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A B S T R A C T

The discrete dipole approximation (DDA) has been successfully ap-
plied to many light scattering problems. Simply stated, the DDA is
an approximation of the continuum target by a finite array of polar-
izable points. The points acquire dipole moments in response to the
local fields. The dipoles of course interact with one another via their
electric and magnetic fields, so the DDA is also sometimes referred to
as the coupled dipole approximation. As of today, the method has es-
tablished itself as one of the best solutions to calculate the scattering
of radiation by particles of arbitrary shape. Hitherto, however, the
main existing implementations include materials with relative mag-
netic permeability equal to 1 only, which is correct for all materials in
the optical frequency range.

Nonetheless, materials with unusual optical properties have arisen
recently. This includes the possibility of having both electric and mag-
netic anisotropic properties (bianisotropic materials) in the most gen-
eral case. The situation where both the real part of the electric per-
mittivity and the magnetic permeability are negative corresponds to
what is known as "left-handed materials", or negative index materi-
als (NIM), with unconventional properties such as negative refraction.
The treatment of these materials with a method as contrasted as the
DDA provides several advantages, apart from possibly being the only
method available in many cases.

This PhD Thesis has explored nanostructured systems with arbi-
trary anisotropic optical properties (both electric and magnetic) by
means of an Extension of the Discrete Dipole Approximation (E-DDA).
During the development of this dissertation, a computational code
(E-DDA code) has been implemented, able to produce comparative
results with existing DDA codes, obtaining an excellent agreement.
After validation, the method was then applied to a wide range of ma-
terials and situations, making a special reference to its application to
magneto-optical materials (with an antisymmetric electric permittiv-
ity tensor) and composite materials.

As a summary, the status of the E-DDA code is mature enough to
be applied to very different configurations, making it a very useful,
flexible and stable computational tool for calculating scattering and
absorption of light by irregular particles, including anisotropic mate-
rials both electrically and magnetically at the same time in the most
general case.
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R E S U M E N

La aproximación de dipolo discreto (o DDA por sus iniciales en in-
glés) ha sido empleada con éxito en multitud de aplicaciones dentro
del ámbito de la difusión de luz. Básicamente consiste en discretizar
el blanco difusor en elementos polarizables. Los elementos adquieren
momentos dipolares en respuesta a los campos locales. Los dipolos
por supuesto interaccionan entre ellos por medio de sus campos eléc-
tricos y magnéticos, por eso a la DDA también se la conoce como
aproximación de dipolo acoplado.

A día de hoy, el método se afianza como una de las mejores solu-
ciones para calcular la radiación difundida por partículas de forma
arbitraria. Hasta ahora, sin embargo, las principales implementacio-
nes existentes sólo incluyen materiales en los que la permeabilidad
magnética relativa puede aproximarse por la unidad, lo cual es acer-
tado para todos los materiales en el dominio de las frecuencias del
rango óptico.

No obstante, últimamente están apareciendo materiales con propie-
dades ópticas inusuales, como por ejemplo el caso de que algunas de
sus constantes ópticas efectivas sean negativas (sus partes reales), o
bien que presenten anisotropía tanto para el campo eléctrico como
para el magnético (materiales bianisótropos). El caso doble negativo
correspondería a lo que se ha venido en llamar “materiales zurdos”, o
materiales con índice negativo, con propiedades sorprendentes como
la refracción negativa. El tratamiento de estos materiales con un méto-
do tan bien contrastado como es el DDA presenta bastantes ventajas,
aparte de que en muchos casos puede ser el único método disponible.

Esta Tesis Doctoral ha explorado sistemas nanoestructurados con
propiedades eléctricas y magnéticas anisótropas por medio de una
Extensión de la Aproximación de Dipolo Discreto (E-DDA). Durante
el desarrollo de esta tesis, se ha implementado un código computacio-
nal (código E-DDA), capaz de producir resultados comparativos con
otros códigos DDA existentes, obteniendo un acuerdo excelente. Des-
pués de validarse, el método se ha aplicado a un amplio rango de
materiales y situaciones, haciendo mención especial a su aplicación a
materiales magneto-ópticos (con un tensor de permisividad eléctrica
antisimétrico) y materiales compuestos.

En resumen, el estado del código desarrollado es suficientemente
maduro como para poder aplicarse a muchas configuraciones dife-
rentes, haciendo de él una herramienta computacional útil, flexible
y estable para calcular la difusión y absorción de luz por partículas
irregulares, incluyendo materiales anisótropos tanto eléctricos como
magnéticos en el caso más general.
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I N T R O D U C T I O N

1.1 historical record

Scientists have tried to elucidate the nature of light and its inter-
action with matter since the beginning of time. From the Greek
philosophers as Euclides (300 BC) with its geometrical optics trea-
tises to the modern theories of quantum optics, with the explanation
of the photoelectric effect proposed by Einstein [1], many aspects of
light have been progressively explained. It is not until the 16th and
17th centuries when systematic studies about what is called today
classical optics phenomena were made by Galileo Galilei (1564-1642),
Johanness Kepler (1571-1630) or René Descartes (1596-1650). Wille-
brord Snel van Royen (1580-1626), also known as Snellius, proposed
the refraction law, later derived by Descartes. In the 17th century,
while Isaac Newton (1642-1727) proposed a corpuscular theory of
light, Christian Huygens (1629-1695) was the first who wrote of light
as a wave, and it was not until the 19th century, with the experiments
by Thomas Young (1773-1829), when the wave theory of light was
widely accepted. James Clerk Maxwell (1831-1879) worked deeply
in a theory that explained several electric and magnetic phenomena,
that concluded in the Maxwell equations [2, 3] and the wave equa-
tion obtained from them, used since then to describe electromagnetic
radiations of any frequency. These equations are the basis of the
electromagnetism and merge the works done by Faraday (1791-1867),
Gauss (1777-1855) and Ampère (1775-1863).

Maxwell’s works seemed enough to explain light phenomena. How-
ever, the debate was reopened in the 20th century. A new quantum
theory of light was derived from the works done by Max Planck (1858-
1947) and Albert Einstein (1879-1955) and the concept of the photon
started to appear. Every progress made in the study of light has
brought about a group of new applications and developments. This
happened with light scattering, the field in which the present work
must be framed. This physical phenomenon, which affects not only
light, but also sound waves and moving particles for example, leads
to a deviation of the incoming energy due to the presence of a lo-
calized inhomogeneity in the medium through which it propagates.
Light scattering is quite common and it is responsible of, for instance,
the blue color of the sky, explained by Rayleigh [4] in 1899.

1
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1.2 motivation

In his 1959 lecture at Caltech, Feynman [5] envisaged the potential
of the ability to manipulate matter at the atomic scale. It is gener-
ally accepted that Feynman’s visionary discussion of the problems
and promise of miniaturization constituted the starting point for the
new field that today is called nanotechnology. Generally speaking, nan-
otechnology works with materials, devices, and other structures with
at least one dimension sized from 1 to 100 nanometres. Quantum
mechanical effects are often important at this quantum-realm scale.
In Feynman’s words, "Atoms on a small scale behave like nothing on
a large scale, for they satisfy the laws of quantum mechanics" [5].
Nanotechnology has made it possible to realize some of Feynman’s
dreams, such as building motors on a molecular scale, realized in
2003 [6].

Nanophotonics or Nano-optics is the study of the behavior of light
on the nanometer scale. The interaction between light and metal
nanoparticles (NPs), in particular, is dominated by localized surface
plasmon resonances (LSPRs), or charge-density oscillations on the
closed surfaces of the particles [7, 8]. LSPRs have the ability to strongly
scatter and absorb light and to squeeze light into nanometer dimen-
sions, producing large local enhancements of electromagnetic fields
[9]. The science and technology that deals with the generation, con-
trol, manipulation, and transmission of these excitations in metal
nanostructures has recently grown into an independent research field
known as "nanoplasmonics". The field of nanoplasmonics is young
but rich in phenomena that have inspired practical uses in physics,
biomedicine, environmental monitoring, and national security [10].

Nanoparticles are unique tools as sensors. First, they are larger
than typical molecules yet smaller than viruses. They are similar
in size to many proteins. This is part of the reason they can oper-
ate well inside cells. Second, nanosensors possess unique physical
characteristics. They deliver sensitivity orders of magnitude better
than conventional devices and provide such performance advantages
as fast response and portability. For example, nanoshells [11] and
nanorice [12] are made of a non-conducting core that is covered by
a metallic shell. Nanoshells are about 10,000 times more effective at
Surface-Enhanced Raman Scattering (SERS) than traditional systems.
Nanoshells provide an opportunity to design all-optical nanoscale
sensors - essentially new molecular-level diagnostic instruments - that
could detect as little as a few molecules of a target substance [13].

Third, nanosensors allow for building integrated devices, provid-
ing an elemental base for intelligent sensors, characterized as having
significant data storing-, processing-, and analyzing power. All this
adds to the above mentioned LSPR and its related properties, which
do not exist in the bulk materials. The concept of intelligent sen-
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sors, which is being presently developed, is an implementation of an-
other of Feynman’s visions. Among the most central and fundamen-
tal problems of biology in 1959, Feynman mentioned the question:
"What is the sequence of bases in the DNA?" It took more than 40

years to find an answer to this question on the basis of many techno-
logical innovations: a draft human genome sequence was presented
[14] as recently as in 2001. This sequence is an instance of "the biolog-
ical example of writing information on a small scale" which inspired
Feynman "to think of something that should be possible for technical
applications. Biology is not simply writing information; it is doing
something about it" [5].

Another example of how visionary Feynman’s 1959 lecture was can
be found in the following words, directly related with the metamate-
rials field: "What would the properties of materials be if we could
really arrange the atoms the way we want them? ... I can’t see exactly
what would happen, but I can hardly doubt that when we have some
control of the arrangement of things on a small scale we will get an
enormously greater range of possible properties that substances can
have, and of different things that we can do" [5].

1.3 objectives and thesis overview

The objective of the current dissertation is to explore nanostruc-
tured systems with arbitrary optical properties (both electric and
magnetic) by means of an Extension of the Discrete Dipole Approxi-
mation (E-DDA code). The method has been applied to a wide range
of materials including anisotropic materials both electrically and mag-
netically, at the same time in the most general case. In order to accom-
plish such an ambitious task, four objectives needed to be fulfilled:

1. Develop and implement a working preliminary code capable of
treating dielectric materials based on the Discrete Dipole Ap-
proximation (DDA).

2. Extend the early version of the code to allow for a wider range
of materials, including metals and absorbents.

3. Perform the definitive extension, enabling tensorial optical prop-
erties (considering both electric and magnetic point dipoles).

4. Develop studies and sufficient case-based reasoning so to allow
validation of the results.

Throughout this dissertation we have adhered to the following out-
line:

A part dedicated to the theoretical foundations on which this
dissertation is based, divided in several chapters:
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• A theoretical introduction about the interaction of light
with matter, emphasizing the importance of the interaction
of electric and magnetic dipoles.

• A short account of the optical properties of materials, in-
cluding the well-known Clausius-Mossotti relation and ef-
fective medium theories.

• A review of the available numerical methods in electro-
magnetics, including a thorough description of the code
implementing the Extended Discrete Dipole Approxima-
tion (E-DDA).

A part dedicated to the main results obtained within this doc-
toral dissertation, including.

• An opening chapter devoted to the initial validation of the
results obtained with the E-DDA code.

• A chapter dedicated to the application of the E-DDA code
to magneto-optical materials.

• A study of composite materials, including metamaterials,
emphasizing the versatility of the E-DDA implementation.

• A placeholder chapter where some additional aspects are
studied in detail, including a quantum model for the opti-
cal properties of very small plasmonic particles.

In the final section, a summary of the main conclusions as well
as some future perspectives are presented.



Part I

F O U N D AT I O N S

A description of the theoretical basis on which most of
this Thesis is founded as well as a review of the available
numerical methods in electromagnetics, including a thor-
ough description of the code implementing the Extended
Discrete Dipole Approximation (E-DDA).





2
L I G H T A N D M AT T E R

The vision of the world around us is inevitably governed by a phe-
nomenon known as scattering. Either quantitative or qualitative, by
means of physical-mathematical models or with the help of our sen-
sory impressions, to describe the light and its interaction with the
matter around us needs the concept of scattering. Such a concept
involves an spatial redistribution of the energy and the appearance
of light in directions different from the emission of the light source,
which are typically radial for area emitters, or lineal for directional
emitters. This mechanism, we are so used to, together with the ab-
sorption, is the responsible of processes as varied as the different
irisation of the clouds, the generation of the rainbow, the blue color
of the sky, the orangish sunsets or the green of forest foliage.

Before analyzing the problem of scattering of light, it is necessary
to describe the nature of light from an appropriate formalism, namely
electromagnetism. This discipline provides a suitable physical and
mathematical apparatus. That is why, in this chapter, we present a
summary of the basic concepts and the equations connected to the
resolution of the phenomenon of scattering of light.

Hereinafter, we adopt a macroscopic approach to the problem of
determining absoprtion and scattering of electromagnetic waves by
particles. Therefore, the logical point of departure is the Maxwell
equations for the macroscopic electromagnetic field at interior points
in matter, which in SI units may be written [8] (see also Appendix A):

∇ ·D = ρ (2.1)

∇× E +
∂B
∂t

= 0 (2.2)

∇ ·B = 0 (2.3)

∇×H −
∂D
∂t

= J (2.4)

, where E is the electric field and B the magnetic induction. The
charge density ρ and the current density J are associated with so-
called "free" charges.

The electric displacement field D represents how the electric charge
distribution of a given medium, including charge transport and/or
dipole reorientation, is influenced by an electric field E. Both magni-
tudes are related through the expression:

D = ¯̄εE = ε0E + P (2.5)

7
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, where, in general, ¯̄ε will be a 2nd order (or rank) complex tensor
(therefore depending on the direction of the electric field), function
of a variety of parameters such as the frequency, position, humid-
ity, temperature, etc. P is the electric polarization (average electric
dipole moment per unit volume) and ε0 is the permittivity of free
space. When an electric field is applied to a medium, an electric cur-
rent may appear. The total current flowing through a real material
is composed, in general, of two parts: a conduction current and a
displacement current. The displacement current may be thought as
the elastic response of the material to the applied electric field. As we
increase the magnitude of the electric field, the displacement current
is stored within the material, and when the electric field is reduced,
the material releases the current. The displacement current therefore
does not reflect the change in electrostatic energy stored within the
material.

In analogy, the magnetic field H represents how the magnetic dipole
distribution of a given medium, including transport and reorienta-
tion, is influenced by a magnetic induction B. Both magnitudes are
related through the expression:

H = ¯̄µ−1B =
B
µ0

− M (2.6)

, where, in general, ¯̄µ will be also a 2nd order (or rank) complex ten-
sor, function as well of a variety of parameters such as the frequency,
position, humidity, temperature, etc. (please notice that the symbol
−1 must be considered as a matrix inverse in the most general case).
M is the magnetization (average magnetic dipole moment per unit
volume) and µ0 is the permeability of free space.

The electromagnetic field is required to satisfy the Maxwell equa-
tions at points where the permittivity and the permeability are conti-
nous. However, as one crosses the boundary between a particle and
a medium for example, there is, in general, a sudden change in these
properties. This change occurs over a transition region with thickness
of the order of atomic dimenions. From a macroscopic point of view,
therefore, there is a discontinuity at the boundary. At such boundary
points we impose the following conditions on the fields:

[E2(x) − E1(x)]× n̂ = 0

, x on S

[H2(x) − H1(x)]× n̂ = 0

(2.7)

, where the subscripts 2 and 1 represent the regions around and
inside the particle, respectively, and n̂ is the outward directed normal
to the surface S of the particle. The boundary conditions (2.7) are the
requirement that the tangential components of E and H are continuous
across a boundary separating media with different properties.
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Along this dissertation, we will consider the light as a transver-
sal electromagnetic wave, so that it has both an electric and a mag-
netic field associated that, when propagating in a homogeneous and
isotropic medium, are perpendicular to each other and to the direc-
tion of propagation, as shown in Figure 2.1. For convenience, we will
use the magnetic field H instead of the magnetic induction B, so that
if the electric and magnetic fields are taken as plane waves oscillating
in time, we may write:

E = E0 exp (ik · r − iωt) (2.8)

H = H0 exp (ik · r − iωt) (2.9)

, with H0 =
√
εmε0/µmµ0 k̂× E0 [8], being εm and µm the relative

electric permittivity and magnetic permeability of the surrounding
(ambient) medium, and k̂ the unit wave vector, whose magnitude k
is related with the wavelength λ (measured in the medium in which
the wave propagates) through the expression:

k =
2π

λ
(2.10)

electric
field

magnetic 
field

y

x

z

Figure 2.1: An electromagnetic wave, with its electric and magnetic fields
oscillating in directions perpendicular to each other and to the
direction of propagation.

The interaction of light with matter can be modeled assuming the
latter to be composed of dipoles, both electric and magnetic. It is well-
known that an electric dipole will acquire an electric dipole moment
p in the presence of an external electric field E, according to:

p = εmε0 ¯̄αE (2.11)

, where ¯̄α is the electric polarizability tensor.
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A magnetic dipole will also acquire a magnetic dipole moment m
in the presence of an external magnetic field H, according to the ex-
pression:

m = ¯̄χH (2.12)

, where ¯̄χ is the magnetic polarizability tensor. Both ¯̄α and ¯̄χ may
be related with the electric permittivity and the magnetic permeabil-
ity of the medium, respectively. Depending on the density of the
medium, the dipoles will interact between them to a greater or lesser
extent, and we will be able to obtain different relations between these
magnitudes (see Section 3.1). We will consider that two dipoles in-
teract with each other when the presence of one is able to alter the
oscillation of the other in a substantial way.

2.1 fields from electric and magnetic dipoles

The fields Ep and Hp produced by an electric dipole, p, at distance
r and direction n from the dipole can be expressed in the following
form in SI units [15]:

Ep =
1

4πεmε0

[
p

eikr

r

(
k2 −

1

r2
+
ik

r

)
+

n (n · p) eikr

r3

(
−k2 +

3

r2
−
3ik

r

)]
(2.13)

Hp =
1

4π
√
µmµ0εmε0

[
(n× p)

eikr

r2

(
k2 +

ik

r

)]
(2.14)

Equations (2.13) and (2.14) describe both the near fields (nf) and the
radiated fields (rf). The limit λ → ∞ (or k → 0) gives rise to the well
known expression of the (near) electric field produced by an electric
dipole p at distance r and direction n from the electric dipole, in the
electrostatic limit:

Enf
p ≈

1

4πεmε0r3
[3n (n · p) − p] (2.15)

The oscillation of the magnetic field leads the oscillation of the elec-
tric field by a phase of π/2 rad:

Hnf
p ≈ ik

1

4πr2
√
µmµ0εmε0

(n× p) (2.16)

The radiated fields correspond to the terms decreasing like 1/r.
These are:



2.1 fields from electric and magnetic dipoles 11

Erf
p ≈ k2

eikr

4πεmε0r
[p − n (n · p)] (2.17)

Hrf
p ≈ k2

eikr

4πr
√
µmµ0εmε0

(n× p) (2.18)

They are related by Hrf
p =

√
εmε0/µmµ0 n× Erf

p, which is a general
relationship for radiation fields (plane waves).

Figure 2.2 shows the field lines of the real-valued electric Ep and
magnetic Hp fields from an oscillating electric point dipole in vac-
uum. The color represents the magnitude of each field, normalized
to 1 in both cases. As can be seen, the maximum value of the electric
field |Ep|

max ≈ 1200 |Hp|max �
√
µ0/ε0 |Hp|

max ≈ 120π |Hp|max, which
would correspond to the far field (plane waves) case. Further details
about the obtention of these field lines can be found in Appendix B.

x/� y/�

z/�

|Ep|max = 9.5223 |Hp|max = 0.0079

Figure 2.2: Field lines of the real-valued electric Ep (x-z plane) and magnetic
Hp (x-y plane) fields from an oscillating z-directed electric point
dipole in vacuum at t = 0, calculated from r = λ/10 to r = 3λ.
The color shows the normalized magnitude of both Ep and Hp
(both normalized to 1, please notice their respective maximum
values).

The fields Em and Hm produced by a magnetic dipole, m, at dis-
tance r and direction n from the dipole are given by Jackson [16]:

Em = −
1

4π

√
µmµ0
εmε0

(n×m)
eikr

r2

(
k2 +

ik

r

)
(2.19)

Hm =
1

4π

[
m

eikr

r

(
k2 −

1

r2
+
ik

r

)
+

n (n ·m)
eikr

r3

(
−k2 +

3

r2
−
3ik

r

)]
(2.20)
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We note that the fields of the magnetic dipole are obtained from
those of the electric dipole by the duality transformations E → H,
H→ −E, εmε0 → µmµ0, µmµ0 → εmε0 and p→ µmµ0m.

In analogy with the electric dipole, the corresponding near fields
from a magnetic dipole m are given by:

Enf
m ≈ −ik

√
µmµ0
εmε0

1

4πr2
(n×m) (2.21)

Hnf
m ≈

1

4πr3
[3n (n ·m) − m] (2.22)

, where this time the oscillation of the electric field leads the oscilla-
tion of the magnetic field by a phase of −π/2 rad. The radiated fields,
decreasing like 1/r, are:

Erf
m ≈ −k2

√
µmµ0
εmε0

eikr

4πr
(n×m) (2.23)

Hrf
m ≈ k2

eikr

4πr
[m − n (n ·m)] (2.24)

2.2 interaction of electric and magnetic dipoles

We now consider the particularly simple case of only two electric
dipoles interacting in the near field zone. Based on Equation (2.15),
we can see that two aligned electric dipoles (longitudinal configura-
tion) will produce on each other identical electric fields, as shown
in Figure 2.3a. For zero or negligible phase shift, these fields are
oriented in the same direction as the induced dipole moment, thus
supporting each other.

r ⌧ �

1 2

E21E12

n

p p

(a) Longitudinal configuration.

r ⌧ �1 2

Ẽ12 Ẽ21

n

p p

(b) Transversal configuration.

Figure 2.3: Two interacting electric dipoles in the electrostatic limit.

E12 = E21 ≈
1

4πεmε0r3
(3p − p) =

p
2πεmε0r3

(2.25)

On the contrary, two parallel electric dipoles (transversal config-
uration) that are oriented perpendicular to their connecting vector,
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as shown in Figure 2.3b, will produce identical electric fields that
are anti-parallel to the direction of the induced dipole moment, thus
counteracting each other.

Ẽ12 = Ẽ21 ≈ −
p

4πεmε0r3
(2.26)

Moreover, for a given interacting distance in the near field range,
the longitudinal configuration is more efficient than the transversal
one, in the sense that the electric field produced by the electric dipoles
in the first case is twice that produced by the transversal configura-
tion, as stated by Equations (2.25) and (2.26).

We now consider a finite array of both electric and magnetic dipoles.
The electric and magnetic fields at the jth dipole resulting from the
electric and magnetic dipole moments at kth (pk and mk) are ob-
tained from Equations (2.13), (2.14), (2.19) and (2.20). Working with
the same formalism used by Mulholland et al. [15], we can express
the total electric and magnetic fields at the jth dipole (Ej and Hj) as:

Ej =
1

εmε0

N∑
k6=j

¯̄Cjkpk −
√
µmµ0
εmε0

N∑
k6=j

¯̄fjkmk (2.27)

Hj =
N∑
k6=j

¯̄Cjkmk +
√
εmε0
µmµ0

N∑
k6=j

¯̄fjkpk (2.28)

, where:

¯̄Cjk =




ajk + bjk

(
rxjk

)2
bjkr

x
jkr
y
jk bjkr

x
jkr
z
jk

bjkr
y
jkr
x
jk ajk + bjk

(
r
y
jk

)2
bjkr

y
jkr
z
jk

bjkr
z
jkr
x
jk bjkr

z
jkr
y
jk ajk + bjk

(
rzjk

)2




(2.29)

¯̄fjk =




0 −djkr
z
jk djkr

y
jk

djkr
z
jk 0 −djkr

x
jk

−djkr
y
jk djkr

x
jk 0


 (2.30)

The coefficients ajk, bjk and djk are shorthand expressions for the
r-dependent functions in Equations (2.13), (2.14), (2.19) and (2.20):

ajk =
1

4π

eikrjk

rjk

(
k2 −

1

r2jk
+
ik

rjk

)
(2.31)
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bjk =
1

4π

eikrjk

r3jk

(
−k2 +

3

r2jk
−
3ik

rjk

)
(2.32)

djk =
1

4π

eikrjk

r2jk

(
k2 +

ik

rjk

)
(2.33)

, where rjk is the distance between the jth and the kth dipoles.

2.3 scattering , absorption and extinction

A parallel monochromatic beam of light propagates without any
change in its intensity or polarization state. Suppose now that one
or more particles are placed into the beam of electromagnetic radia-
tion, as illustrated in Figure 2.4. The rate at which electromagnetic
energy is received by a detector D aligned with the incident radiation
from the particles is denoted by U. If the particles are removed, the
power received by the detector is U0, where U0 > U. We say that
the presence of the particles has resulted in extinction of the incident
beam. If the medium in which the particles are embedded is non-
absorbing, the difference U0 −U is accounted for by absorption in
the particles (i.e. transformation of electromagnetic energy into other
forms of energy) and scattering by the particles. This extinction (ab-
sorption plus scattering) depends on the chemical composition of the
particles, their shape, size, orientation, the surrounding medium, the
number of particles, and the polarization state and frequency of the
incident light.

INCIDENT

D

SCATTERED

Figure 2.4: Extinction from a collection of particles. Adapted from Bohren
and Huffman [8].
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2.3.1 Cross-sections and efficiency factors

Cross-sections and efficiency factors are coefficients that determine
the scattering characteristics of a particle or a particulate medium.
Cross-section is a concept that is very useful in scattering theory. Con-
sider a light beam incident on a particle. A portion of the radiant
power would be scattered in all directions while the rest would flow
through it. The scattering of the incident light beam is analogous to a
virtual cross-section that scatters electromagnetic fields that are inci-
dent on it. The area of this virtual cross-section is proportional to the
amount of radiant power that is scattered. This virtual cross-section
(which is not equal to the physical cross-section of the particle) is
called the scattering cross-section, denoted by Csca, and defined as
the ratio of the total radiant power scattered by a particle in all direc-
tions, Wsca, to the radiant power incident on the particle, Ii:

Csca =
Wsca

Ii
(2.34)

The absorption cross-section can be defined as the ratio of the to-
tal radiant power absorbed by a particle Wabs, to the radiant power
incident on the particle, Ii:

Cabs =
Wabs

Ii
(2.35)

Similarly, the extinction cross-section can be defined as the ratio of
the radiant power removed by a particle from the incident beam, to
the radiant power incident on the particle. In terms of the intensity
distribution functions, the extinction cross-section is given by:

Cext =
Wsca +Wabs

Ii
= Csca +Cabs (2.36)

, whereWsca andWabs are the rates at which energy is scattered and
absorbed by the particle respectively, and Ii is the incident irradiance.

As mentioned earlier, the virtual cross-section is not equal to the
physical cross-section of the particle. When there is a need to relate
both magnitudes, the efficiency factors are used. The scattering, ab-
sorption and extinction efficiencies are the ratios of their respective
cross-sections to the physical cross-section of the particle (πr2 in the
case of a sphere, with r being its radius). The scattering, absorption
and extinction efficiencies are denoted by the symbols Qsca, Qabs and
Qext respectively.





3
O P T I C A L P R O P E RT I E S O F M AT E R I A L S

The following chapter is intended to give a short account of the
optical properties of materials, including the well-known Clausius-
Mossotti relation and a overview of the main effective medium the-
ories. We shall not forget our central goal with this dissertation,
namely to develop a computational tool, based on the Discrete Dipole
Approximation, able to solve the scattering problem by structures in
the nanometer range. In order to properly model the optical response
of such nanostructures, we need to appropriately describe their op-
tical properties, for which, in Section 3.1, we shall derive the well-
known Clausius-Mossotti relation for both the electric and the mag-
netic cases.

As a kind of example, Section 3.2 is dedicated to introduce and
bring a fresh perspective to Kerker’s null-scattering conditions, which
allows us to shed new light on the radiative correction also intro-
duced in Section 3.1.3. Finally, in Section 3.3, we present an overview
of the principal effective medium theories suitable for modeling com-
posite materials. In particular, we propose a new approach that con-
siders the composite material to be made of discrete elements whose
optical properties have been renormalized so that each constituent
perceives the presence of the other according to its actual proportion
in the composite. Results corresponding to this section are shown in
Chapter 7.

3.1 clausius-mossotti relation

We now proceed to obtain an expression that allows us to relate
the microscopic properties of matter (such as the electric or mag-
netic polarizabilities) with macroscopically observable and measur-
able quantities such as the electric permittivity or the magnetic per-
meability. This is a non-trivial question and, as we will see, it is still
under research. For simplicity, we will just concentrate on the par-
ticular case of an anisotropic medium embedded in vacuum (so that
εm = µm = 1).

3.1.1 Electric polarizabilty

The electric polarizability ¯̄α represents the relative tendency of a
charge distribution, such as the electron cloud of an atom or molecule,
to be distorted from its normal shape by an external electric field E,

17
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which can come in the form of radiation or be caused by the presence
of a near ion or dipole.

Diluted media
When dealing with a diluted medium, where the dipoles do not

interact with each other, the electric field “felt” by each electric dipole
is simply the incident electric field, so that the displacement field D
can be separated in a contribution of the external field acting on the
vacuum and another contribution due to the presence of the material:

D = ¯̄εE = ε0 ¯̄εrE = ε0E +np⇒ np = ε0

(
¯̄εr − ¯̄I

)
E (3.1)

, where n = N/V is the number density of electric dipoles and p is
the electric dipole moment.

np = ε0

(
¯̄εr − ¯̄I

)
E = nε0 ¯̄αE⇒ ¯̄α =

1

n

(
¯̄εr − ¯̄I

)
(3.2)

Dense media
On the contrary, in a dense medium, the interaction between the

dipoles adds a new contribution that makes the electric field “felt” by
each electric dipole somewhat larger. Indeed, the net field Et, also
called Lorentz local field, may be written as [16]:

Et = E +
np
3ε0

(3.3)

Making use of Equations (2.11) (with εm = 1), (3.1) and (3.3):

p = ε0 ¯̄αEt = ε0 ¯̄α
(

E +
np
3ε0

)
= ε0 ¯̄α

(
¯̄I +

¯̄εr − ¯̄I
3

)
E

np = ε0

(
¯̄εr − ¯̄I

)
E = nε0 ¯̄α

(
¯̄I +

¯̄εr − ¯̄I
3

)
E

¯̄εr − ¯̄I =
n ¯̄α
3

(
¯̄εr + 2¯̄I

)
⇒ ¯̄α =

3

n

(
¯̄εr − ¯̄I

)(
¯̄εr + 2¯̄I

)−1
(3.4)

, which constitutes the so-called Clausius-Mossotti relation.
This expression relates the microscopic electric polarizability ¯̄α of

each electric dipole and the local, macroscopic, relative electric per-
mittivity ¯̄εr, in the limit of zero frequency k → 0, λ → ∞ (static
fields), where k is the wavenumber of the incident radiation.

The volume of each dipole is given by v = V/N = 1/n, so that the
Clausius-Mossotti relation becomes:

¯̄αCM = 3v
(

¯̄εr − ¯̄I
)(

¯̄εr + 2¯̄I
)−1

(3.5)
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It is well known that for an isotropic spherical particle in the quasi-
static limit (size → 0), the electric plasmon resonance, also called
"Fröhlich resonance", appears at εr = −2, as confirmed by Equa-
tion (3.5).

3.1.2 Magnetic polarizabilty

The magnetic polarizability ¯̄χ is the degree of magnetization of a
material in response to a magnetic field. Broadly speaking, it mea-
sures the ability of the microscopic magnetic dipole moments to align
with the external field.

Diluted media
Again, if the magnetic field “felt” by each magnetic dipole is sim-

ply the incident magnetic field, the influence of an external magnetic
induction B on the material may be separated in a contribution from
the vacuum and another one from the response of the material [8]
(assuming µm = 1):

H = ¯̄µ−1B =
1

µ0
¯̄µ−1r B =

1

µ0
B−nm⇒ nm =

1

µ0

(
¯̄I − ¯̄µ−1r

)
B (3.6)

, where n = N/V is the number density of magnetic dipoles and m
is the magnetic dipole moment.

nm =
1

µ0

(
¯̄I − ¯̄µ−1r

)
B = n ¯̄χH = n ¯̄χ

1

µ0
¯̄µ−1r B⇒ ¯̄χ =

1

n

(
¯̄µr − ¯̄I

)

(3.7)

Dense media
Similar to the Clausius-Mossotti relation, an equation for param-

agnetic media may be found [17], that relates the microscopic mag-
netic polarizability ¯̄χ of each magnetic dipole and the local, macro-
scopic, relative magnetic permeability ¯̄µr, in the limit of zero fre-
quency k→ 0, λ→∞:

¯̄χCM = 3v
(

¯̄µr − ¯̄I
)(

¯̄µr + 2¯̄I
)−1

(3.8)

, where v is the volume of the dipole. Much the same as the electric
plasmon resonance, the magnetic plasmon resonance appears at µr =
−2, as confirmed by Equation (3.8).

3.1.3 Radiative correction (RC)

Usually in electrodynamics, problems have been divided into two
classes: one in which the sources of charge and current are specified
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and the resulting electromagnetic fields are calculated, and the other,
known as "inverse problem", in which the external electromagnetic
fields are specified and the motions of charged particles or currents
are calculated (see Figure 3.1). 02/04/13 09:26

Página 1 de 1http://upload.wikimedia.org/wikipedia/commons/1/11/Welsh_dragon.svg

?
Dragon

Tracks

(a) The direct problem: Given a particle of specified shape, size, and
composition, which is illuminated by a beam of specified irradiance,
polarization, and frequency, determine the field everywhere. This
is the "easy" problem; it consists of describing the tracks of a given
dragon.

?
Tracks

Dragon

(b) The inverse problem: By a suitable analysis of the scattered field,
describe the particle or particles that are responsible for the scattering.
This is the "hard" problem; it consists of describing a dragon from an
examination of its tracks.

Figure 3.1: The direct and the inverse problem. Adapted from Bohren and
Huffman [8].

It is evident that this manner of handling problems in electrody-
namics can be of only approximate validity. The motion of charged
particles in external force fields necessarily involves the emission of
radiation whenever the charges are accelerated. The emitted radia-
tion carries off energy, momentum, and angular momentum and so
must influence the subsequent motion of the charged particles. Con-
sequently the motion of the sources of radiation is determined, in
part, by the manner of emission of the radiation.
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Equation (3.5) is exact in the zero frequency limit (see, e.g., Purcell
[18], pp. 333-338; Jackson [16]; Kittel [19]), but not at finite frequen-
cies. To see why it fails, consider a nonabsorptive material with real
permittivity, in which case Equation (3.5) would imply real polariz-
ability; however, a single dipole irradiated by a plane wave would
scatter, and therefore attenuate, the plane wave, and this attenuation
requieres that the polarizability has an imaginary part component in
order that the oscillating dipole not be exactly in phase with the inci-
dent plane wave. As the considered electric fields are always periodic,
we can add a “radiative reaction” assuming that, apart from the elec-
tric fields due to all other sources, each electric dipole is exposed to
an electric field that takes account of this “radiative reaction”, given
by [20] (assuming again, for simplicity, an anisotropic medium em-
bedded in vacuum):

Erad =
ik3

6πε0
p (3.9)

The dipole moment is then given by the expression:

p = ε0 ¯̄αCM (E + Erad) (3.10)

, which we may write in terms of the electric field E only, assuming
an effective electric polarizability tensor that we shall simply refer to
as ¯̄α:

p = ε0 ¯̄αE (3.11)

Using Equations (3.10) and (3.11):

p = ε0 ¯̄αCM

(
1

ε0
¯̄α−1p +

ik3

6πε0
p
)

¯̄I = ¯̄αCM ¯̄α−1 +
ik3

6π
¯̄αCM

, which implies an effective electric polarizability tensor ¯̄α:

¯̄α =

(
¯̄I −

ik3

6π
¯̄αCM

)−1

¯̄αCM (3.12)

, which exactly coincides with Equation (3.5) in the limit of static
fields (k→ 0). Please notice that this matrix multiplication is commu-
tative, being Equation (3.12) completely equivalent to Eq. (27) from
[21].
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In the limit of long wavelength, k� 1, the radiative correction also
holds for ¯̄χ, providing a finite frequency magnetic polarizability:

¯̄χ =

(
¯̄I −

ik3

6π
¯̄χCM

)−1

¯̄χCM (3.13)

Please notice that we only took into account the radiative reaction
correction coming from the electric field, which is an acceptable ap-
proximation [22].

3.2 kerker’s null-scattering conditions

In recent years, the response of nanosystems to both the electric and
the magnetic part of an incident electromagnetic field in the visible
part of the spectrum has become an important topic. Systems with rel-
ative electric permittivity and relative magnetic permeability different
from 1 have been analyzed from either a theoretical or an experimen-
tal point of view [23–25]. Although these optical properties cannot be
observed in natural materials, new engineered nano-structured mate-
rials, or metamaterials, have effective properties within such unusual
intervals [26, 27]. Scatterers with these optical properties may show
nonconventional scattering behaviors such as, for instance, negative
refraction [28], which, for the case of bulk materials, could be useful
for many applications: high-sensitivity biosensors, improved medical
treatments, cloaked tools, or perfect lenses [29, 30].

In 1983, Kerker et al. [31] analyzed light scattering of a small isotropic
spherical particle with arbitrary values for the relative electric permit-
tivity (εr) and magnetic permeability (µr). They showed that, under
certain conditions, the scattered intensity can be suppressed at given
directions. In particular, they stated that if εr = µr, light scattering
in the backward direction is zero. As for forward scattering, it is in-
hibited when εr = (4−µr)/(2µr + 1). These results have gained new
interest because the control of the directionality of light scattering by
tuning the optical constants is the key for several applications in opti-
cal communications [32]. However, these conditions, which we shall
refer to as Kerker’s conditions, have been controversial due to the vi-
olation of the optical theorem when the second condition is satisfied
[33].

In 2010, Alù and Engheta [33] proposed a correction in the expres-
sion of the extinction cross section. By means of this correction, they
showed that under the zero-forward condition, although the scattered
intensity is not zero in the forward direction, it is minimum with re-
spect to the other scattering angles and the optical theorem is fulfilled.
Here we go one step further by including the radiative correction in
the conditions stated by Kerker et al. [31], obtaining newly revised
Kerker’s conditions. Thus we can show that a small (dipole-like)
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isotropic particle with relative optical constants (εr, µr) that satisfies
these new conditions not only does not scatter either in the backward
or the forward direction, but also with no violation of the optical
theorem.

For a dipole-like particle, the backscattering or the forward scatter-
ing equals zero when both the electric and magnetic polarizabilities
are equal, that is α = χ, or they have an opposite sign, α = −χ.
Expanding Equations (3.12) and (3.13) for the case of an isotropic par-
ticle, we obtain:

α =
6πv(εr − 1)

2π(εr + 2) − ivk3(εr − 1)
(3.14)

χ =
6πv(µr − 1)

2π(µr + 2) − ivk3(µr − 1)
(3.15)

, where v is the volume of the particle and k is the wavenumber of
the incident electromagnetic radiation. Applying the previous equali-
ties to these formulas, we can derive revised expressions for Kerker’s
conditions:

zero-backward

(α = χ)
⇒ εr = µr (3.16)

zero-forward

(α = −χ)
⇒ εr =

π(4− µr) − ivk
3(µr − 1)

π(2µr + 1) − ivk3(µr − 1)
(3.17)

The zero-backward condition is equal to that proposed by Kerker
et al. [31], but the revised zero-forward condition presents a correc-
tion in the imaginary part with respect to the Kerker’s condition such
that at least one of the optical constants should be complex. While
the zero-backward condition can be satisfied for real values and no
absorption, the zero-forward condition requires some degree of ab-
sorption in the scatterer. Because the imaginary part depends on v, it
is directly related to the size and shape of the particle.

Figure 3.2 contains scattering diagrams corresponding to a spheri-
cal scatterer (R = 4.96nm) whose optical constants satisfy either Equa-
tions (3.16) or (3.17), illuminated by a plane wave with λ = 500nm
(R/λ ∼ 0.01). The diagrams correspond to an incident electromagnetic
field linearly polarized with the electric field parallel to the scattering
plane (parallel polarization). We do not include the perpendicular
polarization as it produces similar angular distributions. As can be
seen, when the optical constants satisfy one of the previous relations
(Equations (3.16) and (3.17)), light scattering patterns show a clear
zero at the backward and forward directions, respectively.
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Figure 3.2: Scattering patterns of a spherical scatterer with R = 4.96nm
such that its optical constants satisfy either the new zero-forward
(Equation (3.17)), (εr,µr) =

(
2, 0.4− 3.88× 10−5i

)
, or the zero-

backward (Equation (3.16)), (εr,µr) = (2, 2), conditions. The
arrow represents the direction of the incident radiation.

García-Cámara et al. [34] showed that the second of Kerker’s con-
ditions, or the zero-forward condition, has an important exception
when εr = µr = −2, due to the excitation of two dipolar resonances,
one electric and one magnetic. Although both conditions are satisfied
simultaneously, only zero-backward scattering is actually observed.
In their new form, the condition curves cross at the point:

εr = µr =
4π+ ivk3

−2π+ ivk3
(3.18)

This is a new form for the zero-forward exception. The correction
we introduce is a size correction in the sense that when v → 0, the
conditions tend to that of Kerker’s original form. In Figure 3.3, we
show the evolution of µr (real and imaginary parts) as a function of
εr, when they fulfill Equation (3.17), for several particle sizes. As
can be seen, while the real part of µr does not change as R changes
and it is similar to that obtained with the original Kerker’s condition,
the imaginary part becomes more negative as R increases. Although
the variation of the imaginary part is quite small, it has important
implications because it ensures that the optical theorem is satisfied,
as will be shown.

The optical theorem establishes that the extinction cross section
(Cext) is proportional to the scattering amplitude in the forward di-
rection, S(0◦), in the following way [35]:

Cext =
4π

k2
<{S(0◦)} (3.19)
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Figure 3.3: Real (continuos line, scale on the left) and imaginary (curves
with symbols, scale on the right) part of the relative magnetic
permeability as a function of the electric permittivity, following
Equation (3.17), for several particle sizes. For comparison, the
values of µr following the original Kerker’s zero-forward condi-
tion are included.

, where < stands for the real part. When the original zero-forward
condition is satisfied, S(0◦) = 0 and the extinction cross section is
zero. The absorption cross section (Cabs) may also be zero because
the optical constants may be both real, but the scattering cross sec-
tion (Csca) is not zero because the scattered intensity has important
values at other directions (see Figure 3.2). These results are clearly
inconsistent with Cext = Cabs +Csca. However, when the revised zero-
forward condition proposed in Equation (3.17) is fulfilled, (εr,µr) =(
2, 0.4− 3.88× 10−5i

)
, the extinction is again zero, as stated by the op-

tical theorem, but at the same time, this is consistent with the relation
Cext = Cabs +Csca because, at this point, Csca = −Cabs.

In order to satisfy the zero-forward condition that we propose in
Equation (3.17), either εr or µr must be complex if the other param-
eter is real and with negative values for the imaginary part, which
gives rise to negative values of the absorption cross section or amplifi-
cation cross section (see [36–38]). Scatterers with negative absorption
are known as active objects, and they are the base of laser designs [39].
In Figure 3.4 we plot the evolution of Cext, Cabs and Csca for a spher-
ical particle (R = 4.96nm) illuminated by a plane wave (λ = 500nm)
as a function of the relative electric permittivity εr with a fixed value
of the relative magnetic permeability (µr = 0.4− 3.88× 10−5i).

To sum up Section 3.2, we have analyzed the inconsistency created
by the zero-forward scattering condition proposed by Kerker et al.
[31] and the optical theorem [35]. The introduction of the radiative
correction in the generating expressions of the zero-forward condi-
tion produces a new form for such a condition, which complies with
the optical theorem. In the limit v → 0, the new expression tends
to Kerker’s. In addition, new conditions have size limitations similar
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Figure 3.4: Evolution of the scattering, absorption (amplification) and ex-
tinction cross sections of a spherical particle (R ' 5nm) as a func-
tion of εr when the relative magnetic permeability is fixed (µr =
0.4− 3.88× 10−5i). The pair (εr,µr) =

(
2, 0.4− 3.88× 10−5i

)
sat-

isfies the “new” zero-forward condition (Equation (3.17)).

to those of Kerker’s [40]. We have also analyzed the zero-backward
condition, obtaining that the expression stated by Kerker et al. [31]
for zero-backward scattering is consistent and the radiative correc-
tion does not modify it. The proposed conditions cannot be seen as
a minor revision of the original ones, because the effect is influenced
by the size of the scatterer. The significance of these results is also re-
inforced by considering systems of particles designed to achieve light
directionality in the nanoscale. Finally, these results highlight again
the importance of considering the radiative correction in studies of
small particles.

3.3 effective medium theories

Effective medium theories define an effective dielectric function for
a composite material in terms of the dielectric function of its compo-
nents and their geometrical arrangement [41, 42]. The applicability
of effective medium theories is restricted by the size of the structures
composing the mixture: sufficiently large to preserve locally their
own electromagnetic behavior and small enough for the composite to
appear homogeneous compared to the wavelength of the interacting
radiation.

The simplest way to obtain the optical properties of a composite
material is performing a weighted average (WA), by simply taking
into account the relative concentration of each constituent:

εWA = f · ε1 + (1− f) · ε2 (3.20)

µWA = f · µ1 + (1− f) · µ2 (3.21)

, where f is the filling fraction of material 1 in the composite.
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Over the last century, however, numerous effective medium theo-
ries have been proposed, being the Maxwell-Garnett and the Brugge-
man expressions the most successful to explain the effective behavior
of a large number of composites.

3.3.1 Extended Maxwell-Garnett (EMG) theory

If the mixture consists of isolated and poorly interacting spherical
inclusions (εi, µi) embedded in an otherwise homogeneous matrix
(εh, µh), the Maxwell-Garnett formula reads as [8]:

εEMG = εh


1+

3f
(
εi−εh
εi+2εh

)

1− f
(
εi−εh
εi+2εh

)


 (3.22)

, where εEMG is the effective dielectric function, εh and εi are the
dielectric functions of the homogeneous matrix and the inclusions re-
spectively and f is again the filling fraction of material 1. We may
extend the Maxwell-Garnett formula to materials with relative mag-
netic permeability µr 6= 1, obtaining:

µEMG = µh


1+

3f
(
µi−µh
µi+2µh

)

1− f
(
µi−µh
µi+2µh

)


 (3.23)

, where µEMG is the effective relative magnetic permeability and µh
and µi are the relative magnetic permeability of the homogeneous
matrix and the inclusion respectively.

3.3.2 Extended Bruggeman (EB) theory

Another commonly found topology corresponds to aggregate sys-
tems with some degree of interconnection between the two compo-
nents. The role of matrix and inclusions cannot be clearly defined
and the matrix where the phases are mixed is considered to be the ef-
fective medium itself. For these cases, the Bruggeman theory appears
to be more appropriate [8]:

f
εi − εEB

εi + 2εEB
+ (1− f)

εh − εEB

εh + 2εEB
= 0 (3.24)

, where εEB is the effective dielectric function and εh and εi are the
dielectric functions of the homogeneous matrix and the inclusions
respectively. We may extend the Bruggeman formula to materials
with relative magnetic permeability µr 6= 1 as well, obtaining:

f
µi − µEB

µi + 2µEB
+ (1− f)

µh − µEB

µh + 2µEB
= 0 (3.25)
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Note that the Bruggeman theory applies to a two-component mix-
ture in which there are no distinguishable inclusions embedded in a
definite matrix: both components are treated symmetrically. It might
be more correct to say that it applies to a completely randomly inho-
mogeneous medium; it does not strictly apply to a particulate (segre-
gated) medium because there is no way to decide which component
is the particles and which the surrounding medium.

3.3.3 Combined Approach (CA)

In the simplest case, when considering targets immersed in dielec-
tric media, the scattering calculation should be carried out using the
relative optical properties (quotient between the optical properties of
the target and those of the dielectric medium) as well as the wave-
length in the surrounding medium. Following this idea, we have
tried to devise expressions for effective optical properties taking into
account the relative concentration of each constituent, to obtain an
“effective ratio”, according to the following hypothesized expressions:

ε∗1 =
ε1
|ε2|

+ f ·
(
ε1 −

ε1
|ε2|

)
(3.26)

µ∗1 =
µ1
|µ2|

+ f ·
(
µ1 −

µ1
|µ2|

)
(3.27)

ε∗2 =
ε2
|ε1|

+ (1− f) ·
(
ε2 −

ε2
|ε1|

)
(3.28)

µ∗2 =
µ2
|µ1|

+ (1− f) ·
(
µ2 −

µ2
|µ1|

)
(3.29)

, where f is again the filling fraction of material 1, (ε1, µ1) and (ε2,
µ2) are the optical properties of material 1 and 2 respectively, and
(ε∗1, µ∗1) and (ε∗2, µ∗2) are the renormalized optical properties for each
material. These expressions are based only on the physical situation
where a given material is surrounded by a dielectric medium, and
have been obtained assuming a simple linear construction between
two limiting values, corresponding to the filling fractions f = 0 (there
is only material 2) and f = 1 (only material 1), as sketched in Fig-
ure 3.5:

Indeed, when f tends to 0, the renormalized dielectric function of a
dipole of material 1 should approach the quotient ε1/|ε2|, correspond-
ing to the situation where such dipole is surrounded by an equivalent
dense dielectric material 2. On the other hand, when f tends to 1, its
renormalized dielectric function should approach its original dielec-
tric function ε1.

In other words, our Combined Approach (CA) considers the mate-
rial to be composed of more than one constituent, taking into account
their relative concentration, but whose optical properties have been
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Figure 3.5: Sketch of the linear construction of our proposed Combined
Approach, considering an arbitrary material 1 (supposed to be a
metal, with <{ε1} < 0), as given by Equation (3.26).

renormalized so that each constituent takes account of the presence
of the other. Chapter 7 will be devoted to present a comparison of
these approaches, showing results emphasizing the influences of op-
tical properties of constituents and their concentration.





4
N U M E R I C A L M E T H O D S I N E L E C T R O M A G N E T I C S

Light scattering is fundamental in order to understand the way
light propagates in any media different from vacuum. At the most ba-
sic level, atoms and electrons, either as single scatterers, small groups
(molecules) or in larger ensembles, are the cause of this scattering
process. In the latest case, we can find bulk samples and individual
objects particles. Optical properties of individual particles depend on
the shape, size and bulk optical properties itself. Some examples of
light scattering are phenomena such as the rainbow, red skies at sun-
set, the very bright colors of stained class windows, opacity of fog,
etc. All these phenomena have motivated a lot of research and have
leaded to significant developments in both fundamental and applied
fields.

In recent times, there has been increasing interest in the scatter-
ing of an electromagnetic wave by a cylinder or a sphere, isolated or
near a smooth surface [43, 44]. The interest in using light scattering
techniques for solving this kind of problems is not only from a basic
point of view but also for its applications in many fields, such as me-
teorology, astronomy, biology and medicine [45–48], atmospheric and
surface contamination [49, 50], SERS [51, 52], optical particle charac-
terization [53], etc.

Several theories have been developed for solving the problem of
scattering from simple and complex structures, starting from Mie the-
ory [54], developed in 1908 and able to solve analytically the scatter-
ing by an isolated sphere (Mie developed this solution in order to
explain the colors of suspensions of small metallic particles in water).
Although Mie offered an exact solution, in some cases, depending on
the size and the refractive index, it might be quite complex. For this
reason, there are many approximations available depending on the
size and optical properties of the particles. Once simple scattering ge-
ometries were fully understood, researchers rapidly moved to more
complex structures formed by more than one scatterer, sometimes in
suspension others interacting with surfaces.

However, although for some scattering systems, some solutions
and methods were proposed, in general, finding an analytical solu-
tion to complex scattering systems is in most cases impossible. This
situation requires numerical solutions and it was not until recently,
when more powerful computers were available, that significant ad-
vances appeared.

Obviously a review of all the numerical methods and theories de-
veloped for solving the problem of scattering from random structures,

31
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or even a list of the works related with this topic, is subject for an
entire Thesis and therefore out of the scope of this dissertation. How-
ever, it is worthwhile mentioning here some excellent reviews on this
topic [55–57], in which some of the most relevant works at this effect
are described.

4.1 numerical solutions : a review

Here we present a brief overview of the most widely used numeri-
cal methods for solving the scattering by arbitrary structures.

4.1.1 Isolated particles

mie theory Although in this work we have not used the Mie theory
in a direct way, we find necessary to give a general view of it
as it constitutes one of the basis of light scattering. A more
detailed description can be found in Bohren and Huffman [8].

In 1908, Mie [54] found the exact solution to the Maxwell equa-
tions for the optical response of a sphere of arbitrary size im-
mersed in a homogeneous medium, with relative optical con-
stants (εh, µh), and subjected to a plane monochromatic wave.
For a homogeneous and isotropic sphere of radius a illumi-
nated by a plane wave of angular frequency ω traveling in the
z-direction and linearly polarized along the x-direction, the scat-
tered electromagnetic field can be calculated in every point of
space r, and is given by:

Es(r) =
∞∑
n=1

En

[
ianN(3)

eln − bnM(3)
oln

]
(4.1)

Hs(r) =
√
εh
µh

∞∑
n=1

En

[
ibnN(3)

oln + anM(3)
eln

]
(4.2)

, where En = inE0 (2n+ 1)/[n (n+ 1)] with E0 being the amplitude
of the incident electric field, an and bn are the Lorenz-Mie coef-
ficients and N(3)

eln, M(3)
oln, N(3)

oln and M(3)
eln are the vector spheri-

cal harmonics. The Lorenz-Mie coefficients an and bn are given
by:

an =
µhm

2jn(mx)[xjn(x)]
′ − µrjn(x)[mxjn(mx)] ′

µhm2jn(mx)[xh
(1)
n (x)] ′ − µrh

(1)
n (x)[mxjn(mx)] ′

(4.3)

bn =
µrm

2jn(mx)[xjn(x)]
′ − µhjn(x)[mxjn(mx)] ′

µrm2jn(mx)[xh
(1)
n (x)] ′ − µhh

(1)
n (x)[mxjn(mx)] ′

(4.4)
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, where x is the size parameter, m and µr are the relative com-
plex refractive index and magnetic permeability of the particle
and jn and h

(1)
n are the Bessel and Hankel functions respec-

tively. The optical response of the particle is then interpreted in
terms of the different multipolar contributions.

t-matrix The T-matrix method, also known as the extended bound-
ary condition method (EBCM), was first introduced by Water-
man [58, 59] and provides a general formulation of the scatter-
ing from obstacles of arbitrary size and shape. An excellent
review of this method has been published by Mishchenko et al.
[60]. This method is a numerical technique based on the inte-
gral formulation of Maxwell’s equations. It presents a general
formulation in which the incident, internal and scattered fields
are expanded in series of vector spherical wave functions. After
applying the boundary conditions, a matrix is obtained, relat-
ing the known expansion coefficients of the incident light to
the unknown expansion coefficients of the scattered field. This
matrix receives the name of transition matrix or T-matrix and
depends only on the physical properties of the scattering object
(shape, size and optical constants) as well as on its orientation
with respect to the coordinate system.

finite-difference time-domain (fdtd) This is another method
broadly used in computational electromagnetism [61–64]. It
consists on a direct implementation of Maxwell’s time-dependent
curl equations to solve the temporal variations of electromag-
netic waves within a finite space that contains an object of ar-
bitrary shape and properties. In practice, the space including
the scatterer is discretized into a grid. The basic element of this
discretization is the Yee cell [65, 66]. In general, any function of
space and time u can be evaluated as:

u (i∆x, j∆y,k∆z,n∆t) = uni,j,k

, where ∆x, ∆y, ∆z are the lattice space increments in the coordi-
nate directions, and i, j, k are integers. ∆t is the time increment,
assumed uniform over the observation interval, and n is an in-
teger.

FDTD can have stability problems if the user does not choose
the required parameters well. Also, it is important that the time
domain step size has to be related to the minimum spatial dis-
cretization distance. This is one disadvantage when large ob-
jects with fine features are analyzed since the simulation time
can grow drastically. Sometimes simulations can become unsta-
ble due to spurious reflections if the boundary conditions are
not well implemented.
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discrete dipole approximation (dda) Due to its relevance in
this work, a specific section (Section 4.2) is devoted to this method.

4.1.2 Scattering from particles near plane interfaces

The use of light scattering techniques for the detection and charac-
terization of particles upon flat surfaces has been a topic of increas-
ing interest over the last several years because of its wide range of
applicability in many fields of science and technology. Much effort
has been devoted to modeling the scattered light from these surfaces,
including the analysis of different effects and the testing of approxi-
mate numerical solutions. Among these effects are multiple scatter-
ing, cross-polarization, and enhanced backscattering. The develop-
ment of models and approximate solutions contributes to our knowl-
edge of the connection between the characteristics of the particle as
a diffuser and the scattering patterns obtained from it. The origin of
this question dates back to the problem studied by Sommerfeld [67]
concerning a dipole in front of a conducting half-space. We outline
below five approaches used to model the scattering from particles
near plane interfaces and comment on the principal features [68].

extinction theorem The Ewald-Oseen extinction theorem (ET)
[69, 70] is derived from an integral representation of the Maxwell
equations that includes non-local extended boundary conditions
at the surfaces. Two surface integral equations arise in the theo-
retical model. The first one connects the incident field with the
induced surface electric current density on the surfaces, and
the second connects this current density with the scattered field.
The current density can be seen as the source of the scattered
electromagnetic field. Discretization of the system permits the
transformation of the first integral equation into a linear system
of equations where the values of the surface current density in
the surface elements are the unknowns to be determined. The
second integral is then used to obtain the scattered field. This
treatment of the scattering process is complete and exact in the
sense that no additional physical assumptions or approxima-
tions are necessary. The multiple interactions substrate-particle
and particle-particle are completely included, as well as any
other effects, like the possible presence of surface-plasmon po-
laritons on metallic substrates. There is no restriction on the
material of the particles and substrates, which can be dielectric
or metallic. Any particle shape can also be considered. The
model restrictions occur in the numerical implementation. The
number of elements required for the surface (particles and sub-
strate) discretization is related to the dimension of the linear
system to be solved numerically. Therefore, the numerical sta-
bility of the solutions for a linear system with a large number
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of unknowns and the available computer memory are practical
limitations. For this reason, this method has been almost exclu-
sively employed for one-dimensional problems.

image theory This approach consists of solving the boundary con-
ditions at the particle and at the plane surface simultaneously.
To do this, the electromagnetic field components (incident, inter-
nal, scattered, and interaction) are expanded in terms of the vec-
tor spherical harmonics about two coordinate systems: one in
real space about the center of the particle system and the other
in image space located at the image of this coordinate system,
opposite the plane surface. The incident field is composed of
the field arriving directly from the source and from the source
after reflecting on the plane substrate. The interaction field is
the scattered field from the image particle and can be consid-
ered part of the incident field on the particle. The boundary
conditions at the substrate surface are more difficult to satisfy.
For a perfectly conducting substrate, the boundary conditions
can be satisfied exactly by introducing interaction fields ema-
nating from the image coordinate system that are the image of
the scattered field emanating from the particle. Since a direct
relationship exists between the scattered and interaction fields,
all the field components can be found by translating the image
fields expressed in vector spherical harmonics about the image
coordinate system onto the particle coordinate system. The total
scattered field is the superposition of the scattered fields from
the source and from the image. When the substrate is not per-
fectly conducting, the boundary conditions at the substrate are
more difficult to satisfy. Exact approaches to doing so require
an integration over the plane surface. One approximate solution
to this problem assumes that, like for the case of the perfectly
conducting substrate, the interaction field is the image of the
scattered field but multiplied by a Fresnel reflection coefficient
at normal incidence; i.e., we assume the scattered field reflects
on the substrate at normal incidence before striking the particle
[71–76]. The total scattered far field at angle θs is the superpo-
sition of the scattered field from the particle and the image of
the scattered field emanating from the image coordinate system
multiplied by a Fresnel reflection coefficient calculated at angle
θs The exact solution is asymptotically approached when either
the particle is a large distance from the surface or the refractive
index of the substrate approaches infinity. This approximation
has been shown to provide quite reasonable results in calculat-
ing even the polarization state of the scattered light for particles
resting on a substrate [75, 76]. This method can also be used to
find the scattered field in the near-field region.
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modified double interaction model A modified version of the
double-interaction model (DIM) developed by Nahm and Wolfe
[77] can be used to obtain the electric far field scattered from a
particle over a substrate. This model is a ray-tracing model that
utilizes the Mie solution for the isolated scatterer to handle the
scattering and diffraction by the sphere [78]. It includes the
effects of the substrate by incorporating Fresnel reflections. Ge-
ometrically, the particle is illuminated by the direct (primary)
beam and by the specularly reflected (secondary) beam. The
secondary beam acquires a phase shift corresponding to the ad-
ditional path length and undergoes a Fresnel reflection at the
substrate. Two contributions to the total scattered field are gen-
erated in any direction by each of the two incoming beams. The
first contribution is the beam directly scattered from the parti-
cle, and the second one is that scattered and reflected on the
substrate. The latter undergoes a Fresnel reflection on the sur-
face and is phase shifted an amount due to this additional path.
The total scattered far field is the coherent superposition of the
four contributions shown in Figure 4.1:

Figure 4.1: Sketch of the four contributions to the scattering: (1) the compo-
nent of the primary beam that is directly scattered by the parti-
cle to the detector; (2) the component of the primary beam that
is scattered by the particle then reflected on the substrate before
reaching the detector; (3) the component of the secondary beam
that is directly scattered by the particle to the detector; and (4)
the component of the secondary beam that is scattered by the
particle then reflected on the substrate before reaching the detec-
tor.

The interaction of the particle with its image is not taken into
account. If the particle is illuminated at normal incidence, it
completely obscures the image particle; i.e., it causes a shadow-
ing effect [79, 80]. This occurs to a lesser extent at other oblique
incident angles. This effect reduces the amplitude of the sec-
ond, third and fourth scattering components depending on the
illumination and observation angles. The geometrical shadow-
ing factor depen- dent on the incident and scattering angles is
introduced on these components to account for this effect. The
shadowing factor is a first order correction to the interaction
term handled rigorously in the image theory method. The ma-
jor advantage of this model is its transparency. Any physical
parameter (e.g., scattering components, enhanced backscatter-
ing, shadowing factors, etc.) can be analyzed as a function of
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any other parameter (scattering angle, particle size, etc.). This
model allows for rapid calculations of the scattering intensities
for any incident and scattered polarization state. This model
can also be applied to particles with regular or irregular shapes
because the only requirement is the knowledge of the scatter-
ing from the isolated particle. The substrate may also be either
metallic or dielectric.

ray tracing model The last method we consider is a pure geo-
metrical optics approach. In principle, this is only valid when
the wavelength is small compared to the particle size. The ap-
proximation is relatively simple and straightforward. From a
geometrical point of view, a plane wave incident on a metal-
lic object is a beam of parallel rays of uniform density that is
reflected by the object and the substrate. When a ray strikes
a boundary, it undergoes a Fresnel refraction or reflection and
continues propagating until it strikes another boundary or is
sent into the far field. The scattered field is then obtained as
the coherent addition of the group of rays emerging from the
system with a common angle (small interval of angles). Mul-
tiple scattering is inherently considered in this calculus in the
included multiple reflections between particle and substrate or
between particles. The size of the scattering features must be, in
principle, large compared to the incident wavelength. However,
the results show that, even for particles with sizes of the order
of the wavelength, the method reproduces surprisingly good
fits to experiment when the observation is far from the specular
direction (where the diffraction effects are less important). It
is particularly efficient in calculating backscattering and cross-
polarization. Further improvements (implementing the geomet-
rical theory of diffraction) make this method more accurate, and
its range of validity may be extended toward the small particle
region.

ddsurf DDSURF is a code based on the Coupled-Dipole Method
(CDM) for modeling of electromagnetic light scattering from
features on a plane surface, written by Schmehl et al. [81]. It
was especially developed as a tool for the semiconductor indus-
try, where the optical detection and characterization of surface
defects and contaminants is essential for improving the produc-
tion performance. The code is not being maintained by the au-
thors anymore, in spite of the great success at the beginning.

4.2 conventional discrete dipole approximation (dda)

One of the most widely used methods for modeling the optical
response of nano-scale objects is the DDA [82], which allows for cal-
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culating scattering and absorption of light by irregular particles. The
DDA relies on the same direct-space discretization scheme that is
widely used to study the scattering of light by finite objects. Specifi-
cally, the assumptions of this methodology are:

The volume of the object is considered as the union of non-
overlapping, simple connected cells j of volume vj (j = 1, . . . ,N)

with the total volume of the object given by V =
∑
j vj.

Each cell j is assumed homogeneous in its material properties
and, because of its small size, the electric and magnetic fields
are considered as constant throughout the volume vj.

There are two criteria for validity of the DDA [82]: (1) |n|kd . 1 (so
that the dipoles lattice spacing d is small as compared both with the
wavelength within the material, 2π/(<{n}k), and with the attenuation
length (or “skin depth”), 2π/(={n}k), with <{n} and ={n} being the real
and imaginary parts of the complex refractive index of the material
and k = ω/c); and (2) d must be small enough (N must be large
enough) to describe the target shape with sufficient precision.

In conventional DDA [56, 82], the optical response of each cell is
modeled as the excitation of an oscillating electric point dipole pj lo-
cated in its center. Cells are built up from a simple cubic lattice. Each
induced electric dipole pj is determined by an electric polarizability
tensor ¯̄αj, reacting to a local electric field Ej, through Equation (2.11),
where pj is the instantaneous (complex) dipole moment and Ej is the
instantaneous (complex) electric field at position j due to all sources
external to the jth cell, i.e. due to the incident electric field at that site
and the contributions of all the other N− 1 oscillating dipoles:

Ej = Einc
j −

∑
k6=j

¯̄Ajkpk (4.5)

, where Einc
j = E0 exp(ik · rj) is the incident electric field at position

j and − ¯̄Ajkpk is the electric field at the jth dipole resulting from the
kth oscillating electric dipole, given by Equation (2.13).

4.3 extended dda

In the E-DDA [83], both the electric and magnetic responses of the
material are taken into account by considering the excitation of both
an oscillating electric and magnetic point dipole located in the center
of each cell. In addition, both the relative electric permittivity, ¯̄εr, and
the relative magnetic permeability, ¯̄µr, of the material, are 2nd order
(or rank) tensors. The induced electric dipole pj under the action of a
local electric field Ej is given by Equation (2.11). In the same way, the
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induced magnetic dipole mj under the influence of a local magnetic
field Hj is given by Equation (2.12).

Ej and Hj are the instantaneous (complex) electric and magnetic
fields at position j due to all sources external to the jth cell, i.e. due
to the incident electromagnetic field at that site and the contributions
of all the other N− 1 oscillating electric and magnetic dipoles:

[
Ej
Hj

]
=

[ (
εmε0 ¯̄αj

)−1 pj
¯̄χ−1j mj

]
=

[
Einc
j

Hinc
j

]
−
∑
k6=j

[
¯̄A(ee)
jk

¯̄A(eh)
jk

¯̄A(he)
jk

¯̄A(hh)
jk

]
·
[

pk
mk

]

(4.6)

, where Einc
j = E0 exp

(
ik · rj

)
and Hinc

j = H0 exp
(
ik · rj

)
are the

incident electric and magnetic fields at position j. − ¯̄A(ee)
jk pk and

− ¯̄A(eh)
jk mk are the electric fields at the jth dipole resulting from the

kth oscillating electric and magnetic dipoles respectively, given by
Equations (2.13) and (2.19). Equally, − ¯̄A(he)

jk pk and − ¯̄A(hh)
jk mk are the

magnetic fields at the jth dipole resulting from the kth oscillating
electric and magnetic dipoles respectively, given by Equations (2.14)
and (2.20). Notice that the only difference between Equation (4.6) and
Equations (2.27), (2.28) is the addition of the incident electromagnetic
field and the formalism employed.

4.3.1 Solving the system of equations

The electric ( ¯̄αj) and magnetic ( ¯̄χj) polarizability tensors are given
by Equation (3.12) and Equation (3.13) respectively. The most natural
way of solving Equation (4.6) is just as Purcell and Pennypacker [84]
tried it in their original paper, this is, considering the case as a self-
consistent problem. This problem has as a special feature the fact
that, in order to solve the problem, we need to know the solution
beforehand. Figure 4.2 shows this fact. As can be seen, the problem
resembles a spinning carousel. This carousel has the ability that if a
possible solution to the problem (initial condition) rides in, it will get
closer to the true solution (unknown) as the carousel spins more and
more.

This solving method, based on successive approximations, was im-
plemented in the very first version of E-DDA (the one that we shall
refer to as early E-DDA), proving to be very slow and not convergent
on most cases. Being an iterative technique, an initial guess for the
dipole moments is required. Here, we assume that the electric and
magnetic dipoles are initially excited by the incident electromagnetic
field only, so that:
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Figure 4.2: Diagram of the self-consistent problem set out to solve Equa-
tion (4.6). The iterative process starts with an initial condition,
from which the different contributions that produce the new ex-
ternal fields can be calculated. The new external fields allow us
to calculate the new dipole moments. Then we obtain the differ-
ence between new and old magnitudes. The process ends when
a suitable convergence criterion is fulfilled.

pinitial = εmε0 ¯̄αEinc (4.7)

minitial = ¯̄χHinc (4.8)

In each iteration, a new solution for the exciting fields, pnew and
mnew, is found. The cut-off criterion for self-consistency in all our
calculations, if not stated otherwise, is:

|pnew − p|
|p|

6 TOL and
|mnew − m|

|m|
6 TOL (4.9)

, where TOL is the error tolerance, set to TOL = 10−5 in order to
solve the problem to high accuracy (see Section 11 in [85]).

The most recent version of E-DDA implements the Complex-Conjugate
Gradient (CCG) Method with enhancement to maintain convergence
in finite precision arithmetic [86] in order to solve Equation (4.6). It
is convenient to rewrite the system of equations using its associated
matrix form. If we assume that ¯̄Ajk are the off-diagonal elements, we
may define the diagonal ones as:

¯̄A(ee)
jj = −

(
εmε0 ¯̄αj

)−1 ¯̄A(eh)
jj = 0

(4.10)
¯̄A(he)
jj = 0 ¯̄A(hh)

jj = − ¯̄χ−1j
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So that Equation (4.6) can be reformulated as a set of 2N inhomo-
geneous, vectorial, complex and linear equations in the form:

N∑
k=1

[
¯̄A(ee)
jk

¯̄A(eh)
jk

¯̄A(he)
jk

¯̄A(hh)
jk

]
·
[

pk
mk

]
=

[
Einc
j

Hinc
j

]
(4.11)

or more conveniently in terms of the exciting electric and magnetic
fields Ek and Hk instead of pk and mk:

¯̄Ax = b (4.12)

, where ¯̄A is a 6N × 6N matrix, x is the 6N-dimensional vector
of unknowns given by x = (E1, H1, E2, H2, . . . , EN, HN) and b is the
6N-dimensional vector of independent terms containing the incident
field at each lattice site: b = (Einc

1 , Hinc
1 , Einc

2 , Hinc
2 , . . . , Einc

N , Hinc
N ).

4.3.2 Code Performance

The main achievement of our code in its current version is versatil-
ity, in the sense that it is able to deal with situations involving arbi-
trary electric and magnetic susceptibilities in a broad sense. In the fol-
lowing chapters we shall survey the most representative situations at
reach for this code, from the most basic one of a dielectric, to the most
generals, such as metals, metamaterials (in particular left-handed ma-
terials, with real parts of both εr and µr negative), magneto-optical
materials (with ¯̄εr an antisymmetric tensor) or even both electrically
and magnetically anisotropic materials. Some of these situations ad-
mit direct comparison with past DDA versions (see Table 4.1), while
other can only be treated with other calculations methods, and not
in a feasible way. The former will contribute to validate our code,
while the latter constitute genuine novel results. Both together, prove
the potential of E-DDA as a new and reliable computing tool. It is
interesting to remark that the polarization state of the incident radi-
ation can be arbitrary (elliptical in the most general case), allowing
polarimetric calculations to be performed.

The extinction cross section is computed from the forward scatter-
ing amplitude using the optical theorem [20] for both electric and
magnetic dipole moments [22]:

Cext =
k

εmε0|E0|2

N∑
j=1

=
{(

Einc
j

)∗ · pj + µmµ0
[(

Hinc
j

)∗ ·mj
]}

(4.13)
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material dda e-dda

dielectric 4 4

metal 4 4

magneto-optical 8 4

negative index material 8 4

bianisotropic 8 4

Table 4.1: Materials at hand for both conventional DDA and E-DDA.

The absorption cross section is obtained by summing over the rate
of energy dissipation by each of the dipoles (electric and magnetic),
as given by [22]:

Cabs =
k

εmε0|E0|2

N∑
j=1

{
=
(
E∗j · Pj

)
−

k3

6πεmε0
|Pj|2 + µmµ0

[
=
(
H∗j ·Mj

)
−
k3

6π
|Mj|

2

]}
(4.14)

The scattering cross-section can be easily obtained by the difference
of the extinction and absorption cross-sections: Csca = Cext −Cabs, but
a more convenient way is to compute the far-field scattered by the
object [22]:

Csca =
k2

16π2εmε0|E0|2
×

∫ ∣∣∣∣∣∣
N∑
j=1

exp(−ikn · rj)
{

1√
εmε0

[
pj − (n · pj)n

]
−
√
µmµ0n×mj

}∣∣∣∣∣∣
2

dΩ

(4.15)

, where n is a unit vector in the direction of scattering. Addition-
ally, we can also define the phase-lag cross-section in terms of the
imaginary part of the forward-scattering amplitude [20]:

Cpha =
k

2εmε0|E0|2

N∑
j=1

<
{(

Einc
j

)∗ · pj + µmµ0
[(

Hinc
j

)∗ ·mj
]}

(4.16)

Conventional angular scattering patterns (scattered intensities) can
be obtained, as well as the full Mueller Matrix of the system, complet-
ing the far-field results list. As for local magnitudes, these include
dipole moments, fields or Poynting vector distributions, local phase
functions, etc.

The scattered intensity I is defined as the absolute value of the time-
averaged Poynting vector 〈S〉, calculated as 〈S〉 = 1

2<{E×H∗}, where
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E and H are the scattered electric and magnetic fields respectively [8].
Of course, the scattered intensity is strongly angle dependent.





Part II

R E S U LT S

The main results obtained within this Thesis are described
in Chapters 5 to 8. An opening chapter is devoted to
the initial validation of the results obtained with the E-
DDA code. Then some applications of the method are
presented, emphasizing the versatility of the E-DDA im-
plementation, including:

Magneto-optical materials (Chapter 6).

Composite materials (Chapter 7).

Finally, Chapter 8 serves as a placeholder chapter, where
a variety of works, all connected in different ways to the
main body of the Thesis, is presented. A short Chapter 9

with a summary and the main conclusions closes this part.





5
VA L I D AT I O N O F T H E E - D D A

This chapter is devoted to the validation of the computational tool
that we call E-DDA, presented in Section 4.3. The chapter is divided
into three sections. The first one refers to several self-consistency
tests made with an early version of the code. Section 5.2 is devoted to
check the reliability of our results with a full-featured version of the
code, comparing them to the well-proved DDSCAT code from Draine
and Flatau [82, 85].

Finally, Section 5.3 shows genuine novel results obtained with E-
DDA. These results do not admit direct comparison with past DDA
versions, although they correspond to a situation in which we already
have a knowledge of the system behavior, namely the well-known
null-scattering conditions proposed by Kerker et al. [31], found valid
for anisotropic media as well.

5.1 self-consistency tests

Because at the beginning the E-DDA code had important limita-
tions, results in this section have been obtained for very small spher-
ical particles, in order to keep the total number of dipoles as low as
possible. Moreover, the material of which these particles are made
from was chosen to be dielectric, in order to keep the influence of the
optical properties as low as possible. The extinction efficiency Qext is
the most experimentally accessible parameter as it takes account of
both absorption and scattering, so we have used it in all cases as the
representative solution for the electromagnetic problem.

5.1.1 Symmetry tests

A sphere has total symmetry, so that theoretically, we should obtain
the same solution independent from the incident angle. The extinc-
tion efficiency for a sphere of radius R = 6nm is shown in Figure 5.1,
varying the incidence angle (please notice the scale and the magni-
tude of the variations, with relative value ∼ 10−5).

This deviation from the theoretical prediction must be due to nu-
merical errors only, since we are modifying the direction of the inci-
dent beam with respect to the cartesian axes chosen for the discretiza-
tion of the sphere. Indeed, a statistical analysis of the data allows
for obtaining a mean value Q̄ext = 5.42423 × 10−6 and a standard
deviation σs = 4.96258× 10−11.

47
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Figure 5.1: Extinction efficiency as a function of the incidence angle for a
sphere of radius R = 6nm with (εr = 2.0, µr = 1.0). The dipole
spacing is d = 1nm. The incident wavelength in vacuo is λ =

500nm.

Figure 5.2: Graphical representation of the periodicity of the extinction effi-
ciency as a function of the incidence angle. The calculated case
is shown in red (between 0

◦ and 90
◦, with logical symmetry

around 45
◦, while the dashed blue lines show the mean value

together with the standard deviation.

Another case, this time with a relative magnetic permeability µr dif-
ferent from one, is shown in Figure 5.3, with Q̄ext = 1.08602× 10−5
and σs = 4.96905× 10−11. The great similarity between both cases in-
vites us to think that, as already pointed, an estimation of the relative
error of the extinction efficiency may be given by δQext/Qext = 10

−5.

5.1.2 Convergence tests

The extinction efficiency for a sphere of radius R = 2nm vary-
ing the dipole spacing (and therefore the total number of dipoles)
is shown in Figure 5.4. It can be seen that this early version of E-
DDA does not converge as well as DDSCAT 7.0.7, despite the great
similarities between both calculations (notice the order of magnitude
of the efficiencies involved). This may be due to multiple reasons,
although the most probable one is the solving method used. While
our calculation makes use of a self consistent solving scheme, sim-
ply introducing the output as the new input in every iteration, the
software by Draine and Flatau [85] utilizes a much more sophisti-
cated solving method based on Fast-Fourier Transformations (FFT)
and conjugate gradients, which assures a much quicker and more
stable convergence.
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Figure 5.3: Extinction efficiency as a function of the incidence angle for a
sphere of radius R = 6nm with (εr = 2.0, µr = 2.0). The dipole
spacing is d = 1nm. The incident wavelength in vacuo is λ =

500nm.
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Figure 5.4: Extinction efficiency as a function of the total number of dipoles
N for a sphere of radius R = 2nm with (εr = 2.0, µr = 1.0). The
incident wavelength in vacuo is λ = 500nm. Results obtained
with DDSCAT are also shown for comparison purposes.

Figure 5.5 shows the same case as before (Figure 5.4) but this time
with a relative magnetic permeability µr different from 1. Notice
again the apparent lack of convergence. This time Draine’s software
does not allow for a relative magnetic permeability different from 1,
so its results cannot be shown. It can be seen how the addition of a
magnetic permeability does not significantly modify the convergence,
in spite of the increase in complexity in the calculation. The solving
method implemented in this early version of E-DDA did not allow
for targets discretized with N > 10000, that is why results with larger
N are not shown.
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Figure 5.5: Extinction efficiency as a function of the total number of dipoles
N for a sphere of radius R = 2nm with (εr = 2.0, µr = 2.0). The
incident wavelength in vacuo is λ = 500nm.

5.2 testing the code : nanoshells

To check the reliability of E-DDA, we have performed some calcu-
lations on systems that conventional methods can solve. Figure 5.6
shows the extinction, absorption and scattering efficiencies for both
a gold sphere of radius R = 20nm, and a sphere with a dielectric
core (inclusion, εc = 2) of radius Rc = 12nm and a metallic shell
(gold, optical constants taken from Johnson and Christy [87]), for an
external radius R = 20nm. Comparison between our code and the
well-proved DDSCAT code from Draine and Flatau [82, 85] is also
presented, finding a very good agreement in both the spectral shape
and the absolute differences for all the efficiencies within the optical
range.

5.3 e-dda on anisotropic media

When the E-DDA is used in the most general case of an anisotropic
scatterer with both ¯̄εr and ¯̄µr tensorial magnitudes, it is possible to
find a situation in which we already have a knowledge of the system
behavior. Such is the case of particles with directional scattering im-
posed by their optical constants as, for instance, the null-scattering
conditions proposed by Kerker et al. [31]. It will be shown here that
these well-known conditions remain valid for anisotropic media. As
a reminder, Kerker’s null scattering conditions are obtained when
the electric and magnetic polarizabilities meet certain stipulations.
In particular, when ¯̄α = ¯̄χ the backscattering gain equals zero, and
when ¯̄α = − ¯̄χ the forward scattering is zero. These conditions lead

to ¯̄εr = ¯̄µr for the first case, and ¯̄εr =
(
4¯̄I − ¯̄µr

)(
2 ¯̄µr + ¯̄I

)−1
for the

latter. However, these relations fail to include the radiative correction
[20]. It can be shown that the zero-backward scattering condition re-
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Figure 5.6: Extinction, absorption and scattering efficiencies for both a gold
sphere of radius R = 20nm, and a sphere with a dielectric core
(inclusion, εc = 2) of radius Rc = 12nm and a metallic shell
(gold), for an external radius R = 20nm. Comparison between
our code and the well-established DDSCAT code is also provided.
The dipole spacing was d = 4nm, with N = 515.

mains valid, that is, ¯̄εr = ¯̄µr. But, for the zero-forward scattering
condition, we obtain the new relation (see Section 3.2):

¯̄µr =
[
4¯̄I − ¯̄εr −

i(kd)3

π
( ¯̄εr − ¯̄I)

] [
2¯̄I + ¯̄εr −

i(kd)3

π
( ¯̄εr − ¯̄I)

]−1
(5.1)

Let us now consider a set of three different permittivity tensors.
The first case (isotropic material) is the scalar case:

¯̄εr1 =



2.0+ 0.01i 0 0

0 2.0+ 0.01i 0

0 0 2.0+ 0.01i


 = (2.0+ 0.01i)¯̄I (5.2)

The second case is chosen in the form of a typical magneto-optical
material, with an antisymmetric relative electric permittivity tensor
¯̄εr2 given by (magnetization along z-axis):

¯̄εr2 =



2.0+ 0.01i 0.3+ 0.2i 0

−0.3− 0.2i 2.0+ 0.01i 0

0 0 2.0+ 0.01i


 (5.3)
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For the third case we propose a symmetric permittivity tensor ¯̄εr3 :

¯̄εr3 =



2.0+ 0.01i 0.3+ 0.2i 0

0.3+ 0.2i 2.0+ 0.01i 0

0 0 2.0+ 0.01i


 (5.4)

For each of these three cases we shall define two values of the rel-
ative magnetic permeability tensor in order to fulfill each of the zero
scattering conditions (this makes six different materials as a whole).
We now consider an sphere of diameter D = 20nm made of those
materials, illuminated with a wavelength of λ = 500nm, obtaining
that the zero-forward scattering condition is, for each case:

¯̄µr1 = (0.4− 3.6005× 10−3i)¯̄I (5.5)

¯̄µr2 =




3.9232× 10−1 − 2.0508× 10−2i −1.0899× 10−1 − 6.8489× 10−2i 0

1.0899× 10−1 + 6.8489× 10−2i 3.9232× 10−1 − 2.0508× 10−2i 0

0 0 0.4− 3.6005× 10−3i




(5.6)

¯̄µr3 =




4.0712× 10−1 + 1.3870× 10−2i −1.0804× 10−1 − 7.3802× 10−2i 0

−1.0804× 10−1 − 7.3802× 10−2i 4.0712× 10−1 + 1.3870× 10−2i 0

0 0 0.4− 3.6005× 10−3i




(5.7)

and ¯̄µri = ¯̄εri(i = 1, 2, 3) for the zero backward. The scattering pat-
terns in Figure 5.7 show that Kerker’s conditions are being satisfied.
It is worth noticing that, while the isotropic case can be computed
by means of conventional numerical methods (producing a perfect
match), the anisotropic ones do not admit such comparison in a fea-
sible way. By using E-DDA, we obtain results that show that the
systems behave exactly as expected from the theoretically imposed
condition, that is, exhibiting zero-back and zero-forward scattering.

To sum up Chapter 5, we have validated our E-DDA code by first
performing both symmetry and convergence tests that allow us to
check the self-consistency of our calculation method. We have then
compared results for a case where the applicability range overlaps
with the one of the well-proved DDSCAT code, which includes in-
homogeneities and presence of metallic and dielectric media, find-
ing a very good agreement. We have applied the proposed method
to a situation out of reach for current implementations of the DDA,
like Kerker’s null-scattering (backward and forward) conditions for
anisotropic (both electric and magnetic) media. We have verified nu-
merically these conditions in its tensorial form.
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Figure 5.7: a) Zero-backward scattering ( ¯̄µr = ¯̄εr). b) Zero-forward scat-
tering. In every case, the dipole spacing was d = 2nm, with
N = 515.





6
E - D D A A P P L I E D T O M A G N E T O - O P T I C A L
M AT E R I A L S

6.1 introduction

Electromagnetic scattering from nanometer-scale particles is cur-
rently a topic of great interest, which is being investigated both the-
oretically and experimentally for the purpose of understanding the
underlying physics and investigate novel near- and far-field optical
effects [10, 88, 89]. Also, the technological challenge of reducing the
scale to work with light has opened new and better possibilities of
applications in crucial fields such as those related to health [90–92],
optical communications [93], information storing [94] and photonics
in general [95–97]. Much of this recent drive has been triggered by
the availability of nano-fabrication facilities that allow for the design
and realization of nano-scale materials [98]. Also, the development
of nanometer-scale optical probes like near-field scanning optical mi-
croscopy [99] has been crucial in this respect. The vast majority of
recent studies are performed on metal nano-structures and are fo-
cused on the effects on the scattered field due to the excitation of
resonances from surface or localized plasmons [63, 100–102]. On
the other end, the recent interest in magneto-plasmonics, i.e. solid
state materials that combine magnetic and plasmonic functionalities,
has brought forward numerous studies of the interplay between plas-
mon excitations and magnetism in nano-sized or nano-scale defined
structures [103–109]. However, little attention has been paid to other
potentially interesting effects arising from the mutual interplay be-
tween magneto-optical activity and light-matter coupling in spatially
confined geometries [110–112], which are independent of resonance
excitations. At the same time, the exploration of these effects poses
fundamental questions in magneto-optics of nano-scale materials and
requires new impulses towards experimental [113, 114] and modeling
efforts [21, 83, 115].

To address these fundamental issues of magneto-optical scattering
from nanometer-scale magnetic structures, we developed a modeling
approach that relies on a recently developed finite element computa-
tional method, which is an extension of the discrete dipole approxi-
mation [83]. The method allows for the calculation of the optical and
magneto-optical scattering from non-spherical nano-structures. This
aspect is particularly relevant as the majority of experiments are car-
ried out using flat, non-spherical nanometer-scale objects [111, 116].
In addition, and since the far-field scattering is measured from a col-

55
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lection of many nano-objects, we have extended the calculations to the
experimentally relevant case of an ordered array of non-interacting
identical nano-structures.

In order to separate optical and magneto-optical effects that are
arising from the nanometer-scale confinement, we have also com-
pared our calculations to a reference case that neglects the effects of
the lateral confinement on the induced dipoles distribution. Hereby,
we define a fictitious (dummy) laterally confined structure made of
identical dipoles behaving as if they were part of an infinite film, viz.,
modeled as a single layer of dipoles under the assumption of transla-
tional invariance of the induced dipole moment. This reference case,
that has the same level of discretization as well as the same local mate-
rial properties and approximation assumptions, is what we later call
our infinite layer (IL) approach.

We applied these two approaches to predict the optical and magneto-
optical responses in the near- and far-field for cobalt disks of sizes
from 200− 1000nm, illuminated with a wavelength of λ = 632.8nm
under normal incidence. The nano-structures are magnetized in the
disk plane and the magneto-optical response is calculated for the
so called transverse magneto-optical Kerr effect (T-MOKE) configu-
ration, in which the electric field of the linearly polarized incoming
light is parallel to the scattering plane, while the magnetization of the
disk is perpendicular to it.

Our results show that although the nano-confinement effects ap-
pear in the near-field optical and magneto-optical responses of all
disks diameters, far-field effects show up only for disks that have a
diameter smaller than the wavelength of the incoming light in vacuo
λ. More importantly, we observe that the optical and magneto-optical
contributions to the far-field intensity scale in an almost identical fash-
ion, so that the normalized magneto-optical response, which is the
experimentally relevant quantity, is only very weakly affected by the
confinement even in the case of sub-wavelength sized disks.

The work is organized as follows: in Section 6.2, the theoretical
background, on which our numerical method is based, is presented.
In Section 6.3, the scattering geometry together with the sample magneto-
optical properties are shown. Section 6.4 is devoted to the presenta-
tion and discussion of the main results obtained from our numerical
model. Finally, in Section 9.2, the main conclusions of this research
are summarized.

6.2 theory

6.2.1 Finite particle (FP) approach

Our approach for modeling the optical and magneto-optical re-
sponses of nano-scale objects utilizes the recently developed E-DDA
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methodology [83], described in Section 4.31. Let us assume that the
magneto-optical material is magnetized along the z-direction, then
the relative dielectric tensor ¯̄εr is given by [117]:

¯̄εr =




εd −iεdQ 0

iεdQ εd 0

0 0 εd


 (6.1)

, where Q is the magneto-optical Voigt parameter accounting for
the coupling between the electric field and the magnetization. It
can be shown that the electric polarizability tensor (given by Equa-
tion (3.12)), neglecting second order terms, O(ε2off), has the following
form:

¯̄αj =




αd αoff 0

−αoff αd 0

0 0 αd


 (6.2)

, where αd and αoff are the diagonal and the off-diagonal elements
of the electric polarizability tensor respectively. Direct application of
the E-DDA to the actual disk shape structure will provide the solution
that we refer to as Finite Particle (FP) approach.

6.2.2 Infinite layer (IL) approach

For the purpose of evidencing finite lateral size effects in our calcu-
lations, we implemented a numerical approach to the problem hav-
ing the same level of local properties representation and numerical
approximations but which neglects the effects of the lateral confine-
ment on the induced dipoles distribution.

In the IL approach, the dipole-dipole interactions are assumed to
be the same as for an infinite film at every point of the structure,
so that any particle can be represented by placing non-interacting
dipoles on a properly shaped grid, whose polarizability tensor have
been renormalized to include the infinite film interactions exactly. In
the derivation of this approach, each electric dipole interacts with an
infinite number of surrounding electric dipoles, each of which having
an electric polarizability ¯̄αj given by Equation (3.12), as shown in
Figure 6.1.

1 In the E-DDA, both the electric and magnetic responses of the material are taken
into account by considering the excitation of both an oscillating electric and mag-
netic dipole. In addition, both the relative electric permittivity, ¯̄εr, and the relative
magnetic permeability, ¯̄µr, of the material, are 2nd order (or rank) tensors, although
in order to treat magnetic materials in the optical range, we can consider ¯̄µr = ¯̄I.
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Figure 6.1: Infinite layer approach. Every dipole interacts with all the other
dipoles. Subsequently, this dipole is inserted in each cell of the
discretization mesh to model any arbitrary planar shape (no fur-
ther interaction is considered).

The dipole moment acquired by each of this electric dipoles is given
by:

pj = ε0 ¯̄αj


Einc

j +
∑
k6=j

¯̄Ajkpk


 (6.3)

To express this dipole moment in terms of an effective electric po-
larizability that incorporates all interactions, we define:

pj = ε0 ¯̄αeffEinc
j (6.4)

For normal incidence radiation, the exciting field as well as the
lateral film structure are translationally invariant, so that, assuming
all the dipoles have the same electric polarizability tensor ¯̄αj ≡ ¯̄α, the
resulting polarization pattern also has translational invariance and all
electric dipoles within the film acquire the same dipole moment, i.e.
pj = pk = pIL. Then:


¯̄I − ε0 ¯̄α

∑
k6=j

¯̄Ajk


pIL = ε0 ¯̄αEinc (6.5)

pIL = ε0


¯̄I − ε0 ¯̄α

∑
k6=j

¯̄Ajk




−1

¯̄α

︸ ︷︷ ︸
¯̄αeff

Einc (6.6)

leading to:

¯̄αeff =


¯̄I − ε0 ¯̄α

∑
k6=j

¯̄Ajk




−1

¯̄α (6.7)
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For the calculation of the infinite sum in Equation (6.7), a suitable
truncation criterion must be established by studying its convergence.
For this purpose, we analyzed the “order” 1/2N1/2 (N being the total
number of dipoles) dependence of the numerical values. Here we
found that calculation of up to an order of 1000, corresponding to
4,000,000 dipoles, allowed for a very accurate extraction of the effec-
tive polarizability tensor.

Once converged, the transfer function tensor sum
∑
k6=j

¯̄Ajk be-
comes:

∑
k6=j

¯̄Ajk =



sxx 0 0

0 syy 0

0 0 szz


 (6.8)

, with:

sxx = −6.50± 0.04× 1035 + i 0± 4× 1033 [F−1m−2]

syy = 3.24± 0.02× 1035 + i 2.2± 0.2× 1034 [F−1m−2]

szz = syy

Please notice that these values were obtained for a single layer of
cobalt, discretized with a dipole spacing d = 5nm, and illuminated
with a plane wave of λ = 632.8nm.

6.3 sample geometry and material parameters

In order to obtain the optical and magneto-optical responses of
disk-shaped objects, we have used material parameters of cobalt, as
given in Ref. [118] with εr = −12.6+ 22.88i and Q = 0.034+ 0.014i,
for λ = 632.8nm. All calculations are performed twice: first as fully
self-consistent FP particle calculations, and then for comparison pur-
pose within the framework of the IL approach. Figure 6.2 shows the
specific MOKE configuration used here, with a set of disks arranged
on a two-dimensional square lattice of period a. The scattering prop-
erties of the complete lattice will be considered specifically in Sec-
tion 6.4.2.2. The disks are supposed to be embedded in vacuum, and
illuminated by a monochromatic incident beam under normal inci-
dence. The incident electric field Einc

j is linearly polarized along the
y-direction and the sample magnetization is perpendicular to the inci-
dent electric field, so that the wave vector k, the incident electric field
Einc
j and the magnetization M are all orthogonal to each other. This

arrangement corresponds to the T-MOKE geometry where changes
in the sample magnetization lead to changes in the intensity of the
scattered field, leaving its polarization state unchanged [117]. Apply-
ing the above values in Equation (6.1), the relative dielectric tensor
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becomes (assuming that the external magnetic field is large enough
to reach magnetization saturation along the z-axis of the sample):

¯̄εr =




εd ±εoff 0

∓εoff εd 0

0 0 εd


 (6.9)

, where εd = −12.6+ 22.88i and εoff = 0.60152+ 0.74872i. Notice
as well that, according to the T-MOKE configuration shown in Fig-
ure 6.2 (magnetization M in z-direction), only the diagonal and the
xy-elements of the dielectric tensor are different from zero, with their
sign depending on the direction of the magnetization along the z-axis.

H

D

e

k

x

y

z

M

a

Einc
j

Figure 6.2: T-MOKE configuration tipically used in an experimental setup,
with an array of disks of thickness e with constant lattice pe-
riod a along both surface plane dimensions. The incoming light
wavevector, with λ = 632.8nm, is in the -x-direction, the incident
electric field Einc

j is linearly polarized along the y-direction, and
the magnetization M is perpendicular to the chosen scattering
plane (considering X-Y plane).

In our numerical calculations, different diameters for the disks have
been considered, ranging from D = 200nm to D = 1000nm, with all
of them having a thickness of e = 5nm. The lattice period, a, has
been chosen large enough, ranging from 700nm to 15µm, so that
interactions between the disks are very weak and can be neglected.
Thus, we can simplify our simulations to calculations on a single disk
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only and, with these results, predict the diffracting behavior of the
entire array under uniform illumination. The single disk simulations
have been performed by using the E-DDA code, with a dipole spacing
of d = 5nm. Correspondingly, we only consider a single layer of
electric dipoles for cubic cells of volume vj = d3. We used a grid
with d = 5nm that is much finer than the widely used one [82] based
on |n|kd . 1, which would correspond to d < 20nm2. Calculations
using a finer grid of d = 2.5nm produced no significant changes in
the results.

In the single layer calculation, all dipoles are contained in a planar
structure, so that in the absence of magneto-optical effects, only the
y and z components of the local polarization are different from zero.
This allows us to easily relate the out of plane (x) component of pj

with the MO contribution.
It is important to notice that the general observations made here

still hold if one were to replace the single layer calculation with a
multilayer calculation, but it is not as straightforward to isolate the
magneto-optically induced polarization pattern in this case.

The T-MOKE is usually characterized by the parameter ∆I, which
here we defined as the absolute change in the intensity of the light
scattered by a medium when the magnetization M of the medium is
reversed:

∆I = |I(M) − I(−M)| (6.10)

, where I is the scattered light intensity.

6.4 results and discussion

6.4.1 Dipole moment distributions

A comparison of the resulting polarization pattern is summarized
in Figure 6.3, where the spatial distributions of the primary optical
(y-component) and MO (x-component) dipole moment are shown for
a set of disks, ranging from D = 200nm to D = 1000nm, calculated
with the FP approach and normalized by the dipole moment obtained
with the IL reference method, i.e. (on each cell j):

|py| =
|py|FP

|py|IL
and |px| =

|px|FP

|px|IL
(6.11)

The first thing to notice when looking at Figure 6.3 is that the dis-
tributions of |py| and |px| are not homogeneous and show noticeable
departures from 1, i.e. there are important confinement modifications
to both the primary optical (y) and the MO (x) responses of the disks.

2 For absorbing materials such as metals, the original criterion might not be sufficient,
as the skin depth is far smaller than the wavelength.
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The second important aspect that is visualized by the polarization
pattern in Figure 6.3 is the fact that the MO response pattern is very
similar, if not outright indistinguishable from the lateral py-structure,
indicating that the magneto-optical effect is a small perturbation of
the optical response and thus mimics its behavior. These results are
in agreement with recent results obtained by other authors [119].

In general, a confined geometry results in the appearance of dif-
ferent oscillation modes in the dipole amplitude spatial distribution,
coming from the finite size (and shape) self-interaction. This is clearly
seen in the third row of Figure 6.3, where line profiles along the y-
direction (z = 0) are shown for both the primary optical (red lines)
and the magneto-optical (blue lines) component. These geometry
induced interactions do not only modify the lateral distribution of
the dipole pattern, but can also result in collective effects, as hinted
by the overall enhancement found in the smallest disk size shown,
D = 200nm, Figure 6.3a. Indeed, the D = 200nm presents the most
important deviation from the IL approach, with high values of the
dipole moment even in the central region of the disk.

The case D = 400nm (Figure 6.3b) already starts to show the ap-
pearance of a new central minimum, as well as two regions with high
values of dipole moment. This is clearly seen in the case D = 600nm
(see Figure 6.3c). As D increases, Figures 6.3d and e, the oscillation
of the spatial distribution of the dipole moment amplitude appears,
resulting in new minima and maxima that nucleate in the center of
the disk and expand (and squash together) towards the edges.

Both in the optical and the MO components, the phase distributions
are all very uniform, being the dipole moments inside the particle
almost in phase with the IL reference dipole, as shown in Figure 6.4.
Again the MO component follows the optical response in all cases.

Following the simple arguments presented when discussing the
case of two interacting electric dipoles, we can understand two im-
portant features of the maps of the primary optical response, i.e. the
y-component, shown in the first row of Figure 6.3. For all sizes,
it is found that along the y-direction, there is a decrease near the
boundaries of the disk. This can be explained due to the absence of
neighboring electric dipoles outside the particle. The missing dipoles
would be supporting those at the boundary, the same way neighbor-
ing dipoles support each other in the interior of the disk due to their
alignment (see Figure 2.3a). Thus the induced dipole moment at the
boundary is smaller than inside the disk or in the case of the IL ref-
erence calculation, for which the neighbors extend to infinity. In the
case of the MO (x) response (see Fig 6.3, second row), it can be seen
that it follows the py even in the boundary region.

In order to show the global behavior of the induced dipole moment
in the disks as a function of both the MO constant Q and the size,
we have calculated the averaged dipole moment inside the disks. In
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Figure 6.5, all results correspond to the spatial average over the disk,
normalized to the IL results.

|〈py〉| =
|〈py〉|FP

|py|IL
and |〈px〉| =

|〈px〉|FP

|px|IL
(6.12)

Figure 6.5 shows the absolute value of the averaged primary optical
(y) and MO (x) components of the induced dipole moment normal-
ized to IL results, as a function of the disk diameter D.
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1.6

1.4

1.2

1.0

0.8

|<
P x

>|

1000800600400200

D (nm)
(b) Magneto-optical response.

Figure 6.5: Absolute value of the averaged (a) primary optical (y) and (b)
MO (x) components of the induced dipole moment for three dif-
ferent values of the MO constant (full red circles for Q, blue
squares for Q/10 and black triangles for Q · 10), as a function of
the disk diameter D.

Obviously, the averaged dipole moment in the FP calculation tends
to the IL when the size of the disk is increased, and, therefore, the
average of the relative amounts tends to 1, as observed in Figures
6.5a and 6.5b. As we decrease the disk diameter, the average dipole
moment grows, according to what we had already discussed in re-
lation to the case of D = 200nm disk and its induced polarization
distribution (Figure 6.3a). Again, we can see how the MO component
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enhancement resembles the optical one, although they are not fully
identical (one can see quantitatively that the overall px enhancement
is a bit larger than the py enhancement for small disks, D 6 400nm).
These results indicate that we are in the small perturbation regime
of magneto-optics. In order to corroborate this, we have performed
calculations varying the strength of the magneto-optical coupling Q,
either dividing it or multiplying it by 10, which is also shown in Fig-
ure 6.5 (blue squares and black triangles respectively).

It is clearly seen from the results in Figure 6.5 that, if we make
the MO coupling constant Q ten times either smaller or larger, the re-
sults normalized to a corresponding IL calculation are completely pre-
served. This confirms that we are in the linear perturbation regime[119],
as anticipated by the close similarity of the x and y patterns in Fig-
ure 6.3. It is important to keep in mind that, of course, the magneto-
optical effect is changed with Q, but this is normalized out by the
IL-normalization. Thus, Q, Q/10 and Q · 10 are perfectly linear in the
MO-induced effects. This point will be addressed in further detail in
Section 9.2.

Figure 6.6 shows the phase of the averaged primary optical (y) and
MO (x) components of the induced dipole moment relative to the
phase of the IL dipole, as a function of the disk diameterD. Again, we
can see how the MO component enhancement resembles the optical
one.

Once more, the phase of the averaged dipole moment in the FP
calculation tends to the IL when the size of the disk is increased, and,
therefore, the average of the relative amounts tends to 0, as observed
in Figures 6.6a and 6.6b. The interesting feature of these curves lies
in how, as we decrease the disk diameter, the phase of the average
dipole moment tends to the phase of the single dipole. Assuming
the T-MOKE geometry illustrated in Figure 6.2 and using Equations
(2.11) and (6.2), it may be shown that the induced dipole moment of
a single dipole is given by (assuming εm = 1):

psingle = ε0E0



αoff

αd

0


 (6.13)

, where E0 is the amplitude of the incident electric field. The phase
of the optical and magneto-optical components of the single dipole
are thus given by:

arg(psingle
y ) = arg(αd) (6.14)

arg(psingle
x ) = arg(αoff) (6.15)
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Figure 6.6: Phase of the averaged (a) primary optical (y) and (b) MO (x)
components of the induced dipole moment relative to the phase
of the IL dipole, as a function of the disk diameterD. The dashed
line represents the single dipole limit, as given in Equations (6.14)
and (6.15).

6.4.2 Far-field

Experimental measurements of MO effects rely primarily on far-
field observation of the scattering changes induced by the presence
of a net magnetization. In this section we first calculate and discuss
the properties of single disks to achieve a good understanding of their
general response. Then, we derive and discuss the magneto-optical
response of an array of disks, since experiments make use of arrays.

6.4.2.1 Single disks

Figure 6.7 shows the far-field patterns of scattered intensity I and
the MO signal ∆I calculated in the X-Y plane, which is the relevant
plane for T-MOKE. The IL reference calculation is also shown, in or-
der to compare both approaches and illustrate the confinements ef-
fects.
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According to the previously discussed findings on the optical and
MO dipole distributions, the far-field scattered intensity patterns con-
verge to those obtained with the IL approach (see first row of plots
in Figure 6.7), as the disk diameter is increased. All disks show
mostly dipolar behavior, i.e. a two lobes scattering pattern with al-
most no scattered intensity at 90◦ and 270◦ (direction of oscillation of
the incident electric field). In the case of small disks (D < λ), a size-
dependent enhancement of the scattering intensity is observed. More-
over, scattering from large disks tends to be more directional, around
the forward and backward directions, as should be expected for par-
ticles of radius larger than the wavelength. The case D = 200nm
clearly shows the biggest difference between FP and IL in both I and
∆I, in accordance to results shown in Figure 6.3, indicating that phase
changes inside the particle are minimal.

The ∆I patterns (second row in Figure 6.7) show values about three
orders of magnitude smaller than the scattered intensity I patterns,
being this ratio consistent with the relative magnitude between the
MO and optical effects in a material such as Co. As in the case of
the I patterns, the ∆I patterns also converge to those obtained with
the IL reference method upon increasing the disk diameter. In the
forward and backward directions (transmission and reflection respec-
tively), ∆I is zero, since at those directions, the MO response pro-
duces only a second order scattering effect (see Eq. (3) in Ref. [? ]),
that is insensitive to the sign of M and thus it does not show up in a
difference measurement based upon magnetization reversal, such as
∆I. Along the 90◦ and 270◦ direction, the scattered intensity coming
from dipoles oscillating along the x-direction is maximum, although
insensitive too to the direction of magnetization, therefore producing
a deep minimum of ∆I along this axis. The characteristic four-lobe
shape of these patterns arises as a consequence of those minima. Of
course the curve shape and the direction of the maxima depend on
both the relative phase of the radiation coming from the optical and
magneto-optical dipoles as well as on the different optical paths, so
that they cause an intensity change that depends strongly on the ra-
diation direction.

The normalized MO signal, ∆I/I, the so-called figure of merit of
T-MOKE, remains nearly constant, regardless of the disk size in the
entire range investigated here, and it is strongest around the 90◦ and
270◦ directions, because the total scattered intensity into those direc-
tions is almost zero.

6.4.2.2 Disks lattice

The computed results shown so far correspond to isolated cobalt
disks. However, and in order to compare the computed results with
those of real experiments [103], we have implemented a two-dimensional
array of disks in our calculation, as shown in Figure 6.2. Experimen-
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tally, the MO scattering behavior of a single nano-disk cannot be accu-
rately obtained. However, an ordered array, while preserving all the
conditions assumed for each individual scatterer, allows for a more ef-
ficient measurement of the scattering, not only for the signal increase
produced by the large number of objects, but also for its constructive
interference effect. The diffracted spots allow for sampling the scat-
tering pattern at different angles simultaneously, while maintaining
the very simple normal incidence geometry, where measurements in
reflection are not useful because no T-MOKE effect can be expected
in such direction.

From the MO response corresponding to single disks, as obtained
with the FP calculation, the far-field scattered intensity is computed
along the diffraction directions, neglecting any optical interaction be-
tween different disks in the array. The lattice equation at normal
incidence for horizontal observations, i.e. scattering in the X-Y plane
containing both the surface normal and the incident electric field, is:

mλ = a sinϕ (6.16)

, where m is the horizontal diffraction order, λ the incoming light
wavelength (in vacuo), a the lattice period andϕ the horizontal diffrac-
tion angle, measured with respect to the lattice normal direction.
From Eq. (6.16), one can easily obtain the angular positions at which
we must sample the scattered intensity patterns (Figure 6.7), given by
ϕ = arcsin

(
mλ
a

)
.

Figure 6.8a shows the normalized MO signal ∆I/I for the case D =

200nm, as a function of the lattice parameter, a, and for several
diffraction orders from m = 1 to m = 5. For each value of a, the MO
signal increases with the order. More precisely, Figure 6.8b shows
that ∆I/I vs m behavior is due to its dependence on the diffraction an-
gle ϕ. The increase in the T-MOKE signal with the diffraction angle
is primarily a direct consequence of the drop in intensity I, although
there is also an increase in the MO signal ∆I, simply due to the in-
crease of the diffraction angle ϕ, as can be seen in Figure 6.7, first
column second row.

Using this representation, the ∆I/I for all the diffracted beams lie
on top of each other, with the starting angle depending on the diffrac-
tion order. In Figure 6.8b, ∆I/I(ϕ) computed using the IL approach
is also shown, with an almost perfect match between ∆I/I(ϕ) com-
puted using the FP approach. We chose the case D = 200nm since it
presents substantial deviations from the IL approach, and therefore
allows us to confirm very visibly that the geometric confinement does
not substantially affect the far-field results in terms of the magneto-
optically induced relative intensity change, which is the conventional
experimental observable. The results for all other sizes look nearly
identical, i.e. show almost exactly the expected behavior that one
would derive from the IL approximation for ∆I/I.
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Figure 6.8: Normalized MO signal ∆I/I for several horizontal diffraction or-
ders m for D = 200nm, with λ = 632.8nm.

The gap between neighboring disks, given as g = a−D, imposes a
minimum for the physically meaningful lattice period corresponding
to g = 0, i.e. amin = D. However, in order to avoid the near-field op-
tical interactions between the disks, which will complicate the issue
and is beyond the scope of this work, it is a good experimental strat-
egy to use values that are substantially larger than amin, also because
this would make more diffraction orders available, i.e. more values
of ϕ accessible, although there should be enough magnetic material
in the unit cell in order to keep I and ∆I above the noise level. These
considerations are among those to be taken account, when it comes
to the design of disk lattices to be used in experiments.

6.5 conclusions

The main conclusion one can draw from the presented results is the
fact that the experimentally accessible ∆I/I-ratio seems virtually unaf-
fected by the geometric confinement of the disks, despite the remark-
able size-induced differences that are found in the dipole moment
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distributions especially for sub-wavelength disks. We have shown
that the insensitivity of the ∆I/I-ratio to lateral confinement is a con-
sequence of the close similarity of the optical and magneto-optical
polarization patterns, irrespective of disk size, and of the fact that
their contributions to the far-field intensity scale nearly in the same
way.

To discuss this aspect further, we make the following argument of
how the magneto-optical response primarily originates. Ex is the re-
sult of the MO-effect only because it does not exist in the case without
MO-coupling. Therefore Ex is only caused by the px from neighbor-
ing dipoles: Ex = sxxpx (see Equation (6.8)). Furthermore, the entire
dipole px is a small correction being driven by Ey. Consequently, as
a first approximation we can use Ey from the MO-free system as the
leading contribution, or equivalently neglect the MO term, αoffEx, for
the calculation of py. Thus, we approximate py ≈ Pyscalar = ε0αdEy,
where Pyscalar is the optical component coming from a MO-effect free,
purely scalar calculation without off-diagonal elements in the dielec-
tric tensor, so that:

px ≈ Pxscalar = ε0

(
αdsxxpx +

αoff

ε0αd
Pyscalar

)
(6.17)

Pxscalar =
1

1− ε0αdsxx

αoff

αd
Pyscalar (6.18)

If we now have a look at Eq. (6.7) from the Appendix, it can be
shown that, neglecting second order MO-terms, i.e. O

(
α2off

)
terms:

1

1− ε0αdsxx
=
αxxeff

αd
(6.19)

, so that the approximative relation between the optical and the MO
dipole moment components is given as:

Pxscalar =
αxxeff

αd

αoff

αd
Pyscalar (6.20)

Figure 6.9 shows an example of this approximate relation and demon-
strates how close this semi-scalar approach is to the exact result. Both
the primary optical and the MO components for the case D = 600nm
are shown, from both tensorial and scalar calculations, all normalized
to the same infinite layer calculation. This result opens up a pathway
to undertake time efficient calculations of magneto-optical responses,
in which the true magneto-optical nature of materials is considered
only after the confinement induced optical polarization pattern has
been calculated by means of relations similar to Equation (6.20). It
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is, however, important to stress that the scalar approach reached in
Equation (6.20) no longer holds in conditions of strong MO effect.

As a summary, we have investigated the optical and magneto-optical
responses of nano-scale ferromagnetic disks by means of numeri-
cal simulations, using a discrete dipole approximation. The disks
were illuminated under normal incidence with a wavelength of λ =

632.8nm, assuming the transverse magneto-optical Kerr effect (T-MOKE)
configuration. Results show that the strong similarity between the
optical and magneto-optical nano-scale confinement effects also re-
sults in the fact that the normalized magneto-optically induced far-
field light intensity relative change ∆I/I, which is the quantity mea-
sured in experiments, is only weakly affected even in the case of
sub-wavelength sized disks, so that the far-field predictions coming
from a film electromagnetic solution [103] remain highly accurate. We
demonstrate this by calculating the diffracted light intensities and in-
tensity changes produced by nano-disk arrays, which are commonly
used in experimental studies of nano-structure magneto-optics.





7
C O M P O S I T E M AT E R I A L S

Research on metamaterial structures undergoes continuous progress
due to their unique electromagnetic behavior and the associated ap-
plication potential [120]. With constant advances in design approaches
[121] and fabrication capabilities [122], metamaterial development ap-
pears to be restricted by the properties of naturally available materials
used to build “à la carte" structures. In this sense, composite materials
may assist with the tailoring of the optical properties of such sophis-
ticated structures, for example considering a metamaterial structure
embedded in a dielectric matrix.

Given that particle sizes larger than diameter ∼ 3nm (hundreds
of atoms) become increasingly computationally demanding using ex-
act techniques (like the Density Functional Theory), it is necessary to
model these composite materials using either effective medium theo-
ries (such as the Maxwell-Garnett formalism [123]) or approximative
solutions based for example on finite element methods, such as the
DDA [82, 83].

In any case, effective medium theories describe the effective dielec-
tric function of complex systems through the dielectric function of its
constituents and some additional parameter, like the filling fraction
of each component [41]. Therefore, these theories can provide just
an approximate description of the effective behavior of complex mix-
tures and it is questionable to what extent real random composites
can be described by simple mixing formulae. Indeed, none of these
approaches (effective medium theories or DDA) explicitly considers
the distortion of the optical properties due to the embedding medium,
acknowledging that a more advanced description is necessary for a
correct prediction of the observed effective dielectric function and its
consequences. This ends in a disagreement with experimental results
[124], in spite of the fact that these theories are well accepted by the
scientific community.

As a step towards a more advanced description, we have tried to
devise expressions for effective optical properties taking into account
the change in the local properties of each constituent due to the rel-
ative concentration in its surroundings. In other words, we propose
a Combined Approach (CA) that considers the composite material
to be made of discrete elements whose optical properties have been
renormalized so that each constituent perceives the presence of the
other according to its actual proportion in the composite.

In this chapter we present a spectral analysis of composite nano-
structures using an E-DDA [83], emphasizing the influences of opti-

75
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cal properties of constituents and their concentration. We have per-
formed simulations on typical shapes, like spheres and disks, both
3-D objects in which the discretization is followed by a random distri-
bution of constituents when necessary. For the composition, we have
used both noble and base metals, as well as the case of a metamaterial
embedded in a dielectric matrix.

The chapter is organized as follows: in Section 7.1, the three models
for the composite that we used are presented. In Section 7.2, the
scattering geometry together with the material parameters are shown.
Section 7.3 is devoted to the presentation and discussion of the main
results obtained from our numerical model. Finally, in Section 7.4,
the main conclusions of this research are summarized.

7.1 three models for the composite

7.1.1 Discrete Alloy (DA)

Direct application of the E-DDA to some given composite nanos-
tructures (composed of more than one constituent) will provide the
solution that we refer to as Discrete Alloy (DA). In this approach, each
constituent preserves its bulk optical properties. The E-DDA formal-
ism allows for considering different distributions of the constituents.
Our choice consists of an uniform random distribution, where the
optical properties of each dipole are assigned based on the filling
fraction of each constituent.

7.1.2 Extended Maxwell-Garnett (EMG)

In this case, direct application of the E-DDA to the nanostruc-
ture with all dipoles having the same averaged optical properties
(εMG, µMG, given by Equations (3.22) and (3.23) respectively) will
provide the solution that we refer to as Extended Maxwell-Garnett
(EMG).

7.1.3 Combined Approach (CA)

Our Combined Approach (CA) considers the material to be com-
posed of more than one constituent, each of them in the same relative
concentration (and distribution) as in our DA approach, but whose
optical properties have been renormalized so that each constituent
takes account of the presence of the other.
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7.2 system description and material parameters

We have performed simulations by using the E-DDA code on dif-
ferent composite materials and geometries, from conventional alloy-
like metal-metal mixtures to more complex metamaterial-dielectric
composites. For the first part (conventional mixtures), we have used
permalloy-like mixtures (Py, composed of nickel and iron, a typical
magneto-optical material with interesting applications [125]) as well
as silver-gold (Ag-Au) alloys (which present typical plasmonic reso-
nances in the visible range). The considered geometries have been a
sphere of diameterD = 60nm and a disk of diameterD = 268nm and
thickness t = 2nm (same volume as the sphere). These geometries
are often used in experiments and have a wide range of applications,
as they are accessible to the current technology.

The bulk optical properties for silver and gold have been taken
from Johnson and Christy [87], while the optical properties of iron
and nickel have been taken from Krinchik and Artem’ev [126].

In order to correctly choose a proper value for the dipole spac-
ing, we have performed a discretization study of the convergence
of the absorption efficiency corresponding to a sphere of diameter
D = 60nm, made of 50% Ag - 50% Au, by varying the dipole spacing
from d = 10nm to d = 0.8nm, as shown in Figure 7.1a. For this par-
ticular case, we have compared the Discrete Alloy and the Weighted
Average (Equations (3.20) and (3.21)) approaches.

There are two remarkable features in these results. Firstly, the
choice of a criterion for the local properties of each discrete element
in the composite material is crucial, especially when some of the con-
stituents show a resonant behavior within the spectral range under
study. We shall return to this point later. Secondly, and concerning
the mathematical convergence, our choice of d = 2nm already pro-
vides us with stable results. This is consistent with the widely used
grid fineness criterion (|n|kd . 1) [82]. Figure 7.1b shows the upper
bound for the dipole spacing d according to such criterion for the
optical properties of silver, gold, iron and nickel. As can be seen,
the value of d = 2nm is well below each of the curves for all wave-
lengths1.

For the second part (metamaterial-dielectric composites), we have
simulated a sphere of diameter D = 3mm composed of a metamate-
rial having typical optical properties of a left-handed material [127],
as shown in Figure 7.2 (notice the microwave range), and a dielectric
material with (ε,µ) = (2, 1). The dipole spacing for these calcula-
tions was d = 0.2mm, according to the corresponding convergence
criterion.

1 For absorbing materials such as metals, the original criterion might not be sufficient,
as the skin depth is far smaller than the wavelength.
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(a) Convergence of the spectral absorption efficiency for the heteroge-
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(b) Upper bound for the dipole spacing d according to the widely used
grid fineness criterion |n|kd . 1 [82] for the optical properties of
silver, gold, iron and nickel. Our choice of d = 2nm is also shown
(red dashed line) for comparison purposes only.

Figure 7.1: Discretization study corresponding to a sphere of diameter D =

60nm, made of 50% Ag - 50% Au.

7.3 results

7.3.1 Conventional mixtures

A summary of the results obtained for conventional mixtures is
presented in Figures 7.3 and 7.4, where the absorption efficiency Qabs

as a function of both the incident wavelength (horizontal axis) and
the relative concentration (vertical axis) is shown for Py-like mixtures
(first row) as well as for silver-gold alloys (second row). Particle ge-
ometry is either spheres (Figure 7.3) or disks (Figure 7.4). In all cases
the absorption efficiency has been computed twice, first using the Dis-
crete Alloy approach (first column) and then applying the Extended
Maxwell-Garnett effective medium theory (second column).
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Figure 7.2: Relative optical properties (ε,µ) of the metamaterial that we
have used, with both an electric and a magnetic resonance in the
microwave range.

For the case of Py-like spheres (first row in Figure 7.3, in which
none of the constituents show a resonant behavior), both the DA ap-
proach and the EMG theory give very similar results (if not outright
indistinguishable), indicating that the constituents (Fe and Ni) either
do not interact too much with each other or the result of it produces
optical properties that are very similar to the averaged values. For the
Ag-Au sphere case, however, both the DA and the EMG calculations
preserve the individual resonances of the constituents (see arrows in
the second row of Figure 7.3).

In the case of disks (Figure 7.4), however, both the mixing (DA)
and the averaging (EMG) show evidence of the constituents’ resonant
behavior (see for example the first row in Figure 7.4, corresponding
to Py-like mixtures, with the first resonance coming from the Ni and
holding until more than 50% Fe content).

It is an experimental fact that, in the case of silver-gold spheres,
experiment and theory agree that the plasmon frequency increases
with increasing Ag content [128]. This means that, in the second
row of Figure 7.3, we should see a single resonance peak varying
smoothly with increasing Ag content, instead of the two separate
resonances that are found. It is true that the EMG theory results
already show more diffuse resonances, as a consequence of the optical
properties averaging. On the other hand, the DA results keep the
resonances further, as in this case we consider the composite as the
union of two materials whose optical properties remain the same as
in the original bulk material, therefore showing more of their original
resonances. Far from explaining the experimental results, the DA
approach (Figure 7.3c) slightly shifts the silver resonance to the blue,
and not towards the gold as should be expected.

We now use our Combined Approach (Figure 7.5) in order to obtain
the spectral absorption efficiency corresponding to the same Ag-Au
sphere as in Figure 7.3 (D = 60nm).
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(a) Iron and nickel, DA approach. (b) Iron and nickel, EMG approach.

(c) Silver and gold, DA approach. (d) Silver and gold, EMG approach.

Figure 7.3: Spectral absorption efficiency corresponding to spheres of diam-
eter D = 60nm.

Now, the silver resonance starts to shift towards the gold resonance
with decreasing Ag content. Although very promising, this result
does not reach the desired outcome of a single resonance peak vary-
ing smoothly with composition with the right slope. It is important
to know that S. Link et al. [124] already warn us about this, stating
that the band structure of the gold-silver alloys is quite different from
pure gold or silver. In the same reference, the authors claim that a
linear combination of the dielectric functions of each material cannot
explain the variation of the plasmon absorption maximum. Indeed,
theoretical predictions agree with experimental results only when ex-
perimental dielectric data for alloy films are used [129].

Still, the Combined Approach shows an important advantage. Be-
cause it models each material fraction with its own properties but
modulated by those of the nearest neighbors, it can implement some
experimental facts concerning the constituents distribution (order-
disorder, heterogeneities, cluster segregation) in a straightforward
way.

7.3.2 Metamaterial embedded in a dielectric matrix

We have been working during the last years in the extension of
several computational methods “to allow for materials with magnetic
properties in the optical range”. This is the case our E-DDA code,
an Extension of the Discrete Dipole Approximation which allows for
the calculation of materials with relative magnetic permeability µ < 0
as well as tensorial optical properties. In addition, inhomogeneous
media can be readily considered, so we may ask ourselves about the
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(a) Iron and nickel, DA approach. (b) Iron and nickel, EMG approach.

(c) Silver and gold, DA approach. (d) Silver and gold, EMG approach.

Figure 7.4: Spectral absorption efficiency corresponding to disks of diameter
D = 268nm and thickness t = 2nm.

Combined Approach

Figure 7.5: Spectral absorption efficiency corresponding to a sphere of di-
ameter D = 60nm made of silver and gold, calculated with our
Combined Approach.

behavior of composite materials with non-conventional optical prop-
erties.

It is possible to imagine a system where the nanostructured mate-
rial (metamaterial) forms discrete elements integrated within a con-
ventional material (e.g. a dielectric), which provides geometric sup-
port. This kind of composite may not be yet implemented, but will
take on a new topicality as soon as metamaterials behavior is reliable
and their properties the desired ones.

Figure 7.6 shows the spectral extinction efficiency corresponding to
a sphere of diameter D = 3mm made of mix of a metamaterial, with
optical properties given by Figure 7.2, and a dielectric material with
(ε,µ) = (2, 1). Results in Figure 7.6 have been normalized by their
corresponding maximum values (each approach separately), so the
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color is as much as 1 for each plot. The entire system is embedded in
vacuum.

magnetic 
resonance

electric 
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(a) Discrete Alloy.
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electric 
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(b) Extended Maxwell-Garnett.

magnetic 
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electric 
resonance

(c) Combined approach.

Figure 7.6: Normalized (by maximum values) spectral extinction efficiency
corresponding to a sphere of diameter D = 3mm made of a
metamaterial and a dielectric material.

The first thing to notice when looking at Figure 7.6 is that there are
significant differences between the three approaches (with the CA
being a clear combination of both the DA approach and the EMG
theory). EMG results show separately the positions of the electric
and magnetic resonances while “red shifting” the resonance of elec-
tric origin. The DA approach, however, mixes up both resonances
while preserving their spectral position even at very low metamate-
rial concentrations. Our CA shows features from both cases, with
mixed up resonances as well as a clear shift towards the “red” at low
metamaterial concentrations (see arrows in Figure 7.6).

It is important to note that the considered metamaterial has both
an electric and a magnetic resonance in the microwave range. As we
are embedding it in a dielectric matrix with (ε,µ) = (2, 1), only the
electric resonance is affected (“red shifted”) by the ambient medium.
In order to explore this aspect further, we have considered a single
dipole with the same optical properties as those given by Figure 7.2,
either embedded in air or in a dielectric medium with (ε,µ) = (2, 1),
in order to clearly see this selective shift. Figure 7.7 shows the extinc-
tion efficiency for this single dipole either embedded in air or in the
dielectric medium, normalized by their maximum values respectively.
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For this calculation, we have used our DA approach, considering a
single dipole only.
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Figure 7.7: Normalized (by maximum values) spectral extinction efficiency
corresponding to a single dipole with optical properties given by
Figure 7.2, either embedded in air or in a dielectric material with
(ε,µ) = (2, 1).

As expected, the magnetic resonance is unaffected by the surround-
ing dielectric medium. As for the electric resonance, not only the shift,
but also the quantitative variation, are in agreement with previous re-
sults shown in Figure 7.6 (results in Figure 7.7 are normalized as well,
so the maximum values for both situations are 1).

7.4 conclusions

We have resorted to a Coupled Dipole Method code in order to
compare several approaches to the analysis of the optical behavior
of composite materials, starting with nanoscopic conventional objects
in the visible domain. In the first place we have preserved for each
discrete element the nature of its constituent material, assuming bulk
properties, and secondly we have assigned some overall properties
to each discrete element of the particle. When these two approaches
are applied to silver/gold spheres and the proportion of each con-
stituent is varied smoothly, the results completely disagree to those
observed in the experiment, as they are described in the literature:
instead of the smooth linear shift observed in the experimental reso-
nant peak from the silver to the gold one, when the fraction of gold
increases, what these models predict is either a stable position of the
resonances, or even a shift in the opposite direction. With our Com-
bined Approach, however, there is a clear move of the spectral peak
in the direction pointed out by the experiment. Although the linear
dependence predicted by this approach has a slope that is slightly
smaller than the experimental one, we think that it is an advance
in this kind of modeling, as it preserves the individual nature of the
constituents and at the same time introduces a variation in the optical
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properties of a discrete element that is given by the properties of the
surrounding medium. This is key in modeling any kind of composite
material, admitting that handling macroscopic properties is only an
approach to the exact solution of the electronic band structure of each
particular discrete element. Not surprisingly, the difference between
all these approaches becomes very small when there is no resonance
within the spectral range of interest.

Then, considering that the former result is a sort of validation of
our Combined Approach, we have applied it to a non-conventional
material, whose properties are hypothesized here for millimeter ob-
jects in the microwave domain. The development and combination of
technologies is continuously producing new metamaterials, and its
combination with conventional materials will presumably produce
composite materials for which the current modeling and computing
capabilities do not appear to be fully prepared. Our version of the
DDA code, the E-DDA code, has been formulated to tackle this prob-
lem, and is able to deal with non-conventional materials that can be
characterized either with magnetic and tensor properties.



8
A D D I T I O N A L A S P E C T S

8.1 corrections to the polarizability

In Section 3.1.3, a correction to the polarizability tensor due to the
“radiative reaction” was introduced in Equation (3.12). This correc-
tion is O((kd)3), the product kd expressing the ratio of d to λ, being
d the distance of the discretization, in principle much smaller than λ.
Several other corrections of O((kd)2) have been proposed. The first
one was proposed by Goedecke and O’Brien [130] and independently
in two other publications by different authors [131, 132]. Draine and
Goodman [133] pointed out that considering electric fields constant
for evaluating integrals over a cell introduces errors of order O((kd)2).
This represents a problem for many polarizability corrections, based
on integral equations. Draine and Goodman approached this prob-
lem from a different angle. They determined the optimal polariz-
ability in the sense that an infinite lattice of point dipoles with such
polarizability would lead to the same propagation of plane waves1

as in a medium with a given refractive index. This polarizability
was called lattice dispersion relation (LDR). It has been shown [134]
that the LDR derivation is not completely accurate, since the result-
ing dipole moment does not satisfy the transversality condition, for
which a correction was proposed. This corrected LDR (CLDR) differs
principally in the fact that the polarizability tensor cannot be made
isotropic but only diagonal [134], though not dependent on the inci-
dent polarization.

Dungey and Bohren [135], using results by Doyle [136], proposed
the following treatment of the polarizability. First, each cubic cell is
replaced by the inscribed sphere that is called a dipolar subunit with
a higher relative electric permittivity as determined by the Maxwell-
Garnett effective medium theory [8]. Next, the dipole moment of
the equivalent sphere is determined using the Mie theory, and the
polarizability is defined as [15]:

αM =
6πi

k3
a1 (8.1)

, where a1 is the electric dipole coefficient from the Mie theory. We
denote this formulation for the polarizability as the a1-term method
(note that this terminology was introduced later [137]). It should be
noted that the Mie theory is based on the assumption that the external
electric field is a plane wave. In most applications of the DDA this

1 With certain direction of propagation and polarization state.
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is true for the incident electric field, but not for the field created by
other subvolumes. Therefore the a1-term method is expected to be
correct only for very small cell size.

The previous approaches have in common that they all start from
the Clausius-Mossotti relation and simply add a finite-frequency cor-
rection. They also suppose that the field susceptibility tensor is con-
stant over any given subunit. It was pointed out that the Clausius-
Mossotti relation may not hold for every subunit; rather, for each
subunit the polarizability should be related to its local environment
[138–140]. Chaumet et al. [141] proposed direct integration of the
Green’s tensor (IT). A Weyl expansion of the Green’s tensor is per-
formed, transforming it to a form allowing efficient numerical com-
putation.

All the above techniques are aimed at reducing discretization er-
rors; only a few aim at reducing shape errors. Some of them employ
adaptive discretization (different dipole sizes) to better describe the
shape of the scatterer. Another approach is to average the suscepti-
bility in boundary subvolumes2, the so-called weighted discretization
(WD), as proposed by Piller [142].

Currently, there are no rigorous theoretical reasons for preferring
one formulation over others. However, theoretical analyses of DDA
convergence when refining discretization recently conducted by Yurkin
et al. [143], showed that IT and WD significantly improve the conver-
gence of shape and discretization errors, respectively. Experimental
verification of these theoretical conclusions is still to be performed.

8.2 extended infinite film

Electromagnetic metamaterials are artificially structured media typ-
ically composed of arrays of resonant electromagnetic circuits, the
dimension and spacing of which are considerably smaller than the
free-space wavelengths of operation. The constitutive parameters for
metamaterials exhibit artifacts related to the finite size of the metama-
terial cell relative to the wavelength. The unified model presented in
this section will be to consider a wave propagating in an infinite, pe-
riodic array of thin, polarizable sheets, in a similar fashion as Smith
[144]. Although metamaterial elements certainly have considerable
physical extent along the propagation direction within the unit cell,
we assume here that their effective dipolar response is restricted to a
plane.

The polarization of an infinite array of dipoles illuminated with a
monochromatic electromagnetic wave can be computed self-consistently
by considering the field at the location of one dipole formed from the
summation of the responding fields from all dipoles excluding the

2 Any subvolume that has non-zero intersection with both the scatterer and the outer
medium. All such subvolumes are accounted for.
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given dipole. The effective permittivity or permeability of the collec-
tive can then be expressed in terms of the polarizability of the indi-
vidual dipolar element. For field excitations at finite frequency and
wavelength, retardation effects lead to dispersion effects that can be
included in the dipole model [145].

Within the scope of the dipole model, it is convenient to first sum
over planes of dipoles for periodic arrays and sub-sequently to take
into account the interaction of the planes along the propagation di-
rection [145, 146]. Since the applied electromagnetic field is uniform
over a plane of dipoles (assuming the wave is incident along a prin-
cipal axis), the effects of spatial dispersion occur due to the phase
variation of the field along the direction perpendicular to the planes.

The geometry of the model is shown in Figure 8.1. A series of l si-
multaneously electrically and magnetically polarizable, planar sheets,
of width d, is spaced apart with periodicity t. We assume that an elec-
tromagnetic wave propagates in the direction along the normal to the
sheets, with fields polarized in the plane of the sheets.

k

Einc

Hinc

d
t

x

y

z

Figure 8.1: Periodic system of l electrically and magnetically polarizable
sheets. The sheets have thickness d and are spaced a distance t
apart. An electromagnetic wave is assumed to propagate along
the direction normal to the sheets.

We must calculate l electric and magnetic dipole moments. Let’s
write here the i-th electric and magnetic dipole moments pi and mi,
with i = 1 . . . l (and assuming the entire system is in vacuum):

pi = ε0 ¯̄α


Einc
i +

l∑
j=1


∑
k∈j

¯̄A(ee)
ik pj +

∑
k∈j

¯̄A(eh)
ik mj




 (8.2)

mi = ¯̄χ


Hinc

i +

l∑
j=1


∑
k∈j

¯̄A(he)
ik pj +

∑
k∈j

¯̄A(hh)
ik mj




 (8.3)
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, where we are already assuming that both the incident electromag-
netic field on each layer (which can be written as Einc

i = E0e−ikxi and

Hinc
i = H0e−ikxi , where |H0| =

√
ε0
µ0

|E0| and xi = −(i− 1) · t) and the
dipole moments (electric and magnetic) of all the dipoles within each
layer are all the same, which under normal incidence is correct.

A word about the notation:

1. There are l layers. This means that we must have a system of 2l
matrix equations (each matrix equation having 3 equations as
well).

2. i = 1 . . . l represents the layer i, on which we are calculating
the effect of the layer i itself and the rest of the other l− 1 lay-
ers. Each layer acquires an electric dipole moment pi and a
magnetic dipole moment mi.

3. j runs over all the layers iwith i = 1 . . . l. It represents the layers
that are creating an effect on itself and on the other layers.

4. k ∈ j is actually a double-index, as it runs over a 2D lattice,
representing all dipoles on layer j.

5. pj and mj are the electric and magnetic dipole moments of the
layer j (j = 1 . . . l), respectively.

Each electric and magnetic dipole produces both an electric and a
magnetic field on each other. To calculate both the electric and the
magnetic fields, we assume that the dipoles pi and mi are located on
the center of the layer i (this is, their coordinates are ri = (xi, 0, 0)).

¯̄A(ee)
ik → electric field produced on layer i by electric dipoles located on k

¯̄A(eh)
ik → electric field produced on layer i by magnetic dipoles located on k

¯̄A(he)
ik → magnetic field produced on layer i by electric dipoles located on k

¯̄A(hh)
ik → magnetic field produced on layer i by magnetic dipoles located on k

We can make further assumptions and simplify the notation:

1. ∑
k∈j,k6=0

¯̄A(ee)
jk = ¯̄A0 ∀j = 1 . . . l (8.4)

∑
k∈j,k6=0

¯̄A(eh)
jk = ¯̄B0 ∀j = 1 . . . l (8.5)

∑
k∈j,k6=0

¯̄A(he)
jk = ¯̄C0 ∀j = 1 . . . l (8.6)

∑
k∈j,k6=0

¯̄A(hh)
jk = ¯̄D0 ∀j = 1 . . . l (8.7)
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(the sums relating the effect of one layer on itself are layer
independent)

2. ∑
k∈j

¯̄A(ee)
j ′k =

∑
k∈j ′

¯̄A(ee)
jk = ¯̄A|j ′−j| (8.8)

∑
k∈j

¯̄A(eh)
j ′k =

∑
k∈j ′

¯̄A(eh)
jk = ¯̄B|j ′−j| (8.9)

∑
k∈j

¯̄A(he)
j ′k =

∑
k∈j ′

¯̄A(he)
jk = ¯̄C|j ′−j| (8.10)

∑
k∈j

¯̄A(hh)
j ′k =

∑
k∈j ′

¯̄A(hh)
jk = ¯̄D|j ′−j| (8.11)

(the sums relating the effect of the layer j on the layer j ′ are the
same as the sums relating the effect of the layer j ′ on the layer j)

Please notice that Equations (8.8)-(8.11) are true only because
of the sum. The equalities do not hold addend by addend.
Please take into account that, although the sums may be the
same, the effect itself is not the same because pj 6= pj ′ and
mj 6= mj ′ (and the effect is the product of the sum and the
dipole moment).

We may write Equations (8.2) and (8.3) in terms of the exciting
fields instead of the acquired dipole moments, just to avoid numerical
instabilities. By using the relations pi = ε0 ¯̄αEi and mi = ¯̄χHi, and
using the previously introduced notation, we get:

Ei = Einc
i +

l∑
j=1

(
ε0

¯̄A|i−j| ¯̄αEj + ¯̄B|i−j| ¯̄χHj
)

(8.12)

Hi = Hinc
i +

l∑
j=1

(
ε0

¯̄C|i−j| ¯̄αEj + ¯̄D|i−j| ¯̄χHj
)

(8.13)

Arranging the system of equations in matrix form, we have:

¯̄Mx = xinc (8.14)

, where ¯̄M is a 6l× 6l block-symmetric matrix containing all the
needed sums, given by:
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¯̄M =




¯̄I − ε0 ¯̄A0 ¯̄α − ¯̄B0 ¯̄χ −ε0
¯̄A1 ¯̄α − ¯̄B1 ¯̄χ . . . −ε0

¯̄Al−1 ¯̄α − ¯̄Bl−1 ¯̄χ

−ε0
¯̄C0 ¯̄α ¯̄I − ¯̄D0 ¯̄χ −ε0

¯̄C1 ¯̄α − ¯̄D1 ¯̄χ . . . −ε0
¯̄Cl−1 ¯̄α − ¯̄Dl−1 ¯̄χ

−ε0
¯̄A1 ¯̄α − ¯̄B1 ¯̄χ ¯̄I − ε0 ¯̄A0 ¯̄α − ¯̄B0 ¯̄χ . . . −ε0

¯̄Al−2 ¯̄α − ¯̄Bl−2 ¯̄χ

−ε0
¯̄C1 ¯̄α − ¯̄D1 ¯̄χ −ε0

¯̄C0 ¯̄α ¯̄I − ¯̄D0 ¯̄χ . . . −ε0
¯̄Cl−2 ¯̄α − ¯̄Dl−2 ¯̄χ

...
...

...
...

...
...

...

−ε0
¯̄Al−1 ¯̄α − ¯̄Bl−1 ¯̄χ −ε0

¯̄Al−2 ¯̄α − ¯̄Bl−2 ¯̄χ . . . ¯̄I − ε0 ¯̄A0 ¯̄α − ¯̄B0 ¯̄χ

−ε0
¯̄Cl−1 ¯̄α − ¯̄Dl−1 ¯̄χ −ε0

¯̄Cl−2 ¯̄α − ¯̄Dl−2 ¯̄χ . . . −ε0
¯̄C0 ¯̄α ¯̄I − ¯̄D0 ¯̄χ




x and xinc are 6l-dimensional vectors containing the total exciting
electric and magnetic fields and the incoming electric and magnetic
fields on each layer respectively (3 components each).

x =




E1
H1
E2
H2

...

El
Hl




; xinc =




Einc
1

Hinc
1

Einc
2

Hinc
2
...

Einc
l

Hinc
l




(8.15)

The formal solution can be written as:

x = ¯̄M−1xinc (8.16)

8.3 periodic array of magneto-optical particles on a

multilayered substrate

We present a generalization of the discrete dipole approximation
method to the scattering of light by a periodic array of anisotropic
(magneto-optic) particles on a multilayered substrate. This formula-
tion of the coupled dipole method relies on the same direct-space
discretization scheme that is widely used to study the scattering of
light by finite objects. The method is extended to deal with an array of
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particles near or on a multilayered substrate by computing the appro-
priated Green’s function. The electric field diffracted by a plasmonic
structure made of a plane metallic slab in interaction with a periodic
array of small particles may then be obtained. The field can be com-
puted in the near and far zones, under plane-wave illumination or
using a point electric-dipole source.

8.3.1 Reflection dyadic from a layered media bounded by a planar surface

Let us consider a multilayered substrate as sketched in Figure 8.2.
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Figure 8.2: Sketch of the geometry of the multilayered system together with
the definition of the different vectors (following Sipe’s notation
[147]).

We assume an incoming plane wave given by:

Einc
i =

(
E+s,iŝ + E

+
p,ip̂

+
i

)
eiK·re+iγiz (8.17)

, where γi = +
√
k2i − |K|2 with ki = k0ni = (ω/c)ni being ni

the (real) refraction index in the i region of the incoming beam (z<0).
Following Sipe’s notation [147],

kinc ≡ k+
i = K + γiûz , K = kxûx + kuûy (8.18)

ŝ(K) ≡ K× ûz
|K|

(8.19)

p̂±i (K) ≡ k±i × ŝ = (K± γiûz)× ŝ =
−|K|2ûz ± γiK

|K|ki
(8.20)

Notice that the sign of p̂ differs from the definition in the original
Sipe’s paper. With the present definition, the z-component of p̂± is
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always negative. In terms of the reflection matrix ¯̄R(K), the “specular”
reflected beam will be:

Eref
i =

(
E−s,iŝ + E

−
p,ip̂

−
i

)
eiK·re−iγiz

=
[(
RssE

+
s,i + RspE

+
p,i

)
ŝ +

(
RppE

+
p,i + RpsE

+
s,i

)
p̂−

i

]
eiK·re−iγiz

(8.21)

, and the transmitted beam:

Etra
f =

(
E+s,fŝ + E

+
p,fp̂

+
f

)
eiK·re+iγfz

=
[(
TppE

+
p,i + TpsE

+
s,i

)
p̂+

f +
(
TssE

+
s,i + TspE

+
p,i

)
ŝ
]

eiK·reiγfz

(8.22)

The solution for the total field in the region i (z < 0) is simply given
by the sum of incident and reflected waves:

E0(r) =
(
E+s,iŝ + E

+
p,ip̂

+
i

)
eiK·re+iγiz

+
(
E−s,iŝ + E

−
p,ip̂

−
i

)
eiK·re−iγiz (8.23)

8.3.2 Finite target on a flat surface

Let us consider a finite target characterized by a dielectric permit-
tivity tensor ¯̄ε(r) embedded in an otherwise homogeneous media i
with εm = n2i (real). The object is located over a flat surface (z = 0)
of known Fresnel reflection coefficients. In absence of free currents,
it may be shown that the electric field is given by the solution of the
integral equation:

E(r) = E0(r) + k20

∫
¯̄G(r, r ′)

[
ε(r ′) − εm

]
E(r ′)d3r ′ (8.24)

, where k =
√
εmω/c and k0 = ω/c. E0(r) is the solution of

the Maxwell equations in absence of the target. For a multilayered
substrate, it is given by Equation (8.23) (to this end we will consider
only fields in the i region. We then remove the i label in what follows).

The Green tensor ¯̄G(r, r0) connects an electric dipole source p at a
position r0 to the electric field at a position r through the relation:

E(r)dipole =
k2

εmε0

¯̄G(r, r0)p (8.25)
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When these two points are located in the same region, ¯̄G(r, r0) can
be written as the sum of a free space (source) contribution and the
reflected (non-singular) contribution:

¯̄G(r, r0) = ¯̄G(0)(r, r0) + ¯̄GB,surf(r, r0) (8.26)

8.3.3 Periodic array of magneto-optical particles on a surface

Let us consider a periodic (rectangular) array of “anisotropic” ob-
jects. For each small volume element of one of the objects (let’s say
the one at the “center” of the lattice), located at ri, we have a periodic
array of small volume elements located at:

ri;n,m = ri +naûx +mbûy with n,m integers (8.27)

For a non-perturbed field given by Equation (8.23), E0 ∼ eiK·r, the
induced dipole in each volume element does not depend on n,m ex-
cept for a phase factor, i.e.:

pi;n,m = pieiK·(ri;n,m−ri) = pieiK·(naûx+mbûy) (8.28)

, where pi ≡ pi;0,0 = εmε0 ¯̄αEinc, being Einc the actual incoming
field towards the dipole located at ri. The total scattered field is then
given by:

Escatt =
k2

εmε0

∑
n,m

N∑
i=1

¯̄G(r, ri;n,m)pi;n,m

=
k2

εmε0

N∑
i=1

{∑
n,m

¯̄G(r, ri;n,m)eiK·(naûx+mbûy)

}
pi

(8.29)

8.3.3.1 Green’s sum and diffracted beams

Let us discuss the Green sum and some of its general properties. A
useful representation of the Green tensor can be obtained by using a
Weyl expansion:

g(r) ≡ eik|r−r0|

4π|r − r0|
=

∫
d2K
(2π)2

eiK·(r−r0)
{
i

2γ
eiγ|z−z0|

}
(8.30)

, where γ = +
√
k2 − |K|2. We then have:

¯̄G(0)
E (r, r0)p =

∫
d2K ′

(2π)2

{
¯̄g(0)(K ′, z, z0)p

}
eiK

′·(r−r0) (8.31)
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, where:

¯̄g(0)(K ′, z, z0)p ≡ k2
{
(p · ŝ)ŝ + (p · p̂±)p̂±

} i

2γ
e±iγ(z−z0) (8.32)

and +(−) corresponds to waves propagating towards z > z0 (z <
z0). ŝ and p̂ are unitary vectors perpendicular (s) and parallel (p) to
the plane of incidence, given by Equations (8.19) and (8.20), respec-
tively.

By using the Weyl expansion,

¯̄G(r)pi ≡
{∑
n,m

¯̄G(r, ri;n,m)eiK·(naûx+mbûy)

}
pi (8.33)

=

∫
d2K ′

(2π)2
{

¯̄g(K ′, z, zi)pi
}

eiK
′·(r−ri) ×

∑
n,m

ei(K−K ′)·(naûx+mbûy)

(8.34)

It may be shown that:

∑
n,m

ei(K−K ′)·rnm =
∑
n

ei(Kx−K ′x)an
∑
m

ei(Ky−K ′y)bm (8.35)

=
(2π)2

ab

∑
n,m

δ

(
K ′x −

[
Kx +

2πn

a

])
δ

(
K ′y −

[
Ky +

2πm

b

])

(8.36)

, and:

¯̄G(r)pi =
1

ab

∑
n,m

{ ¯̄g(K + Knm, z, zi)pi} ei(K+Knm)·(r−ri) (8.37)

, where the sum runs over the diffracted modes. Finally we have:

Escatt =
∑
i

k2

εmε0

¯̄G(r)pi =
1

εmε0

k2

ab

∑
i

∑
n,m

{ ¯̄g(K + Knm, z, zi)pi} ei(K+Knm)·(r−ri)

(8.38)

Equation (8.38) gives the electric field everywhere (except in the
small volumes around r = ri + naûx +mbûy) once we know the
electric dipoles pi.
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The solution for the Green tensor in the region z, z0 < 0 is simply
given by the sum of incident and reflected waves (see Equation (8.23)):

¯̄g(K, z, z0)p = ¯̄g(0)(K, z, z0)p + ¯̄gB,surf(K, z, z0)p

= k2
{
i

2γ
eiγ|z−z0|

}{
(p · ŝ)ŝ + (p · p̂±)p̂±

}
+ k2

{
i

2γ
e−iγ(z+z0)

}{[
Rss(p · ŝ) + Rsp(p · p̂+)

]}
ŝ

+ k2
{
i

2γ
e−iγ(z+z0)

}{[
Rps(p · ŝ) + Rpp(p · p̂+)

]}
p̂−

(8.39)

8.3.4 Image dipole approximation

The problem of dipole radiation in or near planar layered media
is of significance to many fields of study. It is encountered in an-
tenna theory, single molecule spectroscopy, cavity quantum electro-
dynamics, integrated optics, circuit design (microstrips) and surface
contamination control. In his original paper [67], in 1909, Sommerfeld
developed a theory for a radiating dipole oriented vertically above a
planar and lossy ground. He found two different asymptotic solu-
tions: space waves (spherical waves) and surface waves. The later
had already been investigated by Zenneck [148]. At first glance, the
calculation of the field (free space Green’s tensor) possesses a sim-
ple mathematical description, and the planar interfaces have reduced
dimensionality. Furthermore, the planar interfaces are constant coor-
dinate surfaces for different coordinate systems. It is therefore very
astonishing that there is no closed solution for this elementary prob-
lem, not even for the vertically oriented dipole which has a perfect
rotational symmetry. The desired simplicity is only obtained for lim-
iting cases, such as ideally conducting interfaces or the quasi-static
limit.

The computational effort can be considerably reduced if retarda-
tion is neglected. In this case the fields will still satisfy Maxwell’s
equations in both half-spaces, but the standard static image theory
is applied to approximately match the boundary conditions. We will
outline the principle of this approximation for a single interface. Since
the electromagnetic field is considered in its static limit (k → 0) the
electric and magnetic fields are decoupled and can be treated sepa-
rately. For simplicity, only the electric field is considered.

Figure 8.3 shows an arbitrary oriented dipole above a planar inter-
face and its induced dipole in the medium below. The distance of the
image dipole to the interface is the same as for the primary dipole.
However, the magnitude of the image dipole moment is different.
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Figure 8.3: Principle of the image dipole approximation. p and pimage de-
note the primary dipole and the image dipole, respectively. Static
image theory is applied to determine the magnitude of pimage.

The static electric field of the primary dipole in the upper-half-
space reads as:

Eprim = −∇φ, with φ(r) =
1

4πε1ε0

p · r
r3

(8.40)

The vector r denotes the radial vector measured from the position
of the primary dipole and r is its magnitude. Similarly, the corre-
sponding radial vector of the image dipole is denoted by r ′. For
simplicity, the dipole moment p is decomposed into its parallel and
vertical parts with respect to the planar interface. Without loss of gen-
erality, the parallel component is assumed to point in the x-direction:

p = pxnx + pznz (8.41)

, where nx and nz denote the unit vectors in the x− and z−directions,
respectively. In the following, the electric field will be considered for
each of the two major orientations separately.

8.3.4.1 Vertical dipole

For a dipole p = pznz, the evaluation of the primary electric field
in Equation (8.40) in cartesian coordinates leads to:

Eprim =
pz

4πε1ε0

[
3x(z− h)

r5
,
3y(z− h)

r5
,
3(z− h)2

r5
−
1

r3

]
(8.42)
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, where h is the height of the dipole above the interface. Assuming
an image dipole p = pznz, a similar expression can be derived for the
image field Eimage:

Eimage =
pz

4πε1ε0

[
3x(z+ h)

r
′5 ,

3y(z+ h)

r
′5 ,

3(z+ h)2

r
′5 −

1

r
′3

]
(8.43)

, where r ′ denotes the radial distance measured from the location
of the image dipole. A reasonable ansatz for the total field E in either
of the two half-spaces is:

E =

{
Eprim +AvEimage z > 0

BvEprim z < 0
(8.44)

, with two unknown parameters Av and Bv. By requiring the
boundary conditions at the interface z = 0, Av and Bv can be de-
termined as:

Av =
ε2 − ε1
ε2 + ε1

(8.45)

Bv =
ε2
ε1

2ε2
ε2 + ε1

(8.46)

Av and Bv correspond to the Fresnel reflection and transmission
coefficients in the quasi-static limit.

8.3.4.2 Horizontal dipole

The procedure for a dipole p = pxnx is similar. The primary and
the image fields turn out to be:

Eprim =
px

4πε1ε0

[
3x2

r5
−
1

r3
,
3xy

r5
,
3x(z− h)

r5

]
(8.47)

Eimage =
px

4πε1ε0

[
3x2

r
′5 −

1

r
′3 ,
3xy

r
′5 ,

3x(z+ h)

r
′5

]
(8.48)

The corresponding ansatz for the total field E in either of the two
half-spaces is:

E =

{
Eprim +AhEimage z > 0

BhEprim z < 0
(8.49)

As before, the unknown parameters Ah and Bh can be determined
by the boundary conditions at z = 0 as:
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Ah = −
ε2 − ε1
ε2 + ε1

(8.50)

Bh =
ε2
ε1

2ε2
ε2 + ε1

(8.51)

Except for the sign of Ah, these two parameters are identical to the
parameters Av, Bv calculated for the vertical dipole.

8.3.4.3 Including retardation

Using the parameters Av, Bv, Ah and Bh the magnitude of the
image dipole is:

∣∣pimage
∣∣ = ε2 − ε1

ε2 + ε1
|p| (8.52)

As indicated in Figure 8.3, the horizontal components of pimage and
p point in different directions if their vertical components have the
same direction. To obtain the static field in the upper half-space, the
fields of the two dipoles p and pimage have to be superposed. The field
in the lower half-space simply corresponds to the attenuated primary
dipole field. The attenuation is given by the factor 2ε2/(ε1+ε2). Note
that the dipoles are considered to be located in the same medium as
the point of observation.

So far, the location, orientation and magnitude of the dipole mo-
ments p and pimage have been determined. In order to fulfill Maxwell’s
equations in both half-spaces, the static dipole fields are replaced by
their non-retarded forms:

E ∼ [∇∇·] p
r

→ E ∼
[
k2 +∇∇·

] p
r

eikr (8.53)

Although this substitution rescues Maxwell’s equations in both
half-spaces it introduces a violation of the boundary conditions. The
image dipole approximation therefore has obvious limitations. In or-
der to keep the errors in bounds, the height h of the primary dipole
must be small and the fields may only be evaluated in a limited range
from the dipole location. In fact, the image dipole approximation
leads to reasonable accuracy as long as short-range interactions are
considered.

8.4 quantum effects in small metal nanoparticles

The remarkable growth of nanotechnology has been driven by the
ability to alter material properties as dimensions are reduced towards
the atomic scale. Nanomaterials exhibit physical and chemical prop-
erties very different from those of their bulk counterparts, often re-
sulting from enhanced surface interactions or quantum confinement.
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Therefore, the plasmonic properties of particles in the quantum size
regime (radii below 10nm) have recently received a renewed attention
[149], fueled by the race of technologies towards the low nano-scale
domain. For instance, it has been shown that cancer treatments based
on delivering drugs using nanoparticles (NPs) with radii below 10nm
showed better antitumour efficiency than those using larger particles
[150].
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liposome containing polyethylene glycol on 
its surface, whereas Abraxane has a human 
serum albumin protein backbone. Despite 
this, the present results suggest that the 
impact of these other di!erences on transport 
may be small compared with the e!ect of size.

Finally, vascular normalization may 
seem counterintuitive as a therapeutic 

strategy because it improves blood "ow 
to tumours and lowers interstitial "uid 
pressures, which could promote undesirable 
tumour growth. In fact, the main aim of 
anti-angiogenic therapies that destroy the 
blood vessels in tumours is to prevent the 
delivery of oxygen and nutrients to tumours. 
However, it is now clear that destruction of 

the vessels can impede the delivery of drugs 
and nanomedicines. #is means that for 
successful delivery, vascular normalization 
requires very careful timing and precise 
dosing6. Although such precision can be 
di$cult to achieve, the improved transport 
attained for small nanoparticles may be 
worth the e!orts to precondition tumours 
for treatment.

It is encouraging that the principles 
of hindered transport through nanoscale 
pores in tumour vessels can be used as the 
basis for designing new methods to treat 
the biggest killer in the developed world. 
Jain and co-workers present compelling 
evidence that only the smallest (12 nm) 
nanotherapeutics will have a transport 
advantage in normalized tumours. #is 
might be taken as extremely bad news 
because 12 nm is about the size of a 
common antibody, and is much smaller 
than most nanosystems being studied. 
However, the researchers showed that if we 
learn to modulate the average size and the 
distribution of pore sizes in the blood vessels 
of tumours, new therapies are possible. #is 
work has profound implications on the 
impact of manipulating tumours to be more 
amenable to anticancer nanotherapeutics. ❐
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Figure 1 | Size-dependent transport of nanotherapeutics. The blood vessels in a typical tumour contain 
pores of various sizes, which allow nanoparticles of di!erent sizes (black and grey) to enter the tumour 
(right). However, these pores also cause the interstitial fluid pressure to increase, which limits convective 
transport of nanoparticles into the tumour. Decreasing the size of these pores (a process called vascular 
normalization) increases convection and the interstitial penetration of small (~12 nm) nanotherapeutics 
(left). However, for larger nanoparticles (~60–125 nm) this increase in convection is overridden by an 
increase in steric and hydrodynamic hindrances.

Sensors that can detect interactions 
between biomolecules in real time 
and without using labels are of use in 

&elds such as pharmacology, biophysics and 
molecular biology. However, developing 

sensors that can reach the ultimate limit of 
sensitivity — that is, measuring the binding 
and unbinding of single molecules — has 
proved to be extremely di$cult. Writing 
in Nature Nanotechnology, Michel Orrit 

and colleagues at Universiteit Leiden 
and Instituto Superior Técnico have now 
shown that single metal nanoparticles 
and photothermal microscopy can 
be used to create sensors capable of 

BIOSENSORS

One molecule at a time
The binding and unbinding of single proteins to a gold nanorod can be detected with the help of the surface 
plasmon resonance of the nanorod.

Mikael Käll

© 2012 Macmillan Publishers Limited. All rights reserved

Figure 8.4: Size-dependent transport of nanotherapeutics. The blood ves-
sels in a typical tumour contain pores of various sizes, which
allow nanoparticles of different sizes (black and grey) to enter
the tumour (right). However, these pores also cause the intersti-
tial fluid pressure to increase, which limits convective transport
of nanoparticles into the tumour. Decreasing the size of these
pores (a process called vascular normalization) increases convec-
tion and the interstitial penetration of small (∼ 12nm) nanother-
apeutics (left). However, for larger nanoparticles (∼ 60− 125nm)
this increase in convection is overridden by an increase in steric
and hydrodynamic hindrances. Reprinted by permission from
Macmillan Publishers Ltd [150].

But the scale reduction demands a better approach to the plas-
monic behavior of NPs, because localized surface plasmon resonances
(LSPRs) become more sensitive to the quantum nature of the conduc-
tion electrons.

Concerning the interaction between metallic NPs, it has also at-
tracted a good deal of interest for the past ten years. The physics
of this interaction is rich and opens nice perspectives for applica-
tions, such as single molecule detection [51, 151], solar cells [152],
or high harmonic generation [153]. Although the plasmon hybridiza-
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tion model [154] is an elegant physical picture of this interaction, in
order to properly calculate the optical response of a dimer, numerical
simulations are still needed.

Here, we examine the plasmonic properties of both individual nano-
spheres and dimers made of silver and gold, with radii ranging from
10 to 1nm, extending from the classically described regime to the
quantum size regime. For all dimer cases, the minimum gap consid-
ered has been lgap = 1nm. Very recently, Esteban et al. [155] and
Savage et al. [156] have successfully described the coupling across
sub-nanometer gaps with a quantum-corrected model that includes
electron tunneling and tunneling resistivity at the gap. According to
Fig. 2 from [155], the electron tunneling transmission vanishes when
the gap is larger than ≈ 8Å. Then, from 1nm on, quantum correc-
tions are required due to the size of the particles only. We have stud-
ied the spectral extinction cross-section by using the T-matrix method
[157, 158], one of the most powerful and widely used tools for accu-
rately computing light scattering by nonspherical particles, both sin-
gle and aggregated, based on directly solving Maxwell’s equations.

8.4.1 Infinite spherical well model

To model the optical properties of quantum-sized plasmonic par-
ticles, a revised expression for the permittivity is required. In our
analysis, the standard Drude model is recast with Lorentzian terms
that are defined quantum mechanically (QM), based on fundamental
physical phenomena. Classically, Lorentzian terms can be added to
the Drude expression to account for the nearly-free nature of elec-
trons in the bulk metal. These terms include a set of oscillator res-
onance frequencies and corresponding weighted strengths unique to
each material [159]. Here, rather than using Lorentzians to fit the
bulk data [160, 161], we employ them to explain the changing di-
electric function as particle diameter decreases to the quantum size
regime. As will be shown, the nature of the Lorentzian terms is based
on fundamental physical phenomena, such as electron transition fre-
quencies and oscillator strengths.

Following the example of Genzel et al. [162] and Kraus and Schatz
[163], the relevant conduction electrons are treated as a free electron
gas constrained by infinite potential barriers at the physical edges of
the particle. Transition frequencies correspond to the allowed quan-
tum energies of conduction electron transitions from occupied states
i within the k-space Fermi sphere to unoccupied states f immediately
outside.

The overall permittivity expression can then be described as fol-
lows:

ε(ω) = εIB +ω2p
∑
i

∑
f

Sif

ω2if −ω
2 − iγω

(8.54)
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εIB is a frequency-dependent correction term to account for the con-
tribution of the d-band valence electrons to interband transitions at
higher energies. It is constant with particle diameter over the size
range of this model, as validated in the literature [164]. Here, this
additional corrective term was fit to the imaginary portion of the liter-
ature permittivity data [87]. The corresponding correction to the real
portion of the permittivity was calculated through Kramers-Kronig
consistency [8].

The plasma frequency, ωp, is defined as:

ωp =

√
nee2

ε0M
(8.55)

where ne is the volumetric conduction electron density (given 1

electron per atom), e is the elementary charge, ε0 is the permittiv-
ity of free space, and M is the mass of the electron. At frequencies
below ωp (9.01 eV/ h for silver [149] and 9.0 eV/ h for gold [165]), a
free-electron metal can effectively screen the incident electromagnetic
radiation and acts in a reflective manner, but above the plasma fre-
quency, the metal becomes transparent and acts as a dielectric.

The scattering frequency γ is dependent on the nanosphere dimen-
sion through the following relation:

γ = γbulk +
AvF
R

(8.56)

where γbulk is an empirical constant for each material (0.016 eV/ h
for silver [149] and 0.07 eV/ h for gold [165]), R is the particle radius,
and vF is the Fermi velocity of electrons (≈ 1.4 × 106m/s for both
silver [166] and gold [165]). A is a fitting coefficient whose value
has varied in the literature from 0.1 to 2, depending on the model
and experimental system [167–170]. Here, we use A = 0.25, a value
based on both single particle experiments and ab initio calculations
[164, 165].

The frequency of electron transitions from occupied to excited states
can be described as:

ωif =
Ef − Ei

 h
(8.57)

, where the energy levels Ef and Ei depend on the geometry and
potential of the system. We assume that the nanocrystal’s physical
shape closely approximates a sphere and treat the conduction elec-
trons as particles in an infinite spherical well. The Schrödinger equa-
tion for a free particle in spherical coordinates has the well known
solutions:

ψ(r, θ,φ) = jl(kr)Ylm(θ,φ) (8.58)
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, where:

k2 =
2mE
 h2

(8.59)

Applying the boundary condition jl(kR) = 0, it may be shown that
the allowed energies are given by:

Enl =
 h2

2MR2
β2n,l (8.60)

, whereM is the mass of the electron, R is the radius of the sphere, n
and l are the principle and azimuthal quantum numbers, respectively,
and βn,l = knlR denotes the nth zero of the lth spherical Bessel
function.

Since we are interested in the large energy limit we can use the
asymptotic form of the spherical Bessel functions:

jl(kr) =
cos
[
kr− π

2 (l+ 1)
]

kr
(8.61)

and write the allowed energies as:

E =
 h2π2

8MR2
(2n+ l+ 2)2 (8.62)

Figure 8.5 shows the comparison between the exact numerical value
for the energies, as given by Equation (8.60), and the approximate an-
alytical solution found in Equation (8.62). As can be seen, the approx-
imate solution provides very accurate results even for small values of
both n and l.

If we define the excited states’ orbital numbers as nf = n+∆n and
lf = l+∆l, the the transition frequencies can be expressed as:

ωif =
 hπ2

8MR2
(4n+ 2∆n+ 2l+∆l+ 4)(2∆n+∆l) (8.63)

The relative weight of each of these transitions is given by their
oscillator strength terms. As dictated by the Thomas-Reiche-Kuhn
sum rules, these terms sum to unity and can be described using the
standard quantum harmonic oscillator definition:

Sif =
2Mωif

 hN
| < f|z|i > |2 (8.64)

, where N is the number of conduction electrons in the nanosphere.
After additional simplification and degeneracy considerations described
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Figure 8.5: Percentage difference between the exact numerical solution
given by Equation (8.60), and the approximate analytical solu-
tion found in Equation (8.62). The inset just shows a detailed
zoomed area.

elsewhere [162], the final expression for the oscillator strength is
given as:

Sif ≡ Sn,l,∆n,∆l = δ∆l,−1
16l(2n+ 2∆n+ l+ 1)2(2n+ l+ 2)2

π2n3F(4n+ 2∆n+ 2l+ 3)3(2∆n− 1)3

+ δ∆l,+1
16(l+ 1)(2n+ 2∆n+ l+ 3)2(2n+ l+ 2)2

π2n3F(4n+ 2∆n+ 2l+ 5)3(2∆n+ 1)3
(8.65)

, where nF is the value of the quantum number n on the Fermi sur-
face when l = 0. The magnetic quantum number m, has already been
incorporated into the terms and acts as a multiplicative degeneracy
factor.

Using Equations (8.55), (8.56), (8.63) and (8.65), the overall permit-
tivity can be described by evaluating Equation (8.54) over the follow-
ing ranges, as described elsewhere [162]:

∆l = −1, 1
1−∆l

2
6 ∆n 6 nF

0 6 n 6 nF −
1−∆l

2

2(nF −n−∆n+
1−∆l

2
) 6 l 6 2(nF −n)

(8.66)

Figure 8.6 shows the real and imaginary parts of the QM corrected
relative electric permittivity calculated with Equation (8.54) as a func-
tion of both the incident energy E (resonance range) and the particle
radius R for a silver nanosphere.
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(a) Real part. The black dots rep-
resent the resonance position
(where <{ε} = −2).

(b) Imaginary part.

Figure 8.6: QM corrected relative electric permittivity as a function of both
the incident energy (resonance range) and the particle radius for
silver.

8.4.2 Convergence to bulk regime

Figure 8.7 shows the real and imaginary parts of the relative elec-
tric permittivity of silver as we increase the particle radius, for three
different energies of the incident radiation. The values of the elec-
tric permittivity have been calculated following Equation (8.54). A
clear convergence to the bulk values (Johnson and Christy [87] and
Palik [171]) is observed. The inset of Figure 8.7 clearly shows how
at R = 10nm the QM corrected results already converge to bulk re-
sults, except for the remain of a small bump belonging to the series
of period ≈ 2nm.

8.4.3 Main results

We now focus on single particles as well as dimers of radius R =

4nm, made of silver and gold. The dimers are aligned with the inci-
dent electric field in all cases. Figure 8.8 shows the spectral extinction
efficiency (cross-section normalized by the total geometric section)
for these systems, calculated with both bulk and QM corrected op-
tical properties. The most remarkable feature of the spectral depen-
dence of Qext shown in Figure 8.8 is the fact that, when including QM
corrections, resonances shift to smaller wavelengths (blueshift [149])
and also become weaker (lower peaks). The redshift and the peak
increment of the dimer resonance with respect to the isolated particle
persist in the QM results.

In Figure 8.9 we have plotted the spectral relative electric permittiv-
ity (ε = εr + iεi) corresponding to the case of a particle with radius
R = 4nm, for both silver and gold. As can be seen, in the case of sil-
ver, Figure 8.9a, the QM corrected real part of ε intercepts εr = −2 at
smaller wavelengths than the bulk results, thus producing a blueshift
of the resonant condition. In the case of gold, Figure 8.9b, the QM
corrected ε does not even intercept εr = −2, thus we do not see any
resonance peak in Figure 8.8b.
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Figure 8.7: Relative electric permittivity of silver as a function of the particle
radius for three different energies. Bulk values taken from John-
son and Christy [87] as well as Palik [171] are also shown. The
insets show zoomed areas between R = 8nm and R = 10nm.

On the other hand, the QM corrected imaginary part of ε is greater
than the bulk one for all wavelengths, for both silver and gold. For
sufficiently small x, the extinction efficiency equals the absorption, as
the scattering may be considered zero [8]:

Qext ≡ Qabs = 4x=

{
ε− 1

ε+ 2

}
(8.67)
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Figure 8.8: Spectral extinction efficiency for both single particles and dimers
of radius R = 4nm, calculated with both bulk and QM corrected
optical properties.

, where x = 2πR/λ is the size parameter, = denotes the imaginary
part and ε = εr + iεi is the relative electric permittivity. In the reso-
nance condition (εr = −2), Equation (8.67) becomes:

Qext ≡ Qabs =
12x

εi
(8.68)

According to Equation (8.68), the greater the imaginary part, the
lower the extinction. Figure 8.10 shows the extinction efficiency for
a resonant (εr = −2) isolated sphere, varying both the size parame-
ter x and the imaginary part of the electric permittivity εi, calculated
with the Mie theory. It can be seen that, for sufficiently small x, the
extinction efficiency (and therefore the absorption efficiency as well)
decreases as we increase the imaginary part of the electric permittiv-
ity. This has been reported in the literature as anomalous absorption
[172], and accounts for the reduction of the peaks.

As a result, it is reasonable to think that two particles close to each
other with quantum corrected optical properties will interact less, so
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Figure 8.9: Spectral real and imaginary parts of the relative electric permit-
tivity for the case R = 4nm. Both bulk and QM corrected values
are shown.

that the associated redshifts and peak increments with respect to the
isolated case will be smaller, as shown in Figure 8.11. Once again,
the case of gold (Figure 8.11b) is especially notorious, since the QM
correction quenches the plasmonic resonance and no redshift is ob-
served.

As a summary, the introduction of QM corrected optical proper-
ties becomes in blueshifted [149] and weaker resonances as shown in
Figure 8.8. The shifting arises as a consequence of the interception
of the real part of the relative electric permittivity with εr = −2 (see
Figure 8.9). On the other hand, the weakening of the resonances is
due to the greater imaginary part of the relative electric permittivity
when considering quantum corrections (see Figure 8.9). According
to Equation (8.68), the greater the imaginary part, the lower the ex-
tinction. The case of silver allows us to test our calculations, while
the case of gold shows how important these quantum considerations
may be when treating very small particles close to resonance. As a
direct consequence, two particles close to each other with quantum
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Figure 8.10: Extinction efficiency for a resonant (εr = −2) isolated sphere,
varying both the size parameter x and the imaginary part of the
electric permittivity εi, calculated with the Mie theory.

corrected optical properties interact less, therefore producing smaller
shifts and lower peak increments in the far-field cross-sections, as
corroborated by Figure 8.11.

8.5 a study of metal nanoshells

The manipulation of purpose-built metallic nanoparticles (NPs) has
achieved a great level of accuracy in the last years [173]. The special
case of nanoshells has been widely studied [174], in part due to its
numerous applications in biomedicine, ranging from high-resolution
tumor imaging (in the case of scattered light), to cancer therapy (this
time the absorbed light causes cell death in tumors). In particular,
nanoshells can be designed to interact with some desired light wave-
lengths, making them very useful for detection and treating of can-
cerous cells [175]. In addition, the core-shell system is, by itself, a
useful description of a particle under the influence of a nearby sur-
rounding medium, an element of great interest in the simulation of
many systems.

8.5.1 Linear polarization degree

In the scattering plane, defined by the incident and observation
directions, the linear polarization degree of the scattered light, PL(θ),
is defined as:

PL(θ) =
Is(θ) − Ip(θ)

Is(θ) + Ip(θ)
(8.69)
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Figure 8.11: Spectral shift (left axis, ‘∗’ symbol) and peak increment (right
axis, ‘o’ symbol) of the spectral extinction resonance shown
in Figure 8.8 as a function of the dimer gap lgap. ∆λmax and
∆Qmax

ext represent the difference with respect to the isolated par-
ticle case.

, where Is(θ) and Ip(θ) are the scattered intensities with polariza-
tion perpendicular or parallel to the scattering plane, respectively, as
shown in Figure 8.12. Extreme cases occur when only Is is present
(PL = +1) or when we only have Ip (PL = −1). Because of this
definition, these two magnitudes are not distinguishable at θ = 0◦

or θ = 180◦ (forward and backward scattering, respectively), there-
fore producing values of PL(0◦) = PL(180

◦) = 0. However, its value
for other observation angles may carry interesting information. For
instance, for isotropic dipole-like particles, it can be shown that the
scattered intensity at right-angle contains only perpendicular compo-
nent, i.e. Ip(90◦) = 0, thus the linear polarization degree equals 1.
For larger particles, however, multipolar orders cause the Ip(90◦) to
be different from zero, and so the linear polarization degree at right-
angle no longer equals 1. In general, deviations from 1 in the linear
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polarization degree at right-angle are caused by non-dipole-like be-
haviors.

p
s

✓
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Ip ps

Figure 8.12: Sketch of a typical experimental setup used to measure the scat-
tered light either with polarization perpendicular (s) or parallel
(p) to the scattering plane.

In their work, Setién et al. [176] showed how the linear polariza-
tion degree measured at right angle, PL(90◦), was very sensitive to
changes in the NP size, finding that the spectral position of the dipo-
lar resonance redshifts clearly as the size of the NP is increased. Be-
sides, a quadrupolar peak appears when increasing the NP size (with
almost no shift). Interestingly, the PL minima positions are coincident
with the quadrupolar peak positions, as shown in Figure 8.13.

In the same work [176], Setién et al. studied a more complex situa-
tion: the case of two interacting NPs (e.g. a dimer). In this case, both
the quadrupolar behavior and the interaction of the NPs caused the
appearance of more peaks in the PL(90◦), as shown in Figure 8.14.

8.5.2 Analysis of the core variation

In the following, it will be shown how this parameter, PL(90◦), is
also sensitive to changes in the core (radius and optical properties)
of metal nanoshells (such as that shown in Figure 8.15), thus being
useful for their setup and characterization.
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Figure 4. (a) Scattered intensity, Isca(90�), and (b) linear polarization degree,
PL(90�), of a spherical silver particle as a function of the incident wavelength for
several sizes. The inset in (b) shows the evolution of the values of the minimum
of the linear polarization degree, PL(90�), as a function of particle size.

and R2. Also note that, although all cases in the previously specified particle size range have
been studied, only the most representative ones are plotted in the forthcoming figures. These
cases are sufficient to show the evolution of the curves in the analyzed range with clear plots.

In all cases, the plane YZ is the scattering plane and the incident beam always travels in
the –Z -direction (figures 3(a) and (b)). It is a depolarized beam, i.e. all possible orientations of
the electric field in the transversal plane XY are equally possible. Scattered light is observed
along the Y-axis, i.e. right-angle scattering intensities corresponding to the field parallel or
perpendicular to the scattering plane. Ik and I? are calculated in order to determine PL(90�).
For the dimer case, we have chosen the configuration with the two particles aligned along the
X-axis and illuminated along the Z-direction. This is because in this situation, particle
interaction is stronger, there is no shadowing effect and the retardation effects do not exist in
either the illumination or the scattered light.

4. Results

4.1. Isolated particle

The case of the isolated silver NP is shown in figure 4(a), where Isca(90�) is plotted for spheres
of sizes ranging from R = 30 nm to R = 70 nm. For small particles, R < 30 nm, the dipolar
behavior is dominant, therefore exhibiting a single resonance peak. This resonance broadens and
red-shifts as the particle size increases. At the same time (and as expected) a new peak, due to
the quadrupolar resonance, appears at lower wavelengths. This peak does not shift significantly
with an increase of particle size, and the corresponding resonance can be easily assessed by
means of the linear polarization degree calculated at right scattering angle. This parameter is
plotted in figure 4(b) where it reaches a minimum where the quadrupolar resonance is excited.
This minimum shifts to the red, although very slightly, as the particle size increases. More
drastic is the change in depth of the minimum. This increases with particle size, starting to
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(b) Linear polarization degree
PL(90

◦). The inset shows the
evolution of the values of the
minimum of the linear polar-
ization degree, PL(90

◦), as a
function of particle size.

Figure 8.13: Spectral behavior of right-angle scattering magnitudes of a
spherical silver particle as a function of the incident wavelength
for several sizes. Taken from [176].
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(b)

(a)

Figure 5. (a) Right-angle scattered intensity, Isca(90�), and (b) right-angle linear
polarization degree, PL(90�), produced by a silver dimer of spherical particles
as a function of the incident wavelength for several values of the particle radius.
Inset of (a): spectrum of Isca(90�) for an isolated silver NP of R = 50 nm. Inset
of (b): PL(90�) for the isolated particle case. The two right figures show the near
electric field distributions for R = 50 nm corresponding to the first and second
minima of PL in (b), as indicated by the black arrows. The incident beam is a
plane wave linearly polarized parallel to the X-axis (in red) and propagating in
the �Z -direction (the Z-direction corresponds to the blue axis).

PL indicates that for a given short distance between particles, and within a given spectral range,
incident light is less extinguished due to particle interaction. This curious property shown by
silver NPs also means that NP interaction can increase transmission at the proper frequencies
but also that it can be monitored through the measurement of PL at right scattering angles. This
parameter summarizes particle size effects and also the inhibition of the dipolar contribution
due to particle interaction.

To go further in this interpretation, we study the spectral behavior of Isca(90�) and PL(90�),
for a dimer composed of two silver NPs of different size (AD, see figure 6). We choose particle
sizes in such a way that one of them has a sufficient size (R = 50 nm) so as to produce two
resonances, dipolar and quadrupolar (see the inset of figure 5(a)), whereas the other is chosen
small enough so as to exhibit only the dipolar plasmon resonance (R = 20 nm). Both Isca(90�)
and PL(90�) are studied as a function of the particle distance, ranging from d = 0 nm (in
contact) to d = 10 nm (see figure 6). For d = 10 nm, interaction is very weak and the constituent
particles can be considered independent. Isca(90�) behaves similarly to the isolated NP case

New Journal of Physics 12 (2010) 103031 (http://www.njp.org/)

Figure 8.14: (a) Right-angle scattered intensity, Isca(90
◦), and (b) right-angle

linear polarization degree, PL(90◦), produced by a silver dimer
of spherical particles as a function of the incident wavelength
for several values of the particle radius. Inset of (a): spectrum
of Isca(90

◦) for an isolated silver NP of R = 50nm. Inset of
(b): PL(90◦) for the isolated particle case. The two right fig-
ures show the near electric field distributions for R = 50nm
corresponding to the first and second minima of PL in (b), as
indicated by the black arrows. The incident beam is a plane
wave linearly polarized parallel to the x-axis (in red) and prop-
agating in the −z-direction (the z-direction corresponds to the
blue axis). Taken from [176].
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Figure 8.15: Sketch of an illuminated silver nanoshell. Shell: Ag, R = 50nm.
The nanoshell is illuminated with polychromatic light linearly
polarized at 45◦. Then the scattered intensities Is and Ip are
calculated at θ = 90◦. This is not the unique configuration for
a nanoshell. Alternative configurations (with applications in
drug delivery) may have no metal at all.

The nanoshell is illuminated with polychromatic light linearly po-
larized at 45◦, which, for our purpose, is equivalent to incidence with
unpolarized light. The shell has a fixed outer radius of R = 50nm. For
each incident wavelength, the scattered intensities with both polariza-
tions are calculated using DDSCAT [82, 85]. The linear polarization
degree can then be obtained using Equation (8.69).

We shall present a spectral analysis of silver nanoshells, varying
both the radius and the refractive index of the core.

a. Varying the core radius

Figure 8.16a shows the spectral scattered intensity with perpen-
dicular polarization calculated at right-angle, Is(90◦), for sev-
eral core radii r, with a fixed core refractive index ncore = 2,
and external radius R = 50nm. As can be clearly seen, the main
resonance peak reduces its height3, and redshifts, as r increases.
Moreover, a new resonance peak appears at lower wavelengths,
almost not shifting at all as we vary the core radius.

The corresponding right-angle scattered intensity with parallel
polarization, Ip(90◦), is shown in Figure 8.16b. The resonance

3 Remember that in this configuration, increasing the core radius means reducing the
metal thickness.
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Figure 8.16: Spectral dependence of the scattered intensity calculated at
right-angle, for several core radii, with a refractive index for
the core ncore = 2.

peaks blueshift as r increases. Furthermore, the spectral posi-
tion of these peaks almost coincides with the spectral position
of the small peaks that appeared in Is(90◦) (Figure 8.16a).

Figure 8.17 shows the spectral dependence of the linear polar-
ization degree calculated at right-angle, PL(90◦), for the condi-
tions just described for Figure 8.16. It is clear that the PL(90◦)
minima depend on the core radius, not only their location in the
spectrum but also their depth. Two important features are wor-
thy a comment: as we increase the core radius (thinner shells),
the minima become deeper and shift towards the red; besides,
small core radius nanoshells behave mostly as a single NP (with
deeper minima). From r = 30nm on, the depth of the mini-
mum saturates, while its spectral position is further modified.
Though the behavior of these curves is directly derived from
Figure 8.16, in Section 8.5.2.1 we will try to explain the origin of
the minima, showing the scattered intensities in two particular
cases.
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Figure 8.17: Spectral dependence of PL(90◦) for several core radii, with a
refractive index for the core ncore = 2.

b. Varying the core refractive index

Figure 8.18 shows the spectral dependence of PL(90◦) for sev-
eral core refractive indices, with a core radius r = 40nm.
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Figure 8.18: Spectral dependence of PL(90◦) for several core refractive in-
dices, with a core radius r = 40nm.

The situation here is more complex, with several local maxima
and minima appearing. Nevertheless, the absolute minima of
PL(90

◦) also become deeper and redshift when the core refrac-
tive index is increased. Interestingly, the depth of the minima
does not saturate even for ncore = 2, as opposed to the case of
varying the core radius (see Figure 8.17). Thus, PL(90◦) gives
information about the optical properties of the core as well.

8.5.2.1 Scattered intensities Is and Ip: two particular cases

In order to understand the origin of the minima in the PL(90◦), we
show here the spectra of the scattered intensities Is(90◦) and Ip(90◦)
as well as PL(90◦) for two particular cases. The first one, Figure 8.19,
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with a core radius r = 10nm, clearly shows a single minimum in
PL(90

◦), due to a maximum in Ip(90◦) (quadrupolar behavior).
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Figure 8.19: Spectral scattered intensities as well as linear polarization
degree calculated at right-angle, for a silver nanoshell with
r = 10nm and ncore = 2.

The second case, Figure 8.20, with a larger core radius r = 30nm,
shows two minima in PL(90◦): the first one again due to a maximum
in Ip(90◦) (quadrupolar behavior) and the second due to an inhibition
of the dipolar resonance (minimum of Is(90◦) with Ip(90◦) different
from zero).
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Figure 8.20: Spectral scattered intensities as well as linear polarization
degree calculated at right-angle, for a silver nanoshell with
r = 30nm and ncore = 2.

8.5.3 Conclusions

The main conclusions that we can draw from this analysis is that
PL(90

◦) is a sensitive parameter to characterize nanoshells, as it pro-
vides information about their geometric structure and their optical
properties. The next step would involve studying more complex sys-
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tems, such as nanocups, the influence of the surrounding medium, or
even anisotropies (with the help of E-DDA [83]).



9
S U M M A RY

As a summary, we can say that we have successfully subjected the
E-DDA code to a set of tests in the nanometer range, producing self-
consistent results that not only prove the reliability of the method but
also extend the current domain of applicability of the Discrete Dipole
Approximation.

9.1 formative/training tasks

The development of this work has involved carrying out several
computational tasks as well as revising many relevant theories. Some
of these tasks are detailed next:

approaching the problem As a means to implement a code ca-
pable of performing calculations based on DDA from scratch,
both the theoretical formalism and numerical details of the Dis-
crete Dipole Approximation needed to be reviewed. This has
required a clear understanding of both the processes involved
and their modeling conditions.

units With respect to the systems of units, the fact that in electro-
magnetism there exist several systems of units, each with dif-
ferent expressions, has meant a serious issue when comparing
theoretical expressions. This effort has produced the tables de-
tailed in Appendix A.

fortran 90 Without any doubt, the design and implementation
of the software tool (E-DDA code), written in Fortran 90, has
meant the greatest computational challenge that I have accom-
plished to date.

research competition The generalization of the DDA to materi-
als with arbitrary optical constants is currently a topic of great
interest, with several groups trying to produce the definitive
tool. During the development of this dissertation, I could feel
this competition when papers related to the subject were pub-
lished.

9.2 conclusions about the results

In this section, the most important conclusions about the results
are briefly summarized.
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9.2.1 Validation of the E-DDA

Both the symmetry and convergence tests allow us to check the self-
consistency of our calculation method, proving the deployment of a
tool with great potential. The E-DDA code has been tested against
the well-proven DDSCAT, probably the most advanced DDA imple-
mentation to date, finding a very good agreement for a case where
their applicability range overlap, such as a nanoshell system which
includes inhomogeneities and presence of metallic and dielectric me-
dia.

9.2.2 Magneto-optical materials

The main conclusion one can draw from these results is the fact that
the experimentally accessible ∆I/I-ratio seems virtually unaffected by
the geometric confinement of the disks, despite the remarkable size-
induced differences that are found in the dipole moment distributions
especially for sub-wavelength disks. We have shown that the insensi-
tivity of the ∆I/I-ratio to lateral confinement is a consequence of the
close similarity of the optical and magneto-optical polarization pat-
terns, irrespective of disk size, and of the fact that their contributions
to the far-field intensity scale nearly in the same way.

9.2.3 Composite materials

We have resorted to our E-DDA code in order to compare several
approaches to the analysis of the optical behavior of composite ma-
terials, starting with nanoscopic conventional objects in the visible
domain. The Combined Approach that we propose clearly gives a
better agreement with experimental results. We think that it is an ad-
vance in this kind of modeling, as it preserves the individual nature
of the constituents and at the same time introduces a variation in the
optical properties of a discrete element that is given by the proper-
ties of the surrounding medium. This is key in modeling any kind
of composite material, admitting that handling macroscopic proper-
ties is only an approach to the exact solution of the electronic band
structure of each particular discrete element.

9.2.4 Additional aspects

From the set of results presented in Chapter 8, probably the most
important ones are those related to the analytical quantum mechan-
ical model. We have seen that the introduction of QM corrected op-
tical properties becomes in blueshifted [149] and weaker resonances
as shown in Figure 8.8. The shifting arises as a consequence of the
interception of the real part of the relative electric permittivity with
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εr = −2 (see Figure 8.9). On the other hand, the weakening of the
resonances is due to the greater imaginary part of the relative electric
permittivity when considering quantum corrections (see Figure 8.9).
The case of silver allows us to test our calculations, while the case
of gold shows how important these quantum considerations may be
when treating very small particles close to resonance. As a direct con-
sequence, two particles close to each other with quantum corrected
optical properties interact less, therefore producing smaller shifts and
lower peak increments in the far-field cross-sections, as corroborated
by Figure 8.11.

9.3 future prespectives

Many promising aspects and ideas have arisen during these years’
work. For obvious reasons, most of them cannot be properly ad-
dressed, but some still deserve future research and development, and
are worth mentioning here.

Until very recently, there has been little work on ultraviolet (UV)
plasmonics (λ < 400nm), in part because of the challenge of making
appropriately small nanostructures, in part because gold LSPRs do
not extend into the ultraviolet. However, in response to an increasing
demand to detect and recognize biological toxins [90, 177], to enhance
biological imaging, and to characterize semiconductor devices at the
nanometer scale, interest in UV plasmonics is growing [178–180]. Al-
though the other popular plasmonic metal, silver, does have an LSPR
that extends into the near UV, it cannot span the entire UV region
(200 − 400nm, or 3 − 6 eV) [181]. It has been recognized for some
time that aluminum might be a compelling metal for UV plasmonics
because its bulk plasma frequency is 13 eV [178, 179, 182–184]. How-
ever, aluminium oxidizes even more rapidly than silver, a problem
that introduces scientific and practical difficulties for implementing
effective stable nanodevices.

Consequently, there is a need to explore other metals that might
be nanostructured for use in UV plasmonics (with biocide or self-
cleaning properties for example). The candidate is currently involved
in a study to assess the efficacy of various metals for use in ultravio-
let plasmonics as well as another study of quantum effects in small
plasmonic particles in the UV-VIS range, comparing UV-candidate
materials such as aluminum or gallium with silver and gold.

Materials showing electromagnetic properties that are not attain-
able in naturally occurring media, so-called metamaterials, have been
lately, and still are, among the most active topics in optical and ma-
terials physics and engineering. Among these properties, one of the
most attractive ones is the sub-diffraction resolving capability pre-
dicted for media having an index of refraction of −1. It has been re-
cently shown [185] that fully three-dimensional, isotropic metamate-
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rials with strong electric and magnetic responses in the optical regime
can be realized, based on spherical metallo-dielectric core-shell nanospheres.
The magnetic response stems from the lowest, magnetic-dipole reso-
nance of the dielectric shell with a high refractive index, and can
be tuned to coincide with the plasmon resonance of the metal core,
responsible for the electric response. Investigating their scattering
properties in connection with directionality and invisibility could be
a very interesting future research line.

Dielectric nanostructures make a new twist on light scattering phe-
nomena. Subwavelength particles made of high-dielectric materials
exhibit very strong magnetic response, which has been recently demon-
strated experimentally [186, 187]. Dielectric nanoparticles with strong
magnetic response can be used as building blocks to explore new
types of interactions at nanoscales. The lower losses, compared to
plasmonic counterparts, allow to employ dielectric nanostructures
for a variety of applications spanning from optical nanotantennas
towards metamaterials. In particular, studying the directionality of
light in the infrared (IR) range could boost applications in heating
control.

Metallic nanoparticles (NPs) can efficiently release heat under opti-
cal excitation. The heat generation process involves not only absorp-
tion of incident photons, but also heat transfer from the NP to the
surrounding matrix. The mechanism of heat release is very simple -
the laser electric field strongly drives mobile carriers inside the NPs,
and the energy gained by carriers turns into heat. Then the heat dif-
fuses away from the NP and leads to an elevated temperature of the
surrounding medium. Heat generation becomes especially strong in
the case of metal NPs in the regime of plasmon resonance. In the
case of semiconductor NPs, the heat generation rate is much weaker
since heat dissipation occurs through an interband absorption pro-
cess with the creation of a single mobile electron and hole (exciton). I
am currently involved in a project on the heating effects in plasmonic
nanoparticles, where the electromagnetic losses from the electromag-
netic waves in the NPs are assumed to be the only heat source. These
results are being written in manuscript form to be sent for publication
to a high impact journal.
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A
S Y S T E M S O F U N I T S

It is well-known that, in physics, there exist several systems of units
with specific application fields. The different physical relations do not
usually depend on the system of units, i.e. the expressions relating
the physical magnitudes are the same regardless of the system of
units used. This is not the case in electromagnetism.

The two systems of electromagnetic units in most common use to-
day are the SI and the Gaussian system. Table A.1 displays the values
of ε0 and µ0, the defining equations for D and H, the macroscopic
forms of Maxwell’s equations and the Lorentz force equation in the
five common systems of units of electromagnetism. For each system
of units the continuity equation for charge and current is given by:

∇ · J + ∂ρ
∂t

= 0 (A.1)

, which can be verified from the first pair of Maxwell’s equations
in the table in each case. Similarly, in all systems the statement of
Ohm’s law is J = σE, where σ is the electric conductivity.

During the preparation of this dissertation, the candidate has faced
the additional difficulty that the majority of references looked up
(even the newest ones) use the Gaussian system of units. In Ta-
ble A.2 the conversion for symbols and formulas is presented, which
allows for the “translation” of expressions from the Gaussian system
of units to the SI, the one used in this work. In particular, Table A.2
has been used to translate the expressions of the Lorentz local field
(Equation (3.3)), the radiative field (Equation (3.9)) and the extinction
(Equation (4.13)), absorption (Equation (4.14)) and scattering (Equa-
tion (4.15)) cross sections, these last taken from Chaumet and Rah-
mani [22].
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quantity gaussian si

Velocity of light c (µ0ε0)
−1/2

Electric field (potential, voltage) E(Φ,V)√
4πε0

E(Φ,V)

Displacement
√
ε0
4πD D

Charge density (charge, current
density, current, polarization)

√
4πε0ρ(q, J, I, P) ρ(q, J, I, P)

Magnetic induction
√
µ0
4πB B

Magnetic field H√
4πµ0

H

Magnetization
√
4π
µ0

M M

Conductivity 4πε0σ σ

Dielectric constant ε0ε ε

Magnetic permeability µ0µ µ

Resistance (impedance) R(Z)
4πε0

R(Z)

Inductance L
4πε0

L

Capacitance 4πε0C C

c = 2.99792458× 108 m/s

ε0 = 8.854187817 · · · × 10−12 F/m

µ0 = 1.2566370614 · · · × 10−6 H/m√
µ0
ε0

= 376.7303 . . . Ω

Table A.2: Conversion table for symbols and formulas. The symbols for
mass, length, time, force, and other not specifically electromag-
netic quantities are unchanged. To convert any equation in SI vari-
ables to the corresponding equation in Gaussian quantities, on
both sides of the equation replace the relevant symbols listed be-
low under “SI” by the corresponding “Gaussian” symbols listed
on the left. The reverse transformation is also allowed. Taken
from Jackson [16].





B
F I E L D S O F E L E C T R I C A N D M A G N E T I C D I P O L E S

This section is partly based on Chapter 14 of Ref. [188]. We derive
explicit expressions for the real-valued electric and magnetic fields of
an oscillating z-directed electric dipole p(t) = pẑ cosωt. And also
derive and plot the electric and magnetic field lines at several time
instants. This problem has an important history, having been consid-
ered first by Hertz in 1889 in a paper reprinted in [189].

Restoring the e−iωt factor in Equations (2.13) and (2.14) and taking
real parts, we obtain the fields:

<{E(r)} = p cosωt
[
k sin(kr−ωt) +

cos(kr−ωt)
r

]
3r̂(r̂ · ẑ − ẑ)
4πε0r2

+
pk2r̂× (ẑ× r̂)

4πε0r
cosωt cos(kr−ωt) (B.1)

<{H(r)} = pω cosωt
[
k cos(kr−ωt) −

sin(kr−ωt)
r

](
ẑ× r̂
4πr

)
(B.2)

In spherical coordinates, we have ẑ = r̂ cos θ− θ̂ sin θ. This gives
3r̂(r̂ · ẑ) − ẑ = 2r̂ cos θ + θ̂ sin θ, r̂ × (ẑ × r̂) = −θ̂ sin θ, and ẑ × r̂ =

φ̂ sin θ. Therefore, the non-zero components of E and H are Er, Eθ
and Hφ:

Er(r) = p cosωt
[
k sin(kr−ωt) +

cos(kr−ωt)
r

](
2 cos θ
4πε0r2

)
(B.3)

Eθ(r) = p cosωt
[
k sin(kr−ωt) +

cos(kr−ωt)
r

](
sin θ
4πε0r2

)

−
pk2 sin θ
4πε0r

cosωt cos(kr−ωt) (B.4)

Hφ(r) = pω cosωt
[
k cos(kr−ωt) −

sin(kr−ωt)
r

](
sin θ
4πr

)
(B.5)

We rewrite Equations (B.3)-(B.5) in terms of the dimensionless vari-
ables u = kr and δ = ωt, defining E0 = pk3/(4πε0) and H0 =

pωk2/(4π):
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Er = E0
2 cos θ
u2

cos δ
[

sin(u− δ) +
cos(u− δ)

u

]
(B.6)

Eθ = −E0
sin θ
u

cos δ
[

cos(u− δ) −
cos(u− δ)

u2
−

sin(u− δ)

u

]

(B.7)

Hφ = H0
sin θ
u

cos δ
[

cos(u− δ) −
sin(u− δ)

u

]
(B.8)

Please notice that H0 is related to E0 by:

H0 =
ωε0
k
E0 =

√
ε0
µ0
E0 (B.9)

We now introduce the auxiliary functions:

Q(u) = sin(u− δ) +
cos(u− δ)

u
(B.10)

R(u) = cos(u− δ) −
sin(u− δ)

u
(B.11)

, noting that:

Q ′(u) =
dQ(u)

du
= cos(u− δ) −

cos(u− δ)

u2
−

sin(u− δ)

u
(B.12)

Therefore, the fields are:

Er = E0
2 cos θ
u2

cos δQ(u), Eθ = −E0
sin θ
u

cos δQ ′(u) (B.13)

Hφ = H0
sin θ
u

cos δR(u) (B.14)

b.1 electric and magnetic fields lines

b.1.1 Electric field lines

By definition, the electric field is tangential to its field lines. A small
displacement dr along the tangent to a line will be parallel to E at that
point. This implies that dr× E = 0, which can be used to determine
the lines. Because of the azimuthal symmetry in the φ variable, we
may look at the field lines that lie on the xz-plane (that is, φ = 0).
Then, we have:
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dr× E = (r̂dr+ θ̂rdθ)× (r̂Er + θ̂Eθ) = φ̂(drEθ − rdθEr) = 0

⇒ dr

dθ
=
rEr

Eθ
(B.15)

This determines r as a function of θ, giving the polar representation
of the line curve. It follows that the equation for the lines in the
variable u will be:

du

dθ
=
uEr

Eθ
= −2 cot θ

[
Q(u)

Q ′(u)

]

⇒ d

dθ
[lnQ(u)] = −2 cot θ = −

d

dθ

(
ln sin2 θ

)
(B.16)

, which gives:

d

dθ
ln
[
Q(u) sin2 θ

]
= 0⇒ Q(u) sin2 θ = CE (B.17)

, where CE is a constant. Thus, the electric field lines are given
implicitly by:

[
sin(u− δ) +

cos(u− δ)

u

]
sin2 θ

=

[
sin(kr−ωt) +

cos(kr−ωt)
kr

]
sin2 θ = CE (B.18)

Ideally, one should solve for r in terms of θ. Because this is not
possible in closed form, we prefer to think of the lines as a contour
plot at different values of the constant C. The resulting graphs are
shown in Figure B.2. They were generated at the four time instants
t = 0, T/8, T/4 and 3T/8, where T is the period of oscillation, T =

2π/ω. The x,z distances are in units of λ and extend to 1.5λ. We
observe how the lines form closed loops originating at the dipole. The
loops eventually escape the vicinity of the dipole and move outwards,
pushing away the loops that are ahead of them. In this fashion, the
field gets radiated away from its source.

b.1.2 Magnetic field lines

As we only have φ-component for the magnetic field, we may look
at the field lines that lie on the xy-plane (that is, θ = π/2). The
magnetic field lines are given implicitly by:

Hφ = H0
cos δ
u
R(u) = CH

= H0
cosωt
kr

[
cos(kr−ωt) −

sin(kr−ωt)
kr

]
= CH (B.19)
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Figure B.1: Electric field lines of an oscillating electric dipole at successive
time instants. The field lines lie on the xz-plane.
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Figure B.2: Magnetic field lines of an oscillating electric dipole at successive
time instants. The field lines lie on the xy-plane.
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