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Abstract: Heterogeneous systems are the core architecture of most computing systems, from high-
performance computing nodes to embedded devices, due to their excellent performance and energy
efficiency. Efficiently programming these systems has become a major challenge due to the complexity
of their architectures and the efforts required to provide them with co-execution capabilities that
can fully exploit the applications. There are many proposals to simplify the programming and
management of acceleration devices and multi-core CPUs. However, in many cases, portability and
ease of use compromise the efficiency of different devices—even more so when co-executing. Intel
oneAPI, a new and powerful standards-based unified programming model, built on top of SYCL,
addresses these issues. In this paper, oneAPI is provided with co-execution strategies to run the same
kernel between different devices, enabling the exploitation of static and dynamic policies. This work
evaluates the performance and energy efficiency for a well-known set of regular and irregular HPC
benchmarks, using two heterogeneous systems composed of an integrated GPU and CPU. Static and
dynamic load balancers are integrated and evaluated, highlighting single and co-execution strategies
and the most significant key points of this promising technology. Experimental results show that
co-execution is worthwhile when using dynamic algorithms and improves the efficiency even further
when using unified shared memory.

Keywords: heterogeneous systems; parallel computing; co-execution; load balancing; SYCL; oneAPI;
Data Parallel C++; scheduling; HPC; CPU-GPU

1. Introduction

In recent years, with the quest to constantly improve the performance and energy
efficiency of computing systems, together with the diversity of architectures and computing
devices, it has become possible to exploit an interesting variety of problems due to hetero-
geneous systems. The future of computing cannot be understood without these types of
systems [1]. With the emergence of new specialized devices, a world of massively parallel
computing opens up that is able to combine HPC devices, such as Intel Xeon processors
powered by UHD integrated graphics processors, FPGAs, discrete GPUs like Intel Iris Xe,
and even XPU devices, specialized in machine learning inference.

The keys to their importance are the excellent cost/performance ratio and energy
efficiency. These characteristics allow the acceleration of a wide range of massively data-
parallel applications, such as deep learning [2,3], image and video processing [4–6], and
financial applications [7,8].

However, hardware heterogeneity complicates the development of efficient and
portable software, especially when specialized components from various suppliers are
used, since many require their own programming models. In this context, there are several
hot topics that are currently being researched: supporting single source programming [9],
improving the usability and efficiency of memory space [10], distributing computation and
data between different devices [11], and load balancing [12], among others. In an effort to
improve these topics, a variety of frameworks and tools have been proposed [13–17].
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Programming models have become more abstract and expressive. OpenCL emerged as
an open standard programming model for writing portable programs across heterogeneous
platforms [18]. However, it has a very low level of abstraction and leaves to programmers
the partitioning and transferring of data and results among the CPU and devices. Fur-
thermore, the support from different vendors has been variable both in compatibility and
performance. Even so, it continues to be the de facto open standard, and new manufactur-
ers continue to incorporate OpenCL drivers in a range of platforms. Nevertheless, many
applications have their kernels implemented in OpenCL, thus, benefiting from its support
and battle-tested usage. On the other end, proposals based on compiler directives have
been developed, such as OpenACC [19], and later extensions of OpenMP [20], leaving all
this work to the compiler, but limiting both the expressiveness and performance.

In this way, the Khronosr Group proposed SYCL-based heterogeneous parallel pro-
gramming framework for accelerating High Performance Computing, machine learning,
embedded computing, and compute-intensive desktop applications on a wide range of
processor architectures, including CPUs, GPUs, FPGAs, and AI processors. Moreover,
market trends and industrial applications indicate a strong predominance of languages,
such as C++, favoring higher level alternatives. For instance, SYCL is a cross-platform
abstraction layer that builds on OpenCL, enabling the host and kernel code to be contained
in the same source file with the simplicity of a cross-platform asynchronous task graph [21].
Several implementations from different vendors have been released, such as ComputeCpp,
triSYCL, and hipSCYL [22,23].

In this context, Intel developed oneAPI, a unified programming model to facilitate
development among various hardware architectures [24]. It provides a runtime, a set of
domain-focused libraries and a simplified language to express parallelism in heterogeneous
platforms. It is based on industry standards and open specifications, offering consistent
tooling support and interoperability with existing HPC programming models.

The oneAPI’s cross-architecture language Data Parallel C++ (DPC++) [25], based
on SYCL standard for heterogeneous programming in C++, provides a single, unified
open development model for productive heterogeneous programming and cross-vendor
support. It allows code reuse across hardware targets while permitting custom tuning for a
specific accelerator. Since the abstraction level is increased, the productivity improves and
a new set of features is provided, including optimized communication patterns, automatic
dependency tracking, runtime scheduling, and shared memory optimizations.

This article addresses a new challenge in improving the usability and exploitation
of heterogeneous systems, providing oneAPI with the capacity for co-execution. This
is defined as the collaboration of all the devices in the system (including the CPU) to
execute a single massively data-parallel kernel [14,26–28]. However, this is a difficult task
for the programmer and needs to be effortless in order to be widely used. In this way,
the expression and abstraction capabilities of oneAPI, such as portability and single-source
style, will be exploited to obtain codes that will be easier to implement and maintain.
To efficiently exploit the computing capacity of all devices, a series of workload balancing
algorithms are implemented, both static and dynamic, obtaining good results with both
regular and irregular applications.

Coexecutor Runtime is presented, extending the work and preliminary results of the
conference paper [29]. The key innovations are the high level API, increasing the abstraction
but maintaining its compatibility and extensibility with SYCL; an efficient architectural
design focused on preserving and reusing as many oneAPI primitives as possible while
extending its functionality; and as far as we know, it is the first co-execution runtime for
Intel oneAPI. This paper details the fundamentals of its design decisions and featured
models, provides a comprehensive validation using four different architectures in two
types of heterogeneous nodes, and showcases the usability and flexibility of its API design,
exploiting the technology enhancements.

To validate the co-execution proposal and determine its efficiency, an empirical eval-
uation was performed. Experimental results show that co-execution is worthwhile from
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the point of view of performance and energy efficiency as long as dynamic schedulers are
used, and even more if unified memory is applied.

The main contributions of this paper are the following:

• Providing Intel oneAPI with co-execution capabilities, squeezing the capacity of the
heterogeneous system to exploit a single kernel.

• Implementing a set of load-balancing algorithms that allow efficient use of all devices
in the system, both with regular and irregular applications.

• Validating the co-execution runtime in terms of the performance, balancing efficiency,
scalability, and energy efficiency for a set of benchmarks and schedulers.

The rest of the paper is organized as follows. Sections 2 and 3 describe general
background concepts needed along with the issues that motivate this work. Section 4
exposes the co-execution architecture and its design decisions, including examples of usage
and its API. The methodology used for the validation is explained in Section 5, while the
experimental results are shown in Section 6. Finally, Section 7 shows other related works,
while Section 8 highlights the most important conclusions and future work.

2. Background

OneAPI is based on the SYCL specification, although it provides its own extensions to
accelerate the computation and facilitate the development. Its programming language is
called Data Parallel C++ (DPC++), making a leap in abstraction and promoting interoper-
ability with the host code, compared to the OpenCL language. DPC++ is a community-
driven, standards-based language built on ISO C++ and Khronos SYCL, allowing develop-
ers to reuse code across hardware targets. DPC++ allows the host and the device code as
part of the same compilation unit, as a feature called single source property, that allows
potential optimizations across the boundary between both codes. Due to this property,
DPC++ establish three types of scope to distinguish between the host (application), host–
device interface (command group), and device (kernel). OneAPI comprises four models
based on SYCL, each of which is part of the operations that a developer has to take when
using oneAPI.

2.1. Platform Model

The platform model defines a host that manages one or more devices and coordinates
the application and command group scopes. A device can be an accelerator or the CPU
itself, each of which contains a set of Compute Units. In the same manner, each of these
provides one or more processing elements. The complete system could have multiple
platforms, since the composition of drivers in execution platforms is determined by the
drivers and their implementation.

2.2. Execution Model

The execution model defines and specifies how kernels execute on the devices and
interact with the host. It is subdivided into the host and device execution models. The data
management and execution between host and devices are coordinated by the host execution
model via command groups. These are groupings of commands, like the kernel invocation
and accessors, which are submitted to queues for execution. The device execution model
specifies how computation is accomplished on the accelerator, specifying the range data
sets. These are allocated across a hierarchy of ND-ranges, work-groups, sub-groups,
and work-items, easing the programming patterns and their composition. This facilitates
the memory and compute operation relationships, giving the programmer flexibility to
express the algorithms.

A fundamental concept in the SYCL execution model is the Directed Acyclic Graph
(DAG). Each node contains an action to be performed on a device, such as kernel invoca-
tion or data movements. The SYCL runtime controls, asynchronously, the resolution of
dependencies and triggering of node executions. Thus, it tracks and orchestrates actions
and their dependencies to perform in the devices, safely executing each operation when
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the requirements are met. On the other side, if the handler is not used, the code executes
synchronously by the CPU as part of the host program, bypassing the DAG.

2.3. Memory Model

The memory model coordinates the allocation and management of memory between
the host and devices and how they interact. Memory resides upon and is owned by either
the host or the device and is specified by declaring a memory object. Accessors define the
interaction of these memory objects between host and device, communicating the desired
location and access mode.

An extension to the standard SYCL memory model is Unified Shared Memory (USM),
which enables the sharing of memory between the host and devices without explicit acces-
sors. It manages access and enforces dependencies with explicit functions to wait on events
or by signaling a dependency relationship between events. Another important feature of
USM is that it provides a C++ pointer-based alternative to the buffer programming model,
which increases the abstraction by leaving the migration of memory to the underlying
runtime and device drivers. On the other side, since it does not rely on accessors, depen-
dencies between command group operations must be specified using events to help the
compiler determine the data dependencies and patterns.

2.4. Kernel Programming Model

The kernel is the computing function instantiated to be executed by every processing
element of the accelerator. It allows the programmer to determine what code executes on
the host and device, giving an explicit computing function via lambda expression, functor
or kernel class. Therefore, the separation of host and device codes is straightforward,
without language extensions. Device code can specify the parallelism mechanism with a
coarse-grained task, data-parallel work or data-parallel construct taking into consideration
the hierarchical range of the execution model.

It supports the single source property, meaning the host code and device code can
be in the same source file. Therefore, it improves the usability, safety between host and
device boundaries (matching kernel arguments), and optimization strategies due to better
understanding of the execution context (aliasing inference and propagating constants).
Finally, DPC++ kernels execute asynchronously via forced allocations of kernel class
instances, implicit waits of C++ destructors or explicit queue waits.

3. Motivation

The host–device programming model is used in Intel oneAPI, where the host offloads
compute-heavy functions, called kernels, to a set of hardware accelerators, such as GPUs
and FPGAs. Its runtime is able to manage complex applications composed of a set of
kernels, even if they have dependencies between them, through a Directed Acyclic Graph
(DAG). The assignment of a kernel to a particular device can be done by the programmer;
therefore, it is determined at compile time, or let oneAPI chooses the device at runtime.
In either case, a kernel can only be scheduled to a single device when the dependencies
are satisfied.

However, in this scenario, the only possibility of co-execution is for the programmer
to split the work into several kernels, as many as there are devices in the system. The data
partition and workload distribution must be done manually. Furthermore, the compiler
must detect that these kernels are independent and schedule them simultaneously. This
complicates the co-execution and, therefore, the exploitation of the whole system to solve a
single kernel.

Even if the programmer is willing to face this extra effort, an additional problem arises
with workload balancing. Since the division of the workload is done at the compile time,
it is necessarily static. That is, the portion of work assigned to each device is pre-fixed at
the beginning of execution. This partitioning works well for regular applications, where
the execution time of a data set depends only on its size [26]. The programmer needs to
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estimate off-line how much workload to allocate to each device so that both finish at the
same time, thus, obtaining a balanced execution, as seen in the left part of Figure 1, for the
Gaussian kernel. In this case, the kernel execution time is 5 s on the CPU and 2 s on the
GPU, which means that the GPU has 2.5× the performance of the CPU.

Each device takes about the same amount of time to compute each pixel, regardless
of color or intensity. Therefore, assigning the work to devices proportionally to their
computing capabilities, a balanced distribution is obtained, and the execution time is
reduced to approximately 1.5 s.
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Figure 1. Static co-execution for regular and irregular programs.

However, it is well known that static scheduling cannot adapt to the irregular behavior
of many applications, leading to significant load imbalances [14]. In these applications,
the processing time of a data set depends not only on its size but also on the nature of the
data. Thus, different portions of data of the same size can generate different response times.
This is shown in the right part of Figure 1, which presents the execution of a Mandelbrot
fractal computation in two devices.

Each device varies the time to compute each pixel, due to the computational region
of the Mandelbrot function, with the darkest and reddest areas being the most computa-
tionally intensive data regions. Performing the same static balancing as in the regular case,
it coincided that the most computationally heavy regions have fallen on the CPU (slower
device). This resulted in a significant imbalance with the CPU taking 3.5 s, while the GPU
took only 1.2 s. This situation can only be addressed with dynamic balancing algorithms
that allocate portions of work to the devices on demand.

This paper addresses both of these problems. On the one hand, we propose to provide
oneAPI with mechanisms that allow the implementation of co-execution without additional
effort for the programmer. On the other hand, we provide the oneAPI scheduler with a set
of dynamic load balancing algorithms to squeeze the maximum performance out of the
heterogeneous system, even with irregular applications.

4. OneAPI Coexecutor Runtime

The approach to achieve co-execution focuses on using the DPC++ compiler and
runtime, hereafter referred to as oneAPI for simplicity.

Co-execution allows to exploit data-parallel applications with multiple devices si-
multaneously. There are essentially two different approaches to provide co-execution to
oneAPI. On the one hand is adapting and manipulating the compilation process and run-
time recognition to force co-execution of the same problem by different devices. In this way,
the primitives and methods of the API itself can be extended to facilitate the recognition
of working distributions. This approach is discarded in this paper because it requires the
transformation of the compilation engine and runtime, as well as their different highly
optimized and interconnected stages.

On the other hand, the chosen approach proposed in this paper. The proposed
Coexecutor Runtime is built on top of oneAPI as a runtime library to allow the parallel
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exploitation of the CPU along with multiple hardware accelerators that facilitate the
implementation of workload balancing algorithms.

This approach has several architectural and adaptive advantages. First, the design
and implementation are based on open standards, both C++ and SYCL, following easily
recognizable architectural patterns. Secondly, since it is drawing on previous standards,
such as OpenCL, this facilitates the adaptation for a whole repertoire of libraries and
software generated over a decade, helping to benefit from co-execution. Thirdly, it serves
as a skeleton upon which to apply different strategies and workload balancing algorithms
for using oneAPI and SYCL. Finally, as it is designed from a sufficiently standardized
and abstract approach, it allows the adaptation and extension to execution engines and
proposals created by other manufacturers, both compilers and accelerator drivers.

Therefore, to provide oneAPI with co-execution depends mainly on the correct de-
tection of a potential concurrent execution path by the compiler and the runtime. This
materializes a parallel execution of several tasks of the DAG, due to the existence of com-
pletely independent hardware resources. In this way, the proposal is flexible enough to
adapt to a variable number of computation entities, while remaining simple enough to
assist the compiler in the detection, favoring the creation of totally independent nodes
recognizable by the runtime.

As shown in Section 3, this work addresses the limitations of oneAPI, taking into
account three challenges in obtaining effective co-execution. First, considering the static
strategies promoted by oneAPI, determining their advantages but also their limitations.
Subsequently, the application of dynamic mechanisms is more sophisticated and complex
but allowing sufficient adaptability and efficiency to facilitate more elaborated workload
distribution strategies. To achieve good performance results, it is necessary to use dynamic
strategies, which are currently not available in oneAPI. Finally, various well known load
balancing algorithms are incorporated and adapted to this architecture with the purpose of
obtaining the best possible efficiency.

4.1. Static Co-Execution

The SYCL standard does not determine the behavior in the face of different com-
putational regions used by independent devices, but the DPC++ implementation of the
standard is not able to guarantee simultaneous execution. The main problem arises in the
detection of disjointed memory regions when the same data of a problem is used by many
oneAPI scopes. This problem occurs when using both independent and shared kernel
execution regions, even though the programmer is able to recognize the independence
between the execution and data spaces.

For this reason, it is necessary to provide an architecture that facilitates the recognition
and management of the system devices, as well as their transfer and computation regions,
part of the oneAPI command queues and scopes. The main conceptual idea is to provide
with a multi-threaded architecture that isolates every oneAPI scope and, therefore, each
device used in the computation. This allows the underlying compiler and DPC++ runtime
to recognize the disjoint spaces and be able to perform operations simultaneously. Since
this is a static scheduling and workload distribution approach, it is necessary to establish a
runtime layer that is as light as possible, reducing the management overhead, because it
only schedules one work package per device.

The static co-execution mechanism in the Coexecutor Runtime ensures that there is
simultaneous execution among the devices, while reducing runtime management opera-
tions by not requiring dynamic scheduling operations. Therefore, an asynchronous pattern
is used to isolate each scope of OneAPI. C++ futures, and its asynchronous mechanisms
facilitate an acceptable degree of usability without the need to complicate the management
code to solve co-execution problems. This solution favors the independency of regions
and captures in a lambda region that makes the offload to another device asynchronous.
Furthermore, due to being included in a bigger scope (parent scope of the lambda scope),
it takes advantage of the primitives and variables previously initialized, reducing the time
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and favoring reuse. This is a key aspect if the programmer is using USM, since it allows
reusing the memory regions directly, giving direct access to the original queue at any time.

4.2. Dynamic Co-Execution

The dynamic co-execution is based on a generalization of the asynchronous pattern
presented in the previous section. As a result of working with runtimes employed on a
variety of vendors (drivers and devices), high efficiencies have been contrasted by using
strategies based on event chaining and multithreading architectures with mixed management:
notifications based on callbacks and workload management threads [14,17,28]. The main
problem when trying to extrapolate these strategies, based on events, futures, and C++
asynchronicity, is the limitation of expressiveness in the iterative distribution of workloads,
complicating and preventing dynamic strategies and disabling all usability.

Moreover, the most similar mechanisms to use notifications based on callbacks are
not supported in OneAPI, and thus it would be necessary to lower the level of abstraction
and use strategies combined with OpenCL. However, these mechanisms were discarded
by design as it would affect the resulting productivity and the benefits of single-source
property. On the other hand, although callback based mechanisms have become efficient in
several architectures, there are others for which they are prohibitive or directly impossible
to use, as is the case of FPGAs [30].

The strategy proposed for dynamic co-execution is to promote multithreaded manage-
ment architectures based on the runtime of oneAPI. The Coexecutor Runtime enhances the
isolation between devices, since one of the key points is to make it easier for the compiler to
detect disjoint memory structures as well as the independence between queues and tasks.
In addition, since oneAPI offers a sufficiently sophisticated and complete memory model,
the management architecture must be adapted to favor both buffer management and the
possibility of exploiting unified memory (USM).

To define the proposal, three perspectives are considered, the execution model,
from the memory point of view, and the last one, the relationship of the Coexecutor Runtime
with the runtime of oneAPI, as explained in Section 4.3.

The execution model is shown in Figure 2a, representing the interaction of the runtime
as part of the execution process of an application. Execution is blocked from an application
point of view, although internally it works asynchronously. In this way, the programmer
only has to wait to finish the computation taking advantage of all its devices. However,
there is the possibility to continue extending operations to be run on devices from the
application side since the task graph is managed by the runtime of oneAPI. The Coexecutor
Runtime is in charge of the creation and control of management threads (curved arrows),
which will be part of the operation mechanisms of the co-execution architecture until the
control is returned to the application. There is a thread belonging to the main manager,
with its core component called the Director. In addition, there are lightweight management
threads, termed Coexecution Units, requiring one per computing device.

The Director configures the Coexecution Units and manages both the Commander and
its communication with the rest of the entities. The Scheduler is instantiated and plugged
in with a policy established by the programmer, using one of the schedulers explained
in Section 4.3. The Commander is responsible for packaging the work, emitting tasks, and
receiving events, as part of the computation workflow with the Coexecution Units. This
process is termed as the Commander loop, and it follows the scheduling strategy defined by
the Scheduler.

Regarding the Coexecutor Runtime internal workflow, the Director instantiates and
configures oneAPI primitives and structures necessary both for the operation with oneAPI
runtime and used by the Scheduler itself. Among these are work and queue entities,
execution contexts, and mapping of memory structures between the application and the
runtime. These oneAPI structures and instantiations are shared by the components of the
Co-execution Runtime, favoring the reuse and detection of data types by the oneAPI runtime.
In parallel, the management threads of the Coexecution Units initialize the communication
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mechanisms within the runtime, as well as the request of devices and their configuration
with oneAPI.

The communication is bidirectional between Commander and each Coexecution Unit,
since it is co-executed with an independent scheduler that handles the decisions. As soon as
there is a Coexecution Unit ready to receive work and the management thread has finished
the initial phase, it establishes communication with the Commander loop. As the rest of
the devices are completing their initialization, they incorporate into the loop where the
scheduling phase starts.
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Figure 2. Coexecutor runtime considering an example of CPU-GPU dynamic co-execution.

In multi-core CPUs, where oversubscription has a significant impact, it might be con-
venient to disable the Director management thread via its configurable behavior and merge
its management as part of the CPU Coexecution Unit. This is a compromise in terms of the
oversubscription overhead and runtime acceleration when overlapping Commander tasks
with the computation or communication of Coexecution Units.

The memory model is presented in Figure 2b. This shows the separation between
structures and memory containers, taking into account the two types of strategies used:
USM or buffers of SYCL, although the Coexecutor Runtime supports the combination of
both during the co-execution. On the left side are shown the structures, C++ containers,
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and memory pointers used by the application, while the right side outlines the view of the
runtime. The Director and its Coexecution Units handle the allocations and configuration
of the memory space with oneAPI, and the programmer only has to request the use.
The runtime will distribute them in the oneAPI memory model, either by transferring
pointers, copying memory regions or by sharing unified memory blocks.

Since the co-execution proposal was designed and evaluated to run on host and accel-
erator devices, two operating modes of the runtime are distinguished regarding OneAPI
memory environments. If USM is used, the Coexecutor Runtime provides two scopes: a
larger one for a device (GPU) and a smaller for another (CPU). In this way, the memory
spaces initialized by the GPU are reused in the CPU using oneAPI primitives. On the other
hand, if SYCL buffers are used, the scope of each device will manage independent buffers
with memory regions that will be part of a higher container or structure, therefore, favoring
the recognition of disjointed data spaces by the compiler. Private memory allocations can
be made in both memory models, in the form of buffers and variables, where each field is
controlled independently by each Coexecution Unit and its oneAPI scopes.

Finally, both ways of operating can be combined, due to the regions of the kernel that
use the USM model and others that rely on buffers and variables. Coexecutor Runtime will
reuse the scope of each device to map any C++ containers and memory regions, each of
which will be governed by a memory model.

The interaction between the Coexecutor Runtime and oneAPI is shown in Figure 3.
Three stages are presented during the execution of the runtime, with two different queues
Q1 and Q2. It starts from a situation where the runtime has established two independent
parallel execution queues, due to the existence of two separate underlying architectures.
The nodes of each queue are managed by the runtime through the DAG, and they can be
in three different states: execution (blue), blocked waiting for resources (white), or finished
(gray with a dashed line). The Director waits for events related to the DAG or performs
independent tasks, such as resource management, receiving and sending notifications,
status control, or work reparation, some of which are essential within the Scheduler.
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Figure 3. Example of interaction with the DAG from oneAPI’s perspective while running a dynamic
approach with two queues.

By switching to stage 2, we can distinguish how Q2 is able to process nodes more
efficiently, so the Director collects results of the write operation and enqueues new nodes
of the DAG to the same queue, overlapping computation and communication. Collection
operations are dependent on the memory model, the type of operations (explicit or implicit)
and the amount of bytes used; thus, they could be fast, as in unified memory, or slow, when
using mixed models or while transferring large blocks. Finally, in stage 3, the end of Q1
is represented with the output data collection while, in Q2, a next writing task is added.
This is linked to the branch created in stage 2 as soon as its computation task has started,
thereby, distributing the DAG management among different time periods.
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4.3. Load Balancing Algorithms

Load balancing algorithms make it possible to distribute the work in different ways
among the devices that compose the heterogeneous system. Each algorithm offers dif-
ferent behaviors that determine the efficiency when computing a problem, influencing
the throughput, the synchronization penalties between host and devices, as well as the
efficiency of the balancing, as shown in Section 6. There are static and dynamic algorithms;
thus, it is necessary to provide a runtime flexible enough to accommodate such modes of
operation in an efficient manner.

In order to generalize and standardize the architecture, the two previous approaches,
static and dynamic co-execution designs, are unified in favor of the latter. To do this,
a comparison is made between the two when it comes to launching a package for each
device, as a static offline scheduling. As no overheads have been found due to the additional
management in the dynamic strategy with respect to the static one, we decided to discard
the latter due to its disadvantages and impossibility of implementing decisions dynamically.

In addition to the advantages described in the Section 4.2, the Coexecutor Runtime
architecture offers an efficient scheduling module (Scheduler) that allows the dynamic
strategies to be exploited easily, with a common internal scheduling interface and offering
negligible synchronization overheads. However, it increases the internal complexity of the
runtime, albeit it is hidden to the programmer, who receives a simple and straightforward
API to operate with. Nevertheless, the dynamic co-execution design is sophisticated
enough to use any static co-execution algorithm with no efficiency penalties as shown in
Section 6. Moreover, the runtime excels in solving the main problem exposed in Section 3
due to the performance achieved when using dynamic load balancing algorithms.

To enable dynamic policies to squeeze all the computing capacity out of the het-
erogeneous system, the Scheduler component is introduced as shown in Figure 2a. It
configures the behavior of the load balancer, the distribution and division of the work
packages (amount and region of data to be computed by each device), as well as the way
to communicate with the different execution devices.

Figure 4 depicts the relationship of the Coexecutor Runtime with the runtime of oneAPI,
all involved as part of the Commander loop. The Coexecutor Runtime internal communication
is performed between the management threads, either those associated with the devices
(right) or the global manager, usually associated with the Director (left). This view simplifies
the runtime of oneAPI and its internal DAG management, being considered as a single
entity, as part of the Coexecution Units (right). The Director performs a set of periodic
actions, such as loop managing events and operations, including preparing the next job to
be issued; collecting completed jobs; updating pending jobs; managing the end of a work
block and its completion; preparing and reusing the queue and command groups as well as
other oneAPI primitives; and updating the indexes, ranges, and offsets of memory entities,
as well as variables and containers.
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Figure 4. A Commander’s loop where the scheduling strategy is performed to coordinate the
behaviors of the Coexecution Units.

Every time a work package is prepared, the runtime adds a task in the DAG. Similarly,
with the completion of a job, the Commander receives the notification to collect and merge
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the output data, if needed. This operation can be lightweight in the case of using USM
or using implicit operations, delegating more responsibility to oneAPI. The emission and
reception of work is requested through a dispatch interface, as a way of unifying requests.
Finally, when there are no more pending jobs, the Commander will notify the Director to close
and destroy the primitives and management objects to return control to the application.

Based on the proposed architecture and its designed dynamic co-execution model,
three algorithms are implemented in the Scheduler [11,14,28]. The Static algorithm divides
the kernel in as many packages as devices are in the system, minimizing the number of
host–device interactions. The size of each package is proportional to the relative computing
speed of each device. Its drawbacks are that it is difficult to find a suitable division and
that cannot adapt its behavior dynamically to irregular applications. It has a minimum
management inside the Scheduler component because it only runs as many iterations in the
loop of events as devices are co-executing.

Regarding the strictly dynamic strategies, the Dynamic algorithm divides the data in a
number of packages prefixed by the programmer and all of them of a similar size, which
are assigned to the devices on demand, as soon as they are idle. This allows it to adapt
to the irregular behavior, but increases the overhead communication between host and
devices. On the other side, HGuided starts with large packages and decreases their size as
the execution progresses. The size of the initial packages is proportional to the computing
capacity of the devices. Therefore, it reduces the number of synchronization points while
retaining most of its adaptiveness.

Considering these dynamic policies inside the Scheduler, it is not possible to know in
advance the quantity of iterations, because it will depend on the execution parameters,
as well as the number and type of devices. These operations increase the management
overhead due to the operations related to the update of indexes and ranges, as well as
the division of the problem into independent regions. Finally, concerning the differences
in the operations carried out by the Commander, Dynamic will simplify the number of
instructions involved in the calculation of work packages compared to HGuided. This is
explained since the latter performs a more sophisticated algorithm that takes into account
certain conditions, including the computing power of each device. However, the calculation
overheads of the latter are compensated by the efficiency of its workload distribution policy.

4.4. API Design

The Coexecutor Runtime was designed to offer an API that is flexible as well as closely
linked to the SYCL standard, favoring the reuse of existing code and a slightly higher
usability. Furthermore, it offers two modes of computation from the point of view of the
programmers. The results of architectural and design decisions concerning expressiveness
and usability enhancement are materialized in both modes, providing distinct usage
facilities. The same SAXPY kernel is computed using both modes to compare its differences.
Both code snippets show the runtime usage from the perspective of the programmer, thus,
omitting the initialization of the problem and its data as well as the subsequent use of
the results.

The simple mode is shown in Listing 1, where an explicit embedded context (lambda
function) is used to perform the computation in a few lines of code. This shows an example
of use when computing the SAXPY problem simultaneously exploiting two different
devices, being, in this case, the CPU and GPU. Line 1 instantiates the coexecutor_runtime
prepared to compute a program using the HGuided balancing algorithm. In the next line,
it is configured to use both the CPU and GPU, giving a hint of the computational power of
35% for the CPU compared to the GPU. This value will leverage the algorithm to further
exploit the co-execution efficiency.

Next, the co-execution scope associated with the problem is provided (lines 3–14),
where a lambda function captures the values used by reference. This scope is executed
by each of the Coexecution Units, and therefore they must establish independent memory
reservations (or shared, if unified shared memory is exploited), using the values provided
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by the runtime itself through the package class. Line 6 opens an execution scope that
is associated to the kernel computation for each device. In lines 7 and 8, a read and
write access is requested for the previous memory region (buffer accessors), indicating the
execution space based on the given package size. Finally, lines 9 to 11 show the data-parallel
execution, traversing the execution space (R) and using the accessors and variables needed
(datav, input).

Listing 1. Coexecutor Runtime computing SAXPY with a dynamic algorithm using simultaneously
CPU and GPU.

1 coexecutor_runtime <hg > runtime;
2 runtime.config(CounitSet ::CpuGpu , coexecutor_runtime ::dist (0.35));
3 runtime.launch(data.size(), [&]( coexecutor_unit *counit , package pkg) {
4 sycl::buffer <int , 1> buf_input(data.data() + pkg.offset ,
5 sycl::range <1>(pkg.size));
6 counit ->dispatch ([&]( sycl:: handler &h) {
7 auto R = sycl::range <1>(pkg.size);
8 auto input = buf_input.get_access <sycl:: access ::mode::read_write >(h);
9 h.parallel_for(R, [=]( sycl::item <1> it) {

10 auto tid = it.get_linear_id ();
11 input[tid] = input[tid] * datav;
12 });
13 });
14 });

After executing the lines shown in the code snippet, the problem is computed simul-
taneously using both devices. The launch call blocks the program execution since it is a
synchronous operation from the point of view of the programmer. Therefore, the data
resulting from the computation is in the expected data structures and containers that the
programmer uses in the C++ program (vector input in the example) without the need to
create any new buffer exchange structures specific for the coexecution.

On the other side, the extended computation mode offers more flexibility to the
runtime and the kernel computation. It allows accessing extended methods and callback
functions, based on the CommanderKernel interface provided by Coexecutor Runtime as is
implemented in Listing 2 and instantiated and executed in Listing 3. The advantages of this
computation mode are the encapsulation of the program, increasing the maintainability,
and the enhanced flexibility regarding runtime operations.

Some of these allow the programmer to share buffers between devices (lines 8–10)
and perform custom operations at specific places during the Coexecutor Runtime execution
process, such as during the initialization and completion of the Director scope (lines 8 and
11), during the initialization or completion of the Coexecution Units or at the end of every
work package completed (lines 36–40).

The drawbacks are increased complexity and verbosity compared with the simple
computation mode; however, the latter is only recommended for smaller and easier kernel
algorithms. Moreover, in this example, the SAXPY computation is performed using a dy-
namic load balancing algorithm (dyn), splitting the workload into 128 packages, scheduled
at the runtime among the devices (lines 3–4 of Listing 3).

Finally, Coexecutor Runtime allows using oneAPI features and extensions, integrated
as part of the architecture of the runtime, presented in Section 4, or exposed via API calls
to the programmer, such as using unified shared memory by calling the alloc and free
methods of the runtime (shown in lines 7 and 14 of Listing 3). Taking into account the
runtime design principles as outlined in these two examples, the Coexecutor Runtime hides
all the implementation details, easing the use of its co-execution capabilities to exploit
easily any oneAPI program.
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Listing 2. SAXPY program definition using the CommanderKernel interface provided by Coexecutor
Runtime to implement the kernel behavior as an independent unit.

1 class SAXPY : public CommanderKernel {
2 public:
3 SAXPY(int *x_ptr , int *y_ptr , int *out_ptr , size_t data_l , float sc_fl)
4 : m_x_ptr(x_ptr), m_y_ptr(y_ptr), m_out_ptr(out_ptr),
5 m_sc(sc_fl), m_data_l(data_l){}
6

7 // pre -setup config: shared internally between Coexecution Units
8 void init(coexecutor_unit *counit){ // Director Scope
9 counit ->add_buffer <int , 1>(0, m_x_ptr , sycl::range <1>( m_data_l));

10 }
11 // void init_completed () {} /* @callback */
12 program_size size() { return m_data_l; }
13

14 void compute(coexecutor_unit *counit , package pkg){
15 std::cout << "[" << counit ->id() << "] computing ...\n";
16 sycl::buffer <int , 1> buf_x =
17 *counit ->get_buffer <int , 1>(0); // use all buffer
18 sycl::buffer <int , 1> buf_y(m_y_ptr+pkg.offset , sycl::range <1>(pkg.size));
19 sycl::buffer <int , 1> buf_out(m_out_ptr+pkg.offset ,
20 sycl::range <1>(pkg.size));
21 // communicate with the Commander to dispatch a transaction
22 counit ->dispatch ([&]( sycl:: handler &h){ // Director -CoExecUnit comm.
23 auto R = sycl::range <1>(pkg.size);
24 auto x = buf_x.get_access <sycl:: access ::mode::read >(h);
25 auto y = buf_y.get_access <sycl:: access ::mode::read >(h);
26 auto out = buf_out.get_access <sycl:: access ::mode:: discard_write >(h);
27 auto sc = (int)m_sc; // caching
28 h.parallel_for(R, [=]( sycl::item <1> it){
29 auto tid = it.get_linear_id ();
30 out[tid] = x[tid] * sc + y[tid];
31 });
32 });
33 }
34 /* @callback */
35 void compute_completed(coexecutor_unit *counit , package pkg){
36 std::cout << "[" << counit ->id() << "] package" << pkg.id
37 << "computed with throughput" << pkg.throughput << "\n";
38 counit ->dump_statistics (); // Stats per package - CoExecUnit related
39 }
40 private: // organized data:
41 int *m_x_ptr; int *m_y_ptr; int *m_out_ptr; size_t m_data_l; float m_sc;
42 };

Listing 3. Coexecutor Runtime using the CPU and GPU simultaneously to compute the SAXPY
kernel definition of the Listing 2. This example shows the exploitation of the extended computation
mode to enhance the flexibility of the runtime.

1 auto N = pow(10 ,8); std::vector <int > x; int* y; std::vector <int > out(N);
2

3 coexecutor_runtime <dyn > runtime;
4 runtime.config(CounitSet ::CpuGpu , 128); // dynamic; 128 packages
5

6 x.assign(N, 1);
7 y = runtime.alloc <int >(N);
8 // more assigns: foreach , assign x[i], y[i] ...
9

10 SAXPY program{x.data(), y, out.data(), N, 3.14159};
11 runtime.run(program);
12 // from here on, we have the data in our C++ containers
13

14 runtime.free <int >(y);
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5. Methodology

The experiments to validate the Coexecutor Runtime [29] ( https://github.com/oneAPI-
scheduling/CoexecutorRuntime, accessed on 28 September 2021) were carried out in two
nodes, labeled Desktop and DevCloud. Desktop was a computer with an Intel Core i5-7500
Kaby Lake architecture processor, with four cores at 3400 MHz, one thread per core and
three cache levels. Kaby Lake’s on-chip GPU was an Intel HD Graphics 630, a mid-range
(GT2) IGP integrated graphics processor, member of the family of Gen 9.5 GT2 IGP, with 24
execution units running between 350 and 1100 MHz. An LLC cache of 6 MB was shared
between the CPU and GPU.

On the other side, DevCloud was an Intel server node with an Intel Xeon E-2176G
processor, with 12 logical cores at 3700 MHz, two threads per physical core, and three cache
levels. Coffee Lake’s on-chip GPU was an Intel UHD Graphics P630 with 24 execution
units running up to 1200 MHz and sharing a 12 MiB LLC cache with the CPU.

To accomplish the validation, six benchmarks were selected to represent both regular
and irregular behavior. A kernel is defined as regular when different packages of the same
size take up the same execution time on a particular device and irregular in the opposite
case. Gaussian, MatMul and Taylor correspond to regular kernels, while Mandelbrot, Rap
and Ray Tracing are the irregular ones. Additionally, NBody is included as a special case,
since it exposes a peculiar dynamic behavior to be detailed in Section 6.4. Taylor, Rap, and
Ray Tracing are open source implementations, while the rest belong to the AMD APP SDK,
all ported to oneAPI. Table 1 presents the most relevant parameters of the benchmarks,
providing sufficient variety to validate the behavior of the runtime.

Table 1. Benchmarks and their properties.

Property Gauss Matmul Taylor Ray Rap Mandel NBody

Local Work Size 128 1.64 64 128 128 256 64

Read:Write buffers 2:1 2:1 3:2 1:1 2:1 0:1 2:2

Kernel args 6 5 7 11 4 8 7

Use local memory no yes yes yes no no no

Work-items (N ×105) 262 237 10 94 5 703 4

Mem. usage (MiB) 195 264 46 35 6 1072 26

Use custom types no no no yes no no no

The validation of the proposal was conducted by analyzing the co-execution when
using four scheduling configurations in the heterogeneous system. As summarized in
Section 4.3, Static, Dynamic, and HGuided algorithms were evaluated, labeled as St, Dy,
and Hg, respectively. In addition, the dynamic scheduler was configured to run with 5
and 200 packages. Finally, two different memory models were also tested: unified shared
memory (USM) and SYCL’s buffers (Buffers).

To guarantee the integrity of the results, 50 executions were performed per case with
an initial execution discarded to avoid warm-up penalties. Since the GPU is on-chip and
there are hardware policies regarding frequency throttling due to temperature thresholds,
some decisions were applied to stabilize the results. First, CPU turboboost was disabled,
and the CPU governor was set to performance. The CPU and GPU were set to 2400 and
600 Mhz fixed frequencies, respectively. Finally, every execution started when the CPU
socket temperature was under 38◦. In DevCloud, where some of the previous conditions
could not be applied, waiting times were introduced between executions, increasing the
duration of the experiments but stabilizing their measurements and results. The standard
deviation is not shown because it was negligible in all cases.

To evaluate the performance of the Co-executor Runtime and its load balancing algo-
rithms, the total response time, as well as the response time of each of the devices, were

https://github.com/oneAPI-scheduling/CoexecutorRuntime
https://github.com/oneAPI-scheduling/CoexecutorRuntime
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measured, including kernel computing and data transfer. Then, three metrics were calcu-
lated: balancing efficiency, speedup, and heterogeneous efficiency. The former measures
the effectiveness of the load balancing, calculated as TGPU

TCPU
, where TGPU and TCPU are the

execution time of each device. Thus, the optimum is 1.0, meaning both devices finish
simultaneously without idle times. The speedup is computed as S = TGPU

Tco−exec
, because the

GPU is the fastest device for all the benchmarks. Due to the heterogeneity of the system
and the different behaviors of the benchmarks, the maximum achievable speedups depend
on each program. These values are computed as:

Smax =
1

maxn
i=1{Ti}

n

∑
i=1

Ti

Additionally, the heterogeneous efficiency was computed as the ratio between the
empirically obtained speedup and the maximum achievable speedup for each benchmark.
HE = S

Smax
[31]. Furthermore, a scalability analysis of the co-execution with respect to the

problem size is presented. To do this, the total execution time of the heterogeneous system
using co-execution and of each of the individual devices was measured, increasing the size
of the problems.

Finally, two metrics were used to assess the behavior of co-execution with respect
to energy. The energy consumption of the whole system was measured using RALP
counters, providing measurements in Joules. On the other hand, the energy efficiency was
calculated using the Energy-Delay Product metric, which, as its name suggests, is obtained
by multiplying the energy consumed by the response time. Since the values obtained
have a very wide range, this metric is provided normalized with respect to the EDP of the
only-GPU execution.

6. Validation

This section presents the experimental results carried out to evaluate performance
and energy when co-executing, materialized with three scheduling policies. A scalability
analysis was also performed for the CPU, GPU and the best scheduling algorithm. Finally,
a special case is detailed when using dynamic approaches for the NBody benchmark.

6.1. Performance

As explained above, three different metrics were used to assess the performance of
co-execution. They were the balancing efficiency, speedup, and heterogeneous efficiency
achieved by co-execution in the CPU-GPU system, with respect to the only-GPU execution.
The values measured in the experiments for the two different architectures evaluated,
Desktop and DevCloud, are shown in Figures 5–7, respectively.

The abscissa axes show the benchmarks, each one with four scheduling policies
and two memory models, as defined in Section 5. Moreover, the geometric mean for
each scheduling policy is shown on the right side (average). The main conclusion that
is important to highlight is that co-execution is always profitable from a performance
point of view, as long as it is done with dynamic schedulers, and even more if using
unified memory (USM), as the geometric mean summarizes for these benchmarks and
scheduling configurations.

Regarding the balancing efficiency, the optimal is 1.0, where both devices finish
simultaneously without idle times. Any deviation from that value means more time to
complete for one device compared with the other. Generally, the imbalance is below 1.0
due to the overheads introduced by the CPU because it has to process part of the workload
as a device, but also to manage the Coexecutor Runtime, as the host. In Desktop, it rarely
completes its computation workload before the GPU finishes, since the latter requires more
resource management by the host, increasing the CPU load. As the number of cores in the
system increases, the management cost of the runtime is reduced, benefiting the CPU and
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requiring more work than is allocated to it. This behavior can be appreciated when using
the DevCloud node, with 12 logical cores, compared to the 4 in Desktop.

Speedup allows assessing how much faster co-execution is compared to GPU-only
execution, while heterogeneous efficiency helps understand how well the whole system
is being utilized. Therefore, the latter metric allows comparing performance on both
architectures, which cannot be done with speedup, as speedup in a heterogeneous system
is always relative to the computational power of each device.
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Figure 5. The balancing efficiency for a set of benchmarks when doing CPU-GPU co-execution in
Desktop and DevCloud nodes.
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Figure 6. Speedups for a set of benchmarks when doing CPU-GPU co-execution in Desktop and
DevCloud nodes.

Analyzing the different load balancing algorithms, it can be seen that the Static
offers the worst performance, even in regular applications where it should excel. This
is because the initial communication overhead caused by sending a large work package,
leads to a significant delay at the beginning of the execution, strongly penalizing the final
performance. As can be seen later in the Section 6.3, even in a single, full kernel offload on
GPU, considerable CPU (host) management is required.

Therefore, if CPU intensive is being performed without the possibility of alternating
runtime management with kernel computation, as is the case with static co-execution,
the whole system will generally be penalized. In theory, this algorithm should cause less
communication and synchronization overhead. However, it fails to balance the workload
properly, as can be seen in Figure 5, resulting in very low speedups, with averages below
or equal to 1.0 in both architectures, which means that co-execution is not profitable.

It is important to note that static algorithms and, in general, all those with low load
balancing efficiency, such as those that distribute few packages among the devices (Dyn5),
offer worse performance (and energy consumption, as it will be shown) with oneAPI.
This is because Coexecutor Runtime and oneAPI offer excellent performance in workload
management when dynamic scheduling policies are exploited, even when there are many
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or small packages, two cases that penalize greatly in other runtimes and technologies [14,
17,28].
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Figure 7. Efficiency for a set of benchmarks when doing CPU-GPU co-execution in Desktop and
DevCloud nodes.

Regarding dynamic algorithms, they provide good results in general, especially when
the USM memory model is used. However, they have the drawback that the number of
packages for each benchmark has to be carefully selected. A very small number of packages
can lead to higher imbalances causing a performance penalty, as can be seen in Gaussian,
Mandelbrot or Ray, in the case of Dyn5. At the other extreme, a very large number of
packages increases the communication overhead, negatively impacting performance, as in
Gaussian, Taylor, and MatMul with Buffers.

In between, there is a tendency that the greater the number of packages, the better
the balancing. Moreover, in such cases with good balancing efficiency, it achieves better
performance, especially if USM is used. This is an expected behavior because the pack-
ages are smaller, and their computation is faster, giving less chance of imbalance in the
completion of both devices. This is an interesting behavior since the Coexecutor Runtime is
delivering high performance when using dynamic strategies due to the low overhead of
the Commander loop when managing packages and events. This behavior is also found and
detailed in the special case of NBody, explained later in Section 6.4.

The HGuided algorithm offers the best scheduling policy, both for regular and irregu-
lar kernels, and for the two architectures evaluated as Desktop and DevCloud. This result
is achieved due to a combination of two properties. On the one hand, its excellent balancing
efficiency, that on average is very close to 1, as can be seen in Figure 5. On the other hand,
the Co-executor Runtime does a great job in overlapping computation and communication,
thus minimizing the impact of the synchronization and communication overhead inherent
to dynamic algorithms.

For example, HGuided scheduled, on average, 42 and 53 packages for Mandelbrot
and Ray, while the best dynamic configuration (Dyn200) used 200 packages for both
cases. Although the balancing efficiency was good in both scheduling configurations,
the reduction of communications and synchronization mechanisms boosted the HGuided
strategy compared with the Dynamic one.

HGuided yielded the best performance in all the analyzed benchmarks with average
speedup values of 1.65 and 1.26 in the Desktop and DevCloud architectures, respectively.
Therefore, the co-execution is able to squeeze the maximum performance out of all the
resources available in the system, such as the CPU and GPU shown in this validation,
offering an efficiency of 0.92 on Desktop and 0.89 on DevCloud. Moreover, since it is a dy-
namic algorithm with high balancing efficiency, it does not require any a priori parameters,
simplifying the programming effort.

Considering the memory models, there was a general improvement in balancing
and performance when using USM compared with Buffers. It can be observed than USM
performs much better than Buffers on regular kernels and with dynamic strategies; how-
ever, this difference practically disappears on irregular kernels.
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Finally, it is important to note that there is generally a tendency for good balancing
efficiency to be related with increased speedups. However, it is important to qualify this
pattern, since the validation presents two different architectures and an interesting variety
of benchmarks with distinct properties, as indicated in Section 5. For this reason, there are
cases with imbalance issues; however, the total work is completed in less time, because the
device that receives more work executes faster.

Thus, it achieves more throughput per packet, fewer synchronizations and commu-
nications, as well as less host management overheads, enhancing the total computation.
This behavior is observed in MatMul, Ray, and Taylor for dynamic algorithms, specifically
in configurations that include too many packages (Dyn200), where there is an increase in
host–device communications. In such cases, the workload distribution and scheduling
management can penalize performance, especially if Buffer-type structures are being used
instead of shared memory optimizations (USM). This is also the main reason why HGuided
excels since it solves these problems.

6.2. Scalability

This section presents a scalability analysis of the Co-executor Runtime, varying the size
of the problems. To this aim, Figure 8 shows the evolution of the execution time of each
benchmark with respect to the size of the problem, in different configurations: CPU-only,
GPU-only, and co-executing using HGuided scheduler.

The most important conclusion to be drawn is that, in all the cases studied, there was
a turning point from which co-execution improved the performance of the fastest device.
For very small problem sizes, the overhead introduced by the Co-executor Runtime cannot
be compensated by the performance increase provided by the co-execution. These points
are more noticeable in Gaussian, Mandelbrot, Ray, and Taylor, because the differences in
computing capacity between CPUs and GPUs were much more pronounced (13.5×, 4.8×,
4.6×, and 3.2×, respectively).

Experiments were done considering the memory models, but from a scalability and
representation point of view, it is difficult to discern the differences between USM and
Buffers. As reflected in Section 6.1, USM offers better efficiencies, and thus it was chosen to
show scalability using only this memory optimized mode.

Matmul is a special case since, by increasing the size of the problem, a point is reached
where co-execution obtains the same performance as the GPU-only. A detailed analysis
of the hardware counters indicates how the LLC memory suffers constant invalidations
between CPU and GPU. Temporary locality of the shared memory hierarchy is penal-
ized when co-executing with very large matrices, because the GPU requests memory
blocks aggressively.
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Figure 8. Scalability for CPU, GPU and CPU-GPU coexecution using the Coexecutor runtime with
its HGuided scheduling policy and USM memory model for Desktop and DevCloud nodes.

6.3. Energy

This section presents the analysis of the energy consumption as well as the energy
efficiency of the Desktop system, both when using only the CPU and the GPU and with
different configurations of co-execution runtime. The DevCloud node does not offer any
possibility to measure power consumption, such as RAPL counters, perf events, or any
Intel system tools. Therefore, this section focuses on analyzing the energy behavior of the
Desktop node when using the oneAPI Coexecutor Runtime.

Figure 9 presents the energy consumption with each bar composed of up to three
regions representing the energy used by: the CPU cores, the GPU, and the rest of the CPU
package together with the DRAM (uncore + dram).
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Figure 9. The energy consumption by cores, GPU, and the other units of the package with the DRAM consumption for the
Desktop node.
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Figure 10. The energy efficiency compared with GPU (more is better) for the Desktop node.

Considering the average energy consumption, using only the GPU is the safest option
to ensure minimum energy consumption. This is because the energy savings achieved
by the reduction in execution time due to co-execution, is not sufficient to counteract
the increase in power consumption caused by the use of CPU cores. However, there are
also benchmarks, such as Taylor and Rap, where co-executing does improve the power
consumption over GPU, and others where co-execution and GPU-only have similar energy
consumption, such as MatMul.

This is because the computational powers between the two devices are considerably
close, achieving very balanced distributions that result in efficient energy consumption.
Taylor has a computational power ratio of 0.44:0.56 (CPU and GPU), while Rap has a ratio
of 0.39:0.61. The case of MatMul is particular as it is due to LLC sharing penalties as is
explained in Section 6.2.

Regarding the schedulers, there is a clear correlation between performance and energy
consumption. Therefore, the algorithms that offer the best performance in co-execution are
also the ones that consume the least energy. On the contrary, the schedulers that cause a
great deal of imbalance by giving more work to the CPU, spike the energy consumption,
due to the higher usage of CPU cores, like Gaussian and Mandelbrot with Dyn5, and RAP
with Static.

An interesting behavior can be observed in MatMul. The balancing efficiency using
dynamic algorithms is very close to 1.0 in all cases. However, the performance obtained
is very different when using buffers compared with USM. The explanation is found by
analyzing the memory power consumption results shown in Figure 9. It can be seen that
the memory power consumption (and therefore the memory usage) in the case of buffers is
much higher than in the case of USM. The memory power consumption results correlate
perfectly with the performance results. Taylor presents a similar behavior.

Another interesting metric is the energy efficiency, which relates performance and
energy consumption. In this case, it is represented by the ratio of the Energy-Delay Product
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of the GPU with respect to the co-execution, presented in Figure 10. Therefore, values
higher than 1.0 indicate that the co-execution is more energy efficient than the GPU.

Looking at the geometric mean, it can be concluded that co-execution is 72% more
energy efficient than the GPU execution, using the HGuided scheduler and the USM
memory model. Furthermore, this metric is favorable to co-execution in all benchmarks
studied, reaching improvements of up to 2.8× in Taylor and RAP. Thus, while co-execution
consumes more energy in absolute terms on certain benchmarks, the reduction in execution
time compensates for this extra consumption, thus, resulting in a better performance-
energy trade-off.

6.4. NBoby Benchmark

NBody presents an outstanding behavior, and a detailed study of the characteristics of
the application, together with an evaluation of the throughputs, highlighted the importance
of dynamic strategies. Figure 11 shows the speedups when using a single device, the CPU
and GPU independently, for each supported memory model, when using different package
distributions with the Dynamic scheduler. Each of the graphs shows five configurations
of the scheduler, with 5, 50, 100, 400, and 800 packages of the same size, all dynamically
scheduled. The abscissa axis shows the speedup with respect to the execution of a single
package offloaded with the full problem size for a single device (Single). In addition, there
are four rows of graphs, showing the results for four different numbers of molecules to
compute in the NBody simulation, considering increasing problem sizes, from size 1 to 4.

It can be contrasted how NBody offers an extraordinary behavior when using the
dynamic strategy offered by Coexecutor Runtime, generally offering higher speedups as the
number of packages increases. However, when using a very high number of packages,
a turning point is reached, and the speedup starts to drop. This behavior occurs earlier
when using Buffers than when using shared memory USM. Additionally, the speedups
obtained are not as good in the CPU compared with the GPU; however, on the other hand,
the difference between memory models is not as important when using the CPU device.

In bigger problem sizes (Size4), the larger package configurations, such as Dyn400 or
Dyn800, obtain even better speedups, especially on CPU. Therefore, the inflection point for
these cases is at an even higher number of packages where there are too many packages,
which increases the communications penalization, thus, degrading the overall performance.

Furthermore, even if the management and synchronization are increased, the over-
head is considerably reduced when using USM. NBody’s behavior is excellent due to its
kernel characteristics, architecture and efficiency of the co-execution runtime, which is
able to overlap computation and communication with the maximum possible throughput.
In addition, it is possible that the implementation of DPC++ and the oneAPI extensions rec-
ognize the independence of the data computation given by the multi-threaded architecture
of Coexecutor Runtime, generating multiple command queues to transfer memory regions
and perform parallel kernel executions, overlapping computation and communication,
as has been seen in other runtimes [14,17,28,30].

The results presented in this section are from the Desktop node, but similar behaviors
are found in the DevCloud server.
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Figure 11. NBody speedups when using single-device dynamic policies for a set of increasing
problem sizes. Baselines are single CPU or GPU execution per memory model.

7. Related Work

Intel oneAPI is a specification and framework to unify programming across its com-
pute product portfolio (CPUs, GPUs, NPUs, and FPGAs) with a single set of APIs. Al-
though its release is very recent (end of 2019), it has quickly attracted the attention of
industry and the scientific community, which works on heterogeneous systems.

A SYCL-based version of the well-known Rodinia benchmark suite was developed
in [32], using Intel oneAPI toolkit, to track the development of the SYCL compilers and pro-
vide programs for the study of heterogeneous systems. Christgau and Steinke [33] used
both the compatibility tool dpct of oneAPI, as well as SYCL extensions for the CUDA base
code of the easyWave simulator.

A study of the performance portability between different Intel integrated GPUs, of a
computationally intensive routine derived from the Hardware Accelerated Cosmology
Code (HACC) framework is presented in [34]. The authors used oneAPI to build the
OpenCL and SYCL programs. Moreover, Wang et al. evaluated the portability effort and
performance achieved with oneAPI for a medical ultrasonic image processing application
using a GPU and a FPGA [4].

A debugger based on GDB for SYCL programs that offload kernels to CPU, GPU,
or FPGA emulator devices, was developed as part of the oneAPI distribution [35]. Due to
the code unification provided by SYCL, this debugger allows working on both the main
program and the kernel, simultaneously. DPC++ as part of oneAPI, has proposed and
implemented several extensions on top of SYCL [25]. Some of the extensions are devoted
to improving application performance, but all of them improve programmer productivity,
by integrating easily into existing C++ applications and by simplifying common patterns
found in SYCL and C++. A study about how oneVPL (oneAPI Video Processing Library)
is used in Certiface technology designed to combat fraud and protect honest people by
ability to differentiate between a live person and a recorded video is presented in [36].

As far as we know, the only work that addresses co-execution with oneAPI is [37].
The authors extended the Intel TBB parallel_for function to allow simultaneous execution of
the same kernel on CPU and GPU. They implemented three schedulers on top of oneAPI,
static, dynamic, and adaptive LogFit. The main differences with our work are that we
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provided a pure oneAPI architecture (without TBB) and presented a rich variety of kernels,
both regular and irregular, which revealed differences in the behavior of the schedulers.

8. Conclusions

Hardware heterogeneity complicates the development of efficient and portable soft-
ware, due to the complexity of their architectures and a variety of programming models.
In this context, Intel developed oneAPI, a new and powerful SYCL-based unified pro-
gramming model with a set of domain-focused libraries, facilitating development among
various hardware architectures.

This paper provides co-execution to oneAPI to squeeze the performance out of hetero-
geneous systems. This new and powerful unified programming model, based on SYCL, is
a proposal from Intel to facilitate the programming of heterogeneous systems. In this work,
the mechanisms of operation of the oneAPI runtime are exposed, as well as the data-parallel
strategies to simultaneously use all devices. The Coexecutor Runtime overcomes one of the
main challenges in oneAPI, the exploitation of dynamic decisions efficiently. Three load
balancing algorithms were implemented on this runtime, showing the behavior with a set
of regular and irregular benchmarks.

Furthermore, a validation of performance, balancing efficiency and energy efficiency
was conducted, as well as a scalability study. Two heterogeneous systems were used to
validate the runtime: a commodity desktop node and a HPC server. The results indicate
that co-execution is worthwhile when using dynamic schedulers, specifically when using
HGuided algorithm and unified memory. This was achieved due to efficient synchro-
nization, architecture design decisions, computation and communication overlap, and the
underlying oneAPI technology and its DPC++ compiler and runtime.

Co-execution was validated with CPUs and integrated GPUs; however, the proposed
runtime is also capable of using other types of architectures that will be incorporated into
oneAPI. Therefore, in the future, the co-execution runtime will be extended to evaluate new
heterogeneous devices, such as FPGAs and discrete GPUs. New load balancing algorithms
will be designed, taking advantage of the benefits offered by this programming model
and the Coexecutor Runtime, since they can further exploit the performance due to the
contributions related to the dynamic mechanisms presented in this paper.
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