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ABSTRACT   

Tele-presence systems will enable participants to feel like they are physically together. In order to improve this feeling, 
these systems are starting to include depth estimation capabilities. A typical requirement for these systems includes high 
definition, good quality results and low latency. 
Benchmarks demonstrate that stereo-matching algorithms using Belief Propagation (BP) produce the best results. 
The execution time of the BP algorithm in a CPU cannot satisfy real-time requirements with high-definition images. 
GPU-based implementations of BP algorithms are only able to work in real-time with small-medium size images because 
the traffic with memory limits their applicability.  
The inherent parallelism of the BP algorithm makes FPGA-based solutions a good choice. However, even though the 
memory traffic of a commercial FPGA-based ASIC-prototyping board is high, it is still not enough to comply with real-
time, high definition and good immersive feeling requirements.  
The work presented estimates depth maps in less than 40 milliseconds for high-definition images at 30fps with 80 
disparity levels. The proposed double BP topology and the new data-cost estimation improve the overall classical BP 
performance while they reduce the memory traffic by about 21%. Moreover, the adaptive message compression method 
and message distribution in memory reduce the number of memory accesses by more than 70% with an almost negligible 
loss of performance. The total memory traffic reduction is about 90%, demonstrating sufficient quality to be classified 
within the first 40 positions in the Middlebury ranking. 
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1. INTRODUCTION  
In current telecommunication systems, the participants normally do not have the feeling of being physically together in 
one place. In order to improve the immersive face-to-face experience, tele-presence systems are starting to include 3D 
video and depth estimation capabilities. There are two main 3D systems used in tele-presence: the first of them is aimed 
at obtaining the Visual Hull of an object or scene, while the second one is attempts to obtain the depth of the different 
objects inside the scene. This work is focus on the second kind of systems. 
A typical requirement for these depth estimation systems [1] includes high definition (at least 1280x720 pixels), good 
immersive feeling (more than 80 disparity levels) and low latency (depth estimation in less than 40 milliseconds). 
We can classify depth estimation stereo matching techniques into two main categories: global and local, the former 
obtaining the best results. There are several global algorithms, but stereo matching using Belief Propagation (BP) is one 
of the most effective depth estimation techniques, covering the first positions in the Middlebury rankings. Most of the 
work using BP is based on the global approach presented in [3], because it converges faster and reduces memory 
requirements. However, the execution time of this algorithm in a CPU cannot satisfy real-time (RT) requirements with 
high-definition (HD) images. Other works [4] are focused on local or semi-global methods. They reduce the execution 
time, but they normally lose performance. There are some BP algorithms that have been implemented in GPUs although 
they have limited performance, working with low-resolution images and a small number of disparity levels [5][6]. 
Finally, several FPGA-based implementations of BP algorithms have been proposed. In [7], an approach that works with 
low-resolution images and 16 depth levels is proposed. In [2], a RT architecture is presented. However, they work with 
only 16 disparity levels and a phase-based depth estimation algorithm, which performs worse than BP-based algorithms.  
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A recent publication on FPGA [20] is also focused on implementing BP-based stereo matching on RT. However, our 
proposal outperforms [20] in three key aspects: first, it performs 1843.2 million Disparity estimations per second 
(obtained as “width*height*fps*Disparity_labels”), which is three time faster than [20]. Secondly, its results are similar 
to those of the BP-M algorithm, which shows poorer results than our proposal. Finally, our proposal can be implemented 
in a FPGA, while the one in [20] is an ASIC (very expensive and ad-hoc solution). 
With recent hardware advances, memory bandwidth has become a more performance-limiting factor than the total 
number of algorithm operations. To confront this problem, the image is split into several unconnected regions in [8]. The 
main drawback for RT applications is that the size of these regions is normally very small and this greatly reduces 
performance.  
Here, we perform an analysis of the different methods presented in the literature that can be used to reduce the memory 
traffic. For the first time, they are tested and compared in real-time and high-definition environments. As we demonstrate 
that they are not able to reach the specifications, we present a novel stereo matching algorithm based on BP. It includes 
occlusion, potential error and texture-less region handling. Several techniques have been used in stereo matching for 
occlusion handling [9]. A simple method of detecting occlusion is the cross-checking technique [10]. Other occlusion-
handling approaches generate better results [11] but they double the computational complexity. Some other techniques 
have improved depth estimation in texture-less areas [12]. However, they work with low-resolution images, 48 disparity 
levels and they do not satisfy RT requirements. Other approaches try to reduce potential errors [13], but they work with 
medium-resolution images, 14.7fps and 40 disparity levels. 
In this paper, we propose a global approach based on a double serial BP. A recently presented work [14] also uses a two-
step depth estimation algorithm, although with a local approach. Moreover, it does not comply with RT and HD 
requirements. Some proposals [15] use several BP modules and show better performance than ours. However, the time 
they take to obtain a small image disparity map is 250 times the time we use to obtain a HD disparity map. On the other 
hand, some proposals have concentrated on reducing the number of messages in the BP [16][17] or on compressing the 
messages to reduce memory [18]. However, they are not able to meet HD and RT constraints or to obtain good results.  
We analyze and compare some of the main techniques, which have been presented up to now, aimed at reducing memory 
traffic in order to demonstrate they are incapable of reaching real-time and high definition requirements. 
The system described here presents a BP architecture that complies with actual tele-presence system requirements [1]. 
The proposal includes two main contributions: 
1. It splits the algorithm into two BPs that work serially. Between the two blocks, a new data-cost is calculated based on 

a pixel classification. This classification identifies occlusions, potential-error, texture-less and reliable pixels. This 
contribution improves the single BP results while reducing the number of memory accesses for HD and RT systems 
(250 times faster than [15]).  

2. It defines an adaptive message compression technique to reduce memory traffic with little performance penalty. It 
provides better balance between performance, simplicity and implementation than [16][17][18]. Moreover, [18] 
shows some limitations: the message compression used in [18] is not linear, which means it has to uncompress, 
operate and compress again. In contrast, our proposal operates with compressed messages. Moreover, as was pointed 
out in [20], in [18] they assume data to be stored with floating point precision, but if the data precision is 8-bit, only 
30-50% compression rate can be achieved. Our proposal achieves more than 70%. 

The remainder of this paper is organized as follows. In Section 2, we comment on the requirements of the tele-presence 
system. In Section 3, we apply several existing methods to our system, in order to test whether they could fulfill the 
requirements. In Section 4, we discuss the double BP with occlusion, error and texture-less handling methods, as well as 
the compression technique used to meet the memory access requirements. Finally, we present the experimental results 
and conclusions in Sections 5and 6. 

 

2. SYSTEM REQUIREMENTS 
The tele-presence system, which is developed in [1] must satisfy the following constraints: 
1. Real-time system with low latency: the depth-estimation processing time is limited to 40 milliseconds. This 

requirement is essential to provide presence feeling. It allows 25 frames per second video. 
2. High resolution: the image size is 1280x720 pixels, although VGA format is supported, combined with higher frame 

rates. 
3. Immersion feeling: in order to obtain a life-like 3D model, at least 80 disparity levels seem to be needed. 

Additionally, a high-quality depth-estimation algorithm (i.e. Belief Propagation) is necessary. This translates into a 
high number of different depth levels, enough to make the user feel the 3D experience in a satisfactory way.  
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4. Memory bandwidth of the hardware platform:  an actual high-performance platform (for example, a commercial 
FPGA-based ASIC-prototyping board) has a limited maximum external-memory bandwidth (about 153 Gb/sec in the 
case of the paper reference platform [19]). This is the greatest limitation in fulfilling the previously commented 
restrictions as we will see later. 

As far as the authors know, there are no previous works that can satisfy all these requirements.  
In order to use reference [3]’s algorithm in a real system, several parameters have to be defined: 

a. In this work we have assumed that the minimum number of iterations and levels needed to cover the Section 
requirements is 7. We reached this conclusion through subjective tests developed in our tele-presence room. 
In the VISION project [1], some psychologists are part of the team and their main task is to evaluate the 
impact of the 3D quality for the tele-presence user. They observed significant differences going from six 
levels/iterations to seven, but negligible impact going from seven to eight.  

b. The algorithm variables are quantified using 16 bits and the number of disparity levels is set to 80. The first 
value was enough to obtain results with less than 1% of error in comparison with original C code. Moreover, 
it is inferior to 18 bits which allows every multiplication be carried out in a single FPGA DSP48. Finally, as 
we are using 64-bit width DDR2 external memory, quantifying with 16 bits enables the storage of 4 entire 
data within a single DDR2 word. The number of disparity levels was again subjectively evaluated by the 
psychologist team.   

c. The linear truncated model [3] was chosen for the messages as it presents a good balance between edge 
information and noise information.  

With these parameters the BP-based technique presented in [3] satisfies the quality constraint (point 3), despite edge 
error, occlusions and texture-less region flaws. However, it cannot satisfy the RT and memory bandwidth restrictions 
(points 1 and 4). This algorithm will be referred to as classical BP.  

The parameter that limits the processing time is the number of external memory accesses. The actual high-performance 
platform, which is used as the hardware reference model in this work [19], could support up to 6 DDR2-400 memories 
with 64 bits per memory data bus. The maximum number of memory accesses that a depth estimation algorithm can 
perform in this platform is about 384 million. Two parameters have been taken into account to obtain this limit: the 
algorithm variables are quantified with 16 bits and the estimation time is less than 40 milliseconds. However, if the 
classical BP algorithm is analyzed with a, b and c parameters, the total number of required memory accesses will be 
2881 million. Thus, the system is far from being implementable in an actual high-performance platform and it would 
require a reduction in the number of accesses of almost 90%. 
In Section 3 we adapt several proposals to our requirements. We analyze whether they are good enough to fulfill 
constraints 1-4.  

3. ALTERNATIVES TO REDUCE MEMORY TRAFFIC 
 

We have just seen that a high reduction in the number of memory accesses is required. In this Section, we adapt and 
apply some of the recently presented alternatives to our high-definition and real-time system to see whether they are able 
to reach the 90% reduction requirement in memory traffic with enough quality or not. 
We classify the methods to reduce the number of memory accesses in two categories: 
1. On the one hand, methods to reduce the number of messages.  
2. On the other hand, methods to reduce the number of disparity labels to be stored for each message (or at least some 

of them).  
We define the first kind of method as inter-pixel and the second as intra-pixel. Most of the works published aim their 
efforts at the first kind of method. We will show that the performance when using the proposed intra-message algorithm 
outperforms the inter-pixel methods.  

 
3.1 Inter-pixel methods 

3.1.1 Adaptive Belief Propagation (ABP) 
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The main idea of this method is to detect the messages that have converged. These messages will not be updated again. 
To detect these messages, for each message we compare the minimum disparity label (MDL) in a given iteration with the 
MDL obtained in the previous iteration where the message was updated. Due to the use of the bipartite grid technique, 
each pixel is computed in either odd or even iterations but never in consecutive iterations.  
This process starts after a certain level. The reason is that in early levels messages are not reliable. Therefore, a 
coincidence in the MDL does not mean a converged message. Empirically, we choose to apply the method to the last 3 
levels. Given that we are using the multi-grid technique, the levels which cause a greater number of memory accesses are 
the final ones. 
The pseudo-code for adaptive belief propagation is: 

 
 
 
 
 
 
 
 
 
 
 

When a message has converged we save two accesses (read and write) to memory (step 2.1). When it has not converged 
there are no memory savings (step 2.2). 
Using this algorithm, the percentage of memory accesses saved depends on the convergence of the disparity map.  
It is also possible to establish a certain convergence range. A message can be marked as converged when its MDL differs 
by a certain quantity in two consecutive iterations. Increasing the range saves more memory accesses, but introduces 
more potential errors. 

 
3.1.2 Quad-tree preprocessing (QTP) 

 
This method is based on the fact that an image can be faithfully represented by a subset of its pixels: the non-uniform 
samples. We apply the matlab quad-tree algorithm to obtain a sparse image of the left image that will be used as a mask 
for the BP algorithm. The sparse image will have non-null values in non-uniform pixels [17] and null values in the rest of 
the image. When running the BP algorithm, we perform the message passing algorithm only in non-null pixels. The 
pseudo-code for belief propagation with quad-tree preprocessing is: 

 
 
 
 
 
 
 
 
 

The percentage of non-uniform pixels depends on the image itself and the threshold applied.  
Using this algorithm, the percentage of memory accesses saved depends on the number of non-uniform pixels. A lower 
threshold implies more non-uniform pixels, better quality and less memory savings. On the contrary, a higher threshold 
implies bigger quad-elements, greater memory access savings but worse performance.  

 
3.1.3 Foreground segmentation pre-processing (FGSP) 

 

1. Compute levels 6 to 3 normally. As defined in [3]. 
2. For levels 2 to 0, for each iteration ‘i’, pixel (x,y) and message m(x,y): 

2.1. If m(x,y) has been marked as converged: 
2.1.1. Do nothing 

2.2. Else: 
2.2.1. Compare m(x,y) minimum disparity label (mdli) with the one 

obtained in iteration ‘i-2’ (mdli-2). 
2.2.1.1. If mdli ==mdli-2: we mark m(x,y)  as converged  
2.2.1.2. Else: do nothing 

1. Apply quad-tree algorithm to left image. 
1.1. Store a mask value: 

1.1.1. A ‘1’ when a pixel is non-uniform. 
1.1.2. A ‘0’ for the rest.  

2. Perform BP message passing algorithm only over pixels marked with ‘1’.  
3. Perform bilinear interpolation over sparse disparity map to obtain final 

dense disparity map. 

SPIE-IS&T/ Vol. 7526  75260N-4

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 11 Nov 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 
 

 
 

 

It uses a pre-processing module described in [1] to calculate silhouettes and evaluate BP over these silhouettes. With this 
method, zones outside silhouettes have no disparity information. Therefore, this method is not suitable for stereo vision 
applications that require full image depth mapping. Moreover, the preprocessing increases the overall latency. 
We apply a foreground segmentation algorithm to the left image, obtaining the silhouettes. Then, we store a mask 
indicating whether a pixel is part of the foreground or the background in FPGA block RAM memory. Finally, the BP 
algorithm is applied over the foreground pixels. The foreground extraction can be developed in 10 milliseconds, 30 
remaining for the BP algorithm. This increases the number of memory accesses to be avoided in the BP algorithm from 
90% to 93.34%. 
The pseudo-code for belief propagation with quad-tree preprocessing is: 

 
 
 
 
 
 
 
 
 

Using this algorithm, the percentage of memory accesses saved depends on the size of the silhouettes. Experimentally, it 
has been calculated to be around 80% for the tele-presence application when two people are in the room filling the field 
of view, which is more than 13% below the required 93%. The more people (i.e. silhouettes) are in the room, the less 
memory reduction this algorithm achieves. Therefore, this method could only be applied in combination with some other 
one to achieve the memory traffic reduction required for real-time and high-definition.  

 

3.2 Intra-pixel methods 

3.2.1 Message compression (MC) 

 
We use the truncated model [3] for the BP algorithm. Using this model, reliable messages tend to have a ‘V’ shape 
around the minimum disparity label with truncated values on both sides of it.  
Bearing in mind that structure, we propose a technique with some similarities to the Envelope Point Transform proposed 
in [18], but simpler and more precise when parameters are correctly chosen. Instead of storing only the envelope points 
[18], the proposed technique stores all the points inside a region around the minimum disparity label. It has two main 
advantages with respect to [18]. Firstly, we do not need to uncompress the message prior to operating with it. Secondly, 
the compression rate drastically decreases when using EPG with limited precision. In contrast, we achieve more than 
70% even with fixed point variables. The number of stored points is a function of several parameters (adaptive 
approach): iteration, level and pixel type. This can reduce the compression factor, but increase the performance and 
reduce the quality penalty. We store 3 parameters and a group of labels instead of the 80 disparity labels, as can be seen 
in Figure 1. 

 
 
 
 
 
 
 
 
 

It is important to notice that this kind of compression is lossless when the model is a perfectly truncated model. 
The percentage of memory accesses saved depends on the compression. A greater compression causes more errors, but 
provides bigger savings in memory accesses. 

0. Pre-process room disparities (depth map). 
1. Apply foreground-segmentation to left image and store mask value: 

1.1. Store a ‘1’ when the pixel is inside a Silhouette (Foreground). 
1.2. Store a ‘0’ when the pixel is outside (Background). 

2. Perform BP over foreground pixels. 
3. Obtain final depth map by appending foreground to background disparities. 

1. The offset (OF): first disparity label of the selected region. 
2. Number of disparity labels (NV) of the selected region. 
3. Information values: we store all the values of the selected region (from 

disparity label OF to OF+NV). 
4. Truncating value (TV): value that is assigned to all the disparity labels 

that are not included in the selected region.  
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It has been empirically demonstrated that this method reaches compressions up to 80% without significant losses in 
performance. On the other hand, when the number of points (NV) is further reduced to reach 90%, the performance is 
quickly degraded. Therefore, as we will see in Section 4, an extra effort is required to reach the 90% of memory traffic 
savings needed. 

 
 
 
 

 
 
    
 

 
Figure 1. Parameters for message compression       

 
3.3 Performance comparison for Section 3 proposals 

We have applied all the proposed methods to a real tele-presence system. However, since the Middlebury test has 
become a reference in stereo vision articles, we present the results for a Middlebury test: the teddy bear. When we 
consider toys in the teddy bear test to be foreground (i.e people in the room), the results obtained are quite similar to 
those presented in real tele-presence systems. 
We have seen in Section 2 that a reduction of around 90% in memory accesses is required to fulfill system RT 
constraints. However, due to the different kind of memory access reduction techniques used in each method, it is difficult 
to establish a fixed value. Therefore, we have chosen the parameters for the different methods to obtain a reduction 
between 70 and 80% in the total number of accesses to memory.  
In Figures 2a-e we show the disparity maps of the algorithm without modifications and the ones obtained by using the 
aforementioned methods. The results are quantified in Table 1, in terms of percentage of errors compared to Classical BP 
and percentage of memory accesses saved. An extra row is also included with noteworthy characteristics, when present. 

 

                          
                                 a)                                                     b)                                                    c) 
 

                                                                              
                             d)                                                            e)                                  

Figure 2. a Disparity maps: a)Classical BP. b)ABP. c)QTP. d)FGSP. e)MC.         

As seen in Table 1, the method that has a better tradeoff between error and MS is FGSP. However, due to the 10 
millisecond preprocessing, the MS required is more than 93%. Moreover, as the MS is limited by Silhouette size, the 
method cannot be applied.  
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The rest of the methods based on Inter-Pixel are not able to reach 80% of MS without important performance 
degradation, especially those based on Quad-tree preprocessing. 
 

Table 1. Percentage of errors and memory accesses avoided for the system described 
 

 Method Inter-Pixel Intra-Pixel Classical 
BP  ABP QTP FGSP MC 

%Error compared with Classical BP** +1.7 +3.4 -4 * <1 0 
%Memory accesses  30 29 19 18 100 

Characteristics -- Fast 
degradation 

%memory saving limited by 
Silhouette size. Disparity 
map only on Silhouette. 

Flexible. Small 
error with big 

memory savings 
-- 

*The errors have been computed only over the Silhouette, causing a reduction in the number of errors because most of them are on the borders. 
**The percentage of errors is measured comparing with the original BP algorithm result. Obviously, when the original BP has errors (for example 

at occlusions), this measure is not reliable. However, this measure is representative enough to evaluate the methods, as they do not improve 
performance in such error regions.  

 
Therefore, the best results are obtained using the proposed method based on Message Compression, with an almost 
negligible error increase for a MS of 82%.  
Anyway, none of the methods presented up to now can reach 90% of memory traffic reduction without important 
performance loss. We propose in Section 4 a new method based on two serially developed BP modules which is able to 
reach the 90% of memory traffic reduction, even improving the final performance.  
 

4. PROPOSED SYSTEM ARCHITECTURE 
 

We have seen that classical approaches are not sufficient to reduce the memory traffic enough to reach real-time high-
definition characteristics. Even with the proposed message compression system, the reduction in memory traffic without 
important performance degradation cannot go further than 80%. Moreover, the flaws in the original algorithm, i.e. 
occlusions, texture-less regions and edge errors, still remain in the Section 3 methods (and are even increased). 

In this Section we propose a novel architecture aimed at reaching the 90% memory traffic reduction while reducing the 
errors mentioned. 

In order to handle occlusions, potential errors and texture-less regions that degrade the performance of the classical 
approach, the proposal is to split the BP algorithm into two separate BP blocks. Between them, a new module 
(Occlusion, Error and texture-less handling module, OE) classifies the pixels into four categories. Additionally, this 
module will recalculate the values of the cost function taking into account the pixel category. Hereinafter, this algorithm 
will be denoted as Real-time High-Definition Belief Propagation (RT-HD BP). It performs the following steps: 

 

 

 

 

 

 

 

 

 

1. Read left and right images and compute data-cost 
2. Iterative BP (BP1) over all the pixels 
3. Output: for each pixel, send to the output: 

a) Minimum disparity label of the left-image depth map. 
b) Third minimum disparity label of the left-image depth map. 
c) Minimum disparity label of the right-image depth map. 

4. Classify pixels into reliable, occlusion, error and texture-less (OE Module) 
5. Calculate new data-cost based on previous classification (OE Module) 
6. Iterative BP (BP2) only over non-reliable pixels 
7. Output: for each pixel, send to the output: 

• Minimum disparity label of the left depth map (final result). 
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The aim of BP1 is to provide the OE module with enough information to classify the image pixels. A very important 
advantage of the proposed technique is that this classification can be obtained with a relatively low number of iterations. 
After the pixel classification has been obtained, the second BP (BP2) generates the final depth map with a reduced 
number of iterations. Moreover, it also saves memory traffic, performing message passing only on non-reliable pixels 
(about 20% of the pixels). 

It might seem that the complexity and memory bandwidth requirements of the proposed technique could double the 
classical BP (there are 2 BP blocks, steps 2 and 6). However, the BP1 and BP2 blocks can be implemented in the same 
hardware module, as they have exactly the same architecture. Moreover, the total number of memory accesses is reduced 
with respect to classical BP. In table I, the number of iterations for each level in RT-HD and classical BP are presented. 
In classical BP, the number of iterations is constant, but in RT-HD BP it changes with the level. Table I shows the total 
number of BP1 and BP2 iterations per level. 

Even though the number of iterations is higher in the first levels (6 to 3), the algorithm reduces the iterations in the last 
level and this minimizes the total number of memory accesses: the classical BP algorithm needs 9.33x accesses while the 
RT-HD BD needs only 7.47x accesses (19.89% less memory traffic). The parameter ‘x’ is a function of the image size 
and disparity levels. It can be expressed as:  

 

)
4

4*sDisp_level*
2

Height*Width

(+)
4

4*sDisp_level*
2

Height*Width

(+)
4

Disp*Height*Width(

Write_MsgRead_MsgDataRead_Comp_ =++=x

 

 

Table 2.  Relation between memory accesses and levels. 

Level 0 1 2 3 4 5 6 
Classical BP iterations  7 7 7 7 7 7 7 

RT-HD BP iterations  BP1 2 3 3 7 7 7 7 
BP2 3 4 4 7 7 7 7 

Memory accesses per iteration x x/4 x/16 x/64 x/264 x/1024 x/4096 
 

The reduction in the number of iterations in the most computationally expensive step is a consequence of two advantages 
of the proposal. First of all, BP1 makes use of an empirical observation: most of the pixels that converge to correct 
values will normally do it in a low number of iterations. Thus, the number of iterations of the BP1 block can be very 
little. Secondly, after the pixel classification, the pixel data cost depends of the pixel type and this improves BP2 
convergence. Additionally, BP2 only performs message passing on non-reliable pixels, reducing the number of 
iterations.  Both contributions reduce the number of iterations and memory accesses but their computational impact is 
very limited.  

Occlusion, edge error and texture-less area handling 

 In the RT-HD BP algorithm, the pixels are classified into 4 categories in the OE module: occluded, potential error, 
texture-less and reliable pixels.  

The OE module generates the occlusion map using a cross-checking technique based on [10]. The module also detects 
low-textured areas by observing differences between the first ten minimum values on the fly. When the medium 
difference is below an experimental constant, the pixel is classified as texture-less.   

In BP, the disparity value for a given pixel is the label index that minimizes the sum of incoming messages and data-cost. 
When a pixel has converged in the BP algorithm, the sum of the incoming belief messages (SoIM function) tends to have 
a linear “V” shape (Figure 3.a). This shape is centered on the label index (disparity value). It has been empirically 
observed that the pixels that converge will normally present a SoIM function with a well-defined “V” shape during the 
first iterations of the last levels (0, 1) in the BP1 module, while the rest of the pixels normally present a non-“V” shape or 
a SoIM function with several local minima (Figure 3.b). 
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Based on this observation, the proposed algorithm includes a simple technique to identify the pixels that probably 
converge. It is based on the comparison between the disparity label of the first and the third minimum. If the SoIM 
function has a “V” shape, the first (1M in Figure 3), second (2M) and third (3M) minimum disparity values will normally 
be consecutive values. However, if the shape is different, the third value will not normally be a consecutive value (Figure 
3.b). This simple observation normally produces good results with a very low computational effort. The pixel whose 
SoIM function has a “V” shape will be classified as a reliable pixel and the rest are classified as potential error pixels. As 
occluded and texture-less pixels have previously been identified, the pixels that are classified as reliable have a high 
probability of having converged to the correct value.   

The OE module generates a two-bit per pixel map that classifies the pixels into four categories: reliable, edge-error, 
occlusion and texture-less pixels. 

New data cost 

This module uses the information provided by OE to calculate new data costs as: 

1. Reliable pixels: data cost defined as 0 for their minimum disparity label and a pre-defined penalty, equal to the 
maximum truncated value, for the other labels.  

2. Texture-less pixels: The data cost is 0 for all the disparity labels (unknown). This helps texture-less pixels to obtain 
correct disparity values. 

3. Error pixels: they keep their data cost. 

4. Occluded pixels: take the value of the first non-occluded pixel on their left.   

BP2 limits the message passing to non-reliable pixels, reducing the memory traffic. The total memory reduction is about 
21%. This reduction is still far from the required 90%. To reach this limit, the message compression technique defined in 
3.1.4. is applied. 

                             
Figure 3. a)Reliable pixel b) Possible error pixel c) Parameters for message compression. 

 

Adaptive message compression 

We have seen that the memory traffic reduction obtained with the two-BP architecture is far from the 90% required. In 
order to reach this 90% we apply the message compression described in 3.2.1. This adaptive technique is applied only to 
the BP2 block reducing the memory traffic by about 70%, which is below the limit over which we can have important 
performance loss (see 3.2.1.). This combined with the 20 % saved with the double BP topology lead us to a memory 
traffic saving of a 90%, enough to fulfill the real-time high-definition requirements. 

The pixels that converge will normally present a shape that is easily and efficiently compressed with the proposed 
techniques. This property, combined with the pixel classification that the OE generates, guarantees a good compression 
factor, allowing the fulfillment of the system requirements.  

5. RESULTS 
In order to validate the proposed algorithms, several video sequences [21] have been evaluated with the classical and the 
RT-HD BP methods. In Figure 4, we show the disparity maps that are obtained with classical BP (a), the proposed RT-
HD BP without compression (b) and the RT-HD BP with enough compression to comply with the RT restrictions in 
Section 2 (c). Some occlusions have been mitigated, some errors corrected and some texture-less zones have been filled 
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in (b, c).  
 

                              
Figure 4. Disparity maps: a)Classical BP b) and c)RT-HD BP without and with compression. 

 
The RT-HD BP shows an improvement of more than 6% when compared to classical BP. At the same time, it satisfies 
section 2’s RT and HD requirements. The memory reduction of the RT-HD BP with compression is about 90%. To 
finish this results section, we provide Middlebury test results for our proposal in Figure 5 and Table II, comparing the 
proposal with RT publications ranking Middlebury tests. For convenience, we maintain the names used in the 
Middlebury test in Table II. As can be derived from Table II, our proposal is the only ranking in the test that is able to 
achieve true RT for HD images. The only one whose latency is close to RT (RealtimeBP) works with small images. 
Moreover, among all of the proposals focus on real time, there is only one whose position in the ranking is significantly 
better than our proposal (PlaneFitBP) but working at 1fps, which is not RT at all. 

 
 
 

 
 
 
 

 

Figure 5. Middlebury ranking for our proposal. 

 

Table 3.  Proposals focused on real-time, in Middlebury ranking, comparison. 

Parameter Latency(msec) Image resolution Disp. Lev. Rank. 
Proposed RT-HD BP 40 1280x720 80 35.2 

RealTime GPU 183 640x480 48 35.2 
RTCensus -- -- -- 45.6 

Realtime BP 62.5* 320x240 16 30.5 
FastAggreg 600 450x675 60 32.7 
PlaneFit BP 1000* 512x384 48 12.8 

*Latency has been extrapolated from the fps data (18fps≈62.5millisecond and 1fps≈1000 milliseconds) 
 

6. CONCLUSIONS 
In this work we have presented a Real-Time High-Definition depth estimation algorithm based on Belief Propagation. 
We have tested currently-existing methods to reduce memory traffic, adapting them to our requirements of real-time and 
high-definition. We have demonstrated that they are insufficient to fulfill the requirements without important 
performance loss. We have also proposed a message compression method which performs better than current methods 
but is still insufficient.  
Finally, we have proposed a new method that estimates depth maps in less than 40 milliseconds for HD images 
(1280x720 pixels at 30fps) with 80 disparity values. The work exploits the proposed double BP topology and it handles 
occlusions, potential errors and texture-less regions to improve the overall performance by more than 6% (compared 
with classical BP) while it reduces the memory traffic by about 21%. Moreover, the adaptive message compression 
method allows the system to satisfy Section-2’s real-time and low execution latency requirements, reducing the number 

b)a) c) 
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of memory accesses by more than 70% with an almost negligible loss of performance (less than 0.5%). The total 
memory traffic reduction is about 90% with a 6.0% performance improvement (compared with classical BP). 
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