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Abstract

This work aims to extend the understanding in the use of strain gauges
in the root of the teeth in order to calculate the load sharing in planetary
transmissions. Continuing with the numerical analysis of the accuracy of the
experimental measurements, this work studies the influence of the placing
of strain gauges in the accuracy of the measurements. Thus, the strain
gauges are placed in the ring and sun gears. Furthermore, new effects are
added to the simulations in order to enhance its realism. Hence, the stiffness
in the sun support is varied, as well as the number of planets is raised.
Finally, the results show discrepancies between the real load sharing and
the measured load sharing, more importantly, these differences prove that
the measurements underestimate the load sharing in the transmission, which
could be crucial in the durability and certification of such a transmission.
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Certification

1. Introduction

Mechanical power transmissions are crucial components in many indus-
trial applications. More precisely, among them gear transmissions are vital
components in a number of applications, namely, heavy mining [1], vehicles
[2], wind generators [3, 4, 5, 6], and aircrafts [7, 8]. Gear transmissions present
a wide variety of possible solutions to the same problem. More precisely, this
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work focuses on planetary gears. This kind of transmission provides numer-
ous advantages compared to other options such as their compactness, higher
power, robustness, and different transmission ratios varying its configuration,
among others.

In the study of planetary gears, virtual modelling has been a useful tool
aiming to reduce the cost of the study and reaching high standards in terms
of realism. Thus, a number of models have been developed in the last
decades, improving the realism and including a number of new effects in
the simulations as the problems in the industry developed. Thus, lumped-
parameter models were the first approach to the computation of planetary
gear modelling [9, 10, 11, 12, 13, 14, 15, 16, 17]. Afterwards, hybrid proposals
[4, 18, 19, 20, 21] started to be developed in order to improve the accuracy of
the models, widen the scope of its aplicability and reduce the computational
cost. In this last group, the model employed for these simulations is included
[22].

Despite the realism reached in the models, experimental works are still a
highlight in the context of research in planetary gears. In the last decades,
numerous experimental works have been developed to characterize the plan-
etary transmissions behaviour. In order to study the dynamical behaviour of
a planetary transmission diverse techniques are appropriate, accelerometry
[23, 24, 25, 26], acoustic emission [26, 27], and acoustic intensity [28] among
others. Another technology that is employed for experimental studies is ex-
tensometry, which allows to calculate the stains in the root tooth and the
amount of load in such tooth [29, 30, 31]. One of the most common appli-
cations is the use of extensometry to address the load sharing in a planetary
transmission , however, the most appropriate placing for the strain gauges is
still undetermined, some authors tried in the sun gear [32], others in the ring
gear [17, 33, 34, 35], and more recently, in the planet pins [36, 37, 38, 39].

Focusing on a precise application of a planetary transmission, wind gen-
erators incorporate a multistage planetary transmission multiplier. In this
application the standard is set by [40], which in its section regarding the
load sharing and the mesh load factor (Kγ) advises using strain gauges to
calculate the mentioned factor.

Thus, the present work focuses on the study of the accuracy of the ex-
perimental measurements of the load sharing by using strain gauges. The
motivation behind this new work comes from the discrepancies presented
in [32, 41] between the real and the measured load sharing. Thus, this new
work proposes a numerical study to assess the accuracy of using strain gauges

2



both in the root of the sun and ring gear teeth in order to calculate the
load mesh factor in a planetary transmission. The accuracy of these mea-
surements is of upmost importance given their direct connection with the
validation and certification of the good performance of any planetary gear-
boxes. Thus, this study aims to compare the accuracy of the measurements
depending on the location of the gauges, which as mentioned before is still
undetermined and different locations are considered valid. Moreover, the
scope of studied transmissions is extended by increasing the number of plan-
ets, which proved to be crucial in the impact of different effects such as errors
[15, 16, 34, 42, 43, 44, 45]. Afterwards, the stiffness in the sun support will
be varied in a wide number of solutions and studied only for 5 planet trans-
missions, keeping a realistic configuration with an odd number of planets and
avoiding the self-balancing effect inherent to 3-planet transmissions with a
floating sun.

Finally, this work will be composed by an starting Section 2 where the
already existing employed model is described. In every subsection along
Section 2 various aspects that have been modified in the model, in order
to face the new study, are addressed. Then, Section 3 gathers the cases of
study considered in the context of this work. Afterwards, in Section 4 the
results to those cases are shown and analysed. Finally, Section 5 compiles
the conclusions fruit of this study.

2. Modelling

A semi-analytical 2-D planetary gear model [22] is modified in order to
obtain the deformations in the root arc between consecutive teeth both in the
sun and ring gears. The presented model consists in a semi-analytical formu-
lation that combines finite-element(FE) models, together with the Weber-
Banashek approach for the Hertzian resolution of the local contact between
gears.

Thus, the model defines the geometry of the wheels and a set of FE mod-
els, which will be described in more detail in Section 2.1. By using these
models the linear part of the contact problem can be solved by establishing
the stiffness of the wheels and the teeth from their response to the applica-
tion of a unitary force along the active flank. Then, the Weber-Banashek
formulation takes a Hertzian approach to solving the local contact problem
between the active flanks of pairs of teeth in contact. This part is nonlinear.
By using an iterative method the contact problem can be solved by com-
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bining the linear and non-linear problems and using the local FE model to
eliminate the distortion due to the point force in the model, as it will be seen
in Section 2.1.

Once the contact problem is solved for all the existing contacts, the model
solves the balance problem. Given the fact that this is a quasi-static approach
without losses, the dynamic effects and the losses due to friction or lubrica-
tion are not considered. Thus, there will be a balance between the input and
output torque, as well as a balance in torque in each of the planets, consider-
ing the contacts with the sun and ring. Then, in the case of the variation in
the sun support stiffness, the balance is extended also to the vectors of the
contact forces in the sun and the force that appears in the support as a con-
sequence, which closes the vector system. The latter generates a deflection
in the sun shaft to place it into the balance position as seen in [45].

Finally, once all the above is solved, the results can be extracted given
the fact that the contacts are located and the contact forces for each teeth
are known.

2.1. Finite-element Models

As mentioned above, in this subsection the focus is on the detail of the
FE models. Firstly, a number of 2-D global FE models, one for each different
wheel, are defined using the partial differential equation toolbox in MATLAB.
These models combine a Z number of teeth, which comes from eqn.1, and the
body of the gear (Fig.1). For the latter, the guidelines for the back-up ratio
included in [46] are considered to determine the size of the shaft mountings.
Afterwards, every of these models is meshed with triangular elements where
the nodes are located in each vertex. In terms of boundary conditions, each
of these models are embedded to the frame in their mounting, which in the
sun and planet gears is the inner circle that represents the shaft mounting,
in the case of the ring gear this embedding spreads along the periphery of
the wheel in its outer diameter.

Z = 2 · Ceil(ε+ 1) (1)

As far as the local FE model is concerned, it represents the geometry of the
teeth flank up to an h depth, as seen in Fig.2. The calculation of this depth
is addressed in [22] assuring it being enough to consider the deformations
due to the point force. Moreover, this model is also meshed using triangular
elements with nodes in the vertexes. Then, the boundary conditions embed
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Sun gear

Planet gear

Ring gear

Figure 1: Global FE model for the sun, planet and ring gears

all the geometry that represents the interface between the model and the
missing geometry of the tooth, thus, it would be the line along the inner
part of the model that follows the flank at an h depth. The purpose of these
models, as commented before, focuses on the need to erase the distortion
due to the use of point force in any point along the middle tooth flank in
the FE model. Hence, the same unitary load is applied in each model with
opposite directions. Thus, the overlap principle provides the deflections in
the body of the gear and the teeth due to the application of a unitary load
in any position along the flank of the active tooth, which will always be the
(Z+1)/2 tooth in the FE model.
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Figure 2: Local FE model for the active flank

2.2. Virtual strain gauges

In this section, the procedure for the definition of a virtual strain gauge
presented in [41], for the sun gear, is extended for the geometry of an inner
gear, the ring. Thus, a number of nodes in each of the root arcs between con-
secutive teeth are located and its original coordinates are compiled. Besides,
a number of nodes in the root arc immediately before the first tooth, as well
as nodes in the root arc after the last tooth. These are identified and their
coordinates compiled. In order to identify these nodes for an inner gear, the
conditions employed in the sun gear stay, namely:

- The nodes have to belong to the root circumference.
- They must be in the root arc that connects the trochoids of consecutive

teeth.
- At the first and last teeth the nodes belong to the root circumference

and are the closest to the trochoid.
The nodes identified in each wheel, following the previous conditions, are

shown in Fig.3 & Fig.4.
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Figure 3: FE model of the sun gear and detail of the nodes (in blue circles)

Figure 4: FE model of the ring gear and detail of the nodes (in red circles)

The selection of nodes along the root arc is justified by three reasons, first
of all, this location was the one employed in the experimental measurements
shown in [32] performed in the sun gear. Secondly, the ease to obtain the
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original length of each section and its change due to the contacts. Thirdly,
the numerical nature of this study provides the possibility to quantify the
slightest deformation and the magnitude of the deformation does not modify
the load sharing results given the fact that all of them are obtained by the
same procedure. However, experimentally these measurements may be per-
formed in the fillet where the deformations are bigger, which makes it easier
to be acquired by the strain gauge.

2.3. Deformations and contact sequence

Once the nodes are selected, the next step consists in managing the infor-
mation that can be extracted from the FE models. Therefore, as commented
before, the global FE models are subjected to a series of load cases, where
a unitary force is applied at a different location along the active flank. This
flank is always the left flank in the (Z/2)+1 tooth in the model, as seen in
the several cases shown in Fig.5.

Figure 5: Several load cases for the external contact in the sun FE model represented by
its profile: unloaded (blue), loaded (red)
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Hence, the initial coordinates of the nodes, previously selected, will pro-
vide their original position. After applying that unitary force, these nodes
will change its position, both globally and relatively to the rest of the nodes,
as shown in more detail in [41]. In order to obtain the length of any noded
section in the initial or loaded configuration, the expression used is eqn.2.

Li =
√
N2
i,j +N2

i,j+1 (2)

Where the subindex j refers to the number of node in the i noded section.
Then, the deformation in each section of nodes can be calculated as the

difference between the length in the noded sections in the original (Loi) and
the loaded (Li) configurations, as expressed in eqn.3. The subindex i refers
to the number of the noded section.

∆Li = Li − Loi (3)

Thus, calculating this ∆Li for each noded section, the deformation in
every root arc will be known. Therefore, in order to obtain the deformations
on the strain gauge located between a pair of teeth in the sun or ring gear
is just a matter of managing the already existing information. In spur gears,
there will be scenarios of single or double contact normally, thus, in the cases
of single contact just the deformation of one noded section will be of interest.
However, in the double contact scenario, the noded sections of interest will
be two, and the deformations results will be overlapped.

In order to manage the deformation information, the focus is on the
relative positioning between the real contact and the strain gauge. Thus,
this positioning must be the same in the FE model. In the FE model the
contact is always in the (Z/2)+1 tooth. Then, as seen in Fig.6 the relative
positioning of the contacts in each scenario determines the noded section of
interest and the deformations to consider. Thus, for the example shown, a
single contact in the first tooth generates a compression in the strain gauge
that is equal to the one experienced in the S7 of the FE model. Moreover,
the deformation in the S7 section is multiplied by the module of the contact
force, given the fact that the load in the FE model is unitary. Then, for
a scenario with a double contact, the overlap principle is applied and the
deformations in two different noded sections are considered.

In Fig.6 the strain gauge appears as a red thick segment, then, a color
code has been used to identify each load case and to ease the understanding
of this crucial diagram. Thus, the color employed in the real contact scenario
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Figure 6: Relative positioning of the contact in the real and simulated situations

corresponds to the FE model contact analogy. The teeth are identified by
Ti and the noded sections by Si. Besides, it is possible to see that with the
change of tooth in the real contact the section of interest for the deformations
changes accordingly.

Finally, it is relevant to point out the fact that the sequence of contacts
is different for the sun and the ring gear, but the procedure followed is anal-
ogous.

2.4. Calculation of the Kγ

In the context of gearboxes for wind generators, the IEC 61400 [40] estab-
lishes the threshold value of the mesh load factor as a requirement to obtain
the certification of these gearboxes, also taken as reference in [47]. These
thresholds for the Kγ depending on the number of planets are gathered in
Tab.1.

Table 1: Mesh load factor threshold

Number of planets 3 4 5 6 7
Kγ 1.1 1.25 1.35 1.44 1.47

In order to calculate this value, in the present work, two different strate-
gies have been employed. Firstly, the calculation of the real load sharing
in the model is performed by using the load sharing ratio (LSR), previously
presented in [22, 41]. The definition of the LSR corresponds to the relative
amount of load in a planet in comparison to the total load in the transmis-
sion. Thus, eqn.4 presents the analytical expression to obtain the LSR in a
planetary transmission.
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LSRs =
Fs

ΣN
t=1Ft

(4)

Where Fs refers to the amount of load in the each planet and Ft the load
in each planet as part of the summation of total load in the system. The
latter could be substituted by the input torque, given the lack of losses and
dynamical effects in the simulations.

Secondly, aiming to calculate the load sharing in the transmission from
the deformations in the strain gauges, the strain gauge load ratio (SGLR)
is defined. This refers to the relative peak-to-peak value obtained in the
deformations of a strain gauge due to the contact with any planet, in com-
parison to the summation of every peak-to-peak values due to the contacts
with every planet in a complete meshing cycle. The analytical definition of
the SGLR is presented in eqn.5

SGLRs =
Xsp−p

ΣN
t=1Xtp−p

(5)

In eqn.5 Xsp−p refers to each peak-to-peak value masured by the strain
gauge in the contact with each planet. As done before in eqn.4 Xtp−p the
subindex t is used as an auxiliar subindex to refer to the same peak-to-peak
value, but as part of the summation of all the peak-to-peak values in the
contacts with every planet.

Finally, the mesh load factor can be obtained both from the LSR and the
SGLR by dividing the obtained value by the ideal load sharing value, which is
determined by the number of planets N being 0.333 for 3 planets and 0.2 for 5.
Also, hereinafter, the mesh load factor that will be considered of importance
will be the ones that represent an overload in a given planet. From the
durability point of view, the mesh load factor set by the underloaded planets
play an unimportant role. Thus, eqn.6 & eqn.7 are employed to calculate the
mesh load factor from the LSR and SGLR, the latter for any of the modelled
locations for the strain gauge.

KγLSR = max(
LSRi

LSRideal

) (6)

KγSGLR = max(
SGLRs

LSRideal

) (7)
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For the load sharing and Kγ calculated from the deformation in the strain
gauges, the results for the sun and ring gears will be differentiated by the
subindex su or ri respectively.

3. Cases of study

In the first place, a couple of planetary transmissions are defined in order
to present analogous configurations, in terms of geometry, both for Equally
Spaced In-phase (ESIP) and Equally Spaced Sequentially Phased (ESSP)
transmissions. Thus, in the transmissions gathered in Tab. 2 the number of
teeth for every wheel are compiled. These numbers of teeth are useful for
transmissions between 3 - 6 planets, which can be confirmed by verifying the
requirements gathered in [25, 43].

Table 2: Number of teeth for each gear in the considered transmissions

Zr Zp Zs
ESIP 165 44 75
ESSP 166 45 74

Then, the profile of every teeth are defined following the geometrical spec-
ifications gathered in Tab.3. The inclusion of a tip rounding arc helps to avoid
the possible contact at the tip of the tooth, and thus, the dramatic change in
the meshing stiffness, which affects the convergence in the numerical model.

Table 3: Geometrical specifications of the teeth profiles

Parameter Value

Module (mm) 4.5

Pressure angle (o) 20

Adendum (mm) 4.5

Deddendum (mm) 4.5

Tip rounding arc radius (mm) 0.225

Contact ratio (sun-planet) 1.295

Contact ratio (planet-ring) 1.397
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After validating the well-functioning of the system with ideal transmis-
sions, with no errors, a series of tangential pinhole position errors will be
included. These errors are gathered in Tab.4, however, the size of the tan-
gential pinhole position errors will vary due to the change in the stiffness of
the sun support, more flexibility widens the range of admissible tangential
pinhole error. In the more stiff transmissions there is a loss of contact in one
of the planets for smaller tangential error. Even though the errors are not
the same for each scenario, they will describe the same tendencies , so it will
be possible to compare and extract conclusions from the results presented.
The variation of the stiffness in the sun support will be only performed for
5-planet transmissions in order to avoid the self-balancing effect inherent to
3-planet transmissions with a floating sun, as seen in [45].

Table 4: Compilation of the studied scenarios

Sun support stiffness (N/m) Tangential error (et)
Fixed 0 µm 0.625 µm 1.25 µm 1.875 µm 2.5 µm 3.125 µm
1e9 0 µm 1.25 µm 2.5 µm 3.75 µm
1e8 0 µm 1.25 µm 2.5 µm 3.75 µm 5 µm
1e7 0 µm 1.25 µm 2.5 µm 3.75 µm 5 µm 6.25 µm
1e6 0 µm 1.25 µm 2.5 µm 3.75 µm 5 µm 6.25 µm

4. Results and discussion

Hereinafter, the results to all the cases of study proposed previously are
gathered. Firstly, the simulations of the strain gauge deformations in the
sun root, presented in [41], are compared with the new method employed in
the root of the ring gear teeth. Previously, these simulations were performed
in 3-planet transmissions, however, in this work this is extended to 5-planet
transmissions. Afterwards, this 5-planet transmissions will include also var-
ious stiffnesses in the sun gear support, as well as several tangential pinhole
position errors in the planet 1.

4.1. Comparison between ring and sun measurements

Firstly, ideal transmissions are simulated looking for validation of the
good performance in the model. For an ideal ESIP transmission without any
error the load is perfectly balanced among every planet, as seen in Tab.5
& Tab.6. However, in ESSP transmissions this does not happen (Tab.7 &
Tab.8), due to the effect of the mesh phasing. Besides, the mesh phasing
includes an inherent error in the results of the measured load sharing [41].

13



Table 5: Results of load sharing for ESIP 3-planet transmission

Planet 1 Planet 2 Planet 3

LSR 0.333 0.333 0.333

SGLRsu 0.333 0.333 0.333

SGLRri 0.333 0.333 0.333

Table 6: Results of load sharing for ESIP 5-planet transmission

Planet 1 Planet 2 Planet 3 Planet 4 Planet 5

LSR 0.2 0.2 0.2 0.2 0.2

SGLRsu 0.2 0.2 0.2 0.2 0.2

SGLRri 0.2 0.2 0.2 0.2 0.2

Thus, in the case of ESSP transmissions for both the sun and ring gear
measurements, there is a discrepancy between the real load sharing (LSR)
and the load sharing obtained from the measurements, as seen in Tab.7 &
Tab.8. These discrepancies are totally related to the asynchronous nature of
the measurements in comparison to the calculation of the real load sharing,
as seen in [41]. This explanation applies equally to the sun and ring gear
placements, delivering wrongly-ideal results with both measurements.

Table 7: Results of load sharing for ESSP 3-planet transmission

Planet 1 Planet 2 Planet 3

LSR 0.363 0.363 0.363

SGLRsu 0.333 0.333 0.333

SGLRri 0.333 0.333 0.333
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Table 8: Results of load sharing for ESSP 5-planet transmission

Planet 1 Planet 2 Planet 3 Planet 4 Planet 5

LSR 0.2182 0.2181 0.2181 0.2181 0.2181

SGLRsu 0.2 0.2 0.2 0.2 0.2

SGLRri 0.2 0.2 0.2 0.2 0.2

Afterwards, the tangential pinhole position errors specified in Tab.4 are
included in the pinhole of planet 1, for the 5-planet transmissions. Thus, an
imbalance is generated. In the Tab.9 & Tab.10, the results of Kγ obtained
for the LSR and both SGLR are gathered. The imbalance introduced by
the tangential error affects differently the results due to the mesh phasing,
always remembering that the LSR shows the real load sharing.

Table 9: Kγ for ESIP 5-planet transmission

Error size (µm) 0 0.625 1.25 1.875 2.5 3.125

KγLSR 1 1.0465 1.093 1.1435 1.1845 1.229

KγSGLRsu 1 1.0335 1.0625 1.091 1.1185 1.1465

KγSGLRri
1 1.028 1.056 1.084 1.1115 1.139

Table 10: Kγ for ESSP 5-planet transmission

Error size (µm) 0 0.625 1.25 1.875 2.5 3.125

KγLSR 1.0905 1.1305 1.1655 1.201 1.239 1.276

KγSGLRsu 1 1.0365 1.0705 1.1045 1.1405 1.175

KγSGLRri
1 1.0865 1.123 1.1555 1.1855 1.2015

From these results, it is relevant to point out the fact that the mea-
surements underestimate the imbalance created by the tangential pinhole
position errors in any of the cases. Besides, the inaccuracy in the Kγ grows
with the increment of the tangential pinhole position error. For the ESSP
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transmission, the measurements in the ring are over the ones in the sun,
which is completely the opposite to the situation in the ESIP transmissions.
Therefore, it seems that the error in these measurements does not depend on
the placement of the strain gauge, at least in the considered scope.

4.2. Influence of the stiffness in the sun support

In this section, the work is extended by including the effect of the variable
stiffness in the sun support. Together with such effect, it is relevant to vary
the size range of the tangential errors accordingly. As done before, this study
is focused on 5-planet transmissions, looking for avoiding the self-balancing
effect inherent to 3-planet transmissions with a floating sun gear.

Thus, in the next tables the series of results for the cases of study pro-
posed before are gathered. Hereinafter, the tables within Tab.11 to Tab.18
present the Kγ results for ESIP and ESSP transmissions with the proposed
sun support stiffnesses. In the first case, with 1e9 N/m stiffness (Tab.11 &
Tab.12), the results present some similarities with the sun-fixed simulations.
However, for the same size in the tangential error, the configuration with
lower stiffness in the support shows worse Kγ. Hence, the added freedom in
the translation of the sun gear does not improve the load sharing.

Table 11: Kγ for ESIP 5-planet transmissions with tangential errors and 1e9 N/m stiffness
in the sun

Error size (µm) 0 1.25 2.5 3.75

KγLSR 1 1.118 1.2355 1.351

KγSGLRsu 1 1.0805 1.1545 1.2285

KγSGLRri
1 1.067 1.134 1.2

Table 12: Kγ for ESSP 5-planet transmissions with tangential errors and 1e9 N/m stiffness
in the sun

Error size (µm) 0 1.25 2.5 3.75 5

KγLSR 1.11 1.203 1.2814 1.3578 1.4323

KγSGLRsu 1 1.0846 1.1695 1.255 1.3361

KγSGLRri
1 1.088 1.1615 1.2382 1.3136
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Comparing the ESIP and ESSP transmission for the same support stiff-
ness (Fig.7 & Fig.8), it is visible how the Kγ is bigger in the ESSP configu-
ration than in the ESIP. However, the growth of the Kγ with the tangential
pinhole position error is faster in the ESIP than in the ESSP transmission.
In both scenarios it is visible that the measurements are inaccurate and un-
derestimate the load in the planet that determines the Kγ.
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Figure 7: Kγ for 5-planet ESIP and 1e9 N/m stiffness in the sun support

This stands for the 1e9 & 1e8 N/m stiffness configurations. However,
the results for the 1e8 N/m stiffness (Tab.13 & Tab.14) and a 5 µm error
show a change in the tendency of the Kγ. The Kγ becomes higher in ESIP
transmission than in the ESSP, which will be seen in more depth in the
following scenarios (Tab.15, Tab.16, Tab.17 & Tab.18).
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Figure 8: Kγ for 5-planet ESSP and 1e9 N/m stiffness in the sun support

Table 13: Kγ for ESIP 5-planet transmissions with tangential errors and 1e8 N/m stiffness
in the sun

Error size (µm) 0 1.25 2.5 3.75 5

KγLSR 1 1.1445 1.2885 1.4325 1.575

KγSGLRsu 1 1.104 1.201 1.298 1.391

KγSGLRri
1 1.085 1.1695 1.2545 1.339
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Table 14: Kγ for ESSP 5-planet transmissions with tangential errors and 1e8 N/m stiffness
in the sun

Error size (µm) 0 1.25 2.5 3.75 5 6.25

KγLSR 1.135 1.248 1.35 1.4465 1.543 1.638

KγSGLRsu 1 1.1012 1.203 1.305 1.4065 1.5075

KγSGLRri
1 1.088 1.193 1.282 1.375 1.47

In the following scenarios, the sun support is loosened, however, the load
sharing behaviour gets worse, contrary to what can be previously supposed
considering the example set by the 3-planet configurations. Thus, the KγLSR

results reach significant values, worse with the increase in the flexibility in
the sun support. However, in Tab.15 to Tab.18 it is possible to identify a
very similar behaviour, proving that the limit to where the stiffness in the
support makes a difference has been reached.

On the other hand, in the 1e7 N/m stiffness (Tab.15 & Tab.16) the differ-
ent growth in the Kγ changes what was stated before. For small tangential
errors the Kγ is higher in the ESSP transmission, whereas for bigger tan-
gential errors Kγ is higher in the ESIP transmissions.

Table 15: Kγ for ESIP 5-planet transmissions with tangential errors and 1e7 N/m stiffness
in the sun

Error size (µm) 0 1.25 2.5 3.75 5 6.25

KγLSR 1 1.1505 1.301 1.451 1.6005 1.7485

KγSGLRsu 1 1.11 1.213 1.3155 1.4135 1.5095

KγSGLRri
1 1.0905 1.181 1.271 1.3615 1.4555
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Table 16: Kγ for ESSP 5-planet transmissions with tangential errors and 1e7 N/m stiffness
in the sun

Error size (µm) 0 1.25 2.5 3.75 5 6.25

KγLSR 1.142 1.2595 1.368 1.47 1.572 1.673

KγSGLRsu 1 1.105 1.21 1.3165 1.423 1.529

KγSGLRri
1 1.106 1.2005 1.294 1.3895 1.493

Finally, for the 1e6 N/m stiffness the results shown in Tab.17 & Tab.18
are almost identical to the ones in the 1e7 N/m stiffness scenario. Thus, the
orbit cannot get bigger than the space between the sun and planet gear, and
for the 1e6 N/m stiffness, the size of the orbit and, therefore, the variations in
the LSR due to the stiffness in the sun support disappears. One notable fact
regards the possibility of including a bigger tangential error without losing
contact in the planet with the error. Finally, in the Fig.9 & Fig.10 these last
results are graphed in order to see the trends followed by the Kγ.

Table 17: Kγ for ESIP 5-planet transmissions with tangential errors and 1e6 N/m stiffness
in the sun

Error size (µm) 0 1.25 2.5 3.75 5 6.25

KγLSR 1 1.151 1.3025 1.453 1.6035 1.752

KγSGLRsu 1 1.11 1.213 1.3155 1.4135 1.5095

KγSGLRri
1 1.091 1.1825 1.2735 1.3645 1.4555

Table 18: Kγ for ESSP 5-planet transmissions with tangential errors and 1e6 N/m stiffness
in the sun

Error size (µm) 0 1.25 2.5 3.75 5 6.25

KγLSR 1.143 1.2605 1.37 1.473 1.5755 1.677

KγSGLRsu 1 1.1055 1.211 1.318 1.425 1.5315

KγSGLRri
1 1.106 1.2015 1.2955 1.3915 1.4955

20



LSR

1

1.151

1.3025

1.453

1.6035

1.752

0 1.25 2.5 3.75 5 6.25

Tangential error ( m)

1

1.2

1.4

1.6

1.8

K

SGLR
su

1

1.1105

1.2145

1.3175

1.416

1.513

0 1.25 2.5 3.75 5 6.25

Tangential error ( m)

1

1.2

1.4

1.6

1.8

K

SGLR
ri

1

1.091

1.1825

1.2735

1.3645

1.4555

0 1.25 2.5 3.75 5 6.25

Tangential error ( m)

1

1.2

1.4

1.6

1.8

K

Figure 9: Kγ for 5-planet ESIP and 1e6 N/m stiffness in the sun support
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Figure 10: Kγ for 5-planet ESIP and 1e6 N/m stiffness in the sun support

A next step to take in the analysis consists in determining the differences
between the KγLSR & both KγSGLR. These are calculated employing eqn.8.
These results provide the magnitude of the underestimation present in the
measurement procedure employed to calculate the load sharing, at least for
the studied scenarios which set a tendency from which conclusions can be
extracted.

Those results are gathered in Tab.19 & Tab.20. These differences will be
expressed as percentages, as seen in eqn.8, in order to represent the amount
of load that is missed by the measurements with respect to the ideal load.
These percentages are related to the ideal load value, represented by a Kγ
of 1.

∆KγSGLR = (KγLSR −KγSGLR) · 100 (8)
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Table 19: ∆Kγ for ESIP 5-planet transmission with various tangential errors and a 1e9
N/m stiffness

Stiffness (N/m) 1e9 1e8 1e7 1e6

Error size (µm) ∆KγSGLRsu ∆KγSGLRri
∆KγSGLRsu ∆KγSGLRri

∆KγSGLRsu ∆KγSGLRri
∆KγSGLRsu ∆KγSGLRri

0 0 0 0 0 0 0 0 0

1.25 3.75 5.1 4.05 5.95 4.05 6 4.05 6

2.5 8.1 10.15 8.75 11.9 8.8 12 8.8 12

3.75 12.25 15.1 13.45 17.8 13.55 18 13.55 17.95

5 18.4 23.6 18.7 23.9 18.75 23.9

6.25 23.9 29.65

For ESIP transmissions (Tab.19), if there is no tangential pinhole position
error the results of the measurements are accurate and ideal, as seen in
[41]. Then, for any other scenario with variable sizes of tangential error, the
measurements in the ring are less accurate than the ones in the sun, growing
with the variation in the sun support stiffness. The difference between the
real and measured load sharing grows with the tangential error, however, it
grows more for the measurements in the ring gear. The amount of error in the
measurements presented raises the concern with respect to the certification of
a transmission. Besides, the load is underestimated and the underestimation
seems to be considerably high, obviously with the limitations of the realism
in the simulations.

Table 20: ∆Kγ for ESSP 5-planet transmission with various tangential errors and a 1e9
N/m stiffness

Stiffness (N/m) 1e9 1e8 1e7 1e6

Error size (µm) ∆KγSGLRsu ∆KγSGLRri
∆KγSGLRsu ∆KγSGLRri

∆KγSGLRsu ∆KγSGLRri
∆KγSGLRsu ∆KγSGLRri

0 11 11 13.5 13.5 14.2 14.2 14.3 14.3

1.25 11.84 11.5 14.66 14.53 15.45 15.35 15.5 15.45

2.5 11.19 11.99 14.68 15.68 15.8 16.75 15.9 16.85

3.75 10.28 11.96 14.16 16.46 15.35 17.6 15.5 17.75

5 13.63 16.78 14.9 18.25 15.05 18.4

6.25 14.4 18 14.55 18.15

For the ESSP transmissions (Tab.20), there is an inherent error in the
measurement, seen in the transmission without error. Then, the inaccu-
racy in the measurements in the sun shows the influence of the sun support
stiffness. The ∆Kγ grows initially but then decreases as the tangential er-
ror grows. This effect appears only in the measurements in the sun, which
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proves the influence of the sun support stiffness which modifies the sun-planet
meshing and the planet-ring meshing continues unmodified.

Aftwerwards, in order to deepen the analysis, these last data is repre-
sented in a couple of bar diagrams in Fig.11 & Fig.12, which allows to observe
the tendencies in the results that have been commented above.
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Figure 11: Real and measured Kγ for 5-planet ESIP with 3.75 tangential error
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Figure 12: Real and measured Kγ for 5-planet ESSP with 3.75 tangential error

Finally, in order to extend the analysis, the results in Kγ for all the
support stiffnesses and a 3.75 µm tangential error are gathered. This error
is interesting, given that it is the biggest that is common to every of the
considered scenarios. Taking these results, it is possible to see the comparison
between the real and measured Kγ and the certification threshold set for a
5-planet transmission in wind generators. The Fig.13 & Fig.14 prove that the
underestimation of the Kγ could affect the certification of the transmission,
showing that the real Kγ crosses the threshold, which in the measured Kγ

does not happen.
Comparing the results for ESIP and ESSP configurations, it is possible

to see that the Kγ, both real and measured, are higher in the ESSP config-
uration for the same working conditions.
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Figure 13: Real and measured Kγ for 5-planet ESIP with 3.75 tangential error
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Figure 14: Real and measured Kγ for 5-planet ESSP with 3.75 tangential error
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5. Conclusions

In this work a numerical study is presented in order to address the accu-
racy of the experimental measurement techniques in order to calculate the
load sharing in a planetary transmission. This study is undergone using a
semi-analytical model that provides the real and measured load sharing in
various different scenarios. Thus, from the results already presented, it is
possible to extract the following conclusions:

- The measurements both in the sun and ring gear underestimate the
amount of load in the planets that set the mesh load factor in the trans-
mission. Besides, the inclusion of floatability in the sun gear worsens this
accuracy, specially in the ESIP transmissions.

- In ESIP configurations the measurements are more accurate than in
the analogous ESSP transmission, however, this happens only for cases with
a low or non-existing tangential error. As the size of the error grows, the
measurements in the ESIP transmission becomes less accurate than in the
ESSP transmission.

- The studied measurement techniques present an inherent error in ESSP
transmissions, clearly affected by the sequence in the mesh phasing.

- The inaccuracy in the measurements grows with the tangential pinhole
position in the ESIP transmission for both measurement techniques.

- For the measurements in the sun in ESSP transmission the inaccuracies
in the measurements stays or diminishes with the size of the error. However,
the inaccuracy grows with the floatability of the sun. On the other hand, the
measurements in the ring gear under the same conditions grow in inaccuracy
in all the studied scenarios.
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