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1 INTRODUCTION

ABSTRACT

We present results of an extensive study of the X-ray spectral properties of sources detected
in the RIXOS survey, which is a large, nearly complete sample of objects detected
serendipitously in ROSAT PSPC fields down to a flux limit of 3 X 10~ *ergecm™2s™! (0.5—
2keV). We show that for X-ray surveys containing sources with low count rate, such as
RIXOS, spectral slopes estimated using simple hardness ratios in the ROSAT band can be
biased. Instead, we analyse three-colour X-ray data using statistical techniques appropriate
to the Poisson regime which remove the effects of this bias. We also show that the use of
three-colour data enables some discrimination between thermal and non-thermal spectra. We
have then applied this technique to the RIXOS survey to study the spectral properties of the
sample.

For the AGN we find an average energy index of 1.05 = 0.05, with no evidence for
spectral evolution with redshift. Individual AGN are shown to have a range of properties,
including soft X-ray excesses and intrinsic absorption. Narrow-emission-line galaxies
(NELGsS) also seem to fit to a power-law spectrum, which may indicate a non-thermal origin
for their X-ray emission. We infer that most of the clusters in the sample have a
bremsstrahlung temperature >3 keV, although some show evidence for a cooling flow. The
stars deviate strongly from a power-law model but fit to a thermal model. Finally, we have
analysed the whole RIXOS sample (extending the flux cut-off to the sensitivity threshold of
each individual observation) containing 1762 sources to study the relationship between
spectral slope and flux. We find that the mean spectral slope of the sources hardens at lower
fluxes, in agreement with results from other samples. However, a study of the individual
sources demonstrates that the majority have relatively soft spectra even at faint flux levels,
and the hardening of the mean is caused by the appearance of a population of very hard
sources at the lowest fluxes. This has implications for the nature of the soft X-ray
background.
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and the EXOSAT High Galactic Latitude Survey (HGLS) (Giommi
et al. 1991), have provided large samples with which to make

X-ray surveys have proven to be powerful tools in extending our
knowledge of a range of object types, from highly luminous AGN
to active stars. Surveys of ‘serendipitous’ detections in the fields
of view of imaging X-ray instruments, examples of which are the
Einstein Medium Sensitivity Survey (EMSS) (Gioia et al. 1990)

© 1999 RAS

detailed statistical studies with relatively well-understood selec-
tion biases. With the advent of ROSAT, ever more extensive and
sensitive surveys are becoming available, ranging from the ROSAT
all-sky survey, which sampled relatively bright source popula-
tions, to deep pencil-beam surveys such as those of Hasinger et al.
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(1993) and Branduardi-Raymont et al. (1994). Other samples have
concentrated on serendipitous sources discovered in ROSAT
pointed data (e.g. Boyle et al. 1994, 1995; Carballo et al. 1995).

The spectral properties of such samples can be a crucial element
in understanding the nature of the X-ray emission. However, much
of the work to date has considered only the broad-band fluxes of
survey sources. The subject of this paper is the RIXOS survey of
ROSAT field sources, which covers a total of 20 deg® of sky and
has a high level of optical identification completeness (~94 per
cent over a 15deg® subarea) down to a flux level 3X
107 ergem™2s7!. This flux cut-off is set so as to bridge the
gap in sensitivity and sky coverage between the ROSAT all-sky
survey and the deepest pencil-beam ROSAT surveys. As the flux
cut-off of RIXOS is set at a level which is much higher than the
sensitivity threshold of the ROSAT observations used, sufficient
numbers of X-ray photons have been detected from all RIXOS
sources to provide some information about their overall spectral
distribution. This paper examines the X-ray spectral properties of
the RIXOS sample. Other aspects of the RIXOS survey are
covered in Page et al. (1996), Puchnarewicz et al. (1996, 1997),
Romero-Colmenero et al. (1998), Carrera et al. (1998) and Mason
et al. (in preparation). The paper discussing cluster evolution by
Castander et al. (1995) is based on a subset of the RIXOS
complete sample.

2 THE RIXOS SAMPLE

The X-ray data are taken from the RIXOS sample of objects
(Mason et al., in preparation) and have been constructed from
serendipitous sources discovered in 82 pointed ROSAT PSPC
fields. The fields were chosen to have nominal exposure times
greater than 8ks and to be above a Galactic latitude of 28°. This
limit enables us to sample sources at faint fluxes without the
problem of identifying them in crowded fields. From each field we
have excluded the target of the observation and consider only
sources at less than 17 arcmin off-axis. Such sources have the best
positional certainty and are not masked by the detector window
support structure. Survey sources are selected in the 0.4-2keV
band; the poorer point spread function (PSF) and increased
background due to diffuse Galactic X-ray emission make the
detection of X-ray sources more difficult at softer energies.

Full details of the optical imaging and spectroscopy and
identification process are given in Mason et al. (in preparation).
Over 82 fields (or 20.2 deg?) our sample is completely identified
down to a flux limit of 8.4 X 10™'* ergcm ™2 s ! and over 64 fields
(or 14.9 deg”) we have complete identifications down to our target
flux limit of 3 X 10~ % ergecm™2 s~ 1. This flux limit is well above
the detection limit for all our fields, and for many sources gives a
reasonable number of observed counts. Table 2 lists all the sources
in the RIXOS fields above a flux limit of 3 X 10™*ergem™2s™!
(0.5-2keV), giving field ID and source ID (for details see Mason
et al., in preparation) together with the Galactic column (Ny), date
of observation and exposure time (column 5). This is the sample
with which we are primarily concerned here, and it will be
referred to here as RIXOS.

In total, the RIXOS sample contains 401 sources, of which 347
have been identified. The identification of the sources has been
based largely on the optical spectra, and we have split them into
six categories. These are active galactic nuclei (AGN), narrow-
emission-line galaxies (NELGs, which may include Seyfert 2
galaxies, LINERs, and Hu region galaxies), isolated galaxies,

clusters of galaxies, active stars and dMe stars. Of the 347
identified sources, 16 are so close together that no separate spectra
could be extracted for them; their spectra are included in Table 2 as
‘MERG’. Five more sources (one of them unidentified) were in
fields 115 and 116 (Mason et al., in preparation), for which no public
archival X-ray data were available at the time of writing. This leaves
us with 327 identified sources with available X-ray data, of which
205 have been classified as AGN, 18 as NELGs, six as isolated
galaxies, 30 as clusters, 46 as stars and 22 as dMe stars. In addition,
we have also fitted the spectra of 56 unidentified sources (included
in Table 2 as ‘UNKN"). In total, the RIXOS sample forms the largest
serendipitous survey constructed from ROSAT PSPC pointings to
date, with a larger sky coverage than comparable samples such as
the Cambridge-Cambridge ROSAT Serendipity Survey.

3 DATA REDUCTION

From the RIXOS sample we have taken all those sources which
have a firm optical identification and have extracted three-colour
X-ray data. After the recommendation of Snowden et al. (1994)
we have used bands S1 (channels 8—41), H1 (channels 52—-90) and
H2 (channels 91-201). For each field we have constructed an
image in each of the three colours and have ensured the optimal
signal-to-noise ratio by excluding high background times and
those times when the attitude solution was bad. In general, this
excluded between 5 and 20 per cent of the data. We then extracted
the source counts for all the known sources in the field (including
those with no identification) using an extraction circle of
54 arcsec, which includes 90per cent of the ROSAT PSF and
maximizes the signal-to-noise ratio for weak sources. In those
cases where there was a contaminating source nearby, the
extraction circles were reduced in size until there was no overlap.
The sizes of the extraction circles for each source are listed in
Table 2 (column 6) and the fraction of the PSF included for each
source is taken into account during the spectral fitting process
(Section 5.1).

As we are studying very faint sources, we have been careful to
obtain an accurate estimate of the background. After masking out
all the sources from an image, it was flattened using the exposure
map supplied as part of the standard SASS processing. As the
exposure map corrects for vignetting and other instrumental
effects, we can obtain an accurate estimate of the image
background corrected for systematic instrumental effects by
summing over a large number of pixels. For RIXOS we summed
the data between 5.2 and 10.8 arcmin off-axis, thereby excluding
the residual effects of any bright central source. We can then
estimate the background at any given source position from the
mean background using data from the exposure map at the
required position. This method yields a very accurate back-
ground estimate based on a very large number of pixels
compared to the number of pixels in the source extraction
circle, and to a very good degree of approximation we can then
assume that this background estimate has a negligible error.
Table 2 lists the the extracted counts for the RIXOS sample
(columns 8—10) and the background estimates in each of the three
bands (columns 11-13).

4 THE COLOUR-COLOUR DIAGRAM

As a first step in studying the spectral properties of the sources, we
have constructed a colour—colour diagram including all identified
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sources in the RIXOS sample (Fig. 1). Our normalized colours are
defined as

Cl=(S—-H1)/S +HI) (€))
and
C2=(H2 - H1)/(H2 + H1). ?2)

The first plot in Fig. 1 shows uncorrected colours, and the
second shows colours corrected for the effect of Galactic
absorbing column where applicable. As the correction for the
Galactic column is model-dependent, we have used a power law
fitted to the three colours (see Section 6), and have only applied
the correction to extragalactic sources. Fig. 1 shows a number of
features. On average, the AGN tend to be softer than most of the
other sources when corrected for Galactic absorption, although it
is clear that not all the AGN are soft, and some AGN occupy
portions of the diagram appropriate to hard sources (see also Fig. 7).
Five out of 205 AGN have C1 < 0, implying that they are very
hard or intrinsically absorbed. A further 15 sources do not appear
in this diagram at all since they were not detected in the soft band,
and of these six are identified with AGN. This implies that ~5 per
cent of AGN are very hard and are candidates for intrinsic
absorption.
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Figure 1. The colour—colour diagrams for the RIXOS sample of objects.
The top panel shows the data uncorrected for the effect of Galactic Ny,
while the bottom panel is corrected for Galactic Ny. Different classes of
objects have different symbols [+ AGN, & ELG, A galaxies, O clusters
and * stars (including dMe stars)].
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As a first step in categorizing the spectral characteristics of our
sample, we have quantified the differences between the different
types of X-ray sources in the colour—colour plot by using a two-
dimensional Kolmogorov—Smirnov (KS) test. The method used is
taken from Press et al. (1992), and the results are shown in Table 1
for both the uncorrected and corrected colour—colour data. The
probabilities quoted are of the two samples being drawn from the
same parent distribution. However, many of the sources are faint
and therefore have large uncertainties which are not taken into
account by a standard KS test. We have quantified the possible
effect of the measurement uncertainties on the KS probabilities.
To do this, we have simulated 100 samples with the same flux
distribution as our real sample, but assuming that all sources have
power-law slopes distributed in a similar way to the AGN. We
have used a mean slope of & =1 and a dispersion of 0.55. The
numbers in brackets in Table 1 are the fraction of the time that a
KS probability was obtained that was smaller than the one seen in
the original data set. This therefore gives an indication of the
likelihood of obtaining a probability as small as that seen or better
by chance alone, given our assumption concerning the distribution
of AGN slopes.

The two-dimensional KS test emphasizes the fact that on
average the AGN and objects classified as NELGs lie in a region
of the colour—colour plot distinct from the clusters and stars. The
similarity between the NELGs and the AGN, as well as the
disparity between the NELGs and the clusters/stars, is intriguing
and may hint at NELGs containing AGN-like activity. If the
emission were to arise solely from thermal emission from hot gas,
the NELGs may be expected to lie further to the left in the colour—
colour diagram, closer to the clusters.

The other sources lie to the left of the AGN in the colour—
colour diagram. That the stars and clusters are distinct from the
AGN is not surprising, given the different physical mechanism
known to underlie their X-ray emission. From Fig. 1, the stars
constitute the hardest sources, with the clusters lying midway
between the stars and AGN. However, within the stars from Table 1
there is a further difference which would seem to indicate that the
dMe stars are softer than other active stars. Given the multi-
temperature nature of the emission from stars, simple three-colour
data cannot give more than an indication of a difference in the
X-ray spectra between these two classes of objects.

Table 1. Two-dimensional Kolmogorov—Smirnov probabilities
for the different classes of objects in the sample based on the both
the uncorrected and corrected colour—colour diagram. The
numbers in brackets are the associated probabilities based on
simulated data sets.

Source 1 type  Source 2 type 2D KS 2D KS (corr)
AGN ELG 0.108 (0.08)  0.246 (0.21)
AGN Galaxy 0.005 (0.00)  0.025 (0.02)
AGN Cluster 0.077 (0.06)  0.002 (0.00)
AGN Star 0.000 (0.00)  0.000 (0.00)
AGN M Star 0.004 (0.00)  0.000 (0.00)
ELG Galaxy 0.052 (0.03)  0.115 (0.08)
ELG Cluster 0.253 (0.17)  0.079 (0.03)
ELG Star 0.041 (0.02)  0.000 (0.00)
ELG M Star 0.013 (0.01)  0.001 (0.00)
Galaxy Cluster 0.043 (0.01)  0.267 (0.17)
Galaxy Star 0.275 (0.13) 0.268 (0.22)
Galaxy M Star 0.020 (0.00)  0.454 (0.22)
Cluster Star 0.006 (0.01)  0.000 (0.00)
Cluster M Star 0.001 (0.00)  0.004 (0.00)
Star M Star 0.057 (0.01)  0.057 (0.01)
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5 MODEL FITTING
5.1 The fitting technique

A simple two-colour diagram can only provide information in a
general sense about the X-ray emission of the RIXOS sample. In
order to gain a deeper understanding, it is necessary to fit models.
Two main approaches have been used in obtaining spectral
information for similar survey data. The first is a simple hardness
ratio to determine the power-law slope of low count rate data, and
X fitting for sources with enough counts (e.g. Ciliegi et al. 1997).
However, this approach has the twin disadvantages of not
analysing the data in a uniform way and not taking into account
the Poissonian nature of the data for weak sources. The other
method is to sum up the spectra for sources with similar Ny and
use a standard y? fit to the summed data. This allows us to have
reasonably high-resolution spectra, but has the disadvantage of
losing all information about the individual sources within each Ny
band.

We have addressed these problems by fitting two-parameter
models to our three-colour data for each individual source. By
using three colours, we can maximize the signal in each band
while retaining one degree of freedom for the fitting process. It is
also possible to take into account the Poissonian nature of the data
directly, by minimizing the correct statistic. That there is a
requirement to use such a statistic is clear from Fig. 2, as many of
our sources have <15 counts in one or more of the three spectral
bands used.

A statistic appropriate to the Poisson regime is described by
Cash (1979). This has been successfully applied to the problem,
among others, of source searching in both the WFC all-sky survey
(Pounds et al. 1993) and the EUVE all-sky survey (Bowyer et al.
1994). For spectral fitting of low-count-rate sources a maximum-
likelihood method using the Cash statistic is appropriate, instead
of minimizing x? as in the Gaussian regime.

The Cash statistic is derived from the probability of observing n
counts for a given mean w. In the Poisson regime this is given by
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Figure 2. Total source counts in each of the three colours (soft — channels
8—41, medium — channels 52-90, hard — channels 91-201). Many of the
sources are close to or at the Poisson limit.

therefore, for a distribution of counts n; with predicted means in
each bin u;, the total probability is given by

N ni . —u;
o i
P= | |'U“'7 4)
i=1

i’li! '

By converting this into a maximum-likelihood formulation, we
then arrive at the Cash statistic

N
C=—2logP = -2 nilog(u) — p; — log(n:"). 5)
i=1

As log(n!) is a constant, we can drop it from the calculation, since
we are only interested in the minimum of C, not its absolute value.

To fit the data, we must arrive at a set of predicted values for w;
which minimize C. To maintain the strict Poissonian nature of the
data, we fit the total number of observed counts from the source
and background within a circle of radius r; in each band with a
mean W, i.e., we minimize

N
C'= =2 nilog(PSF(r;) X modeli(ay, az, a3) + b;)

i=1
— [PSF(r;) X modeli(ay, o, a3) + bil, (6)

where model (a1, s, a3) is the predicted total counts in band i,
given some model defined by a |, a5, a3. PSF(r;) is the fraction of
the PSF contained within a radius r;, and b; is the background
contained within radius r;. For the case of a power law, a, o, and
a3 would be the normalization, the power-law index and the
amount of Galactic absorption respectively. Note that equation (6)
assumes that the background is known to a much higher level of
statistical accuracy than the source counts, so that the error on the
background is negligible. For the RIXOS data, this is the case (see
Section 3).

Not only does this method deal correctly with the Poissonian
nature of the data, but it also enables us to obtain estimates of the
spectrum when we have upper limits in one or more of the three
bands. As the method fits the total observed counts (source plus
background), it automatically takes into account such upper limits.
This is because even in those cases where the predicted
background is larger than the observed number of counts, the
predicted number of source counts [i.e., model;(a;, ay, az)] will
always be greater than zero. The case where no source counts are
detected is then taken as a simple statistical fluctuation of the
model predicted positive source counts.

5.2 Error estimation

Once we have found a minimum of the Cash statistic, the next step
is to calculate the confidence limits on the fitted parameters. This
can be done in an identical way to the procedures standardly used
in x? fitting, as the AC statistic is distributed as Ayx? (Cash 1979).
However, for those sources near the Poisson limit it is difficult to
write down a simple number as the error on a given parameter,
because the confidence contours tend to be asymmetric. Fig. 3
show examples of the confidence contours for both a source near
the Poisson limit and a source with a large number of counts. In
the case of a source near the Poisson limit the probability contours
from a Ay? surface and a C surface are markedly different, with a
tighter constraint on the power-law slope from the AC contours.
On the other hand, in the case of a bright source the two contours
are essentially identical.
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shows the confidence contours obtained using the Cash statistic; the right-
hand panels show the same confidence contours using x2. In the case of the
bright source there is no appreciable difference between the two methods,
but for the faint source the Cash method gives a better constrained slope.
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Figure 4. The marginalized AC statistic (which is related to the
probability) as a function of spectral slope for a bright source (left-hand
panel) and faint source (right-hand panel). The curves for both the X7 case
(dashed) and the Cash statistic case (solid) are shown. Also shown are the
corresponding marginalized errors for each case.

Owing to the lack of symmetry in the shape of the contours for
sources near the Poisson limit, we have obtained marginalized
errors (Loredo 1990, and references therein). These errors are
obtained by integrating the AC values over the unwanted
parameters, leaving a one-dimensional probability for the
parameter of interest. This then gives us both the most probable
value and the confidence intervals for the parameter of interest in a
way that is statistically independent of any other parameters. The
solid lines in Fig. 4 show the probability curves for the power-law
slope for both a weak and a strong source. In the case of the weak
source, the x? probability curve and associated errors are larger
than the corresponding Cash curves. For the bright source they are
essentially identical. This is precisely the behaviour expected, as
the Cash statistic is the same as x” in the limit of large numbers,
and shows the decrease in the size of the errors bars when the
correct statistic is used.
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5.3 Tests of the method

‘We have adopted a novel approach to the fitting of our data, and to
convince ourselves of their reliability we have run stringent tests.
In particular, we have investigated the improvement gained by
using the correct statistic relative to using a simple hardness ratio.
In the hardness-ratio method the error is normally derived
assuming Gaussian errors of the form ./(counts), which in the
extreme Poisson limit is no longer strictly true. In order to
investigate this, we have generated a simulated data set where
each of the sources has a known input spectrum but the
normalization of the model has been scaled to give the same
number of total counts as each of our real sources. The individual
observed counts in each colour for each source have then been
randomly obtained assuming Poisson statistics. In this way, we
have a similar range of total observed counts and backgrounds to
that of our real sample but with well-defined spectral character-
istics. To compare this with the results for the AGN in the RIXOS
sample, the power-law slopes were drawn from a Gaussian
distribution of slopes with a mean of @ = 1 and a dispersion of
o = 0.4. The simulated data were then fitted in exactly the same
way as the real data, and the power-law slopes and errors were
determined from the marginalized errors. Fig. 5 shows the fitted
slope minus the input slope for each source as a function of the
source counts, and shows that the Cash method can recover the
correct slope over a large flux range. Further, from our fitted
slopes and errors we have estimated the average power-law slope
and dispersion using the method outlined in Nandra & Pounds
(1994) and Maccacaro et al. (1988). However, instead of assuming
Gaussian statistics when dealing with the errors, we use the
probability curves derived from the AC surfaces. The confidence
limits of the mean power-law slope and intrinsic dispersion from
the simulated data are shown in Fig. 6. The results are in excellent
agreement with the input values, giving « = 1.02 = 0.05 and o =
0.36 = 0.05. We have also analysed the same data set using a
hardness-ratio method, where we have used the ratio S/(H1 + H2)
to estimate the spectral slope together with an error based on
Gaussian statistics. We have determined the average power-law
slope and intrinsic dispersion of the sources from the hardness
ratios, and the result is shown by the dashed contours. A
comparison between the result obtain by using the Cash statistic
and the hardness-ratio method shows that the hardness ratio result
is marginally biased towards steeper (softer) slopes. It is likely
that some bias may be caused by the failure of the hardness-ratio
methods to take into account the Poissonian nature of the data, so
this effect will depend on how many faint sources (i.e., with few
counts) are contained within any given sample. Therefore it is
possible that the use of a hardness ratio may have caused some
bias in the results of previous surveys.

6 MODEL FITS TO THE RIXOS DATA

As we have limited resolution with three colours, our initial model
is a simple power law. For each extragalactic source we have fixed
the value of the Galactic Ny at the Stark et al. (1992) H1 value and
left the normalization and slope as free parameters. For the stars
we have simply set the Ny at zero. Each source is fitted using the
relevant response matrix for the source position and date of
observation. The assumption of a power-law fit to all classes of
objects is clearly incorrect for many of the sources (e.g., the stars
and clusters), so these fits are only indicative of the overall slope
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Figure 5. The fitted slope minus input slope for the simulated data. It is
clear that the Cash method can recover the correct power-law slope over a
large range of source counts.
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Figure 6. Estimated mean power-law slope and dispersion based on the
simulated data for both the three-colour method (solid line) and the
hardness-ratio method (dashed line). It is clear that the three-colour
method gives the same answer as the input parameters to the simulation,
whereas the hardness-ratio method has a bias towards steeper slopes.

of the X-ray spectrum. However, for the AGN it is likely to be
fairly representative of the true flux distribution from many of the
sources.

All of the fitted slopes are listed in Table 2. They have been
determined in two different ways. Column 14 quotes the
marginalized slope and error derived in a way which is
independent of the value of the normalization (see Section 5.2
for details). Columns 15 and 16 of Table 2 list the normalization
and slope derived from the minimum on the Cash surface for each
source. As the marginalized slopes are independent of the other
parameters, we have used this value in all subsequent plots rather
than the value derived from the minimum of the Cash surface. The
flux derived from the fits is given in column 17, where the error on
the flux has been obtained by folding the flux calculation through
the Cash contour. This flux may differ from the flux used to
establish the sample, since the fitted slope may be significantly
different from a slope of 1. Further, for uniformity all sources have
been treated as point-like in the present analysis, and no attempt
has been made to correct for extended sources, which was done in
deriving the original fluxes. Fig. 7 shows the distribution of slopes
for each class of objects. Essentially, the distribution of slopes
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Figure 7. Histograms showing the distribution of the fitted power laws
divided into different object classes.

again indicates differences between the AGN/NELGs and the
clusters and stars. However, with the fitted data, we can
investigate the intrinsic spectrum of the individual classes of
sources in more detail.

6.1 The stars

The average power-law slope for the stars is @ = 0.40, implying
that as a class they are hard sources. However, a power-law fit to
the data is unlikely to be a good representation of the stellar X-ray
emission. Although no simple way exists to determine the
goodness of fit directly from the Cash statistic, it is possible to
distinguish between good and bad fits to the data. To do this, we
have calculated the expected number of counts based on the fitted
model, subtracted the actual observed counts, and divided by the
square root of the observed counts (an estimate of the error on the
source counts). Fig. 8 shows this quantity for the best-fitting
power-law model for each of the three colours for each star. It is
clear from this plot that a power-law fit is not a good model of the
stellar X-ray emission. It consistently overestimates the S1 and H2
bands, while consistently underestimating the H1 band. This
distribution of the data relative to a power-law fit is, however,
entirely consistent with the emission arising from warm (< 3 keV)
gas. Such temperatures give rise to a large amount of line
emission, particularly around the iron complex at 1keV, and this
line emission is the most likely explanation for the deviations seen
in the three-colour data, particularly in the medium band.

With only three-colour data, it is not possible to fit the
multitemperature models known to be required for X-ray spectra
of stars (e.g. Schmitt et al. 1990). We have, however, fitted a
single-temperature Raymond and Smith model (Raymond &
Smith 1977) to our data. Fig. 9 shows the predicted minus
observed counts with respect to the Raymond and Smith fits for
the stars. It is clear that there is a marked improvement over the
power-law fits, demonstrating that three-colour data are capable of
distinguishing between thermal and non-thermal models.

6.2 The clusters

Fig. 10 shows the predicted minus observed distribution for each
of the three bands for power-law fits to the cluster data. From this,
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Figure 8. The predicted minus observed counts relative to a power-law
model for the stars. The dotted lines denote 1o around zero. The different
symbols denote the two different types of stars in the RIXOS sample
(* stars and x dMe stars).
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Figure 9. The predicted minus observed counts relative to a Raymond and
Smith model for the stars. The dotted lines denote 1o around zero. The use
of a Raymond and Smith model has improved the goodness of fit for many
of the stars.

it is apparent that a power-law fit is a reasonable representation of
the data for most, though not all, clusters. At face value, this may
seem surprising, since it is known that cluster emission arises from
hot (2-10keV) intergalactic gas, with some clusters showing
evidence for a cooling flow (e.g. Sarazin 1986). However, because
of the low energy of the ROSAT passband (0.1-2keV), a hot
plasma spectrum (>3 keV) is fairly well modelled by a power law
with a slope a ~ 0.5. This power-law slope is relatively
insensitive to temperature and Ny. If we determine the average
slope for the clusters, we find a mean of a = 0.5 = 0.05, which is
in agreement with that expected for a bremsstrahlung model with
a temperature k7 > 3keV. There are, however, a number of
clusters which, like the stars, show deviations from a simple power
law, and it is likely that these objects have temperatures lower than
3keV.

As the use of a single-temperature Raymond and Smith model
reduced the residuals to the fit for the stars, we have attempted to
fit a similar model to the three-colour data for the clusters.
However, unlike the stars we find that in some cases a single-
temperature model does not reduce the residuals. This was
particularly true of 240-564, the brightest source in our sample,
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Figure 10. The predicted minus observed counts for the clusters. The
dotted lines denote 1o around zero.
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Figure 11. Colour plot of the Raymond and Smith fit to 240-564 in two
regions, one in the innermost arcminute, the other from an annular region
surrounding the central core. There is a clear cooling of the temperature
between the inner regions and the outer regions.

where a single-temperature fit to the three-colour data gave a high
(>10keV) temperature. Based on the residuals to a power-law fit,
240-564 would be expected to have a relatively low temperature.
For this object we have been able to extract a high-resolution
spectrum, which we have fitted using XSpEc. Fig. 11 shows the fits
both to the central region of the cluster and to an annular region
surrounding the centre. As expected from the residuals, the
temperature is low. There is also an apparent reduction in
temperature towards the centre, implying that this cluster at least
has a cooling flow. It is therefore clear that since three-colour data
gave a high temperature, we cannot use the temperatures derived
for the clusters with any degree of certainty. We have extended the
method to four or five colours on a number of the clusters within
the RIXOS sample, and this work shows that, with the extra
channels, the method gives results that are consistent with higher
resolution data. Such an extension to more colours is beyond the
scope of this paper, however.

6.3 The narrow-emission-line objects

A subject of great interest is the X-ray emission from NELGs.
Studies of the log N-log S relation in fainter surveys such as the
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X-ray spectra of the RIXOS source sample
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X-ray spectra of the RIXOS source sample
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UK Deep Survey show that the fraction of quasars at very faint
flux levels declines, but that of NELGs rapidly increases
(McHardy et al. 1999). Extrapolations to zero flux indicate that
up to 50 per cent of the X-ray background may be due to NELGs.
The spectral shape of NELGs is therefore of crucial importance if
we are to understand the nature of the soft X-ray background.
However, a fundamental problem with this class of object is that
the term NELG is a nebulous categorization. They include hidden
AGN, such as Seyfert 2 galaxies where the emission is likely to be
non-thermal and absorbed, to starburst galaxies and H1u region
galaxies, where the emission is thought to be thermal in nature and
arising from shocked gas with a typical temperature of 0.5-1keV.
From our work on stars, we know that we can distinguish between
thermal and non-thermal sources on the basis of the fits to the
three-colour data, so we should be able to estimate the ratio of
thermal to non-thermal sources in the RIXOS sample.

There are 18 NELGs in RIXOS identified on the basis of their
optical spectra. Fig. 12 shows the distribution of observed minus
predicted counts for the NELGs. In general, the NELGs seem
consistent with a power law, with only one source (122-16)
showing a significant deviation in all three bands. This may imply
thermal emission from this object, although preliminary studies of
higher resolution data from 122-16 indicates that the X-ray
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Figure 12. The predicted minus observed counts for the NELGs (<) and
isolated galaxies (A). The dotted lines denote 1o around zero.
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Figure 13. The fitted power-law slope versus the redshift for the NELGs in
the RIXOS sample. No evolution of the power-law slope can be seen.

spectrum is complex. Fig. 14 shows the estimated mean slope and
dispersion of the NELGs in comparison with the AGN, and Fig. 13
shows the power-law slope as a function of redshift. This
demonstrates no clear evidence for spectral evolution with
redshift. Fig. 13 does show that there is a large range of potential
slopes, with some of the sources being very hard. At least one of
these hard sources has been identified with a Seyfert 2 galaxy,
which is entirely consistent with the flat spectral slope.

Thus the X-ray spectra of NELGs in the RIXOS sample are
indistinguishable from those of the AGN. This is consistent with
the fact that high-resolution optical data on X-ray-selected NELGs
have shown that many objects classified as NELGs on the basis of
low signal-to-noise data have broad components to the permitted
lines (e.g. Boyle et al. 1995), and at least two H11 region-like
galaxies have been observed to show strong X-ray variability more
consistent with that seen in AGN (Boller, Fink & Schaeidt 1994;
Bade, Komossa & Dahlem 1996). Further, HRI images of low-
luminosity AGN show that the X-ray emission is mostly nuclear,
again supporting the idea that the origin of the X-ray emission is
nuclear in nature (Koratkar et al. 1995). Thus many objects
classified as NELGs above the RIXOS flux limit may contain
active nuclei.

However, it is important to note that the average slope that we
find for the RIXOS NELGs is inconsistent with the average slope
of a sample of much fainter NELGs from the UK Deep Field
(Romero-Colmenero et al. 1996). In the latter study the average
slope was a = 0.45 = 0.09, a value that is more consistent with
the average slope of the RIXOS clusters. There is clearly a
discrepancy between the average properties of NELGs in the
RIXOS sample and those found at much fainter fluxes, which may
imply some difference in the type of objects seen at the faintest
fluxes. Another possibility is that there are more absorbed sources
in the fainter samples, which would pull down the average slope.
Without higher resolution data and good signal-to-noise ratios it is
impossible to distinguish between these two possibilities.

6.4 The AGN

By far the largest fraction of objects in the RIXOS sample have
been classified as AGN. Unlike the stars and clusters of galaxies, a
non-thermal model such as a power law is likely to be an
acceptable fit to the data, although in detail more complex models

1.0 T T T T T T T T T T T
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Figure 14. The values of the slope and dispersion for the RIXOS AGN
(solid line) and the NELGs (dashed line). It is clear that the two samples
are indistinguishable.
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may be appropriate (e.g. Nandra & Pounds 1994). Fig. 14 shows
the mean slope and dispersion for the RIXOS AGN; we find o =
1.05 £0.05 and an intrinsic scatter of 0.55 £ 0.05. These
numbers are slightly steeper than those found for the EMSS
AGN (0.9 £0.05 with a dispersion of 0.35 = 0.04), which
sampled a harder energy range (0.3—4keV) than the PSPC.
However, this is much flatter than the slopes found for bright,
nearby Seyferts observed with ROSAT (e.g. Walter & Fink 1993;
Fiore et al. 1994; Laor et al. 1994), and is also flatter than the
average slope found for the fainter AGN contained in the CCRS
(¢ = 1.3 £ 0.1; Ciliegi et al. 1997). A slope of a = 1 is, however,
consistent with what is believed to be the underlying power-law
slope in nearby Seyferts (e.g. Nandra & Pounds 1994).

6.4.1 Goodness of fit for a power law

Fig. 15 shows the predicted minus observed total counts expressed
in terms of the standard deviation for each spectral band for all the
AGN. It is clear that for the majority of AGN a power-law fit is a
reasonable representation of the spectral shape, as most of the data
points lie within one sigma of the model. However, there do seem
to be a number of AGN where the observed counts are
significantly underestimated in the medium band. It is not clear
what causes this deviation, as these sources seem to contain a
mixture of slopes ranging from soft to hard. One possibility is that
some contain a significant O vi1 edge, implying the presence of a
warm absorber. However, three-colour data are not sufficient to
determine the origin of this deviation, and higher resolution data
are required. We have extracted high-resolution data for the source
with the largest discrepancy in the soft band, source 258-001,
which is sufficiently bright to warrant this. Analysis of these data
shows evidence for an edge at 1.1 keV, which has been tentatively
identified with silicon (Mittaz et al., in preparation). The ability to
detect such a source shows the power of fitting three colours to
reveal peculiar features. From Fig. 15 approximately 20 per cent
of sources appear to be deviant from a power-law model.

Without analysing all of the data at higher resolution, it is
difficult to make strong claims about objects where a simple
power-law does not appear to be an adequate description of the
data. As noted in Section 4, within the sample there are a number
of sources which deviate significantly from the average spectrum.
For example, some AGN have positive slopes, which correspond
to those in the C1 < 0 region of the colour—colour diagram. Such
objects may be intrinsically absorbed, and one (278-010) has
sufficient counts to allow us to extract a higher resolution
spectrum. On the assumption that the absorbing column is at the
Stark et al. (1992) value of 1.94 X 10%° cm?, a fit to these higher
resolution data gives a slope of @« = —1.17 £ 0.2, consistent with
the value fitted to the three-colour data. However, if we fit an
intrinsic column in addition to the Galactic Ny, we detect an
instrinsic column at > 90 per cent confidence with a fitted power-
law slope of &= (1.4773) and a best-fitting intrinsic Ny of
(678)x 10*' cm™2 (68 per cent confidence limits). Fig. 16 shows
the 68, 90 and 99 per cent contours of the intrinsic absorption
plotted against power-law slope. On the assumption that this holds
true for the other AGN with C1 < 0, we can conclude that ~5 per
cent of the RIXOS AGN sample show detectable amounts of
intrinsic absorption. We note that trends between the fitted X-ray
and optical spectral slopes, and between the X-ray spectral slope
and the ratio of X-ray to optical flux, of RIXOS AGN have also be
interpreted as being due to the effects of absorption (Puchnarewicz
et al. 1996).
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From the fitted power-law slopes it is moreover clear that there
are not only hard sources, but also those which have slopes
significantly steeper than o = 1. We have taken the object with
the steepest slope that has a sufficiently large number of counts
(227-301), and have extracted higher resolution X-ray data for it.
A single power law gives a very bad fit, with a )2 of 6.8. We
therefore fitted the data with a power-law and blackbody model
(to represent any soft excess), and the fit improved dramatically,
with a x> of 0.56. The best-fitting parameters give a power-law
slope of & = 0.7 = 0.7 (68 per cent) and a black-body temperature
of 0.0085 = 0.001 keV (68 per cent) (Fig. 17). The value of the
power-law slope is now consistent with the average for the RIXOS
AGN, and the black-body component has a similar temperature to
that seen the USS sample (Thompson & Cordova 1994). It is
therefore clear that RIXOS contains a range of objects, from
intrinsically absorbed AGN and those with strong soft excesses to
objects with absorption edges. The high-resolution data show that
fits to the three-colour data can give sufficient information to
separate out those objects which have non-standard X-ray spectra.

6.4.2  Spectral evolution

A further question of interest is whether there is any evolution of
the X-ray spectral slope of AGN with redshift. The nature of any

(Observed-Predicted)/error
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Figure 15. The predicted minus observed counts for the AGN. The dotted
lines denote 1o around zero.
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Figure 16. The contour plot of power-law slope against Ny for 278-010.
Intrinsic absorption can be clearly seen.
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Figure 17. A multicomponent fit to the X-ray spectrum of 227-301. The
best-fitting model (blackbody and power-law) is shown.

such spectral evolution has consequences for both our under-
standing of the X-ray-emitting process and the nature of the X-ray
background. Fig. 18 shows the distribution of slopes as a function
of redshift, where we have used variously sized redshift bins. It is
apparent from Fig. 18 that there is no evidence for any spectral
evolution at all. This lack of evolution in the spectral slopes is
consistent with the results of other similar samples (e.g. Ciliegi
et al. 1997). To investigate this further, we have recalculated the
intrinsic slope and dispersion for AGN below and above a redshift
of 1, where we have approximately equal numbers of AGN in each
of the two bins. From Fig. 19 it is clear that the slopes and
dispersions are effectively identical for objects above and below
the redshift divide. As noted by Ciliegi et al., the fact that there is
no apparent spectral evolution implies that the power-law
spectrum in the AGN rest frame extends from soft X-rays out to
at least 8keV with the same slope. This excludes models with
strong or hot soft excesses as being typical of AGN in the RIXOS
sample.

6.4.3 Interpretation and comparison with other surveys

The standard model for the X-ray emission from AGN derived
from missions previous to Ginga and ROSAT was one of a
medium-energy power law with a slope of @ = 0.7, with many
objects showing evidence for a soft X-ray excess. Such an excess
is normally assumed to be due to the high-energy tail of an
accretion disc spectrum (e.g. Turner & Pounds 1988). However,
with the advent of ROSAT and more recently ASCA, the situation
has been found to be more complex. In detail it is often necessary
to use models including reflection and warm absorbers as well as
simple power laws (e.g. Nandra & Pounds 1994). Approximately
50 per cent of nearby Seyferts studied by Ginga have shown some
evidence for warm absorbers, and evidence for an absorption line
at 0.7keV identified as O viI has even been found in PSPC data
alone (e.g. Nandra & Pounds 1992).

Over the past decade there has been a lot of work on soft X-ray
surveys of AGN, and a number of samples have been compiled.
The largest of these is the EMSS (Gioia et al. 1990), which
consists of 421 AGN detected in the 0.5-4.5 keV band. Maccacaro
et al. (1988) found a mean spectral index for the AGN of a =
1.03 £0.05 with a dispersion of o= 0.36. Later surveys
indicated that there may be an average steepening of the spectrum
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Figure 18. Fitted slopes for the RIXOS AGN as a function of redshift.
Each panel shows the data binned into successively bigger redshift bins,
with the error bar representing the rms scatter about the mean, and shows
that there is no evolution in the spectral slope. In the case of the middle
two panels, the last two data points contain a single object, and the plotted
error is simply the error on the fit to those objects.
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Figure 19. Intrinsic slope and dispersion for the RIXOS AGN separated
into objects above and below a redshift of 1. It is clear that the two samples
are identical, implying no strong evolution in the spectral parameters of the
AGN.

towards softer energies. The Ultra-Soft Survey from Einstein
showed that AGN selected below 0.5 keV have an average slope of
a =145 (Thompson & Cordova 1994). The EXOSAT High
Galactic Latitude Survey (HGLS), which covered the energy
range 0.2-2keV, was consistent with a mean spectral slope of
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a=1.3 (Giommi et al. 1991), and work on ROSAT PSPC
observations has indicated that the average spectrum of nearby
bright AGN is about o = 1.5 (e.g. Walter & Fink 1993). Recently,
Schartel et al. (1996) used the ROSAT all-sky survey data for the
QSOs in the Large Bright QSO Survey, and found a mean energy
index of a = 1.70 = 0.2 for the radio-quiet QSOs. Moving to
higher redshift samples, Bechtold et al. (1994) found o = 1.15 =
0.14 for a sample of high-redshift, radio-quiet quasars, and
Reimers et al. (1995) found a = 1.25 = 0.2 for another high-
redshift sample. It is difficult to make general statements on the
basis of these different samples, however, since each has its own
selection criteria and may therefore sample different populations
of sources.

None of the above samples is directly comparable to RIXOS,
either because they are optically selected, or because they select
bright X-ray sources, both of which can favour AGN with soft X-
ray spectra (Puchnarewicz et al. 1996). There are, however,
ROSAT serendipitous surveys with which a direct comparison
should be more meaningful, although none are as large and/or
complete as RIXOS. The CCRS, which has a similar flux limit to
RIXOS, has a reported average slope which lies between the
EMSS average and the average for the brighter samples, with
a = 1.3 £ 0.1 (Ciliegi et al. 1997). At the very faintest fluxes, the
average spectral slopes for QSOs in the UK Deep Survey is o =
0.96 = 0.03 (Romero-Colmenero et al. 1996), which is consistent
with the EMSS. The spectrum of the QSOs in another deep survey
has an average of & = 1.23 = (.04 (Almaini et al. 1996). Both the
Ciliegi et al. and the Almaini et al. samples are therefore softer
than the RIXOS average of a = 1.05 = 0.05.

The largest difference is between the CCRS sample and
RIXOS. Although the discrepancy is only at the 20 level, it would
be expected that these two samples would give essentially
identical results, as the flux limits for the CCRS are only slightly
lower than for RIXOS. However, the analysis techniques are
different. From the simulations described in Section 5.3 it would
be expected that the hardness-ratio method used in the CCRS
would give an average slope that was slightly softer than the ‘true’
value. We have attempted to re-analyse the CCRS data using the
method used for the RIXOS sample. However, because accurate
positions are not quoted for sources in the CCRS, it has not been
possible to analyse the CCRS in exactly the same way as for
RIXOS, since we cannot unambiguously identify all the X-ray
sources. Nevertheless, Fig. 20 shows the comparison between the
RIXOS sample and our best estimate for the CCRS sample
analysed using the Cash method, and the discrepancy between the
two is reduced. The revised average slope of the CCRS,
1.16 = 0.1, is now consistent with the RIXOS sample at 1o,
implying that the apparent difference between the two samples
was caused at least in part by the bias introduced by using
hardness ratios. The difference between the two dispersion
estimates is likely to be caused by the assumption of a Gaussian
distribution of slopes rather than necessarily representing a real
difference between the two samples.

From the range of different slopes obtained from different
samples it is clear that the spectral distribution of AGN is quite
complex, and that source selection effects can play a dominant
role in determining the average slope within a given sample.
Nevertheless, the evidence increasingly suggests that faint, X-ray-
selected AGN, such as those found in ROSAT serendipitous
surveys, have a mean slope close to a = 1. Such an index is close
to the value estimated to be the underlying intrinsic X-ray
spectrum in Seyferts when effects such as reflection and a warm
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Figure 20. A comparison of the RIXOS average slope and dispersion for
the AGN (solid contour) and the estimated spectral slope and dispersion
for the CCRS (dashed contour). Both contours have been obtained in
precisely the same way, using the Cash statistic.

absorber are taken into account (Nandra & Pounds 1994). It is also
close to the value of the inferred spectral slope seen in the IR,
giving rise to claims that there is a power law of energy index 1
underlying the observed spectrum from the IR to X-ray range (e.g.
Elvis et al. 1986). Deviations from this average slope can then be
caused by additional processes such as soft X-ray excesses, warm
absorbers and reflection, the effects of which are likely to be a
function of redshift and/or luminosity. Some of these additional
effects have already been observed in some high-redshift objects.
For example, warm absorbers have been detected so far in two
quasars, 3C 351 (Fiore et al. 1993) and MR 2251—178 (Pan,
Stewart & Pounds 1990) though it is unclear how prevalent they
are. However, without a detailed study of objects contained within
RIXOS and other similar samples it is not possible to determine
the proportion of objects in which these extra effects are
important.

One final question needs to be addressed, and that is the effect
of intrinsic absorption. Observations of selected high-redshift
quasars have indicated that absorption may be important in some
objects (Elvis et al. 1994). High-resolution spectra of CCRS AGN
with sufficient counts to determine Ny show only one object out of
36 AGN with evidence for significant absorption (Ciliegi et al.
1997), while in the data of Almaini et al. (1996) two out of nine
objects require extra absorption. Selection effects may be at work
here, since a source that is absorbed will appear fainter than the
same source that is not, and the constraints on spectral fits are
obviously better for brighter sources. However, from the X-ray
colour—colour data there are indications that at least ~5 per cent
of the RIXOS AGN have detectable absorption based on the X-ray
data alone. This fraction is fairly secure, because even at the flux
cut-off of 3X 107 *ergecm™2s~! RIXOS sources contain sig-
nificant numbers counts. This is confirmed by simulations. We
have constructed 1000 data sets with the same flux distribution
and assumed slope distribution (¢ =1 and o= 0.55) as the
RIXOS sample, and have analysed these data sets in exactly the
same way as discussed in Section 4. Out of the 1000 simulated
data sets, only one of the simulated data sets has as many AGN in
the C1 < 0 region of the colour—colour plot as are actually seen,
as illustrated in Fig. 21.

Even in those samples with much lower flux limits than exist in
the RIXOS samples there is no evidence for extra absorption being
required for the majority of the QSO part of the sample.
Therefore, based on the X-ray data alone, there is no strong
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evidence for absorption playing a major role in the X-ray spectra
of faint AGN, and such effects exist only at the ~10 per cent level.

7 ANALYSIS OF THE WHOLE RIXOS
SAMPLE

Finally, we have analysed the whole RIXOS sample, including all
sources in all RIXOS fields down to the detection limit of each
field, containing 1762 sources. Even though we do not have
identifications for most of the sources with a flux below
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Figure 21. A histogram showing the number of times a given number of
hard (C1 < 0) sources were found in simulated samples of RIXOS AGN.
The simulated samples have the same flux and spectral distribution as the
RIXOS AGN, with a mean « = 1 and dispersion o = 0.55. Only one of
the simulated data sets have as many hard sources as were seen in the
RIXOS sample of AGN.

3x 10 ""ergem 257!, we can still study the spectral shape of
the faintest sources, which are precisely those which will
contribute most to the soft X-ray background. Recent work has
indicated that there may be a correlation between the average
spectral slope and flux (Hasinger et al. 1993; Vikhlinin et al.
1995). Vikhlinin et al. (1995) analysed 130 ROSAT fields and
extracted average spectra over a range of flux bins. They showed a
correlation between source flux and spectral index, with bright
sources (>2 X 1073 ergecm™2 s~ 1) having average slopes close to
1.3, and faint sources (<10 '*ergem 2s7!) having average
slopes close to 0.5. As noted by Vikhlinin et al., the average slope
of 0.5 is close to that obtained for the soft X-ray background.
The exact significance of this correlation is, however, unclear,
since Vikhlinin et al. used either hardness ratios, which in the case
of the faintest sources will have a bias to softer slopes (see Section
5.3), or summed up all the sources in a flux bin and fitted
multichannel data with models using y>. While summing up the
data will allow higher signal-to-noise ratios at a higher resolution,
it can only give information on the average properties of the
sources and not on the distribution of slopes in a given flux band.
By using the Cash statistic technique on three-colour data we
can avoid problems of biases. We have analysed the whole RIXOS
sample containing 1762 sources, including sources which extend
down to a flux of 4 X 10~ ergcm™2 s~ !. Fig. 22 shows the fits to
the whole sample as a function of flux both as a scatter plot and
binned into flux bins. The second panel shows the average of the
slopes in each flux bin which is the equivalent of the Vikhlinin et
al. data. As with the sample of Vihklinin et al., there is a clear
trend towards harder spectra at lower flux limits in the latter.
Above the RIXOS flux limit there is no significant hardening,
while there is a significant deviation below ~2x 10™'*erg
cm~2s~!'. However, unlike the Vihklinin et al. sample we can

6F E
B 4 E
R =
Q9 0:_ E
3 -2F E
4E E
o - T B
£ osp —— ]
0.0: 3
= 1.0E _|_ -
«© L —l—-_*___ i
£ o<F ——t— | ]
< 05
[} C ]
0.0f .
=~ 1.0 ]
N S
% 0.5F 3
0.0t ]
0.1 1.0 10.0 100.0

Flux [0.5 - 2 keV] x 10" erqs'cm'2 s’

Figure 22. Fits to the whole RIXOS data set, consisting of 1762 objects. The top panel shows the power-law slope fit to all the data assuming Galactic Ny.
The second panel shows the data averaged in 6 flux bins, together with the standard error. A clear trend can be seen, with the average hardening with lower
fluxes. The third panel shows the standard deviation of the data around the mean. The bottom panel shows the fitted average slope and error in each flux bin.
This method essentially biases against extreme outliers, and is more representative of the mode of the distribution. These data show no strong correlation with

flux. In all cases the dashed line is representative of the mode of the slopes.
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look at the distribution of slopes within a flux bin. The top panel
of Fig. 22 makes it clear that the majority of sources do not show a
trend to harder slopes at lower flux limits. To highlight this
further, we have fitted the mean slope and dispersion within each
flux bin in the same way as we have done for the RIXOS sample
(Section 6). The bottom panel shows the fitted average slope as a
function of flux, and it is clear that there is no significant trend.
The most obvious explanation for this discrepancy between the
arithmetically averaged data and the fitted average value is that
there are changes in the distribution of slopes within a flux bin
rather than a global change in the spectral slope. This is supported
by the third panel, which shows an increase in the measured
standard deviation of the data with decreasing flux. In the RIXOS
data it is clear that there are a number of very hard sources below a
flux of 3X 10" "“ergem™2s~!. These sources would bias the
mean but, as outliers, they would not have a significant effect on
fits of a Gaussian distribution to the slopes, exactly as observed. If
we look at those sources where o < 0, then 20 per cent of sources
below 3 X 107 ergem™2s™! satisfy this condition. However, if
we look at all those sources with fluxes greater than 3 X
107" ergem™2s7!, then only 13 per cent of the sources satisfy
this criterion. It is therefore clear that as we go to fainter fluxes a
higher proportion of the sources are very hard. From studies of
deep ROSAT pointings it is unlikely that there are a significant
number of stars at faint fluxes, and it is more likely that the
sources with hard spectra are an absorbed population. One obvious
candidate for these sources are Seyfert 2 galaxies. Such sources
are both hard and faint relative to unobscured AGN, and would
therefore give the observed distribution which has more hard
sources at fainter fluxes.

7.1 The nature of the soft X-ray background

One question that has been highlighted by recent ROSAT obser-
vations is the nature of the soft X-ray background. It has been
known for many years that the average slope of the soft X-ray
background is a = 0.4 (for a review see Fabian & Barcons 1992).
This spectrum is inconsistent with the average spectrum of
(relatively bright) AGN. From the deepest surveys undertaken to
date it is clear that a significant fraction of the X-ray background
is made up of emission from NELGs, an amorphous classification
that may include Seyfert 2 galaxies as well as starburst galaxies
and LINERS. However, the average spectrum of the RIXOS
NELGs is also too soft to explain the soft X-ray background.

In contrast, the mean spectrum of NELGs at fainter flux levels
is consistent with the X-ray background (Romero-Colmenero et al.
1996), and harder than that of AGN even in the same flux range. In
the previous section we showed that the hard overall mean
spectrum at faint fluxes is caused by a population of very hard
sources (i.e., harder than the background). These bias the mean
source spectral slope to a value which is consistent with the slope
of the background.

A combination of two possible explanations may account for
the slope of the X-ray background, given that the NELGs are
likely to be a mixture of intrinsic source types. There may be a
genuine change in the dominant emission mechanism between the
bright RIXOS NELGs and those identified in deep surveys, with
the emission from faint NELGs being dominated by a hot
continuum source (e.g., hot gas, perhaps associated with an
extended halo rather than the galactic nucleus); or the very hard
sources which we identify in the extended RIXOS sample may be
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an absorbed population consisting, say, of Seyfert 2 galaxies (cf.
Grindlay & Luke 1990). More sensitive individual X-ray spectral
observations of a sample of faint sources will be needed to resolve
this question.

8 CONCLUSIONS

RIXOS is a flux-limited, nearly complete sample of X-ray-
selected sources. We have demonstrated that for such a sample it
is possible to obtain useful spectral information even down to very
faint limits, as long as the correct statistic is used. In contrast, a
simple hardness-ratio method, which has been used by a number
of authors to determine the spectral slope for faint sources, is
shown to bias in the inferred power-law slope towards a steeper
spectrum. The use of three-colour data allows some discrimination
between thermal and non-thermal X-ray emission, at least for
relatively bright sources. We have determined the spectral
characteristics for each subcategory of sources within the
RIXOS survey.

(1) Although little can be said directly about the X-ray spectra
of the stars, the use of three-colour data demonstrates the ability of
the method to discriminate between thermal and non-thermal
sources.

(2) Most of the RIXOS clusters are consistent with the majority
of the emission arising from hot (> 3keV) gas. There are some
clusters where there is evidence for a lower temperature, which
may indicate the presence of a cooling flow.

(3) On average, the NELGs have X-ray spectra that are
consistent with the spectra of the AGN and may indicate that
many of the NELGs found in RIXOS are, in fact, low-luminosity
AGN. This is at variance with the X-ray spectra of NELGs found
from deep X-ray surveys, where the average slope is much harder.
The NELGs observed in deep X-ray surveys are then either a more
absorbed population of sources, or the X-ray emission in the
faintest NELGs arises from some mechanism other than an AGN
non-thermal power law.

(4) The AGN have an average slope of & = 1.05 £ 0.05, with
no evidence for spectral evolution. This average slope is somewhat
harder than the averages found for other samples of soft X-ray-
selected AGN. However, the inappropriate use of hardness ratios
will have softened the average slopes in other samples. The value
of a@ = 1.05 is consistent with the naked power-law expected from
AGN, implying that the X-ray spectrum of the RIXOS AGN is
relatively uncontaminated by processes such as reflection and
absorption. Since many of the previous X-ray-selected samples
concentrated on low redshift/low luminosity AGN, part of the
discrepancy between RIXOS and other samples may be ascribed
to the effect of redshift and/or luminosity on the processes that
modify the underlying power law.

(5) Analysis of the whole RIXOS sample confirms the presence
of a flux dependent spectral slope (Hasinger et al. 1993; Vikhlinin
et al. 1995). However, we have been able to investigate the cause
of this correlation, and the most likely explanation is of an
increasing proportion of very hard sources rather than an average
hardening of the spectra.
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