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Abstract— This work investigates the capabilities of oscillators 

based on step-impedance and slow-wave structures to sense 
dielectric constants. The material under test (MUT) is placed over 
the structure and the objective is to achieve a high sensitivity of the 
oscillation frequency with the advantage of a low phase noise, 
enabled by the high-quality factor of the structure. With the aid of 
simplified analytical models, we will initially study the variation of 
the resonance frequency of a step-impedance transmission line 
with the dielectric constant of the MUT, paying attention to the 
influence of the number of line sections. The study includes the 
derivation of analytical expressions for the sensitivity of the 
resonance frequency. Next the structure will be connected to the 
oscillator active core, which will be modeled with a numerical 
nonlinear admittance function extracted from harmonic-balance 
(HB) simulations. The resulting semi-analytical formulation will 
provide insight into the variation of the oscillation frequency and 
amplitude with the dielectric constant of the MUT, as well as the 
variation of the phase-noise spectral density. It will also enable a 
versatile test and optimization of the various structures to achieve 
a high sensitivity with a low phase noise. The methods have been 
successfully applied to a FET-based oscillator at about 2 GHz. 

 
Index Terms—Slow-wave structure, oscillator, bifurcation. 

I. INTRODUCTION 

ICROWAVE sensors are very sensitive to the 
material properties, have a low cost and are 
compatible with planar fabrication processes [1]-[8]. 
A common sensing mechanism is the variation of the 

resonance frequency of a passive structure [1]-[4] in the 
presence of the material under test (MUT). Some examples are 
the works [1]-[2], which make use of step-impedance 
resonators and [3]-[4], which make use of split ring resonators 
[3]-[4]. On the other hand, the recent works [5]-[9] are based on 
the detection of phase variations [10]-[12] when exciting the 
system at a constant frequency. In those sensors, which operate 
in either transmission or reflection mode, the phase varies in the 
presence of the MUT. Implementations based on meandered 
lines [5], open-ended step-impedance lines [6]-[7], and slow-
wave structures [8]-[9] have been demonstrated, analyzing, in 
each case, the phase sensitivity to the MUT dielectric constant. 
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The dielectric covers at least a part of these structures and very 
good results are obtained in transmission mode, for slow-wave 
structures [8]-[9], and reflection mode, for open-ended step 
impedance lines [6]-[7]. On the other hand, the work [13] 
presents a detailed analysis of oscillators containing a slow-
wave structure [14]-[18], which enables a low phase-noise 
spectral density. In fact, oscillator-based sensors [19]-[29] have 
the advantage of a self-sustained operation, in which the MUT 
variations give rise to a change in the oscillation amplitude and 
frequency [21]-[22], easily measured with the aid of amplitude 
or frequency detection interfaces; for instance, frequency 
variations can be detected from the control voltage of a 
synthesizer and amplitude variations by means of a power 
detector or through the control voltage of a feedback loop 
[10],[21],[25]-[28]. 

In oscillator sensors, the accuracy will be degraded by the 
phase noise, which will affect the measurement reliability and 
repeatability. Using a passive structure with a high frequency 
selectivity, the oscillator will both exhibit a low phase noise and 
be able to track the variation of the structure resonance 
frequency with the MUT dielectric constant. Thus, this work 
extends [13] with the investigation of the possible use of 
oscillators based on step-impedance transmission lines [6]-[7] 
or on slow-wave structures [8]-[9], [14]-[18] to implement low-
cost dielectric sensors. Emphasis will be placed on the 
standalone oscillator operation since, as stated, frequency and 
amplitude detection methods have been established in the 
literature.   

As in [5]-[9], the material to be sensed will be placed over 
the step-impedance or slow-wave structure. In the investigation 
presented here, it will cover the entire structure, though it would 
be possible to particularize the study to some sections only. 
With the aid of simplified analytical models, we will initially 
study the variation of the resonance frequency of a step-
impedance transmission line with the dielectric constant of the 
MUT, paying attention to the influence of the number of line 
sections, as well as the structure geometry. The study includes 
the derivation of analytical expressions for the sensitivity of the 
resonance frequency to the MUT dielectric constant, defined 
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here as the derivative of this resonance frequency with respect 
to the dielectric constant. Then the structure will be connected 
to the oscillator active core, which will be modeled with a 
numerical nonlinear admittance function extracted from 
harmonic-balance (HB) simulations [13], [30]. This nonlinear 
admittance will be combined with the passive linear one of each 
sensing structure, initially described in an analytical manner. 
This formulation disregards the impact of the structure at the 
second and higher harmonic terms. Provided the harmonic 
content is low at the analysis node, it will constitute a valid 
approach, as will be demonstrated through a rigorous 
comparison with harmonic balance (HB) considering multiple 
harmonic terms. The various sensing structures will be 
introduced at the same node of the oscillator active core, so the 
nonlinear admittance function will be the same in all cases. The 
phase-noise spectral density will be calculated through a 
perturbation analysis of the semi-analytical formulation.  

The presented semi-analytical formulation provides insight 
into the variation of the oscillation frequency and amplitude 
with the dielectric constant, as well as the oscillator capability 
to track the resonance frequency; it also clarifies the mechanism 
for the oscillation extinction and the impact of losses. Although 
step-impedance transmission lines of the kind in [6]-[7] and 
slow-wave structures have been considered, the main 
conclusions and analysis methodologies should be applicable 
when basing the oscillator on other resonators.  

All the tests will be carried out on a transistor-based 
oscillator, operating at about 2 GHz. The practical design will 
rely on a realistic description of the sensing structures using 
multi-layer models [31]. In these conditions, the full oscillator 
circuit will be analyzed through a separate extraction of the 
nonlinear and linear admittance functions describing the active 
core and the sensing structures, respectively. These functions 
will be combined in a steady-state oscillation equation, solved 
through a contour-intersection procedure [32]. This will enable 
a straight-forward tracing of the solution curves, including any 
possibly multi-valued sections. Comparisons with results based 
on electromagnetic simulations of the planar structures, fully 
compatible with these novel analysis methods, will also be 
carried out. Several prototypes have been manufactured and 
measured, obtaining a very good agreement with the analysis 
results.  

The manuscript is organized as follows. Section II presents 
the analysis the step-impedance transmission lines and the 
sensitivity of their resonance frequencies to the MUT dielectric 
constant. Section III describes the oscillator behavior, focusing 
on the sensitivity of the oscillation frequency to the dielectric 
constant and the phase-noise spectral density. Section IV 
presents the practical design, which considers both a step-
impedance transmission line and a slow-wave structure; it 
includes electromagnetic simulations and measurements.   

II. RESONANCE ANALYSIS OF THE PLANAR STRUCTURES 

 The oscillator will be analyzed in terms of admittance 
functions, so each structure will be described with its passive-
linear input admittance Yin, calculated between the node to be 
connected to the oscillator and ground (Fig. 1). Note that this 
admittance will depend on the excitation frequency and the 
unknown dielectric constant mut of the MUT, which will be 

placed over the structure, as in [5]-[9]. In the following 
derivation we will assume that the MUT covers the whole 
structure, though the formulation can be particularized to some 
sections only.  

As shown in Fig. 1, we will initially consider the cases of an 
ordinary /2 resonator and several open-ended step-impedance 
lines with an even and odd number of sections, synthesized to 
obtain the same resonance frequency (2.4 GHz) in the absence 
of the MUT. Note that the electrical length of the final section 
will be different for an odd number of stages and for an even 
number (Fig. 1).  
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Fig. 1. Step-impendence transmission lines considered in the semi-analytical 
investigation. 

 

A. Input admittance 

The open-ended step-impedance transmission lines have the 
same structure considered in the practical implementations of 
[6]-[7], though here the goal will be to predict the variation of 
their resonance frequencies with mut (instead of the phase-shift 
of their reflection coefficient). The electrical lengths, oi, will 
be calculated at a given reference frequency fro. In the absence 
of the MUT, for an odd number of stages, the electrical length 
of the most external section will be 1 =o1 = , with a high 
characteristic admittance Yo1; in turn, for an even number of 
stages, the electrical length of the most external section will be 
1 =o1 = /2, with a low Yo1. In the two cases, the rest of 
electrical lengths (for i > 1) will be oi = /2, with alternating 
low and high characteristic admittances Yoi. For each number n 
of transmission-line sections, the corresponding input 
admittance Yin,n (required for the oscillator analysis of Section 
III) is obtained from the following recursive expression: 
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Note that the above analytical model neglects losses, so all 
the above functions are purely imaginary. The physical lengths 
of the transmission line sections are calculated from: 

( / )
oi

i
ro eff i

l c
W h


 

                            (2) 

where ro = 2fro and ( / )eff iW h  is the effective dielectric 

constant of the ith section, having a line width Wi and dielectric 
height h in the absence of the MUT (mut = 1). When a material 
with the dielectric constant mut covers the ith section of the 
planar structure, its effective dielectric constant can be 
approached with [33]-[34]: 
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where zero metal thickness and a sufficiently large (ideally 
infinite) height of the dielectric mut are assumed. As shown 
above, Fi is a geometric factor that depends on the ratio Wi/h 
between the host microstrip width and substrate height. It 
increases with Wi/h and varies between 0.04 and 1. Note that 

( / )eff iW h  in (2) is a particular case of (3) with mut = 1. In the 

presence of the MUT, the electrical lengths of the line sections 
at a given frequency  are: 

( , ) ( , / )
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          (4) 

which for fixed li and Wi will depend on both the excitation 
frequency  and mut. Because the host substrate height is the 
same for all the transmission-line sections, we will drop the 
dependence on h. In the presence of the MUT, the characteristic 
admittances Yoi will also vary. Note that they also depend on 
Wi/h [35]. They can be expressed as: 

          ( , )  (1, ) ( , ) / ( )oi mut i oi i eff mut i eff iY W Y W W W          (5) 

where (1, )oi iY W  is the characteristic admittance for mut = 1. 

As an alternative model, one can use an ordinary microstrip line 
(without the upper-layer substrate) and artificially modify the 
value of its dielectric constant to obtain the same effective one 

( , / )eff mut iW h  . In the equivalent transmission line, instead of 

r, we will use  ,r i , which is calculated by equating:  
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(6) 
where we have assumed 1mut   in the second equation, 

corresponding to an ordinary transmission line. Solving for ,r i  

one obtains: 
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In the planar structures of Fig. 1, the reference frequency fro 
is 2.4 GHz, so they will all exhibit this resonance frequency for 
mut = 1. Fig. 2(a) presents the frequency responses obtained for 
one (/2 resonator), two and three sections under mut = 3 and 
3.1. For mut = 3, and in the range 1 GHz to 3 GHz, the 
resonance frequencies (zero crossing with positive slope versus 
the excitation frequency) for one, two and three sections are 
2.23 GHz, 2.11 GHz, and 2.21 GHz, respectively. Note that for 
each structure there are (ideally) infinite resonance frequencies, 
and the distance between these frequencies will decrease with 
the number of line sections. The existence of several resonances 
in the expected oscillation interval may give rise to undesired 

oscillation modes, which should be kept in mind at the 
oscillator-design stage.  

With n = 1, the resonance condition is: 
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For n = 1, the targeted resonance frequency is the one 
corresponding to k = 1. The denominator of (8) is the square 
root of a straight line in mut with the positive slope (1F1)/2. 
Thus, the resonance frequency decreases with mut. For F1 close 
to 1 (a high value of W/h), the first term in the square root will 
be small, so one can carry out a Taylor series expansion of first 
order: 
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        (9) 

The resonance frequency will exhibit a more linear variation 
for F1 close to 1, but the sensitivity to mut will be smaller. In 
fact, the sensitivity will increase for a lower F1; thus, for a 
narrower transmission line.  
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Fig. 2. Frequency responses obtained with one, two and three sections, for 
mut = 3 (solid line) and 3.1 (dashed line). 

 
Using the complete expression (9), we have traced the 

resonance-frequency curve versus mut. This curve has been 
validated with the one obtained through a numerical method 
that will be very useful under a higher number n of line sections. 
To obtain the variation of r versus mut, we perform a double 
sweep in mut and r and calculate the following zero-value 
contour: 

     ,Im ( , ) 0in n mut rY                            (10) 

In the study performed here, the dielectric constant mut has 
been swept between 1 and 12, and the frequency has been swept 
in the targeted operation interval, going from 1.4 GHz to 2.4 
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GHz. The curves resulting for different values of W1 (and, thus, 
of F1) are shown in Fig. 3. The results obtained with the 
complete analytical expression (9) and with the numerical zero-
value contour (10) are overlapped in all cases. In agreement 
with the previous derivations, the sensitivity increases when 
reducing F1. 

As the number n of line sections increases, there is a higher 
complexity in the expression of the input admittance versus 
both the excitation frequency  and mut [see (1)] Nevertheless, 
and as shown in the following, the curve r versus mut will 
either exhibit small variations (odd number of sections) or no 
variation (even number). 
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Fig. 3. Case of a /2 resonator. Variation of the resonance frequency r versus 
mut. Dependence of F1. Results obtained with the complete analytical 
expression (9) and the numerical zero-value contour (10) are overlapped in all 
cases.  

B. Sensitivity of the resonance frequency to mut 

To facilitate the analysis of the sensitivity of the resonance 
frequency r to mut, we will express the input admittance of the 
lossless configurations in Fig. 1 in terms of the reflection 

coefficient ( , )1 ref mut rje     . At the resonance frequency 
obtained for each mut, we will have:  
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since 0ref  . To get some insight into the sensitivity of r 

with respect to mut we will linearize the various structures about 
mut = 1. This linearized analysis is conceptually similar to the 
one carried out for the phase shift in [7], though here, instead of 
this phase shift, we are addressing the resonance frequency r. 
For this analysis, we will consider small increments about the 
resonance frequency ro, at which mut = 1 and the electrical 
lengths have their nominal values oi. If the increments are 
small enough to enable the linearization of ( , )mutY   , we will 

have: 
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And the frequency sensitivity, defined here as the derivative 

/r mut   , can be calculated as: 
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Applying the chain rule: 
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So the derivative of r with respect to mut is: 
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(15) 
We will initially consider the simplest case of a /2 resonator. 

In this case, 12 ( , )ref mut      and: 
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Therefore, the sensitivity is: 
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In agreement with our previous discussions, the sensitivity 
increases for lower F1 and, thus, for a narrower width W1. For 
W1 = 3.77 mm, the frequency sensitivity is 

7/ 9.6  H10 zr mutf       where / (2 )r rf   . This value 

agrees with the tangent at mut = 1 of the numerical curve 
obtained through (10), shown in Fig. 4(a).   

In the case of two sections, we can obtain ref by introducing 

Yin,2 in the expression for the reflection coefficient

,2 ,2( ) / ( )c in c inY Y Y Y     and calculating the corresponding 

phase. Then, the sensitivity of the resonance frequency r to 
mut is obtained from: 
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The derivatives of ref with respect to the electrical lengths 
are: 
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On the other hand, the derivatives of i in (18) with respect 
to mut and  are calculated from (4) in a straightforward 
manner. Replacing (19) and those derivatives in (18), one 
obtains: 
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The two contributions in the bracket increase for a lower Fi, 
where i =1,2, and thus, for narrower Wi. Since W1 is narrower 
than W2, the factor F1 is smaller than F2 and because Yo2 > Yo1, 
the first term will be dominant. Because we are adding two 
functions of the same sign, one can expect the sensitivity to be 
higher than the one obtained with the /2 resonator. For the 
widths W1 = 0.24 mm, W2 = 3.77 mm, the sensitivity is 

8/ 1.7  H10 zr mutf      , which agrees with the tangent at 

mut = 1 of the numerical curve obtained through (10), shown in 
Fig. 4(a).   
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Fig. 4. Variation of the resonance frequency r versus mut. (a) Resonance 
frequency versus mut for different numbers of sections in the step-impedance 
transmission line, calculated by obtaining the zero-value contour of (10). (b) 
Increase of the sensitivity of r to mut by reducing the width of some line 
sections. Details are given in the main text.  

 
In the case of three sections, we will obtain ref by 

introducing Yin,3 in the expression for the reflection coefficient 

,3 ,3( ) / ( )c in c inY Y Y Y    . Following the same procedure, the 

sensitivity about mut = 1 is given by: 
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(21) 
Let us compare the two terms in the bracket. Their 

denominators depend, respectively, on F1 and F2. However, the 
numerators depend on both Yo1 and Yo2. In this case, W1 is wider 
than W2 (see Fig. 1), providing Yo1 > Yo2 and F1 > F2. The 
influence of the admittance components in the numerator is 
stronger than those of Fi in the denominator, so the first term 
will be the dominant contribution. For the widths 
W1 = 3.77 mm, W2 = 0.24 mm, the sensitivity is 

8/  0 H1 zr mutf     , which agrees with the tangent at mut = 1 

of the numerical curve obtained through (10), shown in Fig. 
4(a). This sensitivity is higher than the one obtained with a /2 
resonator.  

The analysis has been extended to the case of four sections 
and the resonance curve is overlapped with the one obtained 
with two sections [Fig. 4(a)]. One can also observe that the 
sensitivity of r to mut, is higher for an even number of sections 
than for one and three sections. Note that in the case of an odd 
number of sections the structure is not homogeneous since, for 
three sections, the most external (open-ended) section (Fig. 1) 
has the electrical length  instead of /2 (in the absence of the 
MUT). 

As gathered from (17)(21) and (3), the sensitivity to mut can 
be modified by reducing the width of some line sections. In the 
case of two sections, the sensitivity increases most by reducing 
the width W1, affecting the first term of (20). As an example, in 
Fig. 4(b), we have considered the W1 values: Wa = 0.2339 mm, 
Wb = 0.1339 mm, Wc = 0.0339 mm, whereas the width W2 of the 
internal section has been kept constant at W2 = 3.7736 mm. In 
the case of three sections, the resonance frequency is more 
sensitive to the width of the low impedance sections W1, and the 
sensitivity increases by reducing this width. As an example, in 
Fig. 4(b), we have considered the following values of the first- 
and third-section width (W1): We = 7.77364 mm, Wf = 5.77364 
mm, Wg = 3.77364 mm, whereas the central-section width has 
been kept constant at W2 = 0.233915 mm. 

Note that for the oscillator design we will be interested in the 
admittance , ( , )in n mut rY   . Although the functions ( )r mut   

are either quite similar (for one and three sections) or totally 
overlapped (for two and four sections), the frequency derivative 

,Im ( , ) /in n mut rY        along each resonance curve versus 

mut strongly depends on the number n of sections. This can be 
seen in Fig. 5 where contours of constant frequency derivative 
have been traced over the resonance curves. The derivative 
increases with the number n of sections. For three sections it is 
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more than one order of magnitude higher than the one obtained 
with one section. It is interesting to note that the resonance 
curves cross the constant-derivative contours near their turning 
points. Those contours are defined by the condition: 

, ( ( , ), )in n mut mutY c
c

  





 (22) 

where c is the value of the constant derivative. Because of the 
constant value on the right-hand side, the following condition 
is fulfilled: 

        

,
2
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mut

mut

Y c
d

Y c
d

  

  




















 (23) 

And we can obtain the derivative ( , ) /mut mutc     as: 
2

2

2

,

,

( ( , ), )

( , )

( ( , ) )

 

,

in n mut mut

mut mut

mut in n mut mut

Y c

c

Y c

  
  

   




 



  
 



 (24) 

which will be infinite at the turning points. On the other hand, 
as observed in Fig. 2, for each mut  the point ( )r mut  , 

corresponding to the resonance frequency, approximately 
fulfils: 

,
2

2

( ( ), )
0in n mut mutrY   






  (25) 

Thus, the resonance curve will cross the constant derivative 
contours very close to the turning points of these contours. In 
the case of three sections, the contours are narrower, with a 
smaller frequency variation, which gives rise to more noticeable 
differences between the crossing points and the turning points. 

III. OSCILLATOR DESIGN 

In this section the passive structure will be connected to the 
active network to obtain an oscillator circuit [Fig. 6(a)]. In the 
oscillator based on a slow-wave structure of [13], a lower phase 
noise was achieved when connecting this structure to the gate 
node, so this is the node where the sensing structure will be 
introduced here [Fig. 6(b)]. The active network contains the 
device, feedback elements and output load, as well as a 
bandpass-filtering stage at the analysis node. This is used to 
both ensure the validity of the semi-analytical formulation and 
prevent oscillations at higher resonance frequencies of the 
sensing structures. The active network will be the same in all 
cases, which will allow a thorough comparison of the oscillator 
performance with the various passive structures considered in 
Section II. This comparison will be carried out in terms of the 
sensitivity of the oscillation frequency and amplitude to mut, 
and the phase-noise behavior. 
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Fig. 5. Frequency selectivity. Constant frequency-derivative 

,Im ( , ) /in n mut rY        contours superimposed on the curves that provide 

the resonance frequency (r) versus mut. The frequency derivative increases 
with the number n of sections. (a) One section (/2 resonator). (b) Two sections. 
(c) Three sections.  

 
The active network will be described with the nonlinear 

admittance function ( , )NY V  , where V and   are, 

respectively, the excitation amplitude and frequency. The 
function ( , )NY V   is extracted from HB by means of an 

auxiliary generator (AG) [36]-[40], introduced at the node 
where the sensing structure is connected (the gate terminal in 
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this case). A double sweep is performed in the AG frequency  
and amplitude V [Fig. 4(b)], obtaining the ratio between the AG 
current and amplitude [36]-[40]. Although this HB analysis 
must be carried out with a suitable number NH of harmonic 
terms, the function YN may be extracted at the fundamental 
frequency only, provided there are sufficient harmonic filtering 
effects at the AG location. This is discussed in the next sub-
section.    

  
Fig. 6. Oscillator used for sensing applications. (a) Decomposition into an 
active sub-circuit and passive-linear one, corresponding to the sensing 
structure. (b) Schematic in the case of a three-section transmission line. (c) 
Photograph of the prototype built on Rogers 4003C (r = 3.55, h = 32 mils). (d) 
Photograph of the prototype with an FR4 substrate placed over the sensing 
structure. 

 

A. Steady-state solution 

When combining ( , )NY V   with the linear admittance of the 

passive structure, one obtains the following steady-state 
oscillation condition: 

,( , ) ( , ) 0T N in n mutY Y V Y               (26) 

As already indicated, YN(V,) is calculated in HB under 
multiple harmonic terms (NH = 7 in this case). Then, (26) 
considers the impact of the structure at the fundamental 
frequency, disregarding its effect at the second and higher 
harmonic terms. Provided the harmonic content is low at the 
node where the structure is connected in parallel (analysis 
node), the presence of the structure at the second and higher 
harmonic frequencies will have a small impact on the circuit 
solution. In fact, the nonlinear semi-analytical formulation will 
constitute a very good approach, as will be extensively verified 
through a rigorous comparison with HB under multiple 
harmonic terms.  

Note that the frequency dependence of the active core YN is 
inherent to any oscillator, as this will contain reactive elements 
in its devices, as well as in its termination and matching 
networks. This frequency dependence will limit the negative 
conductance , ( 0, ) 0N rY V    to the desired operation band. 

Thus, it will prevent oscillator instabilities due to the onset of 
additional modes, which would result from resonances at 
frequencies different from the intended one. The complex 
equation (26) can be split into real and imaginary parts: 

, ,

, , , ,

( , ) 0

( , ) ( , ) 0

T r N r

T i N i in n i mut

Y Y V

Y Y V Y



  

 

  
     (27) 

where the subscripts r and i indicate real and imaginary parts. 
Under the purely imaginary models in (1), the first equation 
does not depend on mut. On the other hand, the imaginary part 

, ( , )N iY V   may give rise to a shift of the oscillation frequency 

with respect to the resonance frequency of the passive structure. 
This shift will be smaller for a higher frequency derivative of 

, , ( , )in n i mutY   .  

Because YN in (27) is a numerical function and both the real 
and imaginary parts are coupled through their dependences on 
V and , one cannot obtain an analytical expression of the 
oscillation frequency. However, the semi-analytical system 
(27) can be solved through a contour intersection procedure. 
The analysis is carried out by sweeping mut and obtaining for 
each mut the intersections between the zero value contours 
YT,r = 0 and YT,i = 0, which will provide the system solutions. 
For instance, Fig. 7 shows the intersection of the zero-value 
contours YT,r = 0 and YT,i = 0, obtained for one section (/2 
resonator) and three sections, and mut = 1. Those contours are 
traced in the plane defined by  and V. The intersection point 
provides, in each case, the steady-state solution for mut = 1. The 
contour YT,i = 0 [see (27)] is nearly independent of V because 
for all V the frequency derivative of , , ( , )in n i mutY    is much 

higher than that of , ( , )N iY V  , which keeps the zero crossing 

nearly constant.  
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Fig. 7. Intersection of the zero value contours YTr = 0 and YTi = 0; the latter have 
been obtained for one section (/2 resonator) and three sections, and mut = 1. 
The contour YT,i = 0 is nearly independent of V because for all V the frequency 
derivative of , , ( , )in n i mutY    is much higher than that of , ( , )N iY V  . The Hopf 

bifurcation and turning point are also indicated.  
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The variation of the oscillation frequency and amplitude is 
obtained by representing the sequence of intersections points 
(of the kind shown in Fig. 7) versus mut. Fig. 8 presents the 
results obtained for one, two and three sections. For mut = 1, the 
resonance frequency of all the passive structures is 2.4 GHz. 
However, the oscillation frequency [Fig. 8(a)] will undergo a 
shift if the frequency derivative of , , ( , 1)in n i mutY     is not 

sufficiently high. This can be seen in Fig. 8(a) and (b) where the 
oscillation frequency at mut = 1 agrees with 2.4 GHz for n = 3 
and 4. For n = 1 and 2 [Fig. 8(b)] there is a downward shift at 
mut = 1 due to the positive value of  , ( , )N iY V   at 2.4 GHz. 

Attention should also be paid to the reduction of the mut 
excursion with the number of stages, explained later in this 
section.  

One can also compare the sensitivity of the oscillation 
frequency with respect to mut with that of the resonance 
frequency, obtained in the previous section. Let a steady-state 
oscillation Vo, o for mut = 1 (corresponding to a particular 
structure) be assumed. Considering a small increment in mut, so 
that the oscillation condition is still fulfilled, one can approach: 

, ,

, , , ,

, ,

( , ) ( , )
0

( , ) ( , ) ( )

( )
0

N r o o N r o o

N i o o N i o o in n i o

in n i o
mut

mut

Y V Y V
V

V
Y V Y V Y

V
V

Y

 



  


 






 
   

 
   

       


  


   (28) 

To obtain the oscillation-frequency sensitivity about mut = 1 
we will solve  in terms of  mut. This provides the following 
expression:  

   

, , ,

, , ( , )( , )
det

N r in n i

mut
r

in n i o mutmut N o o
o

Y Y

V

YY V

V


  


 
 

 
 


 

         (29) 

where: 

                  
,

det

o o

r i i r
N N N N

o

V

Y Y Y Y

V V


 
   

 
   

         (30) 

If the derivative , , /in n iY   is sufficiently large, one can 

approach: 
1

, , , ,in n i in n i

mut mut

Y Y
  

  
      

                 (31) 

which agrees with the sensitivity of the resonance frequency 
to mut calculated in (13). For comparison, the variation of the 
resonance frequency r versus mut obtained with the standalone 
passive structures under n = 3 and n = 4 has been superimposed 
in Fig. 8(a). In agreement with (29) and (31), the oscillation 
frequency closely approaches the original resonance frequency. 

The shape of the amplitude curve versus mut [Fig. 8(c)] is 
nearly identical to that of the contour YN,r = 0 (Fig. 7) for all the 
numbers n of line sections. This is because of the quasi-linear 
relationship between the oscillation frequency  and mut, 
observed in Fig. 8(a). The figure is reversed because the 
oscillation frequency  decreases with mut. On the other hand, 

the amplitude is higher for larger mut due to the associated 
reduction of the oscillation frequency. Because we have 
neglected the line losses in (1), the maximum amplitude is the 
same regardless of the number n of line sections.  
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Fig. 8. Oscillator solution versus mut, when considering ideal step-impedance 
resonators with different numbers n of sections and no losses. (a) Oscillation 
frequency and resonance frequency r versus mut for n = 3, 4. (b) Oscillation 
frequency. The solution calculated with (27) is validated with a default HB 
simulation (with NH = 7 harmonic terms), unable to complete the solution 
curves. (c) Oscillation amplitude, validated with HB. 
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Note that for n = 3 there is a second oscillation mode, 
associated with a higher resonance frequency, due to the longer 
delay. This resonance frequency is comprised within the 
frequency interval for which the oscillator active core exhibits 
a negative conductance; that interval is delimited by the two 
frequency values that fulfill YT,r(V = 0, ) = 0 in Fig. 7. The 
oscillation frequency (not represented) goes from 2.67 GHz to 
2.38 GHz. This undesired higher-frequency mode arises from a 
stable DC solution through a supercritical Hopf bifurcation, so 
according to the bifurcation relationships [41]-[42], it must be 
stable at least near the bifurcation. The stability of the mode up 
to mut   14 has been verified using pole-zero identification 
[43]. However, as discussed in Section III, these stability 
properties change when considering a more realistic description 
of the three-section step-impedance transmission line. 

The predictions by the semi-analytical equation (27) have 
been validated through their comparison with a default HB 
simulation, shown in Fig. 8(b) and Fig. 8(c). The number of 
harmonic terms considered (NH = 7) is the same used to extract 
the nonlinear function YN(V,). The HB simulation fails to 
provide the top regions of the solution curves, due to their 
proximity to the turning point (point of infinite slope). This is 
because of the ill conditioning of the Jacobian matrix of the HB 
system, which becomes singular at the turning point [44]-[47]. 
For the rest of the solution curve there is an excellent agreement 
between the results of the semi-analytical equations (27) and 
HB. 
  

 B. Hopf and turning-point bifurcations 

The frequency dependence of , ( , )N rY V   in (27) will have a 

significant impact on the edges of the oscillation frequency 
interval. In fact, it provides the frequency of the Hopf 
bifurcation [41]-[45] at which the steady-state oscillation is 
extinguished, with a zero steady-state amplitude V = 0, when 
increasing mut. Note that in the well-behaved oscillator, one 
will have negative conductance , ( 0, ) 0N rY V    [46] in a 

single frequency band, so there will be only two frequency 
values, ,1H  and ,2H , providing the boundaries of this band.  

Under the (purely imaginary) model (1), no matter the 
sensing structure used, the Hopf bifurcations will be obtained 
from the scalar equation: 

, (0, ) 0N r HY                                  (32) 

Because the circuit should exhibit a steady-state oscillation 
with V > 0 for mut = 1, we have only one Hopf bifurcation 
frequency H  for each sensing structure (in the targeted 

operation band). In fact, H  should be smaller than the 

oscillation frequency at mut = 1. This is because the resonance 
frequency decreases with  mut. It is relevant to note that the 
frequency H  agrees with the lowest frequency (2 GHz) at 

which the contour , ( , ) 0N rY V    (shown in Fig. 7) exhibits 

V = 0. Note that the highest frequency providing V = 0 
(2.67 GHz) cannot be reached for mut  1.    

Even though H  is independent of the structure, the mut 

value at which H  is reached does depend on the structure. 

This explains the oscillation extinction at different mut values 
seen in Fig. 8. To directly obtain the mut value at which the 
Hopf bifurcation takes place, we will replace H in YT,i = 0 of 

(27) under V = 0 (condition for the oscillation extinction). This 
provides the scalar equation: 

, , ,(0, ) ( , ) 0N i H in n i H mutY Y              (33) 

As an example, we will consider the case of the /2 resonator. 
Neglecting, for simplicity, the dependence of Yo1 on mut, the 
Hopf bifurcation will be obtained at the following eff value: 

 
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1 2
1 , 1

1

( )
( , ) arctg (0, ) /

eff ro
eff mut N i H o

o H

W
W Y Y

 
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 
 

  
 

  

(34) 
Similar expressions, though more complex, are obtained for 

n > 1. The Hopf bifurcations occur at the mut values seen in 
Table I. Because under a sufficiently high derivative 

, , ( , ) /in n i mutY      the oscillation-frequency curve and the 

resonance curve are nearly overlapped, the mut value at the 
Hopf bifurcation (V = 0) will be smaller for structures with a 
higher sensitivity of r to mut. This is because, due to this 
higher sensitivity, they will reach H for a lower mut, as shown 
in Fig. 8(a) and (b).  

 
Table I  

DIELECTRIC CONSTANT OF THE MUT AT THE HOPF 
BIFURCATION 

Number of sections mut 
1 11.2 
2 5.3 
3 6.2 
4 4 

 
In all the cases studied here, there are oscillatory solutions 

[see Fig. 8(c)] for mut values beyond the Hopf bifurcation 
(where V = 0). This is because this Hopf bifurcation (occurring 
at H) is reached after a turning point of the solution curve [40]-
[42]. Note that in a manner like the Hopf bifurcation, the turning 
point occurs at the same amplitude VTP and frequency TP 
regardless of the number n of line sections. This is again 
because the function , ( , )N rY V   does not depend on mut and, 

thus, its zero-value contour , ( , ) 0N rY V   , shown in Fig. 7, 

remains constant under the mut variation. To demonstrate this, 
note that the contour , ( , ) 0N rY V    produces a curve 

( )RV c   (Fig. 7) that exhibits an infinite-slope point 

( , )TP TPTP V , fulfilling ( )PR Tdc d    . On the other 

hand, the equation , ( , , ) 0uT i m tY V     produces a curve 

( , )I mutV c    that shifts leftwards when increasing mut, 

which leads to a reduction of the oscillation frequency [Fig. 

8(a)]. At TP
mut mut  , the curve ( , )I mutV c    becomes 

tangent to the point TP and fulfils ( , )tTP
TP

I mudc d    . 

Through a perturbation analysis of YT,r and YT,i, it is 
straightforward to demonstrate that: 
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    , ,( , ) ( , , )
0,   0

TP
N r TTP TP TP Ti mutPY V Y V

V V

   
 

 
     (35) 

On the other hand, the formal condition for turning point will 
be the singularity of the Jacobian matrix of the steady-state 
system (27) with respect to V and . Due to the zero value of 
the derivatives (35) the determinant of this matrix is zero at the 
same oscillation frequency and amplitude ( , )TP TPV  regardless 

of the sensing structure. Again, although the values ( , )TP TPV  

are independent of n, they will be reached for a different mut 
with each structure. Under a higher sensitivity, the TP will be 
obtained for a smaller mut, due to the faster shift to lower 
frequencies of YT,i. 

In summary, for a higher n there will be a reduction of the 
measurable mut range. However, there will also be a higher 
sensitivity and, as shown in the next subsection, a lower phase-
noise spectral density. 

 

C. Phase-noise spectral density 

As stated in the introduction, a low phase-noise spectral 
density will be fundamental for an accurate and reliable 
material characterization. Departing from the steady-state 
system (27), one can perform an approximate calculation of the 
phase-noise spectrum by introducing into this system a small-
amplitude perturbation; this will give rise to the increments 
Vo+V, o+s, where Vo and o are the steady-state amplitude 
and frequency and s acts like a time differentiator [46]. The 
perturbed system is: 

,

( , )

( , ) ( , )
( )

N o o

N o o in n mut
N

o

Y V
V

V

Y V Y V
j I t

V




    






           

 
   (36) 

where IN(t) is an equivalent noise current source, connected at 
the node where the planar structure is introduced. Splitting (36)
into real and imaginary parts and applying the Fourier 
transform, one derives the following expression for the phase-
noise spectral density: 

2
2

2
2

2
, ,2

2( , )

( )
( , )( , )

det

N
N o o

o

r
in n i o mutN o o

o

IY V

V V

YY V

V




 





  
 

     

    

(37) 

where 2
NI  is the spectral density of the equivalent current 

noise source (calculated at the analysis node following the 
procedure in [47]) and  is the offset frequency from the 
oscillator carrier. We should also note that in a well-behaved 

oscillator we will have / 0r
NY V    [38]-[39]. On the other 

hand, from the inspection of (37), the phase noise will decrease 
with the derivative , , /in n iY   . As shown in Fig. 5, this 

derivative increases with the number of stages and with mut. 
However, we must keep in mind that the variation of mut affects 

both the oscillation amplitude and frequency (Fig. 8) and, as a 
result, will give rise to changes in /NY V   and /NY   .  

In (37), the derivatives of the functions YN(V,) and Yin,n,i() 
with respect to V and  are calculated numerically. In fact, each 
of these functions constitutes a mesh that should be dense 
enough to allow a derivative calculation through finite 
differences using the values adjacent to each point (V, ). Fig. 
9 presents the variation of the phase-noise spectral density at 
the constant offset frequency of 100 kHz versus mut for 
different n values. As expected, the phase noise decreases with 
n and exhibits a fast growth near the turning point [40], 
occurring at a different mut for each n. This is because the term 
in brackets in (37), agreeing with the determinant of the 
Jacobian matrix of (26), becomes zero at the turning point. In 
all cases, there are slight local maxima due the changes in the 
derivatives /NY V   and /TY   . The results obtained with 

(37) are compared with those based on HB simulations, using 
the conversion-matrix approach [48]-[49], at points with good 
convergence properties. As can be seen, there is a significant 
average noise reduction with the number of sections.  
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Fig. 9 Variation of the phase-noise spectral density at the constant offset 
frequency of 100 kHz versus mut for different numbers n of sections of the 
sensing structure. The results obtained with (37) are compared with those based 
on HB simulations, using the conversion-matrix approach [41]-[42], at points 
with good convergence properties. 

III. PRACTICAL DESIGN 

In this section a purely numerical analysis of the sensor 
oscillator will be carried out, based on realistic models of the 
transistor and the sensing structure. Both a three-section step-
impedance transmission line and a slow-wave structure will be 
considered. Their input admittance will be described, in a 
general manner, with the numerical passive-linear admittance 

( , )in mutY   , which will have a real part different from zero: 

, ( , ) 0in r mutY     due to the presence of losses. The steady-

state oscillation equations will be: 

, , ,

, , ,

( , ) ( , ) 0

( , ) ( , ) 0

T r N r in r mut

T i N i in i mut

Y Y V Y

Y Y V Y

  

  

  

  
 (38) 

Unlike the situation in Section II, in the presence of losses, 
the maximum oscillation frequency H will depend on the 
structure and its number n of sections. The admittance 

( , )in mutY    will be calculated by making use of a multilayer 
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model and through electromagnetic (EM) simulations.  The 
multilayer model is based on the method of moments and the 
Green's function method [25].   

 

A. Three-section step-impedance transmission line 

In the presence of a realistic model of the three-section step-
impedance transmission line (including losses), the zero-value 
contour of the total admittance YT,r = 0 will depend on mut, as 
seen in Fig. 10, where the collection of zero-value contours 

, ( , , ) 0T r mutY V     obtained for mut going from 1 to 10 has 

been represented. For the host transmission line in Rogers 
4003C we have taken the actual value of the loss tangent, 
tan = 0.0024, and for the MUT we have assumed a constant 
value: tanmut = 0.002, in a manner like what is done in [1]. The 
contour obtained in the absence of losses, with a higher 
amplitude, is also shown for comparison. For all the mut values, 
the contours in the presence of losses lie inside the lossless 
contour. These contours exhibit a continuous evolution and are 
composed by two distinct curves for most mut values. Note that 
the losses will also reduce the sensitivity of the resonance 
frequency r to mut, as will be shown next. Nevertheless, the 
main qualitative characteristics of the oscillator behavior will 
be the same.  

 
Fig. 10. Collection of zero-value contours of the real part of the total admittance 

, ( , , ) 0T r mutY V     under a realistic description of a three-section step-

impedance transmission line, obtained for mut going from 1 to 10. It can be 
compared with the one obtained in the absence of losses, with a similar 
qualitative shape. 
 

Solving (38) through contour intersections one obtains the 
variation of the oscillation amplitude and frequency versus mut 
shown in Fig. 11. The low-amplitude higher frequency mode 
detected in Fig. 8 for n = 3 is still present in this practical 
implementation. However, now this undesired mode arises 
from an unstable DC solution through a supercritical Hopf 
bifurcation. Thus, according to the bifurcation relationships 
[41]-[42], it must be unstable (physically unobservable) at least 
near the bifurcation. Using pole-zero identification [43], we 
have verified that it is unstable up to mut  11. In the experiment 
this mode did not cause any problems. The frequency 

sensitivity about mut = 1 is 75.8/  H7 z10mutf     . The 

resonance frequency r of the standalone three-section line in 
the presence of losses is nearly overlapped, so the oscillator 
properly follows this resonance frequency. In the absence of 

losses, the frequency sensitivity was 810/  Hzmutf     ,  so 

there has been a sensitivity reduction to nearly one half of the 
original value. This reduction allows increasing the range of 
measurable mut values. Without losses, the Hopf bifurcation 
was obtained at mut = 6.2; with losses it is obtained at mut 
= 9.94. As in the analyses of Section III, we have compared the 
results of (38) with those obtained with default HB; they are 
fully overlapped in regions where HB achieves convergence.  

 

 
Fig. 11. Oscillator analysis in the presence of a three-section step-impedance 

transmission line, considering the line loss. The analysis is carried out by 
making use of a multilayer model and an EM simulation (discrete points). (a) 
Oscillation frequency versus mut obtained through (38) and compared with the 
HB results. Measurement points are superimposed. (b) Oscillation amplitude, 
compared with the HB results. (c) Collection of experimental output spectra for 
the characterized mut values. 

 
EM simulations and measurements obtained when sensing 

the available substrates (with height larger than 3 mm following 
the recommendations in [5]-[8]) have been superimposed in the 
frequency curve. Note that there is a shift in the measured 
oscillation frequency with respect to the analysis prediction, 
which is attributed to inaccuracies in the package model of the 
active device. However, the variation pattern of the oscillation 
frequency versus mut and the sensitivity exhibit an excellent 
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agreement. Fig. 11(c) shows the collection of experimental 
output spectra for the characterized mut values. The output 
power variation in the range 1 to 6.7 is about 2.6 dB. 

The collection of measured phase-noise spectra, obtained 
with the R&S FSWP8 Phase Noise Analyzer, when varying 
mut, is shown in Fig. 12. A very limited variation of the phase-
noise spectral density is obtained when changing mut, and the 
phase-noise spectral densities are comprised between 

110 dBc/Hz  and 106.2 dBc/Hz at 100 kHz offset frequency 
and comprised between 135.5 dBc/Hz and 131 dBc/Hz at 
1 MHz.  
 

 
Fig. 12. Phase noise of the oscillator containing a three-section step-impedance 
transmission line. Collection of experimental phase-noise spectra when varying 

mut. The spectra were measured with the R&S FSWP8 Phase Noise Analyzer.  

 
As in [5]-[8], the sensor is intended for low-loss dielectric 

materials, so it is not optimized for the measurement of the 
complex permittivity of samples. However, a preliminary study 
of the impact of the imaginary part of the dielectric constant, 
denoted as r’’, has been carried out. We have calculated the 
oscillation frequency and amplitude versus mut for different 
values of the imaginary part of the dielectric constant (Fig. 13). 
The two functions, (mut, r’’) and V(mut, r’’) are univocal in 
this case (note that the lower curve sections are unstable), so 
provided a calibration is performed, one should be able to 
determine both mut and r’’ from the measurement of the 
oscillation amplitude and frequency. The calibration requires 
using measurands with known values of the Debye-model 
parameters. Using these measurands, a nonlinear model, such 
as a neural network, can be developed from the input pairs 
(V, ) and the output pairs (mut, r’’). The resulting model 
should be able to predict mut and r’’ of the material at the 
corresponding frequency . Due to the high frequency 
selectivity of , ,in n iY , the oscillation frequency  will nearly 

follow the same curve versus mut obtained in the lossless 
analysis of Fig. 11(a). However, the increase of 

''
, ( , , )in r mut rY     with r’’ reduces the oscillation mut interval, 

since the inverse Hopf bifurcation is obtained for a smaller mut. 
In principle, sufficient accuracy should be achieved by 
determining mut from the value of the oscillation frequency and 
then r’’ from the oscillation amplitude, which depends on both 
mut and r’’. 
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Fig. 13. Oscillator solution in the presence of losses in the MUT. (a) Oscillation 
frequency versus mut for r’’ between 0 and 0.42. (b) Oscillation amplitude 
versus mut for the same r’’ values.  

 

B. Slow-wave structure 

The slow-wave structures exhibit a high group delay, 
enabling a high-quality factor in a compact size [16]-[18]. This 
is obtained by increasing the effective capacitance and/or 
inductance of the line, which can be achieved through different 
strategies [16]-[18]. Here we will consider a slow-wave 
structure based on a unit cell consisting of a Schiffman-section 
[18], [13], providing an inductive effect, and an open-circuited 
stub, providing a capacitive effect. Due to the complexity of the 
structure, including a coupled-line section, an analytical study 
in terms of the number of cells in the vein of the one carried out 
for the step-impedance transmission line would be virtually 
impossible; nevertheless, a higher number of cells should 
increase the group delay and, as a result, the frequency 
sensitivity. However, it will also lead to higher losses and a 
larger size, so a compromise is necessary.  

In this application, the parameters of the unit cell have been 
fitted to obtain a resonance frequency of 2.3 GHz with the 
group delay  = 10.6 ns at mut = 1 using six cells. This number 
of cells enables a compact size of 18.4 mm x 5.25 mm. 
Introducing the slow-wave structure in (38) and solving the 
oscillator equation through contour intersections, one obtains 
the oscillation frequency and amplitude shown in Fig. 14. As in 
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the case of step-impedance transmission line with n = 3, there 
is an unstable higher frequency mode, which arises at mut = 7.5 
and becomes stable at mut  12. In the experiment this mode did 
not cause any problems. The results of the semi-analytical 
formulation are overlapped with those obtained with default HB 
when it achieves convergence. This default HB jumps to the 
lower-amplitude mode in a discontinuous manner. In fact, the 
qualitative behavior is the same obtained with the three-section 
step-impedance transmission line; however, there is a higher 

frequency sensitivity, given by 7/ 7.8  H0 z1mutf      , and 

the size is smaller. Note the slow-wave structure has not been 
optimized for this particular purpose; furthermore, other slow-
wave configurations could provide better results, though such a 
study is beyond the scope of this work. Measurements obtained 
when sensing the available substrates have been superimposed 
in the frequency curve. As in the case of the three-section line, 
there is a shift in the oscillation frequency due to inaccuracies 
in the active-device model. However, the variation pattern of 
the oscillation frequency versus mut and the sensitivity exhibit 
an excellent agreement. Fig. 14(c) shows the collection of 
experimental output spectra for the characterized mut values. 
The output power variations in the range 1 to 6.7 is about 
3.4 dB. 

The phase-noise spectra obtained for the different mut values 
are shown in Fig. 15(a). Note that for this slow-wave structure 
the dielectric constant mut = 10.2 is very close to the oscillation 
boundary, in consistency with its higher frequency sensitivity. 
Except for mut = 10.2, the phase-noise values are about 1 dB 
lower than in the case of the step-impedance transmission line. 
These results are well predicted by the analysis of Fig. 15(b), 
carried out through the semi-analytical formulation of Section 
II.C. As already stated, in that formulation, the double-entry 
admittance functions YT,r(V,) and YT,i(V,) are numerically 
differentiated with respect to V and . Measurements obtained 
when sensing the available substrates are superimposed with 
good agreement. As can be seen, the variations versus mut are 
relatively small, as confirmed by the experimental results 
(superimposed).  Note that, as in previous cases, there are slight 
local minima/maxima due the changes in the complex 
derivatives /NY V   and /TY   . In summary, the slow-wave 

structure enables a higher frequency sensitivity, with a lower 
phase-noise spectral density and smaller size.  

To verify the impact of temperature we have performed 
temperature changes between 25º C and 50º C, without 
observing any significant differences in the measured spectrum. 
We have not been able to perform humidity variations in a 
controlled manner, but the system has been operating for three 
days without any relevant changes in the spectrum. On the other 
hand, the system has also been off for several days and when 
turning it on again a nearly identical spectrum has been 
obtained, so it is very repeatable.  

 
Fig. 14. Oscillator analysis in the presence of a slow-wave structure based on a 
Schiffman section (inset). The analysis is carried out by making use of a 
multilayer model and an EM simulation (discrete points). (a) Oscillation 
frequency versus mut with HB results and measurements points superimposed. 
(b) Oscillation amplitude. (c) Collection of experimental output spectra for the 
characterized mut values. 

IV. CONCLUSIONS 

An in-depth study of the capabilities of oscillators based on 
step-impedance transmission lines and slow-wave structures for 
the implementation of dielectric sensors has been carried out. 
The dielectric to be sensed is placed over the entire passive 
structure, which gives rise to a change in its resonance 
frequency. Initially, the sensitivity of this resonance frequency 
to the dielectric constant of the material under test (MUT) has 
been theoretically derived, under a lossless simplified model. 
Emphasis has been placed on the analysis of the effect of the 
number of line sections and on the frequency selectivity. The 
structures have been sequentially connected to the active core 
of an oscillator circuit, which has been kept unmodified for a 
fair comparison of the oscillator performance in the presence of 
the various structures. The active core is modeled with a 
nonlinear admittance function extracted from harmonic-
balance simulations, which is added to the passive linear 
admittance of each sensing structure. In the absence of losses, 
all the oscillation curves are extinguished at the same 
frequency. However, this frequency will be obtained for a lower 
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dielectric constant of the MUT under a higher frequency 
sensitivity. In the case of structures with a high frequency 
sensitivity, the oscillation frequency is nearly superimposed to 
the resonance frequency, so the oscillator system should enable 
an easy detection of these frequency variations. In the presence 
of losses, there will be some quantitative changes in the 
performance, but the main qualitative properties remain 
unchanged: the oscillation-frequency sensitivity increases, and 
the phase-noise decreases with the frequency selectivity of the 
sensing structure. Very good results have been obtained in two 
different experimental implementations, using a three-section 
step-impedance transmission line and a slow-wave structure 
based on Schiffman section.     

 

 
Fig. 15. Phase noise of the oscillator containing a slow-wave structure based on 
a Schiffman section. (a) Collection of experimental phase-noise spectra, when 

varying mut. The spectra were measured with the R&S FSWP8 Phase Noise 
Analyzer. (b) Analysis of the phase-noise spectral density at the constant offset 
frequency 100 kHz, carried out with the semi-analytical formulation in Section 
II.C. Measurement points are superimposed. 
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