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Abstract
We develop three asymptotic models of surface waves in a non-Newtonian fluid with
odd viscosity. This viscosity is also known as Hall viscosity and appears in a number
of applications such as quantum Hall fluids or chiral active fluids. Besides the odd
viscosity effects, thesemodels capture both gravity and capillary forces up to quadratic
interactions and take the form of nonlinear and nonlocal wave equations. Two of
these models describe bidirectional waves, while the third PDE studies the case of
unidirectional propagation. We also prove the well-posedness of these asymptotic
models in spaces of analytic functions and in Sobolev spaces. Finally, we present a
number of numerical simulations for the unidirectional model.
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1 Introduction

The equations describing the motion of an incompressible fluid take the following
form:

ρ

(
∂

∂t
u + (u · ∇)u

)
= ∇ · T in �(t) × [0, T ],

∇ · u = 0 in �(t) × [0, T ],
∂

∂t
ρ + ∇ · (uρ) = 0 in �(t) × [0, T ],

where u, ρ and T denote the velocity, density and stress tensor of the fluid, respec-
tively. This stress tensor takes different forms depending on the physical properties
of the fluid. On the one hand, we have the case of inviscid fluids where the previous
equations reduce to the well-known Euler system with a stress tensor given by

T i
j = −pδij .

On the other hand, we have the case of viscous Newtonian fluids where the tensor
takes the classical form

T i
j = −pδij + νe

(
∂

∂x j
ui + ∂

∂xi
u j

)
.

Due to the symmetries of the tensor, this viscosity is called even or shear viscosity.
Fluids inwhich both time reversal and parity are broken can display a dissipationless

viscosity that is odd under each of these symmetries. This viscosity is called odd or
Hall viscosity. In this case, the stress tensor takes the following form (cf. Khain et al.
2020):

T i
j = −pδij + νo

(
∂

∂xi
(u j )⊥ +

(
∂

∂xi

)⊥
u j

)
,

where for a vector a = (a1, a2), we used the notation

a⊥ = (a2,−a1).

Situations where such a viscosity arise in a natural way are, for instance, the motion
of quantum Hall fluids at low temperature (cf. Avron et al. 1995), the motion of
vortices (cf. Wiegmann and Abanov 2014) or chiral active fluids (cf. Banerjee et al.
2017) among other applications (see Souslov et al. 2019 or Abanov et al. 2020 and
the references therein).

Since the seminar works of Avron et al. (1995) (see also Avron 1998; Banerjee
et al. 2017; Ganeshan and Abanov 2017; Ganeshan and Monteiro 2021; Lapa and
Hughes 2014; Souslov et al. 2019), the effect of the odd viscosity has been an active
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research area. Fluids that experience oddorHall viscosity have a rather counterintuitive
behavior. For instance, while a rotating disk immersed in a fluid with even viscosity
experiments a friction force that opposes the rotation, the same disk rotating in a fluid
with odd viscosity feels a pressure in the radial direction (see Avron 1998, Section 5.3
and Lapa and Hughes 2014 for more details).

While in three dimensions, terms in the viscosity tensor with odd symmetry were
known in the context of anisotropic fluids, Avron noticed that in two dimensions, odd
viscosity and isotropy can hold at the same time (cf. Avron 1998). This motivated
the study of two-dimensional incompressible flows with odd viscosity effects. This
situation can be described by the following system (cf. Avron 1998; Ganeshan and
Abanov 2017):

ρ

(
∂

∂t
u + (u · ∇)u

)
= −∇ p + νo�u⊥ in �(t) × [0, T ], (1a)

∇ · u = 0 in �(t) × [0, T ], (1b)

∂

∂t
ρ + ∇ · (uρ) = 0 in �(t) × [0, T ], (1c)

where u, ρ and p denote the velocity, density and pressure of the fluid and νo is a
positive constant reflecting the influence of odd viscosity.

2 The free boundary problem

2.1 Derivation

We observe that using the divergence-free condition, system (1) can be rewritten as:

ρ

(
∂

∂t
u + (u · ∇)u

)
= −∇(p − νo(∇ · u⊥)) in �(t) × [0, T ], (2a)

∇ · u = 0 in �(t) × [0, T ], (2b)

∂

∂t
ρ + u · ∇ρ = 0 in �(t) × [0, T ]. (2c)

This system needs to be supplemented with appropriate initial and boundary condi-
tions.

We stress that the viscosity tensor takes the formof a gradient and, as a consequence,
it can be absorbed into the pressure in the bulk of the fluid once we define the modified
pressure

p̃ = p − νo(∇ · u⊥).

However, the odd viscosity affects the boundary conditions (cf. Ganeshan and Abanov
2017). This is of particular importance when considering free boundary problems for
flows under the effect of odd viscosity. Such free boundary flows have been reported
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in experiments by Soni, Bililign, Magkiriadou, Sacanna, Bartolo, Shelley & Irvine
(see Soni et al. 2018, 2019). The purpose of this paper is to study the dynamics of a
incompressible, irrotational and homogeneous fluid bounded above by a free interface
under the effect of gravity, surface tension and, more importantly, odd viscosity.

We consider the (to be determined) moving domain

�(t) =
{
(x1, x2) ∈ R

2, x1 ∈ R, x2 < η(x1, t)
}

,

for certain function η. The free interface is then

	(t) =
{
(x1, x2) ∈ R

2, x1 ∈ R, x2 = η(x1, t)
}

.

This function η is advected by the fluid and as a consequence it satisfies a transport
equation.

Since we consider surface tension effects, the stress tensor satisfies the following
boundary condition:

T i
j n j = γKni ,

where �n is the unit upward pointing normal to the surfacewave, γ is the surface tension
strength and K denotes the curvature of the free boundary

K = ηx1x1(
1 + η2x1

)3/2 on 	(t).

Since the fluid is homogeneous, we have that the density ρ remains constant. It
is well-known that the occurrence of viscosity creates a boundary layer near the sur-
face wave. However, the thickness of this boundary layer is small when the physical
parameters are in a certain regime (see Dias et al. 2008; Lamb 1932 for instance). In
particular, the vorticity is confined to this narrow boundary layer near the surface (see
Abanov et al. 2018). Then, following the ideas in Abanov et al. (2018), Dias et al.
(2008) and the references therein, we consider potential flowwith amodified boundary
conditions for the redefined pressure p̃. Let us emphasize that we are dealing with an
approximate model of surface odd waves where the boundary layer is replaced by a
modified Bernoulli’s law instead of the original free boundary problem for the surface
waves with odd viscosity.

As a consequence, we assume that

u = ∇θ,

where θ is the scalar velocity potential. This velocity potential, by virtue of the incom-
pressibility condition, is harmonic. Then, the effects of boundary layer are captured
by the odd viscosity modified pressure term (see Abanov et al. 2018; Ganeshan and
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Monteiro 2021 for the reasoning behind this fact)

p̃ = −γK − 2νo
(1 + η2x1)

1/2 (u · n)x1 .

This new boundary condition for the modified pressure encodes the contribution of
the narrow boundary layer and gives an accurate description of the physical problem.

Thus, to describe surface waves under the effect of gravity, capillary forces and
odd viscosity in an accurate way, it is enough to consider the following free boundary
problem (Abanov et al. 2018; Abanov and Monteiro 2019; Ganeshan and Monteiro
2021):

�θ = 0 in �(t) × [0, T ], (3a)

ρ

(
θt + θ2x1 + θ2x2

2
+ Gη

)
− γK = 2νo

(1 + η2x1)
1/2

(
ηt

(1 + η2x1)
1/2

)
x1

on 	(t) × [0, T ],

(3b)

ηt = −ηx1θx1 + θx2 on 	(t) × [0, T ], (3c)

where θ is the scalar potential (units of length2/time), η denotes the surface wave
(units of length) and G (units of length/time2) is the gravity acceleration. The
constant νo reflects the odd viscosity contribution and has units of (length2/t ime).

As is customary (see Zakharov 1968), we use the trace of the velocity potential

ξ(t, x1, x2) = θ(t, x1, η(t, x1)).

Thus, (3) can be written as

�θ = 0 in �(t) × [0, T ], (4a)

θ = ξ on 	(t) × [0, T ], (4b)

ξt + θ2x1 + θ2x2

2
+ Gη = γ

ρ

ηx1x1(
1 + η2x1

)3/2 + θx2
(−ηx1θx1 + θx2

)

+ 2νo
ρ

1

(1 + η2x1)
1/2

(
ηt

(1 + η2x1)
1/2

)
x1

on 	(t) × [0, T ],

(4c)

ηt = −ηx1θx1 + θx2 on 	(t) × [0, T ]. (4d)

The system (4) is supplemented with an initial condition for η and ξ :

η(x, 0) = η0(x), (5)

ξ(x, 0) = ξ0(x). (6)
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2.2 PriorWorks

System (4) is the odd viscosity analogue to the water waves system with (even) vis-
cosity in the work of Dias, Dyachenko & Zakharov (see Dias et al. 2008). A careful
inspection shows that the system with odd viscosity is of purely dispersive nature,
while the system in Dias et al. (2008) is of cross-diffusion type. This free boundary
problem with even viscosity has received a large amount of attention in recent years
both from the applied mathematics viewpoint, which is interested in new and better
mathematical models that capture the main dynamics in suitable regimes, and from the
pure mathematics community that studies the dynamics of the underlying differential
equations. We refer the reader to Dutykh (2009), Dutykh and Dias (2007b, a), Kakleas
and Nicholls (2010), Ngom and Nicholls (2018), Ambrose et al. (2012), Granero-
Belinchón and Scrobogna (2019a), Granero-Belinchón and Scrobogna (2020b, c).

Even if the odd viscosity effects are most visible at the free surface of the fluids (see
Ganeshan and Abanov 2017; Abanov et al. 2018, 2020) and the phenomenon has been
described experimentally (cf. Soni et al. 2018, 2019), the number of results studying
surface waves with odd viscosity remains, to the best of our knowledge, small.

Let us briefly summarize the available literature on surfacewaveswith oddviscosity.
Very recently, Abanov et al. (2018) considered the free surface dynamics of a two-
dimensional incompressible fluid with odd viscosity. Besides studying the dispersion
relation of such waves derived a number of weakly nonlinear models. First, after
neglecting gravity, surface tension and termsof cubic order, theyobtained the following
Craig-Sulem-type model (see equations (49) and (50) in Abanov et al. 2018)

ut − [H(uHu)]x1 + 2νoux1 = −2νo
[
�H, h�Hu

]
x1x1x1

,

ht + Hu = − [
�H, h�Hu

]
x1

,

where �·, ·� denotes the commutator and H and  stand for the Hilbert transform
and the fractional Laplacian, respectively (see below for a proper definition). As the
authors point out in their work, this system is Hamiltonian. In addition, the authors also
considered the small surface angle approximation to conclude the following model
(see equations (51) and (52) in Abanov et al. 2018)

htt = − [(Hht )ht ]x1 − 2νoHhtx1x1 .

This latter equation has the same nonlinearity as the h−model in Granero-Belinchón
and Shkoller (2017) while keeping a linear operator akin to the classical Benjamin–
Ono equation. Indeed, the previous model can be equivalently written as

vt = − [(Hv)v]x1 − 2νoHvx1x1 .

In this new variable, we recognize a well-known nonlinearity already heavily studied
in the literature (see Castro and Córdoba 2008; Bae and Granero-Belinchón 2015; Li
and Rodrigo 2011 and the references therein).
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In addition, Abanov et al. (2018), starting from the previous small angle approxi-
mation, derived and studied what they named the chiral Burgers equation

ut + 2uux1 = 2iνoux1x1 .

Wewould like to emphasize that all thesemodels are obtainedwith heuristic arguments
instead of a more rigorous asymptotic approximation.

Later on, Abanov and Monteiro (2019) presented a variational principle which
accounts for odd viscosity effects in free boundary incompressible flows.

Moreover, Ganeshan and Monteiro (2021) studied the case of waves with odd
viscosity in a shallow fluid and derived the celebrated KdV equation as a model in the
long wavelength weakly nonlinear regime.

2.3 Contributions andMain Results

The purpose of this paper is twofold. On the one hand, we obtain three newmodels for
capillary–gravity surface waves with odd viscosity. These new models are obtained
through a multiscale expansion in the steepness of the wave and extend the previous
results in Aurther et al. (2019), Granero-Belinchón and Scrobogna (2019a), Granero-
Belinchón and Scrobogna (2019b). Furthermore, our models consider both gravity
and surface tension forces and, as a consequence, generalize those in Abanov et al.
(2018). In particular, we obtain the model

ft t = − f − β3 f + αo ft x1 + ε
[
−H

(
(H ft )

2
)

+ (
�H, f � f

)]
x1

+ ε
[
−αo

(
�H, f � ft x1

) + β�H, f �3 f
]
x1

on 	 × [0, T ]. (7)

Noticing that the terms that are O(εαo) and O(εβ) are much smaller that the rest, we
can also consider the following PDE:

ft t = − f − β3 f + αo ft x1 + ε
[−H (

(H ft )
2) + (

�H, f � f
)]

x1
on 	 × [0, T ]. (8)

Similarly, if we restrict ourselves to the study of unidirectional surface waves, we can
derive the following dispersive equation:

2 ft + αo ft = 1

ε

{
fx1 + H f + (αo − β)H fx1x1

}
+ H ( f )2 − �H, f � f + (αo − β)�H, f �3 f , on 	 × [0, T ].

(9)

Conservation of mass is a limitation of some models of viscous fluids (Eeltink et al.
2020). In that regard, let us remark that the models here derived conserve the total
mass of water for periodic domains and for waves that decay fast enough at infinity.
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On the other hand, we prove a number ofmathematical results establishing thewell-
posedness of our newmodels in appropriate functional spaces (see Granero-Belinchón
and Scrobogna 2020a, c, 2021 for some related results).

Roughly speaking, we prove the following theorems (see below for the precise
statements):

(1) Equation (7) is locally well-posed for analytic initial data. The proof is based on
a Cauchy–Kowalevski-type argument that relies in finding appropriate bounds for
a cascade of linear equations as in Aurther et al. (2019).

(2) Equation (8) is locally well-posed in H4.5(R) × H3(R) when the Bond number
β > 0. The required energy estimates exploit the commutator structure of the
nonlinearity in a very precise way.

(3) Equation (9) is locally well-posed in H3(R) when the odd Reynolds number αo is
strictly positive regardless of the value of the Bond number β. Furthermore, when
0 < αo = β, the problem admits a distributional solution in H1.5(R).

The plan of the paper is as follows. First, in Sect. 3, we write the dimensionless
problem of gravity–capillary waves with odd viscosity in the arbitrary Lagrangian–
Eulerian formulation. Next, in Sect. 4, we derive and study the case of a bidirectional
gravity–capillary wave with odd viscosity. In particular, we obtain two new nonlinear
andnonlocalwave equations (seeEquations (7) and (8)). ThesePDEsdescribe themain
dynamics in the weakly nonlinear regime and consider the case where the steepness
parameter ε, the odd Reynolds number αo and Bond number β are small. Moreover,
we establish the local strong well-posedness of (7) and (8) in appropriate functional
spaces. Then, in Sect. 5, we study the case of unidirectional waves and obtain the
new nonlocal and nonlinear dispersive equation (9) in the case of right-moving waves.
Furthermore, we establish the local strong well-posedness of (9) in Sobolev spaces
provided that the odd Reynolds number is positive. Finally, we also prove a local in
time existence of distributional solution with limited regularity for (9). In Sect. 6, we
conclude with a brief discussion presenting the main novelties of our work.

2.4 Notation

Given a matrix A, we write Ai
j for the component of A, located on row i and column

j . We will use the Einstein summation convention for expressions with indexes.
We write

fx j = ∂ f

∂x j
, ft = ∂ f

∂t

for the space derivative in the j−th direction and for a time derivative, respectively.
Let f (x1) denote a L2 function on R. We define the Hilbert transform H and the

Dirichlet-to-Neumann operator  and its powers, respectively, using Fourier series

Ĥ f (k) = −isgn(k) f̂ (k) , ̂ f (k) = |k| f̂ (k) , (10)
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where

f̂ (k) = 1√
2π

∫
R

f (x1) e
−ikx1rmdx1.

Finally, given an operator T , we define the commutator as

�T , f �g = T ( f g) − f T (g).

3 AModel of Gravity–CapillaryWaves with Odd Viscosity

As mentioned above, we use the trace of the velocity potential

ξ(t, x1, x2) = θ(t, x1, η(t, x1)).

Thus, (3) can be written in dimensionless form (see Granero-Belinchón and Shkoller
2017 for more details) as

�θ = 0 in �(t) × [0, T ], (11a)

θ = ξ on 	(t) × [0, T ], (11b)

ξt + ε
θ2x1 + θ2x2

2
+ η = βηx1x1(

1 + (
εηx1

)2)3/2 + εθx2
(−εηx1θx1 + θx2

)
(11c)

+ αo
1

(1 + ε2η2x1)
1/2

(
ηt

(1 + ε2η2x1)
1/2

)
x1

on 	(t) × [0, T ],

(11d)

ηt = −εηx1θx1 + θx2 on 	(t) × [0, T ], (11e)

where ε is known as the steepness parameter and measures the ratio between the
amplitude and the wavelength of the wave while αo is a dimensionless parameter akin
to the Reynolds number that represents the ratio between gravity and odd viscosity
forces. Due to this similarity, we call it odd Reynolds number. Similarly, β is the Bond
number comparing the gravity and capillary forces.

Now, we want to express system (11) on the reference domain � and reference
interface 	

� = R × (−∞, 0) , 	 = R × {0} . (12)

In order to do that we define the following family of diffeomorphisms

ψ : [0, T ] × � → �(t) ,

(x1, x2, t) 	→ ψ (x1, x2, t) = (x1, x2 + εη (x1, t)) .
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We compute

∇ψ =
(

1 0
εηx1 (x1, t) 1

)
, A = (∇ψ)−1 =

(
1 0

−εηx1 (x1, t) 1

)
. (13)

We define the ALE variables

� = θ ◦ ψ.

We can equivalently write (11) in the (fixed) reference domain as follows:

A�
j

(
Ak
j�xk

)
x�

= 0 in � × [0, T ], (14a)

� = ξ on 	 × [0, T ], (14b)

ξt + ε

2
Ak
j�xk A

�
j�x�

+ η = βηx1x1(
1 + (

εηx1
)2)3/2 + εAk

2�xk A
�
j�x�

A2
j (14c)

+ αo
1

(1 + ε2η2x1)
1/2

(
ηt

(1 + ε2η2x1)
1/2

)
x1

on 	 × [0, T ],

(14d)

ηt = Ak
j�xk A

2
j on 	 × [0, T ]. (14e)

Using the explicit value of Ak
j , we can regroup terms and find that

�� = ε
(
ηx1x1 �x2 + 2ηx1�x1x2

) − ε2(ηx1)
2�x2x2 , in � × [0, T ] , (15a)

� = ξ on 	 × [0, T ], (15b)

ξt = −ε

2

[
(�x1)

2 + (εηx1�x2)
2 + (�x2)

2 − 2εηx1�x2�x1

]

− η + ε�x2

(
−εηx1�x1 + ε2(ηx1)

2�x2 + �x2

)

+ βηx1x1(
1 + (

εηx1
)2)3/2

+ αo
1

(1 + ε2η2x1)
1/2

(
ηt

(1 + ε2η2x1)
1/2

)
x1

on 	 × [0, T ], (15c)

ηt = −εηx1�x1 + ε2(ηx1)
2�x2 + �x2 on 	 × [0, T ]. (15d)

4 The Bidirectional Asymptotic Model for Waves with Odd Viscosity

4.1 Derivation

We are interested in a model approximating the dynamics up to O(ε2). As a conse-
quence a number of terms can be neglected with this order of approximation, and we
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find

�� = ε
(
ηx1x1 �x2 + 2ηx1�x1x2

)
, in � × [0, T ] , (16a)

� = ξ on 	 × [0, T ], (16b)

ξt = −ε

2

[
(�x1)

2 + (�x2)
2
]

− η + ε�2
x2 + βηx1x1 + αoηt x1 on 	 × [0, T ],

(16c)

ηt = −εηx1�x1 + �x2 on 	 × [0, T ]. (16d)

In order to obtain the asymptotic model for the interface under the effect of odd
viscosity, we will assume the following form for the unknowns:

�(x1, x2, t) =
∑
n

εn�(n) (x1, x2, t) ,

ξ (x1, t) =
∑
n

εnξ (n) (x1, t) ,

η (x1, t) =
∑
n

εnη(n) (x1, t) . (17)

For the case n = 0, we have that

��(0) = 0, in � × [0, T ] , (18a)

�(0) = ξ (0) on 	 × [0, T ], (18b)

ξ
(0)
t = −η(0) + βη(0)

x1x1 + αoη
(0)
t x1 on 	 × [0, T ], (18c)

η
(0)
t = �(0)

x2 on 	 × [0, T ]. (18d)

The solution of the associated elliptic problem for the first term of the velocity potential
is given by

̂�(0) (k, x2, t) = ξ (0)(k, t)e|k|x2 in � × [0, T ],

so

�(0)
x2 = ξ(0) on 	.

Then, we find that the linear problem for the first term of the series for the interface is

η
(0)
t t = −η(0) − β3η(0) + αoη

(0)
t x1 on 	 × [0, T ].
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The second term in the expansion is

��(1) = η(0)
x1x1 �(0)

x2 + 2η(0)
x1 �(0)

x1x2 , in � × [0, T ] , (19a)

�(1) = ξ (1) on 	 × [0, T ], (19b)

ξ
(1)
t = −1

2

[
(�(0)

x1 )2 + (�(0)
x2 )2

]
− η(1) + (�(0)

x2 )2 + βη(1)
x1x1 + αoη

(1)
t x1 on 	 × [0, T ],

(19c)

η
(1)
t = −η(0)

x1 �(0)
x1 + �(1)

x2 on 	 × [0, T ]. (19d)

We recall now the following lemma:

Lemma 4.1 (Granero-Belinchón and Scrobogna 2019a) Let us consider the Poisson
equation

⎧⎨
⎩

�u (x1, x2) = b (x1, x2) , (x1, x2) ∈ R × (−∞, 0) ,

u (x1, 0) = g (x1) , x1 ∈ R,

limx2→−∞ ∂2u (x1, x2) = 0, x1 ∈ R,

(20)

where we assume that the forcing b and the boundary data g are smooth and decay
fast enough at infinity. Then,

ux2 (x1, 0) =
∫ 0

−∞
ey2b (x1, y2) dy2 + g(x1). (21)

Using this lemma, we find that

�(1)
x2

∣∣∣
x2=0

= ξ(1) −
�
, η(0)

�
ξ(0) (22)

and we can write system (19) as

ξ
(1)
t = −1

2

[
(ξ (0)

x1 )2 + (ξ(0))2
]

− η(1) + (ξ(0))2 + βη(1)
x1x1 + αoη

(1)
t x1 on 	 × [0, T ],

(23a)

η
(1)
t = −η(0)

x1 ξ (0)
x1 + ξ(1) −

�
, η(0)

�
ξ(0) on 	 × [0, T ]. (23b)

Recalling that

η
(0)
t = ξ(0),

and Tricomi’s identity
(H f )2 − f 2 = 2H ( fH f ) , (24)

we can compute

ξ
(1)
t = βη(1)

x1x1 − H
(
η

(0)
t Hη

(0)
t

)
− η(1) + αoη

(1)
t x1 on 	 × [0, T ],
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η
(1)
t = η(0)

x1 Hη
(0)
t + ξ(1) −

�
, η(0)

�
η

(0)
t on 	 × [0, T ].

Taking a time derivative and substituting the value of ξ
(1)
t , we compute that

η
(1)
t t = −η(1) − β3η(1) + αoη

(1)
t x1 − 

(
(Hη

(1)
t )2

)
+

(�
H, η(0)

�
η(0)

)
x1

+ β
(�

H, η(0)
�
3η(0)

)
x1

− αo

(�
H, η(0)

�
η

(0)
t x1

)
x1

on 	 × [0, T ].

If we now define

f (x1, t) = η(0)(x1, t) + εη(1)(x1, t),

after neglect terms of order O(ε2), we conclude the following bidirectional model of
gravity–capillary waves with odd viscosity

ft t = − f − β3 f + αo ft x1 + ε
[
−H

(
(H ft )

2
)

+ (
�H, f � f

)]
x1

+ ε
[
−αo

(
�H, f � ft x1

) + β�H, f �3 f
]
x1

on 	 × [0, T ]. (25)

With an appropriate choice of the parameters, (25) recovers the quadratic h−model
in Aurther et al. (2019), Matsuno (1992), Matsuno (1993b), Matsuno (1993a), Akers
and Milewski (2010), Akers and Nicholls (2010).

Furthermore, we observe that some of the terms are O(εαo) and O(εβ), i.e., they
are much smaller than the rest of the nonlinear contributions. Then, one can expect
that they can be neglected to find

ft t = − f − β3 f + αo ft x1 + ε
[−H (

(H ft )
2) + (

�H, f � f
)]

x1
on 	 × [0, T ].

(26)

A similar equation was obtained in Granero-Belinchón and Scrobogna (2019a),
Granero-Belinchón and Scrobogna (2020c, 2021) for the case of damped waves under
the effect of even viscosity.

4.2 Well-Posedness for Analytic Initial Data

We recall the definition of the Wiener spaces in the real line (see Gancedo et al. 2020
for more properties)

Aτ (R) =
{
h ∈ L1(R) s.t. ‖h‖Aτ

=
∫
R

eτ |n||ĥ(n)|dn < ∞
}

.

This section is devoted to the proof of the following result:
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Theorem 1 Let β, αo ≥ 0 be fixed constants. Assume that the initial data for equation
(25) satisfies

( f0, f1) ∈ L1(R) × L1(R)

and

f0(x1) = 1√
2π

∫ D

−D
f̂0(k)e

ikx1dk,

f1(x1) = 1√
2π

∫ D

−D
f̂1(k)e

ikx1dk,

for some 1 < D < +∞. Then, there exists 0 < T ∗ and a unique solution to equation
(25) such that

( f , ft ) ∈ L∞(0, T ∗; A1(R)) × L∞(0, T ∗; A1(R)) ∩ C(0, T ∗; A0.5(R))

×C(0, T ∗; A0.5(R)).

Proof We look for a solution of the form

f (x, t) =
∞∑

�=0

λ�+1 f (�)(x, t) (27)

for some λ to be fixed later. By substituting this expression into (25) and matching
terms, we get that f (�) satisfies the equation

f (�)
t t = − f (�) − β3 f (�) + αo f (�)

t x1

+
�−1∑
j=0

[
− H

(
H f ( j)

t H f (�−1− j)
t

)
+ H

(
f ( j) f (�−1− j)

)
− f ( j)H f (�−1− j)

]
x1

− αo

�−1∑
j=0

[ (
H

(
f ( j) f (�−1− j)

t x1

)
− f ( j)H f (�−1− j)

t x1

) ]
x1

+ β

�−1∑
j=0

[
H

(
f ( j)3 f (�−1− j)

)
− f ( j)H3 f (�−1− j)

]
x1

(28)

with initial conditions

f (l)(x1, 0) =
{

0 if � �= 0,
f0
λ

if � = 0.
and f (l)

t (x1, 0) =
{

0 if � �= 0,
f1
λ

if � = 0.

Using the Fourier series expansion, from (28) we get that each f̂ (�)(x1, t) satisfies the
differential equation

f̂ (�)
t t (k, t) = −|k| f̂ (�)(k, t) − β|k|3 f̂ (�)(k, t) + i αok|k| f̂ (�)

t (k, t) + F(k, t)
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where

F(k, t) = |k|
�−1∑
j=0

∫ ∞

−∞
sgn(m) f̂ ( j)

t (m, t)sgn(k − m) f̂ (�−1− j)
t (k − m, t)dm

+
�−1∑
j=0

∫ ∞

−∞
f̂ ( j)(m, t) f̂ (�−1− j)(k − m, t)

[
|k||k − m| − k(k − m)

]
dm

+ iαo

�−1∑
j=0

∫ ∞

−∞
f̂ ( j)(m, t) f̂ (�−1− j)

t (k − m, t)(k − m)
[
|k||k − m| − k(k − m)

]
dm

+ β

�−1∑
j=0

∫ ∞

−∞
f̂ ( j)(m, t) f̂ (�−1− j)(k − m, t)(k − m)2

[
|k||k − m| − k(k − m)

]
dm.

(29)

Solving (28) for � = 0, we get

f̂ (0)(k, t) = 1

i(r+ − r−)

{
[ f̂1 − ir− f̂0]eir+t − [ f̂1 − ir+ f̂0]eir−t

}

where

r± = r±(k) = αok|k| ± √
α2
ok

4 + 4(|k| + β|k|3)
2

.

Similarly, for � > 0, we obtain

f̂ (�)(k, t) = 1

i(r+ − r−)

∫ t

0
F(k, s)

{
eir

+(t−s) − eir
−(t−s)

}
ds

with F(k, t) given in (29). Thus,

f̂ (�)
t (k, t) = 1

(r+ − r−)

∫ t

0
F(k, s)

{
r+eir+(t−s) − r−eir−(t−s)

}
ds.

Let us exploit the commutator structure of the nonlinearity (cf. Granero-Belinchón
and Scrobogna 2020a). In particular, we note that

[|k||k − m| − k(k − m)] = |k||k − m|[1 − sgn(k)sgn(k − m)] ≤ 2|k||k − m|

for k < m and

[|k||k − m| − k(k − m)] = 0

otherwise. Hence,

1

r+ − r− [|k||k − m| − k(k − m)] ≤ 2
√|m||k − m| ≤ 2(1 + |m|)|k − m|. (30)
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Let us fix 1 < D < R ∈ Z+ such that

D(R + 1)

1 + R2 ≤ 1.

Since the series (27) are respectively bounded by

sup
0≤t≤T

∞∑
l=0

λ�+1‖ f (�)(t)‖A1 and sup
0≤t≤T

∞∑
l=0

λ�+1‖ f (�)
t (t)‖A1 (31)

by proving the boundedness of (31), we get the absolute convergence of (27) and,
hence, the existence of solutions. We start by considering the truncated series

S1R :=
R∑

�=0

λ�+1 f (�)(x1, t) and S2R :=
R∑

�=0

λ�+1 f (�)
t (x1, t). (32)

Thus, because of (29) and (30), we obtain

‖ f (�)(t)‖AR+1−l ≤
∫ ∞

−∞
e(R+1−�)|k|

∫ t

0

�−1∑
j=0

[∫ ∞

−∞

√|k|| f̂ ( j)
t (m, s)|| f̂ (�−1− j)

t (k − m, s)|dm

+ 2
∫ ∞

−∞
|k − m|(1 + |m|)| f̂ ( j)(m, s)|| f̂ (�−1− j)(k − m, s)|dm

+ 2αo

∫ ∞

−∞
|k − m|2(1 + |m|)| f̂ ( j)(m, s)|| f̂ (�−1− j)

t (k − m, s)|dm

+ 2β
∫ ∞

−∞
|k − m|3(1 + |m|)| f̂ ( j)(m, s)|| f̂ (�−1− j)(k − m, s)|dm

]
dsdk

≤ C1(αo, β)

∫ t

0

�−1∑
j=0

[
‖ f ( j)

t (s)‖AR+2−�
‖ f (�−1− j)

t (s)‖AR+2−�

+ ‖ f ( j)(s)‖AR+2−�
‖ f (�−1− j)(s)‖AR+2−�

+ ‖ f ( j)(s)‖AR+2−�
‖ f (�−1− j)

t (s)‖AR+2−�

+ ‖ f ( j)(s)‖AR+2−�
‖ f (�−1− j)(s)‖AR+2−�

]
ds

where we have used Fubini’s theorem together with f̂ (l)(0, t) = 0 and the inequalities

1 + |k| ≤ e|k| ∀k ∈ R

|k|n ≤ n!e|k| ∀k ∈ R

|k| ≤ ce
|k|
c ≤ ce

|k−m|+|m|
c ∀c ∈ Z+.
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Moreover, using the commutator structure again, we obtain that

∣∣∣∣ r±

r+ − r−

∣∣∣∣ [|k||k − m| − k(k − m)] ≤ 2(|m| + αo|m|2 + αo|m|3)|k − m|

for k < m and, hence, we also find that

‖ f (�)
t (t)‖AR+1−�

≤ C2(αo, β)

∫ t

0

�−1∑
j=0

[
‖ f ( j)

t (s)‖AR+2−�
‖ f (�−1− j)

t (s)‖AR+2−�

+ ‖ f ( j)(s)‖AR+2−�
‖ f (�−1− j)(s)‖AR+2−�

+ ‖ f ( j)(s)‖AR+2−�
‖ f (�−1− j)

t (s)‖AR+2−�

+ ‖ f ( j)(s)‖AR+2−�
‖ f (�−1− j)(s)‖AR+2−�

]
ds.

On the other hand, since R + 2− � ≤ R + 2− � + j = R + 1− (� − 1− j), we have

‖ f (�−1− j)(s)‖AR+2−�
≤ ‖ f (�−1− j)(s)‖AR+1−(�−1− j) .

Furthermore, since R + 2− � = R + 1− (� − 1) ≤ R + 1− j for j ≤ � − 1, we also
have

‖ f ( j)(s)‖AR+2−l ≤ ‖ f ( j)(s)‖AR+1− j .

As a consequence, we find

‖ f (�)(t)‖AR+1−�
+ ‖ f (�)

t (t)‖AR+1−�

≤ C(αo, β)

∫ t

0

�−1∑
j=0

[
‖ f ( j)

t (s)‖AR+2−�
‖ f (�−1− j)

t (s)‖AR+2−�

+ ‖ f ( j)(s)‖AR+2−�
‖ f (�−1− j)

t (s)‖AR+2−�

+ ‖ f ( j)(s)‖AR+2−�
‖ f (�−1− j)(s)‖AR+2−�

]
ds

≤ C(αo, β)

∫ t

0

�−1∑
j=0

[
‖ f ( j)

t (s)‖AR+1− j ‖ f (�−1− j)
t (s)‖AR+1−(�−1− j)

+ ‖ f ( j)(s)‖AR+1− j ‖ f (�−1− j)
t (s)‖AR+1−(�−1− j)

+ ‖ f ( j)(s)‖AR+1− j ‖ f (�−1− j)(s)‖AR+1−(�−1− j)

]
ds

with C(αo, β) = 2max {C1(αo, β),C2(αo, β)}. Let us define

A�(t) = C(αo, β)e
− �+1

1+�R2
D(R+1)

[
‖ f (�)(t)‖AR+1−�

+ ‖ f (�)
t (t)‖AR+1−�

]
.
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First we observe that, since R > 1, for 0 ≤ j ≤ � − 1,

� + 1

1 + �R2 + 2 ≥ (� − 1 − j + 1)

1 + (� − 1 − j)R2 + ( j + 1)

1 + j R2 , (33)

so that

e
− l+1

1+l R2
D(R+1) ≤ e2e

− l−1− j+1
1+(l−1− j)R2

D(R+1)
e
− j+1

1+ j R2
D(R+1)

.

Hence, the former recursion for ‖ f (l)(t)‖AR+1−l +‖ f (l)
t (t)‖AR+1−l can be equivalently

written as

A�(t) ≤ e2
∫ t

0

�−1∑
j=0

A j (s)A�−1− j (s)ds.

We define now

B�(t) = e2A�(t),

and find that B� satisfies

B�(t) ≤
∫ t

0

�−1∑
j=0

B j (s)B�−1− j (s)ds.

First, let us observe that

B0(t) = e2C(αo, β)e−D(R+1)
[
‖ f (0)(t)‖AR+1 + ‖ f (0)

t (t)‖AR+1

]

≤ e2√
2πλ

C(αo, β)e−D(R+1)
∫ D

−D
e(R+1)|k|

(
| f̂0| +

∣∣∣∣∣
f̂1

r+ − r−

∣∣∣∣∣
)
dk

≤ e2√
2πλ

C(αo, β)

∫ D

−D

(
| f̂0| +

∣∣∣∣∣
f̂1√|k|

∣∣∣∣∣
)
dk

≤ C(‖ f0‖A0 , ‖ f1‖A0 , ‖ f1‖L1)

λ
.

We fix

λ = C(‖ f0‖A0 , ‖ f1‖A0 , ‖ f1‖L1)

then, we prove by induction that

B�(t) ≤ C�t
� (34)

with Cl being the Catalan numbers,

Cl =
l−1∑
j=0

C jCl−1− j ,
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which behave as
Cl ∼ O(l−

3
2 4l) for l >> 1. (35)

Since we have already seen that (34) holds for � = 0, we continue with the induction
step. For � ≥ 1, we have

B� ≤
∫ t

0

�−1∑
j=0

B j (s)B�−1− j (s)ds

≤
∫ t

0

�−1∑
j=0

C j s
jC�−1− j s

l−1− jds

= C�

∫ t

0
s�−1ds

= C�

t�

�
.

Therefore, because of (35), we find

‖ f (�)(t)‖A1 + ‖ f (�)
t (t)‖A1 ≤ ‖ f (�)(t)‖AR+1−�

+ ‖ f (�)
t (t)‖AR+1−�

≤ [C(αo, β)]−1e−2e
�+1

1+�R2
D(R+1)

4�t�

In a similar way,

‖ f (0)(t)‖A1 + ‖ f (0)
t (t)‖A1 ≤ C(‖ f0‖A0 , ‖ f1‖A0 , ‖ f1‖L1)

Then, the truncated series (32) satisfies the estimates

‖S1R‖A1 ≤ C(‖ f0‖A0 , ‖ f1‖A0 , ‖ f1‖L1) + 2
λ

e2C(αo, β)

R∑
�=1

e
D(R+1)
1+�R2

(
4e

D(R+1)
1+�R2 λt

)�

≤ C(‖ f0‖A0 , ‖ f1‖A0 , ‖ f1‖L1) + 2
λ

C(αo, β)

R∑
�=1

(4eλt)� ,

as well as

‖S2R‖A1 ≤ C(‖ f0‖A0 , ‖ f1‖A0 , ‖ f1‖L1) + 2
λ

C(αo, β)

R∑
�=1

(4eλt)� ,

Thus, we conclude that, if

t ≤ T ∗ <
1

4eC(‖ f0‖A0 , ‖ f1‖A0 , ‖ f1‖L1)
,
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we can take the limit as R → +∞ in (32) and we obtain the existence of

f (x1, t) = S1∞ and ft (x1, t) = S2∞.

We also observe that the above estimates ensure f , ft ∈ L∞ (
0, T ∗; A1

)
. In addition,

since both f and ft are analytic functions in space, using the Cauchy product of power
series, we also find that f , ft ∈ C

(
0, T ∗; A0.5

)
. At this level of regularity, we can

perform standard energy estimates and find the estimate

‖ ft − gt‖L2 + ‖1.5( f − g)‖L2 ≤ (‖ f1 − g1‖L2 + ‖1.5( f0 − g0)‖L2 )C(t, f0 , f1, g0, g1)

where f and g are two solutions of the equation (25) with different initial data com-
pactly supported on Fourier space. The uniqueness in this space of analytic functions
follows from a standard contradiction argument. ��

4.3 Well-Posedness for Sobolev Initial Data

We recall the definition of the standard L2-based Sobolev spaces

Hs(R) =
{
h ∈ L2(R) s.t. ‖h‖2Hs =

∫
R

(1 + |n|2s)|ĥ(n)|2dn < ∞
}

.

In this section,we prove thewell-posedness of equation (26)with periodic boundary
conditions. In order to do that, wewillmake extensive use of the following commutator
estimate (Dawson et al. 2008):

∥∥∥∂�
x �H, u�∂mx v

∥∥∥
L p

≤ C
∥∥∥∂�+m

x u
∥∥∥
L∞ ‖v‖L p , p ∈ (1,∞), �,m ∈ N, (36)

and the fractional Leibniz rule (see Grafakos and Seungly 2014; Kato and Ponce 1988;
Kenig et al. 1993):

‖s(uv)‖L p ≤ C
(‖su‖L p1 ‖v‖L p2 + ‖sv‖L p3 ‖u‖L p4

)
,

which holds whenever

1

p
= 1

p1
+ 1

p2
= 1

p3
+ 1

p4
where 1/2 < p < ∞, 1 < pi ≤ ∞,

and s > max{0, 1/p − 1}.
Our result reads as follows:

Theorem 2 Let β > 0 be a constant and ( f0, f1) ∈ H4.5(R) × H3(R) be the initial
data for equation (26). Then, there exists 0 < T ∗ and a unique solution

( f , ft ) ∈ L∞(0, T ∗, H4.5(R)) × L∞(0, T ∗, H3(R)).
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Proof Without loss of generality, we fix αo = ε = 1. The proof follows from
appropriate energy estimates after a standard approximation using mollifiers (see
Granero-Belinchón and Shkoller 2017). As a consequence, we will focus in obtaining
the a priori estimates. We define the energy

E(t) = β‖ f (t)‖H4.5 + ‖ f (t)‖H3.5 + ‖ ft (t)‖H3 .

In order to estimate the low-order terms, we test the equation against ft . Integrating
by parts and using that

(H ft )x1 =  ft ,

we find that

1

2

d

dt

(
‖ ft‖2L2 + ‖ f ‖2H0.5 + β‖ f ‖2H1.5

)
=

∫
R

(
�H, f � f

)
x1

ftdx1 ≤ E(t)3.

Using the fundamental theorem of calculus, we obtain that

d

dt
‖ f ‖2L2 = 2

∫
R

f ftdx1 ≤ 2‖ f ‖L2‖ ft‖L2 ≤ CE(t)2

To bound the high-order terms, we test the equation against 6 ft . Then, we find

1

2

d

dt

(
‖ ft‖2H3 + ‖ f ‖2H3.5 + β‖ f ‖2H4.5

)
= I1 + I2,

where

I1 = −
∫
R

H
(
(H ft )

2
)
x1

6 ftdx1,

I2 =
∫
R

(
�H, f � f

)
x1

6 ftdx1.

We integrate by parts and find that

I1 = −
∫
R

(H ft )
27 ftdx1

=
∫
R

(H ft )
2∂6x1 ftdx1

= −
∫
R

∂3x1(H ft )
2∂3x1 ftdx1

= −2
∫
R

(H ft fx1x1t + 3 ft ft x1)∂
3
x1 ftdx1

= J 11 + J 21 ,
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with

J 11 = −2
∫
R

H ft fx1x1t∂x1 fx1x1tdx1,

J 21 = −6
∫
R

 ft ft x1∂x1 fx1x1tdx1.

Integrating by parts and using Hölder’s inequality, we find that

J 11 =
∫
R

 ft ( fx1x1t )
2dx1 ≤ CE(t)3,

J 21 = 6
∫
R

∂x1( ft ft x1) fx1x1tdx1

= 6
∫
R

( fx1t ft x1 +  ft ft x1x1) fx1x1tdx1,

≤ CE(t)3.

We have to handle the second nonlinear contribution. We compute that

I2 = −
∫
R

(
( f  f ) + ( f fx1)x1

)
∂6x1 ftdx1

= −
∫
R

∂3x1

(
( f  f ) + ( f fx1)x1

)
ft x1x1x1dx1

= J 12 + J 22 + J 32 + J 42 ,

with

J 12 = −
∫
R

(
( f  fx1x1x1) + ( f fx1x1x1x1)x1

)
ft x1x1x1dx1,

J 22 = −
∫
R

(
( fx1 fx1x1) + ( fx1 fx1x1x1)x1

)
ft x1x1x1dx1

J 32 = −
∫
R

(
( fx1x1 fx1) + ( fx1x1 fx1x1)x1

)
ft x1x1x1dx1

J 42 = −
∫
R

(
( fx1x1x1 f ) + ( fx1x1x1 fx1)x1

)
ft x1x1x1dx1.

Using Hölder’s inequality and the fractional Leibniz rule, we find that

J 22 + J 32 + J 42 ≤ CE(t)3.

We observe that we can find a commutator structure in J 12 . Indeed, we have that

J 12 = −
∫
R

(
�, f � fx1x1x1 + fx1 fx1x1x1x1

)
ft x1x1x1dx1
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≤ ‖ ft‖H3‖�, f � fx1x1x1‖L2 + E(t)3.

This commutator in Fourier variables takes the following form:

̂�, f �g =
∫
R

(|n| − |n − m|) f̂ (m)ĝ(n − m)dm.

In particular, using Young’s inequality for convolution, Sobolev inequality and
Plancherel theorem, we conclude that

‖ ̂�, f �g‖L2 ≤ ‖| · | f̂ ‖L1‖g‖L2 ≤ C‖ f ‖H2‖g‖L2 .

Inserting this commutator estimate in J 12 , we conclude that

J 12 ≤ C‖ ft‖H3‖ f ‖H2‖ f ‖H4 + E(t)3 ≤ CE(t)3.

As a consequence, we find the following differential inequality for the energy

d

dt
E(t) ≤ CE(t)2 + E(t),

and we can ensure a uniform time of existence T ∗ such that

E(t) ≤ 2E(0).

Once this uniform time of existence has been obtained, the rest of the proof is standard
so we only give a sketch of the argument. First, we define approximate problems using
mollifiers. These mollifiers are such that the previous energy estimates also holds for
the regularized PDE. Then, we repeat the previous computations and find the uniform
time of existence T ∗ for the sequence of regularized problems. Finally, we can pass
to the limit. The uniqueness follows from a contradiction argument and we omit it. ��

5 The Unidirectional Asymptotic Model for Waves with Odd Viscosity

5.1 Derivation

Let us consider the following ’far-field’ variables,

χ = x − t, τ = εt .

An application of the chain rule leads to

∂2

∂t2
f (χ(x, t), τ (t)) = − fχχ

∂χ

∂t
− fχτ

∂τ

∂t
+ ε fτχ

∂χ

∂t
+ ε fττ

∂τ

∂t
= fχχ − ε fχτ − ε fτχ + ε2 fττ .
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So that, neglecting terms of order O(ε2), equation (25) reads

(
fχ − 2ε fτ

)
χ

=
(

− H f − εH
[
( f )2

]
+ αoH2 f + αoε fτ

+ ε�H, f � f − εαo�H, f �3 f − βH2 f + εβ�H, f �3 f
)

χ

on 	 × [0, T ].

Integrating on χ , reordering terms and abusing notation by using x1 and t as variables
again, we are led to the equation

2 ft + αo ft = 1

ε

{
fx1 + H f + (αo − β)H fx1x1

}
+ H ( f )2 − �H, f � f + (αo − β)�H, f �3 f , on 	 × [0, T ].

(37)

This equation reminds the classical Benjamin–Ono equation (cf. Brooke Benjamin
1967; Ono 1975) and Burgers–Hilbert equation (cf. Biello and Hunter 2010) (see also
Riaño 2021). It is also similar to the equation derived in Durán (2020). This similarity
is not only due to the linear operators. Indeed, in the new variable

u =  f ,

we find that (37) contains the classical Burgers term:

ut = 1

ε

1

2 + αo

{
ux1 + Hu + (αo − β)Hux1x1

}

+ 1

2 + αo

{−∂x1 (u)2 − �H, f �u + (αo − β)�H, f �2u
}
, on 	 × [0, T ].

(38)

5.2 Well-Posedness for Sobolev Initial Data

In this section, we study the well-posedness of equation (37).

Theorem 3 Let αo > 0 and β ≥ 0 be two constants and f0 ∈ H3(R) be the initial
data for equation (37). Then, there exists 0 < T ∗ and a unique solution

f ∈ L∞(0, T ∗, H3(R)).

Proof As before, the proof follows from appropriate energy estimates and a suitable
sequence of approximate problems. Thus, we start with the energy estimates. We test
the equation against 6 f and we find that

1

2

d

dt
‖ f ‖2H3 =

∫
R

1

2 + αo

{H ( f )2 − �H, f � f + (αo − β)�H, f �3 f
}
6 f dx1.
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Integrating by parts we have that

1

2

d

dt
‖ f ‖2H3 = −

∫
R

1

2 + αo

{H ( f )2 − �H, f � f + (αo − β)�H, f �3 f
}
∂2x1

4 f dx1

= −
∫
R

∂2x1

{H ( f )2 − �H, f � f + (αo − β)�H, f �3 f
} 4

2 + αo
f dx1.

Using the bound

∥∥∥∥ 4

2 + αo
f

∥∥∥∥
L2

≤ ‖ f ‖H3 ,

together with the commutator estimate for the Hilbert transform (36), we find that

1

2

d

dt
‖ f ‖2H3 ≤ C‖ f ‖3H3 .

This differential inequality leads to a uniform time of existence. Equipped with the
uniform time of existence, the existence of solution can be obtained using a sequence
of regularized problems (see Granero-Belinchón and Shkoller 2017). The uniqueness
is a consequence of a contradiction argument and the regularity of the solution. ��

5.3 Distributional Solution with Limited Regularity

Let us consider the case αo > 0 and β = αo.
Before stating our result, we define our concept of distributional solution: we say

that f is a distributional solution of (9) if and only if

−
∫
R

(2 + αo)ϕ(x1, 0) f0(x1)dx1ds −
∫ T

0

∫
R

(2 + αo)ϕt (x1, s) f (x1, s)dx1ds

= −1

ε

∫ T

0

∫
R

f (x1, s)ϕx1(x1, s) + Hϕ(x1, s) f (x1, s)dx1ds

+
∫ T

0

∫
R

{
H ( f )2 − �H, f � f

}
ϕ(x1, s)dx1ds,

for all ϕ ∈ C∞
c ([0, T ) × R).

Theorem 4 Let αo > 0 and β = αo be two constants and f0 ∈ H1.5(R) be the initial
data for equation (37). Then, there exists 0 < T ∗ and at least one distributional
solution

f ∈ L∞(0, T ∗, H1.5(R)).
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Proof We consider the regularized problem

2 f (n)
t + αo f (n)

t − 1

n
f (n)
x1x1 = 1

ε

{
f (n)
x1 + H f (n)

}

+ H
(
 f (n)

)2 −
�
H, f (n)

�
 f (n), on 	 × [0, T ],

(39)

with the mollified initial data

f (n)(x1, 0) = ρn ∗ f0(x1),

where ρn is a standard Friedrich mollifier.
We test the equation against f (n) and use Hölder and Sobolev inequalities to find

d

dt
‖ f (n)‖2L2 + d

dt
‖0.5 f (n)‖2L2 + 1

n
‖ f (n)

x1 ‖2L2 ≤ C‖ f (n)
x1 ‖3L2 .

Now, we test the equation against 2 f (n). We find that

d

dt
‖ f (n)‖2L2 + d

dt
‖1.5 f (n)‖2L2 + 1

n
‖ f (n)

x1x1‖2L2 =
∫
R

H
(
 f (n)

)2
2 f (n)dx1

−
∫
R

�
H, f (n)

�
 f (n)2 f (n)dx1.

The first nonlinear contribution vanishes. Indeed,

∫
R

H
(
 f (n)

)2
2 f (n)dx1 =

∫
R

(
 f (n)

)2
 f (n)

x1 dx1

= 0.

The second nonlinear contribution can be handled as follows:

−
∫
R

�
H, f (n)

�
 f (n)2 f (n)dx1 = −

∫
R

(H( f (n) f (n)) + f (n) f (n)
x1 ))2 f (n)dx1

=
∫
R

(H( f (n) f (n)) + f (n) f (n)
x1 )) f (n)

x1x1dx1

≤ C‖ f (n)
x1 ‖3L3

≤ C‖ f (n)
x1 ‖3H1/6

≤ C‖ f (n)
x1 ‖2L2‖ f (n)

x1 ‖H0.5 .

As a consequence, if we define

E(t) = ‖ f (n)‖2L2 + ‖0.5 f (n)‖2L2 + ‖ f (n)‖2L2 + ‖1.5 f (n)‖2L2 ,
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we have that

d

dt
E(t) ≤ CE(t)2.

We thus conclude the uniform-in-n time of existence T ∗ such that

f (n) ∈ L∞(0, T ∗, H1.5(R)),

with a bound that is independent of n. This implies that

f (n) ∗
⇀ f ∈ L∞(0, T ∗, H1.5(R)).

Furthermore, using the regularity of f together with

‖( f )2‖2L2 = ‖ f ‖4L4 ≤ C‖ f ‖4H0.25 ≤ C‖ f ‖2L2‖ f ‖2H0.5 ,

and we can compute

f (n)
t ∈ L∞(0, T ∗, L2(R)),

with a bound that is independent of n.
In particular,

f (n) ∈ L∞(0, T ∗, H1.5([−1, 1])),
f (n)
t ∈ L∞(0, T ∗, L2([−1, 1])).

Then, a standard application of the Aubin–Lions theorem ensures that we can obtain
a subsequence such that

f (n1( j)) → f(1) ∈ L2(0, T ∗, H1([−1, 1])).

Similarly, the elements in this sequence satisfy

f (n) ∈ L∞(0, T ∗, H1.5([−2, 2])),
f (n)
t ∈ L∞(0, T ∗, L2([−2, 2])),

so, we can extract another subsequence such that

f (n2( j)) → f(2) ∈ L2(0, T ∗, H1([−2, 2])).

Due to the uniqueness of the limit, we have that

f(1) = f(2)
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at least in the common interval [−1, 1]. Then, for eachm, we can repeat this procedure
and find different subsequences f (nm( j)) of the original sequence f (n). Now, we use
Cantor’s diagonal argument. Then, we define the sequence

f (�) = f (n�(�))

These f (�) are a subsequence of the original sequence f (n) and then

f (�) ∈ L∞(0, T ∗, H1.5(R)),

f (�)
t ∈ L∞(0, T ∗, L2(R)).

Now, we observe that for each interval [−k, k], we have that

f (�) → f ∈ L2(0, T ∗, H1([−k, k])).

Indeed, it is enough to note that the elements f (�) for � ≥ k + 1 are elements of a
subsequence that converges in [−k, k] and that the resulting limit must be unique. In
addition, if we fix an arbitrary compact set U ⊂ R, we have that

f (�) → f ∈ L2(0, T ∗, H1(U)).

Now, if we fix a test function ϕ, we have that the distributional form of the approximate
problems reads

−
∫
R

(2 + αo)ϕ(x1, 0)ρ� ∗ f0(x1)dx1ds −
∫ T

0

∫
R

(2 + αo)ϕt (x1, s) f
(�)(x1, s)dx1ds

= −1

ε

∫ T

0

∫
R

f (�)(x1, s)ϕx1 (x1, s) + Hϕ(x1, s) f
(�)(x1, s)dx1ds

+
∫ T

0

∫
R

{
H

(
 f (�)

)2 −
�
H, f (�)

�
 f (�)

}
ϕ(x1, s)dx1ds +

∫ T

0

∫
R

f (�)

n(�)
ϕx1x1dx1ds.

Due to weak-∗ convergence, it is easy to see that the linear terms converge

−
∫
R

(2 + αo)ϕ(x1, 0)ρ� ∗ f0(x1)dx1ds −
∫ T

0

∫
R

(2 + αo)ϕt (x1, s) f
(�)(x1, s)dx1ds

→ −
∫
R

(2 + αo)ϕ(x1, 0) f0(x1)dx1ds −
∫ T

0

∫
R

(2 + αo)ϕt (x1, s) f (x1, s)dx1ds,

− 1

ε

∫ T

0

∫
R

f (�)(x1, s)ϕx1 (x1, s) + Hϕ(x1, s) f
(�)(x1, s)dx1ds

→ −1

ε

∫ T

0

∫
R

f (x1, s)ϕx1 (x1, s) + Hϕ(x1, s) f (x1, s)dx1ds,

∫ T

0

∫
R

f (�)

n(�)
ϕx1x1dx1ds → 0.
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Fig. 1 Evolution in the case ε = α = β = 1 and N = 210

The first nonlinear contribution can be handled as follows:

I =
∫ T

0

∫
R

H
[(

 f (�) +  f
) (

 f (�) −  f
)]

ϕdx1ds

=
∫ T

0

∫ M

−M

(
 f (�) +  f

) (
 f (�) −  f

)
Hϕdx1ds

≤ Cϕ‖ f (�)‖H1(R)‖ f (�) − f ‖H1([−M,M]) → 0.

The commutator term is of lower order and can be handled similarly. Then, passing to
the limit, we conclude that the limit function f satisfies the distributional form (39).

��
Remark 5.1 We would like to emphasize that it is possible to find uniform-in-time
energy estimates for the H1 norm (instead of the H1.5 norm). However, the notion of
solution seems unclear at that level of regularity.

5.4 Numerical Study

In this section, we report a preliminary numerical study of equation (38) with periodic
boundary conditions in [−π, π ].

These numerical results have been obtained using a spectralmethod to simulate both
the differential and the singular integral operators. In particular, in order to simulate
(38), we use the Fourier collocation method. This method considers a discretization of
the spatial domain with N uniformly distributed points. Then, we use the fast Fourier
transform and inverse fast Fourier transform (IFFT) routines already implemented in
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Fig. 2 ‖ux1 (t)‖L∞ (left) and ‖ux1x1 (t)‖L∞ (right) in the case ε = α = β = 1 and N = 211

Octave to jump between the physical and the frequency spaces. In this way, we can
take advantage of the fact that in Fourier variables, the differential operators and the
Hilbert transform are defined by multipliers. With this method, the problem reduces
to a system of ODEs in Fourier space. To advance in time, we used the standard
adaptative Runge–Kutta scheme implemented in the Octave function ode45.

Case 1: We consider the initial data for (38) given by

u(x1, 0) = − sin(x1).

The physical parameters are ε = α = β = 1. Here, we see that the solu-
tion is getting steeper and steeper (see Fig. 1). However, when we compute
‖ux1(t)‖L∞ and ‖ux1x1(t)‖L∞ , we cannot conclude the existence of a finite
time singularity (see Fig. 2). In particular, both the first and the second deriva-
tive grow, however, they seem to remain O(102) and O(104), respectively.

Case 2: We consider the initial data for (38) given by

u(x1, 0) = −10 sin(10x1).

The physical parameters are ε = 0.1, α = β = 1. Here, we see that the solu-
tion oscillates. In particular, the solution is getting steeper but then depletes
(see Fig. 3).

6 Discussion

In this paper, we have obtained new asymptotic models for both bidirectional and
unidirectional gravity–capillary odd waves. Besides the derivation, we have also stud-
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Fig. 3 ‖ux1 (t)‖L∞ (left) and ‖ux1x1 (t)‖L∞ (right) in the case ε = 0.1, α = β = 1 and N = 211

ied some of their mathematical properties rigorously. In particular, we have proved
a number of local in time well-posedness results in appropriate spaces. Furthermore,
we have also studied the unidirectional model numerically trying to find a numerical
scenario of finite time singularities. At this point, this scenario remains undetermined
and the question of finite time singularities or the global existence of smooth solutions
remains as open problems.
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