosity found in the analysis of the av-
erage spectra confirms similar trends that were already observed
in other samples (e.g. Nandra et al. 1997). If the observed re-
flection component is related to the molecular torus, the trend
can be well explained in the context of the receding torus model
according to which the molecular torus-covering fraction (and
thus the intensity of the reflected component) decreases with the
luminosity.

On the contrary, the difference seen in the observed reflection
component between absorbed and unabsorbed AGN is, at the
moment, troublesome because it is not easily reconciled with
the unified model (which predicts a larger reflection component
for unobscured sources, see e.g. Krolik et al. 1994; Murphy &
Yaqoob 2009). It is worth noting that similar results as those
reported here (i.e. more reflection in absorbed objects) where
obtained by Malizia et al. (2003) and by Deluit & Courvoisier
(2003) from the analysis of the average spectra of local type 1
and type 2 AGN observed with BeppoSAX; yet Burlon et al.
(2011) have recently obtained the opposite trend from the anal-
ysis of the type 1 and type 2 AGN observed in the SWIFTBAT,
although with large uncertainties. Further detailed studies on this
particular aspect are clearly needed.

9. Conclusions

We have analyzed the X-ray spectra corresponding to all identi-
fied AGN within the XBS sample.

From the individual analysis and according to our fitting cri-
teria, we find that

— Most AGN are well fitted by a simple unabsorbed power law
model. The most common deviation from this shape are neu-
tral intrinsic absorption and soft-excess emission.

— In agreement with the AGN unified model, most type 2 AGN
are absorbed (Ny > 4 x 10*' cm™2) and by larger amounts
of intrinsic material than type 1 AGN, which are most un-
absorbed. Nonetheless, deviations from this simple version
of the unified model are found, and are more frequent in
type 2 AGN.

— We find that the fraction of exceptions to the unified model
is of 5% for the whole sample (only 3% if we take into ac-
count the errors on the measured intrinsic absorption). The
fraction of type 1 AGN among absorbed sources is 17%
and 31% for the HBSS and the BSS, respectively. The dif-
ferent values for the two samples are likely due to the larger
number of unidentified sources within the BSS. The fraction
of type 2 AGN among unabsorbed sources turns to be 3%
and 1% for the HBSS and the BSS, respectively.

— We find that the X-ray spectral photon index for type 1 AGN
is anti-correlated with the hard X-ray luminosity. When the
type 1 AGN sample is split into high- and low-luminosity
subsamples, we find that the intrinsic photon index for both
samples is different almost at the 30 level in the plane photon

index vs. intrinsic dispersion. We compute an average pho-
ton index and intrinsic dispersion of (I) = 2.11 = 0.04
(2.00 £ 0.05) and o = 0.29 £ 0.04 (0.20 + 0.04) for the low-
(high) luminosity sample.

— We find that the so-called “soft-excess” is a common char-
acteristic of AGN and it clearly displays different properties
and origin for unabsorbed and absorbed AGN.

From the constructed average spectra we find that

— The average spectrum for type 2 AGN is different in the
HBSS and the BSS samples as a result of a larger amount
of absorbed sources in the HBSS. We do not find any signifi-
cant differences between the type 1 AGN average spectra for
these two samples.

— Apart from the amount of absorption, the differences be-
tween average spectra corresponding to absorbed and un-
absorbed AGN are caused by an increase in the amount of
reflection.

— We do not detect a significant relativistic Fe Ka emission
line on the average spectrum for unabsorbed sources. We es-
timate an upper limit for a broad relativistic contribution to
the line of 230 eV at the 30" confidence level.

— When dividing the type 1 AGN sample into high- and low-
luminosity sources, we find that the narrow Fe Ka line
EW seems to decrease as the luminosity increases, which is
consistent with the so-called Iwasawa-Taniguchi effect, al-
though the resulting values for the high- and low-luminosity
subsamples are consistent within errors (EW = 110 = 30 and
80 + 30 eV for the low- and high-luminosity subsamples, re-
spectively). We find moreover that the amount of reflection
may also decrease with luminosity, which supports models
in which the covering fraction of the putative torus decreases
as the intrinsic luminosity increases.
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Appendix A: Notes on individual sources

During the spectral fit, those sources which are not well fitted
using a simple power law model can be usually well fitted by
using different additional components. Here, we describe how
we decided between the different models that are an acceptable
fit for each source:

— Leaky model: all sources for which a leaky model was
selected as our best-fit model share a common spectral
shape: a power law shape at high energies that drops
around ~2-3 keV and an additional soft component.
These sources are four type 2 AGN (XBSJ021822.2—
050615, XBSJ033845.7-322253, XBSJ040758.9-712833
and XBSJ112026.7+431520) and two type 1 AGN
(XBSJ091828.4+513931 and XBSJ095218.9-013643).
XBSJ095218.9-013643 is a NLSyl (narrow line Seyfert 1)
whose intriguing X-ray spectral shape (a very steep photon
index and large amount of absorption that partially covers
the central source) and variability (variability of a factor
of 4 in the soft X-rays) have been already studied in detail
and presented in Grupe et al. (2004). In Fig. A.1 is shown
an example of a leaky model fit. We find that leaving the
soft photon index free to vary for all these sources does not
significantly improve the fit. However, in all cases, this soft
photon index steepens if it is left free to vary, which suggests
the contribution of an additional soft component, most likely
a thermal component given the low luminosity observed for
this sources. In no case adding a thermal component to the
leaky model significantly improves the fit, and by fitting
a simple absorbed power law plus a thermal component
always gives worse residuals at low energies than the leaky
model.

— Warm absorption: we find that an additional ionized
absorber gives a best fit in five cases (XBSJ030641.0-
283559, XBSJ052543.6-334856, XBSJ140100.0-110942,
XBSJ140127.7+025605,  XBSJ223547.9-255836,  all
type 1 AGN), although the ionized absorber parameters,
mainly the ionization state of the absorber, are not well
constrained in all cases. We selected this model as our
best-fit model when the power-law residuals at low energies
showed some evidence of an structured shape resem-
bling absorption lines or edges. In two cases, the source
also displays a soft-excess (XBSJ030641.0-283559 and
XBSJ223547.9-255836). One example of this model is
again shown in Fig. A.1. The ionized absorber was added
to the neutral one because of the way the spectral fit is
carried out, i.e., our base-line model is a simple power law
including neutral intrinsic absorption. It is worth noting,
however, that none of the sources for which the best-fit
model includes warm absorption need significant additional
cold absorption, as can be seen in Table 7.

— Absorption edges: in three cases (XBSJ100926.5+533426,
XBSJ102412.3+042023 and XBSJ204159.2-321439), an
absorption edge has to be added to the simple power law
model to obtain an acceptable fit. It is not clear whether these
edges are real or an instrumental effect given the energies at
which they are found, but they could be caused by a warm
absorber that our simple Xspec absori modelis not able to
fit properly. See again Fig. A.1.

— Reflection component: we find that a simple power law
plus a neutral reflection component is a good fit in four
cases (XBSJ031311.7-765428, XBSJ043448.3-775329,
XBSJ052108.5-251913 and  XBSJ101922.6+412049;

all type 1 AGN). We use neutral reflection in all cases
(pexrav model in Xspec) since our intention is not to
determine where this reflection component originates in.
Given the data quality, we can only estimate the amount
of reflection by the reflection fraction R in the pexrav
model. Nevertheless, we find that in all cases but one
(XBSJ031311.7-765428) the reflection component is most
likely coming from Compton-thick material far away from
the central source, the putative torus in unified models, given
the spectral shape, a rather flat continuum at high energies,
and the characteristics of a possible Fe Ka line. Note also
that all but XBSJ043448.3-775329 show a soft-excess.
Black body: a phenomenological black body com-
ponent is needed to obtain an acceptable fit in
13 cases (XBSJ000532.7+200716, XBSJ005031.1-
520012, XBSJ015957.5+003309, XBSJ021808.3—045845,
XBSJ023530.2-523045, XBSJ023713.5-522734, XBSIJ
031851.9-441815,XBSJ065839.5-560813,XBSJ074312.1+
742937, XBSJ141736.3+523028, XBSJ 153456.1+013033,
XBSJ225118.0-175951 and XBSJ231601.7-424038; all
type 1 AGN), all showing soft-excess. The physical origin
for this soft component is not clear although a host galaxy
thermal contribution is ruled out given its high luminosity
in all cases but XBSJ000532.74+200716. In that case the
low luminosity found for the black body component (~4 X
10*? erg s™! in the 0.5-2.0 keV energy range) could be
caused by thermal emission, but adding an Xspec mekal
component does not improve the simple power law fit.
More complex models recently proposed in the literature
(Crummy et al. 2006; Middleton et al. 2007) cannot be used
in our case given the data quality, and in any case, they are
indistinguishable in the EPIC-covered energy range. In some
cases, the need for a black body component instead of a more
physically motivated model, could be just due to the data
quality. For example, in seven cases, XBSJ005031.1-
520012, XBSJ015957.5+003309, XBSJ021808.3—
045845, XBSJ065839.5-560813, XBSJ074312.1+742937,
XBSJ153456.1+013033 and XBSJ225118.0-175951 (see
Table 7), an ionized absorber is also a good fit, but
gives worse residuals that the black body model. This
could be because of to both the data quality and
the need of a better representation of the ionized ab-
sorber. And for XBSJ021808.3-045845, XBSJ023713.5—
522734, XBSJ074312.1+742937, XBSJ141736.3+523028
and XBSJ231601.7-424038 (see Table 8, note that
XBSJ021828.3-045845 and XBSJ074312.1+742937 can
be also fitted by using ionized absorption), the addition
of a reflection component instead of a black body also
significantly improves the fit. For the first two cases, this
reflection component could derive from ionized material.
Sources for which no best fit is found: we are unable to
find an acceptable fit in 11 cases. We do not find that these
sources share any common characteristic, and that an ac-
ceptable fit is not found could be simply due to our selec-
tion criteria based on the resulting null hypothesis proba-
bility. The simple power law fit for these sources is shown
in Fig. A2. In the case of XBSJ021822.2-050615 and
XBSJ153456.1+013033, the fit corresponds to a leaky model
and a power law plus a black body, which significantly im-
prove the fit, but not enough to obtain a probability >10%.

A42, page 21 of 39



A&A 530, A42 (2011)

Energy (keV)

Unfolded Spectrum Unfolded Spectrum
XBSJ012654.3p191246 XBSJ023713.5m522734
T L T T T T
Sr PL+T E
é - PL+BB
s
X
—~ or 1 —_~
D=1 1% +
P o
g o g =
o Q
Z 4 Z
£ =r 18
£ 1=
> s r 1>
z ol 1% -
A 2
é E . P | . . . . |” k) . .
& 05 1 2 5 0.5 1 2 5
Energy (keV) Energy (keV)
Unfolded Spectrum Unfolded Spectrum
+ XBSJ033845.7m352253 XBSJ100926.5p533426
=l T 3 — T
Leaky ]
_|_ ] PL+Edge
"
.’\é E —I_ -I- — _--, = IL_IT—_- é
= ;::'L | T ! |-" ] o
> 1 1>
2L S A S -
5 15 2
sk 18
£ 1z
=43 1 s
=f I =
" " " " " " " " 1 " " " "
0.5 1 2 5 0.5 1 2 5
Energy (keV) Energy (keV)
Unfolded Spectrum Unfolded Spectrum
XBSJ101922.6p412049 XBSJ140127.7p025605
T t 1 T T T T T T T L
bl :
X
<+ N
SE ]l PL+Ref 4 L i) I
- I 4 - jpriey Vgl |
T Il _|\‘“v i e
- " IARATE it
L : { 1% o I L i Iy l! Wi
] : i _|_"l:| e . _'\i_ “ I I‘ “
P Ml C 17 =t
@ +' T ,,,,,, v X LT
E £ |
o w Q
g =2F qé
2 " S .
s L ] S
£ 12 5
% 1z °
] 1~
: Sh
é o E °
- N N N é N 1 N N N N
0.5 1 2 5 X 0.5 1 2 5

Energy (keV)

Fig. A.1. Unfolded spectra corresponding to the different additional components used during the spectral fit. From top to bottom and left to right:
power law plus thermal component, power law plus black body, leaky model, power law and absorption edge, power law plus reflection component
and power law and ionized absorber.
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Fig. A.2. Data and residuals corresponding to the eleven sources for which no acceptable fit is found.
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