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Abstract
We explore upper bounds on the covering radius of non-hollow lattice polytopes. In
particular, we conjecture a general upper bound of d/2 in dimension d, achieved by
the “standard terminal simplices” and direct sums of them. We prove this conjecture
up to dimension three and show it to be equivalent to the conjecture of González-
Merino and Schymura (Discrete Comput. Geom. 58(3), 663–685 (2017)) that the d-th
covering minimum of the standard terminal n-simplex equals d/2, for every n ≥ d.
We also show that these two conjectures would follow from a discrete analog for lattice
simplices of Hadwiger’s formula bounding the covering radius of a convex body in
terms of the ratio of surface area versus volume. To this end, we introduce a new
notion of discrete surface area of non-hollow simplices. We prove our discrete analog
in dimension two and give strong evidence for its validity in arbitrary dimension.
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1 Introduction

The covering radius of a convex body K in R
d with respect to a lattice � is defined

as

μ(K ,�) = min {μ ≥ 0 : μK + � = R
d}.

For us, a lattice is always a full-dimensional linear image of Z
d . Unless stated other-

wise, we consider � = Z
d and just write μ(K ). A convex body K is called hollow or

lattice-free (with respect to �) if int(K ) ∩ � = ∅, where int(K ) denotes the interior
of K . With this notion, the covering radius μ(K ,�) can be equivalently described as
the greatest μ ≥ 0 such that the dilation μK admits a hollow translate.

The covering radius is a classical parameter in the Geometry of Numbers, in par-
ticular in the realm of transference results, the reduction of quadratic forms, and
Diophantine Approximations (cf. [12] for some background). In the context of the
so-called flatness theorem it also proved crucial in Lenstra’s landmark paper [19]
on solving Linear Integer Programming in fixed dimension in polynomial time (see
[17] for more on the flatness theorem). More recent applications of the covering radius
include (a) the classification of lattice polytopes in small dimensions (see [15] and ref-
erences therein), (b) distances between optimal solutions of mixed-integer programs
and their linear relaxations [23], (c) unique-lifting properties of maximal lattice-free
polyhedra [1], and (d) another viewpoint on the famous Lonely Runner Problem [14].

The covering radius is clearly invariant under translations of the body K , and for
every invertible matrix A ∈ R

d×d , we have μ(AK , A�) = μ(K ,�). Hence, the
covering radius is invariant under unimodular transformations, which are affine maps
x �→ Ux + z, where z ∈ Z

d and U ∈ GLd(Z) is a unimodular matrix. The behavior
with respect to inclusions is as follows: For convex bodies K ⊆ K ′ and lattices
�′ ⊆ �, we have μ(K ′,�) ≤ μ(K ,�) ≤ μ(K ,�′).

We are interested in upper bounds on the covering radius of non-hollow lattice
polytopes, that is, polytopes all of whose vertices are lattice points. If we drop the
non-hollow condition, the maximum covering radius of a lattice d-polytope equals d.
This follows since every lattice d-polytope contains a lattice d-simplex and for lattice
simplices the bound is readily obtained (cf. [10, (19)]). Moreover, equality holds if
and only if the lattice polytope is a unimodular simplex; that is, one of the form
conv {0, b1, . . . , bd}, where {b1, . . . , bd} is a lattice basis for �, or a lattice translate
of that (see Corollary 4.13 for a proof of a more general statement).

The existence of interior lattice points makes the problem more difficult and inter-
esting. The natural candidate to play the role of the unimodular simplex is

S(1d+1) := conv {−1d , e1, . . . , ed},

123



Discrete & Computational Geometry (2022) 67:65–111 67

since it is the unique non-hollow lattice d-polytope of minimum volume (see [4,
Thm. 1.2]). Here 1d = (1, . . . , 1) denotes the all-one vector in dimension d, and ei
denotes the i th coordinate unit vector.1

The covering radius of S(1d+1) was computed in [10, Prop. 4.9]:

μ(S(1d+1), Z
d) = d

2
. (1)

Since the covering radius is additive with respect to direct sums (see Sect. 2.1), direct
sums of simplices of the form S(1l) or lattice translates thereof also have covering
radius equal to d/2. We conjecture that this procedure gives all the non-hollow lattice
polytopes of maximum covering radius in a given dimension:

Conjecture A Let P ⊆ R
d be a non-hollow lattice d-polytope. Then

μ(P) ≤ d

2
,

with equality if and only if P is obtained by direct sums and/or translations of simplices
of the form S(1l).

Example 1.1 In dimension two, S(13) has covering radius 1, and so do the following
triangle and square:

S(12) ⊕ ((1 + S(12)) = conv {(1, 0), (−1, 0), (0, 2)},
S(12) ⊕ S(12) = conv {(1, 0), (−1.0), (0, 1), (0,−1)}.

In dimension three, translations and/or direct sums of the S(1l)s produce nine pairwise
non-equivalent non-hollow lattice 3-polytopes of covering radius 3/2, that we describe
in Lemma 3.8.

One motivation for Conjecture A is as follows. The d-th covering minimum of a
convex body K ⊆ R

n with respect to a lattice � ⊆ R
n is defined as

μd(K ,�) := max
π

μ(π(K ), π(�)),

where π runs over all linear projections π : R
n → R

d such that π(�) is a lattice.
Coveringminimawere introduced byKannan andLovász [17] and interpolate between
μn(K ) = μ(K ) and μ1(K ), the reciprocal of the lattice width of K .

Since S(1n+1) projects to S(1d+1) for every d < n, we use (1) and get

μd(S(1n+1)) ≥ μd(S(1d+1)) = d

2
. (2)

The converse inequality was conjectured in [10]:

1 The notation S(1d+1) comes from the fact that this is a particular case of the simplices S(ω), ω ∈ R
d+1
>0 ,

introduced below. We call S(1d+1) the standard terminal simplex since terminal is used in the literature for
lattice simplices with the origin in the interior and no lattice points other than the origin and the vertices.
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Conjecture B ([10, Rem. 4.10]) For every n ∈ N and d ≤ n,

μd(S(1n+1)) = d

2
. (3)

In Sect. 3 we prove:

Theorem 1.2 (equivalence of Conjectures A and B, Sect. 3.1) For each d ∈ N, the
following are equivalent:

(i) μ(P) ≤ �/2 for every non-hollow lattice �-polytope P and for every � ≤ d.
(ii) ConjectureBholds for every � ≤ d. That is,μ�(S(1n+1)) = �/2, for every �, n ∈ N

with � ≤ d ≤ n.

Theorem 1.3 (Corollary 3.6 and Theorem 3.13) Conjecture A, hence also Conjec-
ture B, holds in dimension up to three.

The computation of the covering radius for S(1d+1) can be generalized to the
following class of simplices: For each ω = (ω0, . . . , ωd) ∈ R

d+1
>0 , we define

S(ω) := conv {−ω01d , ω1e1, . . . , ωded}.

In Sect. 5 we derive the following closed formula for μ(S(ω)). Therein and in the rest
of the paper we denote by Vol� K the normalized volume of a convex body K with
respect to a lattice �, which equals the Euclidean volume vol K of K normalized so
that a unimodular simplex of � has volume one.

Theorem 1.4 (Sect. 5.1) For every ω ∈ R
d+1
>0 , we have

μ(S(ω)) =
∑

0≤i< j≤d 1/(ωiω j )
∑d

i=0 1/ωi
= 1

2
·
∑d

i=0 Volπi (Z
d )(πi (S(ω)))

VolZd (S(ω))
,

where πi : R
d → R

d−1 is the linear orthogonal projection along the line through the
origin and the i-th vertex of S(ω).

In [10], the authors conjecture an optimal lower bound on the covering product
μ1(K ) · . . . ·μd(K ) ·VolZd K for any convex body K ⊆ R

d . As a consequence of the
explicit formula for μ(S(ω)), we confirm this conjecture for the simplices S(ω) (see
Corollary 5.2).

Observe that the volume expression on the right in Theorem 1.4 can be defined for
every simplex with the origin in its interior as follows:

Definition 1.5 Let S = conv {v0, . . . , vd} be a d-simplex with the origin in its interior.
We say that S has rational vertex directions if the line through the origin and the vertex
vi has rational direction, for every 0 ≤ i ≤ d. Writing πi : R

d → R
d−1 for a linear

projection vanishing at vi , we define the discrete surface area of such a simplex S as

Surf Zd (S) :=
d∑

i=0

Vol πi (Z
d )(πi (S)).
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Note that Volπi (Z
d ) (πi (S)) = Vol πi (Z

d ) (πi (Fi )), with Fi being the facet of S
opposite to the vertex vi . In this sense, the sum of these numbers is indeed a version
of the “surface area” of S, except that the volume of each facet is computed with
respect to the lattice projected from the opposite vertex. Motivated by this definition
and Theorem 1.4 we propose the following conjecture, which is the main object of
study in this paper:

Conjecture C Let S be a d-simplex with the origin in its interior and with rational
vertex directions. Then

μ(S) ≤ 1

2
· SurfZd S

VolZd S
. (4)

We formulate this conjecture only for simplices S rather than for arbitrary polytopes
that contain the origin and have rational vertex directions, because without further
study it is not clear how the discrete surface area SurfZd S can be extended in a
meaningful way. For example, we could project along the vertex directions as in the
simplex case, but then the correspondence with the opposite facet is lost.

In Sect. 4 we give additional motivation for Conjecture C. We show that it implies
Conjecture A (Corollary 4.3), that it holds in dimension two (Theorem 4.9), and that
in arbitrary dimension it holds up to a factor of two (Proposition 4.4).

Covering criteria such as the one in Conjecture C are rare in the literature, but very
useful as they reduce the question of covering to computing less complex geometric
functionals such as volume or (variants of the) surface area (cf. [11, Sect. 31]). A classi-
cal inequality of this type is the following result of Hadwiger. We regard Conjecture C
as a discrete analog thereof.

Theorem 1.6 ([13]) For every convex body K in R
d ,

μ(K ) ≤ 1

2
· surf K
vol K

,

where vol K and surf K are the Euclidean volume and surface area of K .

Observe that the statement of Conjecture C is more intrinsic than Hadwiger’s
inequality. This is because the Euclidean surface area is not invariant under unimodular
transformations, so that the bound in Theorem 1.6 depends on the particular repre-
sentative of K in its unimodular class. Moreover, the inequality only holds for the
standard lattice Z

d and cannot easily be transfered to other lattices (cf. [24] for partial
results for arbitrary lattices). In contrast, our proposed relation in Conjecture C is
unimodularly invariant and there is no loss of generality in restricting to the standard
lattice as we do (see Lemma 4.2 for details on these claims). Moreover, our proposed
inequality in Conjecture C is tight for the large class of simplices S(ω). In Sect. 4.4,
we complement our investigations on Conjecture C by extending it to the case where
the origin lies in the boundary of the simplex S, rather than in the interior.

Another way to extend Conjecture A is to ask for the maximal covering radius
among lattice polytopes with at least k ≥ 1 interior lattice points. The natural conjec-
ture is:
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Conjecture D Let k, d ∈ N be nonnegative integers. Then for every lattice d-polytope
P with k interior lattice points we have

μ(P) ≤ d − 1

2
+ 1

k + 1
.

Equality holds for k = 1 if and only if P is obtained by direct sums and/or translations
of simplices of the form S(1l), and for k ≥ 2, if and only if P is obtained by direct
sums and/or translations of the segment [0, k + 1] and simplices S(1l).

In Sect. 6 we prove this conjecture in dimension two (see Theorem 6.3). Observe
that no analog of Conjecture D makes sense for other covering minima. Indeed, the
maximum d-th covering minimum μd among non-hollow lattice n-polytopes with k
interior lattice points does not depend on k or n, for d < n: It equals the maximum
covering radius among non-hollow lattice d-polytopes, since every non-hollow lattice
d-polytope can be obtained as the projection of a (d + 1)-polytope with arbitrarily
many interior lattice points. In fact, assuming Conjecture A this maximum is given
by

μd(S(k, 1, . . . , 1)) = μd(S(1d+1)) = d

2
, for all n > d and k ∈ N.

Summing up, the relationship between our conjectures is as follows:

Conjecture C
⇓

Conjecture D ⇒ Conjecture A
⇓

Conjecture A without equality case
�

Conjecture B

A summary of our results is that all these conjectures hold in dimension two, that
Conjecture A holds in dimension three, and that Conjecture C holds for the simplices
of the form S(ω).

2 Preliminaries

This section develops some tools that will be essential for our analyses. We first
describe how the covering radius behaves with respect to projections, andmore impor-
tantly, that it is an additive functional on direct sums of convex bodies and lattices.
Afterwards we introduce and study the concept of tight covering which facilitates our
characterizations of equality, for example the one in Theorem 1.3.
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2.1 Projection and Direct Sum

Lemma 2.1 Let K ⊆ R
d be a convex body containing the origin, and let π : R

d → R
l

be a rational linear projection, so that π(Zd) is a lattice. Let Q = K ∩ π−1(0) and
let L = π−1(0) be the linear subspace spanned by Q. Then we have

μ(K , Z
d) ≤ μ(Q, Z

d ∩ L) + μ(π(K ), π(Zd)).

Proof Let us abbreviateμQ = μ(Q, Z
d ∩L) andμπ = μ(π(K ), π(Zd)). Let x ∈ R

d

be arbitrary. Then, π(x) is covered by μπ · π(K ) + π(Zd) = π(μπK + Z
d). Hence,

there exists a point x ′ ∈ R
d such that the segment [x, x ′] is parallel to L and such

that x ′ is covered by μπK + Z
d . On the other hand, y = x − x ′ ∈ L is covered

by μQQ + (Zd ∩ L). Since Q ⊆ K , this implies that x = y + x ′ is covered by
(μQ + μπ)K + Z

d , as claimed.

A particularly interesting case of the above result is when K decomposes as a direct
sum. Let Rd = V ⊕W be a decomposition into complementary linear subspaces with
dim V = � and dimW = d−�. The direct sum of two convex bodies K ⊆ V , L ⊆ W
both containing the origin is defined as

K ⊕ L := {λx + (1 − λ)y : x ∈ K , y ∈ L, λ ∈ [0, 1]} ⊆ R
d .

The direct sum of two lattices � ⊆ V , � ⊆ W is defined as

� ⊕ � := {x + y : x ∈ �, y ∈ �} ⊆ R
d .

With these definitions we can now formulate

Corollary 2.2 Let R
d = V ⊕ W be a decomposition as above, let K ⊆ V , L ⊆ W be

convex bodies containing the origin, and let � ⊆ V , � ⊆ W be lattices. Then

μd(K ⊕ L,� ⊕ �) = μ�(K ,�) + μd−�(L, �).

Proof The inequality μd(K ⊕ L,�⊕�) ≤ μ�(K ,�)+μd−�(L, �) is a special case
of Lemma 2.1, via the natural projection R

d = V ⊕ W → V .
For the other inequality, let x ∈ V be a point not covered by cK + � for some c <

μ�(K ,�) and let y ∈ W be a point not covered by c̄L +� for some c̄ < μd−�(L, �).
We claim that x + y ∈ V ⊕W = R

d is not covered by (c+ c̄)(K ⊕ L) + � ⊕ �, and
thus c + c̄ ≤ μd(K ⊕ L,� ⊕ �). Since c and c̄ were taken arbitrarily, this implies
μ�(K ,�) + μd−�(L, �) ≤ μd(K ⊕ L,� ⊕ �).

Assume, to the contrary, that x + y ∈ (c + c̄)(K ⊕ L) + � ⊕ �, that is, x + y =
(c+ c̄)(λp+(1−λ)q)+w+z, for some λ ∈ [0, 1], p ∈ K , q ∈ L ,w ∈ �, and z ∈ �.
Since the sums are direct, we get x = (c+c̄)λp+w and y = (c+c̄)(1−λ)q+z, which
by assumption implies (c + c̄)λ > c and (c + c̄)(1 − λ) > c̄. These two inequalities
cannot hold at the same time, and we arrive at a contradiction.
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2.2 Tight Covering

Definition 2.3 Let K ⊆ R
d be a convex body and let � be a lattice. Then, K is called

tight for � if for every convex body K ′
� K , we have

μ(K ′,�) < μ(K ,�).

Definition 2.4 Let K ⊆ R
d be a convex body of covering radius μ with respect to a

lattice �. A point p ∈ R
d is last covered by K if

p /∈ int(μ · K ) + �.

Let P be a d-polytope, let F be a facet of P , and let p be a point that is last covered
by P . We say that p needs F if p ∈ relint(μ · F) + �.

Lemma 2.5 Let K ⊆ R
d be a convex body of covering radius μ with respect to a

lattice �. Then, the following properties are equivalent:

(i) K is tight for �.
(ii) K is a polytope and for every facet F of K and for every last covered point p,

p needs F.
(iii) K is a polytope and every facet of every hollow translate of μ · K is non-hollow.
(iv) Every hollow translate of μ · K is a maximal hollow convex body with respect to

inclusion.

Proof The equivalence of (iii) and (iv) is the characterization of maximal hollow
convex bodies by Lovász [20]. For the equivalence of (i) and (iv) observe that, by
definition, μ is the largest constant such that (a) μ · K has a hollow lattice translate
and (b) the inequality μ(K ′,�) < μ(K ,�) in the definition of tightness is nothing
but maximality of all such hollow translates.

We now show the equivalence of (i) and (ii). Suppose there is a facet F of K that is
not needed by some last covered point p. Let K ′ = conv (K ∪ {x}), where x /∈ K is
a point beyond F , meaning that x violates the inequality that defines F , but satisfies
all other facet-inducing inequalities of K . Then

μ(K ′,�) = μ(K ,�)

because p is still a last covered point of K ′ (for the same dilate μ).
Conversely, if K is not tight let K ′ be a convex body strictly containing K and that

has the same covering radius. Let F be a facet of K with relint F ⊆ int K ′. Let p be
a point that is last covered by K ′. Since the covering radii are equal and K � K ′,
p must also be last covered by K . Since we chose F so that relint F is in the interior
of K ′, p does not need F .

Example 2.6 It is not sufficient for tightness that “every facet is needed by some last
covered point.” An example showing this is the hexagon P = conv{±(1, 0), ±(0, 1),
±(1, 1)} with respect to the integer lattice. P has covering radius 2/3, the same as the
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triangle conv {(−1, 1), (2, 1), (−1,−2)} that properly contains it, so it is not tight. It
has two orbits of last covered points, with representatives ±(2/3, 1/3), each of which
needs three of the six edges of P .

Lemma 2.7 Every simplex is tight for every lattice.

Proof We use Lemma 2.5. Let � be a simplex of covering radius μ with respect to
a lattice �, and let p be a point last covered by �. That is, p /∈ int(μ�) + �. Let
F0, F1, . . . , Fd be the facets of �, with interior facet normals v0, . . . , vd .

Every neighborhood of p is covered by μ� + �, and p can only lie in lattice
translates of the boundary of μ�. Suppose, in order to get a contradiction, that a
certain facet Fi is not needed by p. This implies that for every μ� + z (z ∈ �)
containing p there is a facet Fj �= Fi such that μ� + z ⊂ H p

j , where

H p
j := {x ∈ R

d : v
ᵀ
j x ≤ v

ᵀ
j p}

is the translation to p of the j-th facet-defining half-space of �. This implies that we
have a neighborhood of p covered by the d affine half-spaces with p in the boundary
corresponding to the indices j �= i . This is impossible since the corresponding d
normals are linearly independent.

Lemma 2.8 Let K1 and K2 be convex bodies containing the origin and let �1 and
�2 be lattices. Then, K1 and K2 are tight for �1 and �2, respectively, if and only if
K1 ⊕ K2 is tight for �1 ⊕ �2.

Proof First of all, let K ′
� K1 ⊕ K2 be a convex body and let K ′

1 and K ′
2 be the

projection of K ′ onto the linear span of K1 and K2, respectively. Clearly, either K ′
1 �

K1 or K ′
2 � K2, so that by Corollary 2.2 and the tightness of K1 and K2, we have

μ(K1 ⊕ K2,�1 ⊕ �2) = μ(K1,�1) + μ(K2,�2) > μ(K ′
1,�1) + μ(K ′

2,�2)

= μ(K ′
1 ⊕ K ′

2,�1 ⊕ �2) ≥ μ(K ′,�1 ⊕ �2),

since K ′
1 ⊕ K ′

2 ⊆ K ′. Therefore, K1 ⊕ K2 is tight for �1 ⊕ �2.
Conversely, if say K1 is not tight for �1, then there exists K ′

1 � K1 such that
μ(K1,�1) = μ(K ′

1,�1). Then, K ′
1 ⊕ K2 � K1 ⊕ K2 and by Corollary 2.2,

μ(K ′
1 ⊕ K2,�1 ⊕ �2) = μ(K ′

1,�1) + μ(K2,�2)

= μ(K1,�1) + μ(K2,�2) = μ(K1 ⊕ K2,�1 ⊕ �2),

so K1 ⊕ K2 is not tight for �1 ⊕ �2.

Lemma 2.9 Let �′
� � be two lattices in R

d , and let K ⊆ R
d be a convex body.

Then

μ(K ,�) ≤ μ(K ,�′).
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Proof Letμ = μ(K ,�) andμ′ = μ(K ,�′). Then,μ′K+�′ ⊆ μ′K+�, soμ ≤ μ′.

Remark 2.10 (i) An example where equality holds in Lemma 2.9 is the following: Let
K = [−1, 1]d and let � be an arbitrary refinement of Z

d contained in R
d−1 × Z.

Then, μ(K , Z
d) = μ(K ,�) = 1/2.

(ii) The inequality in Lemma 2.9 may not be strict, even for simplices. An example is
the simplex (I ⊕ I ′)′ ⊕ I of Lemma 3.8 below. It has the same covering radius as
S(14) (equal to 3/2), yet it is isomorphic to S(14) when regarded with respect to
the sublattice of index two generated by its vertices and its interior lattice point.
This can easily be derived from its depiction in the bottom-center of Fig. 2, or
from its coordinates in Table 1 (in these coordinates the sublattice is {(x, y, z) ∈
Z
3 : x ∈ 2Z}).

3 Conjectures A and B: Equivalence and Small Dimensions

3.1 Equivalence of Conjectures A and B

As an auxiliary result we first reduce Conjecture A to lattice simplices.

Lemma 3.1 Every non-hollow lattice polytope contains a non-hollow lattice simplex
of possibly smaller dimension.

Proof Let P be a non-hollow lattice polytope and p ∈ int(P) ∩ Z
d . Applying

Carathéodory’s Theorem to an expression of p as a convex combination of the vertex
set of P , we obtain an affinely independent subset of vertices that still has p as a con-
vex combination. The vertices involved in that convex combination form a non-hollow
simplex contained in P .

Corollary 3.2 Conjecture A reduces to lattice simplices. More precisely, Conjecture A
holds in every dimension ≤ d if and only if it holds for lattice simplices in every
dimension ≤ d.

Proof One direction is trivially true. We prove the other one by induction on d. Let
P ⊆ R

d be a non-hollow lattice polytope. In view of Lemma 3.1, we find an �-
dimensional non-hollow lattice simplex S ⊆ P . If � = d, then we simply have
μ(P) ≤ μ(S). So, let us assume that � < d and assume that Conjecture A is proven
for any dimension < d. Assume also that S contains the origin in its interior and write
LS for the linear hull of S. We now apply Lemma 2.1 to the projection π onto L⊥

S .
Observe that S ⊆ P ∩ π−1(0) = P ∩ LS , and that S is non-hollow with respect to
Z
d ∩ LS and π(P) is non-hollow with respect to the lattice π(Zd). We get that

μ(P) ≤ μ(S, Z
d ∩ LS) + μ(π(P), π(Zd)) ≤ �

2
+ d − �

2
= d

2
.
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Proof of Theorem 1.2 Suppose first that for � ≤ d every lattice �-polytope P has
μ(P) ≤ �/2. Since S(1n+1) projects to S(1�+1), we have by (1),

μ�(S(1n+1), Z
n) ≥ μ�(S(1�+1), Z

�) = �

2
.

For the converse inequality, let π : R
n → R

� be an integer projection along which the
value of μ�(S(1n+1)) is attained. Then, π(S(1n+1)) is non-hollow with respect to the
lattice π(Zn), and thus

μ�(S(1n+1), Z
n) = μ�(π(S(1n+1)), π(Zn)) ≤ �

2
.

For the reverse implication (ii)⇒ (i), suppose Conjecture B holds in every dimension
� ≤ d. Let P be a lattice �-polytope with at least one interior lattice point, which
without loss of generalitywe assume to be the origin 0. ByCorollary 3.2we can assume
P to be a simplex, and we let v0, . . . , v� be its vertices. Let (b0, . . . , b�) ∈ N

�+1 be a
tuple of the barycentric coordinates of 0 in P; that is, assume that

0 = 1

N

�∑

i=0

bivi , (5)

where N = ∑�
i=0 bi ≥ � + 1. Consider the (N − 1)-dimensional simplex S(1N ), and

the affine projection π : R
N−1 → R

� that sends exactly bi vertices of S(1N ) to vi ,
i = 0, . . . , �. Expression (5) implies that π sends the origin to the origin, which in
turn implies π to be an integer projection. In particular,

μ(P, Z
�) ≤ μ�

(
π(S(1N )), π(ZN−1)

) ≤ μ�(S(1N ), Z
N−1) = �

2
,

since π(ZN−1) ⊆ Z
�.

3.2 Conjecture A in Dimensions 2 and 3

We here prove Conjecture A in dimensions two and three, including the case of
equality.

Conjecture A in dimension two Let I = [−1, 1] and I ′ = [0, 2] be intervals of length
two centered at 0 and 1, respectively.

Lemma 3.3 The three polygons S(13), I ⊕ I , and I ⊕ I ′ have covering radius equal
to 1.

Proof For S(13) this is just (1). For the other two polygons it follows from Corol-
lary 2.2, since they are unimodularly equivalent to direct sums of segments of length
two.
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Fig. 1 The non-hollow lattice polygons S(13), I ⊕ I , and I ⊕ I ′ of covering radius 1

We now show that every other non-hollow lattice polygon contains a (unimodularly
equivalent) copy of one of these three, which implies Conjecture A. For this let us
consider the following auxiliary family of lattice triangles with k interior lattice points:
For each k ∈ N, and α ∈ {0, 1}, let

Mk(α) = conv {(−1, 0), (1, α), (0, k + 1)}.

Observe that

M1(0) = I ⊕ I ′, M1(1) ∼= S(13), and ∀ k ≥ 2, Mk−1(α) � Mk(α).

Remark 3.4 The covering radius of Mk(α) can be computed explicitly via

Mk(0) ∼= I ⊕ [0, k + 1] and Mk(1) ∼= S(k, 1, 1).

Indeed, this implies

μ(Mk(0)) = 1

2
+ 1

k + 1
= k + 3

2k + 2
and μ(Mk(1)) = 1 + 2/k

2 + 1/k
= k + 2

2k + 1
,

by Corollary 2.2 and Theorem 1.4, respectively. We see that their covering radius
equals 1 for k = 1, and is strictly smaller for k ≥ 2.

The following statement might be known in the literature on lattice polygons. In
absence of a clear reference we give a detailed proof for the sake of a complete
presentation.

Lemma 3.5 Every non-hollow lattice polygon P contains a unimodular copy of either
M1(0) = I ⊕ I ′, M1(1) ∼= S(13), or I ⊕ I .

Proof Without loss of generality, assume the origin is in the interior of P . Consider the
complete fan whose rays go through all non-zero lattice points in P . We call this the
lattice fan associated to P , and it is a complete unimodular fan. Since a 2-dimensional
fan is uniquely determined by its rays, we denote by F {v1, . . . , vm} the fan with rays
through v1, . . . , vm ∈ R

2. In particular, the lattice fan of P is denoted by F {P ∩ Z
2}.

By the classification of complete unimodular fans, see [9, Thm. V.6.6], F {P ∩ Z
2}

can be obtained (modulo unimodular equivalence) by successively refining the lattice
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fan of either S(13) or

Fl := F {(0,−1), (0, 1), (−1, 0), (1, l)},

for some l ∈ Z≥0. Observe that F0 is the lattice fan of I ⊕ I , F1 refines the lattice fan
of S(13) ∼= M1(1) and, for every l ≥ 2, we have that Fl is unimodularly equivalent
to the lattice fan of

{
Mk(0) if l = 2k is even, and

Mk(1) if l = 2k − 1 is odd,

independently of which interior lattice point of Mk(α) we consider the rays of its
lattice fan emanating from.

This, together with the fact that M1(α) ⊆ Mk(α) for every k ≥ 1, implies that P
contains one of M1(0), M1(1), or I ⊕ I .

Corollary 3.6 Let P be a non-hollow lattice polygon. Then

μ(P) ≤ 1,

with equality if and only if P is unimodularly equivalent to one of S(13), I ⊕ I , or
I ⊕ I ′.

Proof By Lemma 3.5, unless P is one of S(13), I ⊕ I , or I ⊕ I ′, it strictly contains
one of them. If the latter happens then its covering radius is strictly smaller than 1,
since the three of them are tight by Lemmas 2.7 and 2.8.

Conjecture A in dimension three For the three-dimensional case we introduce the
following concept:

Definition 3.7 A minimal d-polytope is a non-hollow lattice d-polytope not properly
containing any other non-hollow lattice d-polytope.

In this language, our results in dimension 2 can be restated as: There are exactly
three minimal 2-polytopes, they have covering radius 1, and every other non-hollow
lattice 2-polytope has strictly smaller covering radius.

In dimension three things are a bit more complicated. To start with, instead of three
direct sums of (perhaps translated) simplices of the form S(1i ) there are nine, that we
now describe. As in the previous section, let I = [−1, 1] = S(12) and I ′ = [0, 2]. In
a similar way we define

S′(13) = (1, 1) + S(13) = conv {(0, 0), (2, 1), (1, 2)},
(I ⊕ I ′)◦ = (0,−1) + (I ⊕ I ′) = conv {(0, 1), (±1,−1)},
(I ⊕ I ′)′ = (0,−2) + (I ⊕ I ′) = conv {(0, 0), (±1,−2)}.

Put differently, S′(13) is S(13) translated to have the origin as a vertex; the other two
are I ⊕ I ′ translated to have the origin in the interior and at the “apex”, respectively.
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Fig. 2 The five non-hollow lattice 3-polytopes that can be obtained by translations and direct sums of
I = [−1, 1] arise as the convex hull of the shown segments

Lemma 3.8 There are the following nine non-equivalent lattice 3-polytopes of cover-
ing radius 3/2, obtained as direct sums of (perhaps translated) simplices of the form
S(1d):

S(14),
S(13) ⊕ I , S′(13) ⊕ I , S(13) ⊕ I ′,

I ⊕ I ⊕ I , I ⊕ I ⊕ I ′,
(I ⊕ I ′)◦ ⊕ I , (I ⊕ I ′)′ ⊕ I , (I ⊕ I ′)◦ ⊕ I ′.

The last five polytopes are illustrated in Fig. 2, which is borrowed from [5, p. 123].
Observe that the last three can equally be written as

I ⊕ (I ⊕ I )′, I ⊕ (I ′ ⊕ I )′, I ⊕ (I ⊕ I ′)′′,

where (I ⊕ I )′ denotes I ⊕ I translated to have the origin as a vertex and (I ⊕ I ′)′′
is I ⊕ I ′ translated to have the origin at an endpoint of its edge of length two.

Proof That all the described direct sums are non-hollow follows from the following
more general fact: The direct sum of two or more non-hollow lattice polytopes con-
taining the origin is non-hollow if (and only if) all but at most one of the summands
has the origin in its interior. Indeed, if the summand exists then its interior point(s) are
interior in the sum; if it does not then the origin is an interior point in the sum. With
this in mind, we only need to check that the nine described polytopes are pairwise
unimodularly non-equivalent, which is left to the reader.

A second difference with dimension two is that these nine non-hollow lattice 3-
polytopes are no longer the only minimal ones. Minimal non-hollow 3-polytopes have
been classified and there are 26 with a single interior lattice point (see [18, Thm. 3.1]
and Tables 2&4 therein) plus the infinite family described in Theorem 3.10.

To prove Conjecture A in dimension three we show that, on the one hand, the cover-
ing radii of the 26 with a single interior lattice point can be explicitly computed and/or
bounded, giving the following result, the proof of which we postpone to Appendix C.

Theorem 3.9 Among the 26 minimal non-hollow 3-polytopes with a single interior
lattice point, all except the nine in Lemma 3.8 have covering radius strictly smaller
than 3/2.
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On the other hand, all the (infinitely many) minimal non-hollow 3-polytopes with
more than one interior lattice point have covering radius strictly smaller than 3/2,
as we now prove. For any k ∈ N and α, β ∈ {0, 1}, we define Mk(α, β) to be the
following lattice tetrahedron:

Mk(α, β) = conv {(1, 0, 0), (−1, 0, α), (0, 1, k + 1), (0,−1, k + 1 − β)}.

Theorem 3.10 ([2, Prop. 4.2]) Every minimal 3-polytope with k ≥ 2 interior lattice
points is equivalent by unimodular equivalence or refinement of the lattice to Mk(α, β)

for some α, β ∈ {0, 1}.
Theorem 3.10 is a version of [2, Prop. 4.2], although more explicit than the original

one. An example where refinement is needed in the statement is Mk(0, 0) considered
with respect to the lattice � generated by Z

3 and (1/q, 1− 1/q, 0), with q and k + 1
coprime. Mk(0, 0) is still minimal with respect to � because it contains no point of
� \ Z

3.

Proof Let P be a minimal lattice 3-polytope with more than one interior lattice point,
and let L be a line containing two of them. Without loss of generality we assume that
L = {(0, 0, z) : z ∈ R} and L ∩ P is the segment between (0, 0, z1) and (0, 0, z2),
with z1 ∈ [0, 1) and z2 ∈ (r , r + 1] for some r ∈ {2, . . . , k}, so that L contains r
interior lattice points of P .

Claim 1 The minimal faces of P containing respectively (0, 0, z1) and (0, 0, z2) are
non-coplanar edges. Let F1 and F2 be those faces. If one of them, say F1, had dimen-
sion two, then conv (F1 ∪ {(0, 0, r)}) would be a non-hollow lattice polytope strictly
contained in P . If one of them, say F1, had dimension zero then necessarily F1 =
{(0, 0, z1)} = {(0, 0, 0)}. This would imply conv (P ∩ Z

3 \ {0}) to be a non-hollow
lattice polytope strictly contained in P . Thus, F1 and F2 are both edges of P . They can-
not be coplanar, since otherwise there would be vertices p and q of P , one on either
side of the hyperplane aff (F1 ∪ F2), and the polytope conv(F1 ∪ {(0, 0, r), p, q})
would be non-hollow and strictly contained in P . Hence, conv (F1 ∪ F2) is a non-
hollow lattice tetrahedron and, by minimality, P = conv (F1 ∪ F2). We denote as vi
and wi the vertices of Fi , for i = 1, 2.

Claim 2 All the lattice points in the tetrahedron P other than the four vertices are on
the line L . Let Hi be the plane containing the line L and the edge Fi , for i = 1, 2.
The polytope Q = conv (L ∩ P ∪ {v1, w1, v2}) ⊂ P is contained in H+

1 , one of the
two halfspaces defined by H1; furthermore, the facet of Q lying on H1 is non-hollow,
since (0, 0, 1) is in its relative interior. Therefore, if P contained any lattice point u
other than the vertex w2 in the open halfspace (H−

1 )o then conv (Q ∪ {u}) would be
a non-hollow lattice polytope strictly contained in P . Thus there are no lattice points
in the open halfspace (H−

1 )o. Since the same can be said for the other halfspaces, H+
1

and H±
2 , all lattice points of P except its four vertices must lie on L . In particular, we

have r = k.

Claim 3 The endpoint (0, 0, zi ) equals the mid-point of the edge Fi = conv {vi , wi }.
Let us only look at i = 1, the other case being symmetric. Let u1 = (0, 0, 1) and
u2 = (0, 0, 2) be the first two interior lattice points of P along L . The triangles
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conv {u1, u2, v1} and conv {u1, u2, w1} are empty lattice triangles in the plane H1,
hence they have the same area. Thus, v1 and w1 are at the same distance from (and on
opposite sides of) the line L , which implies the statement. In particular, z1 ∈ [0, 1)
and z2 ∈ (k, k + 1] are either integers or half-integers, so they can be written as
z1 = α/2 and z2 = k + 1− β/2 for some α, β ∈ {0, 1}. It is now clear that the affine
transformation that fixes L and sends v1 �→ (1, 0, 0) and v2 �→ (0, 1, k + 1), sends P
to Mk(α, β). The map may send Z

3 to a different lattice �, but � refines Z
3 since

(1, 0, 0), (0, 1, k + 1), (0, 0, 1), and (0, 0, 2) are in � and they generate Z
3.

Corollary 3.11 Every minimal 3-polytope with k ≥ 2 interior lattice points has cov-
ering radius strictly smaller than 3/2.

Proof The projection of Mk(α, β) along the z direction is I ⊕ I and the fiber over the
origin is the segment {0} × {0} × [α/2, k + 1 − β/2], of length k + 1 − (α + β)/2.
Thus, by Lemma 2.1,

μ(Mk(α, β)) ≤ μ(I ⊕ I ) + μ([α/2, k + 1 − β/2]) = 1 + 1

k + 1 − (α + β)/2
≤ 3

2
.

Moreover, the last inequality is met with equality only in the case k = 2, α = β = 1.
But for M2(1, 1) we can consider the projection (x, y, z) �→ x , whose image is I and
whose fiber is

conv {(0, 1/2), (1, 3), (−1, 2)} ∼= S(3/2, 1, 1).

Thus, by Lemma 2.1 and Theorem 1.4, we have

μ(M2(1, 1)) ≤ μ(I ) + μ(S(3/2, 1, 1)) = 1

2
+ 7/3

8/3
= 11

8
<

3

2
.

In fact, we can be more explicit:

Remark 3.12 The covering radius of Mk(α, β) admits a closed expression:

μ(Mk(0, 0)) = μ(I ⊕ [0, k + 1] ⊕ I ) = 1 + 1

k + 1
.

μ(Mk(1, 0)) = μ(Mk(0, 1)) = μ(I ⊕ Mk(1)) = 1 + 3

4k + 2
,

μ(Mk(1, 1)) = 1 + 1

2k
.

The first formula directly follows from Lemma 2.1. The second one also does, using
Remark 3.4. For the third one, see Lemma B.5 in Appendix B. For k = 1 the three
expressions reduce to 3/2, which follows also from M1(0, 0) ∼= I ⊕ (I ⊕ I ′)′,
M1(0, 1) ∼= I ⊕ S(13), and M1(1, 1) ∼= S(14).

We are now ready to prove Conjecture A in dimension three:
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Theorem 3.13 Let P be a non-hollow lattice 3-polytope. Then

μ(P) ≤ 3

2
,

with equality if and only if P is unimodularly equivalent to one of the nine polytopes
in Lemma 3.8.

Proof Let P be a non-hollow lattice 3-polytope, and let T be a minimal one contained
in it. If T is not one of the nine in Lemma 3.8 then T , and hence P , has covering radius
strictly smaller than 3/2 by either Corollary 3.11 or Theorem 3.9. If T is one of the
nine and P �= T then

μ(P) < μ(T ) = 3

2
,

since these nine are tight by Lemmas 2.7 and 2.8.

4 Conjecture C

We here focus on Conjecture C. We show that it implies Conjecture A, we prove it up
to a factor of two in arbitrary dimension, and we prove it in dimension two. Finally,
in Sect. 4.4, we investigate how the proposed bound changes if we allow the origin to
be contained in the boundary of the given simplex.

As a preparation, let us first reinterpret Conjecture C in terms of (reciprocals of)
certain lengths. To this end, let S = conv {v0, . . . , vd} be a d-simplex with the origin
in its interior, and assume that it has rational vertex directions, that is, the line through
the origin and the vertex vi has rational direction, for every 0 ≤ i ≤ d.

As in Conjecture C, let πi be the linear projection to dimension d − 1 vanishing
at vi . Finally, let �i be the lattice length of S ∩ π−1

i (0). Put differently, let ui be the
point where the ray from vi through 0 hits the opposite facet of S and let �i be the
ratio between the length of [ui , vi ] and the length of the primitive lattice vector in the
same direction. In formula:

�i := VolZd∩Rvi
[ui , vi ].

Lemma 4.1 For every i ∈ {0, 1, . . . , d}, we have
1

�i
= Volπi (Z

d )(πi (S))

VolZd S
.

In particular, Conjecture C is equivalent to the inequality

μ(S) ≤ 1

2

d∑

i=0

1

�i
. (6)
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Proof By construction, we have πi (S) = πi (Fi ), where Fi is the facet of S opposite
to the vertex vi . Therefore, vol S = volπi (S) vol [ui , vi ]/d. The determinants of the
involved lattices are related by 1 = detZd = det(πi (Z

d)) det (Zd ∩ Rvi ) (cf. [22,
Prop. 1.2.9]). Hence,

VolZd S = d! vol S
detZd

= (d − 1)! vol(πi (S))

det(πi (Zd))

vol [ui , vi ]
det (Zd ∩ Rvi )

= Volπi (Z
d ) (πi (S))VolZd∩Rvi

[ui , vi ]

as desired.

We now also detail the claim in the introduction, that the discrete surface area
defined in Definition 1.5 is invariant under unimodular transformations.

Lemma 4.2 Let S be a d-simplex with the origin in its interior and with rational vertex
directions. Let A be an invertible linear transformation. Then

Surf AZd (AS) = SurfZd S.

In particular, if A is unimodular, we have SurfZd (AS) = SurfZd S.

Proof As before we write S = conv {v0, . . . , vd} and we let πi be the projection van-
ishing at vi , for 0 ≤ i ≤ d. Clearly, AS = conv {Av0, . . . , Avd} and the corresponding
projection π̄i vanishing at Avi can be written as π̄i = πi A−1. Therefore, we get

Surf AZd (AS) =
d∑

i=0

Volπ̄i (AZd ) (π̄ i (AS)) =
d∑

i=0

Volπi (Z
d ) (πi (S)) = SurfZd S

as claimed.

4.1 Conjecture C Implies Conjecture A

Corollary 4.3 Conjecture C ⇒ Conjecture A.

Proof In view of Corollary 3.2, it suffices to consider lattice simplices. Therefore,
let S = conv {v0, . . . , vd} be a lattice d-simplex containing the origin in its interior.
Furthermore, let ωi be the lattice length of the segment [0, vi ]. Then, 1− ωi/�i is the
i-th barycentric coordinate of the origin with respect to the vertices of S, so that

d∑

i=0

(

1 − ωi

�i

)

= 1
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and, hence,
∑d

i=0 ωi/�i = d. On the other hand, for a lattice simplex we have ωi ≥ 1.
Thus, assuming Conjecture C holds for S, we have

μ(S) ≤ 1

2

d∑

i=0

1

�i
≤ 1

2

d∑

i=0

ωi

�i
= d

2
.

4.2 Conjecture C Holds up to a Factor of Two

In the formulation of Lemma 4.1, Conjecture C is easily proven inductively up to a
factor of two.

Proposition 4.4 Let S = conv {v0, . . . , vd}be ad-simplexwith the origin in its interior
and with rational vertex directions. Then

μ(S) ≤
d∑

i=0

1

�i
,

with the lattice lengths �i defined as above.

Proof As above, let ui be the intersection of the lineRvi with the facet F of S opposite
to vi , so that �i is the lattice length of Q := [ui , vi ] ⊆ S. Note, that ui lies in the
relative interior of F . Also, let πi be the linear projection vanishing at vi . By the
assumptions on S, the projection πi is rational and thus πi (S) is a (d−1)-dimensional
simplex having the origin in its interior and with rational vertex directions with respect
to πi (Z

d).
Using Lemma 2.1 and the induction hypothesis for πi (S), we get

μ(S, Z
d) ≤ μ(Q, Z

d ∩ LQ) + μ
(
πi (S), πi (Z

d)
) ≤ 1

�i
+

∑

j �=i

1

�′
j
, (7)

where the �′
j are the corresponding lattice-lengths inπi (S). Thus, to prove the proposi-

tionwe only need to show that �′
j ≥ � j , for all j �= i . In fact, since the one-dimensional

lattice πi (Z
d) ∩ πi (Rv j ) refines πi (Z

d ∩ Rv j ), we have

� j = VolZd∩Rv j
[u j , v j ] = Volπi (Z

d∩Rv j )
[πi (u j ), πi (v j )]

≤ Volπi (Z
d )∩πi (Rv j )

[πi (u j ), πi (v j )] ≤ �′
j .

Here, the last inequality comes from the fact that [πi (u j ), πi (v j )] ⊆ πi (S) is contained
in the ray from the vertex πi (v j ) of πi (S) through the origin.

Remark 4.5 Corollary 4.11 in the next section proves Conjecture C in the plane. So
we can base the inductive proof above on the stronger assumption that μ(S′) ≤
cd−1

∑d−1
i=0 1/�′

i , where S′ is a (d − 1)-dimensional simplex and cd−1 is a suitable
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constant with c2 = 1/2. Summing the thus modified inequality (7) for all indices
0 ≤ i ≤ d, yields the recursion (d + 1)cd = 1 + dcd−1. Solving it shows that

μ(S) ≤ 2d − 1

2d + 2

d∑

i=0

1

�i

for all d-simplices S with the origin in its interior and with rational vertex directions.
This is a good bound in R

3 since c3 = 5/8.

4.3 Conjecture C in Dimension Two

In this section we prove Conjecture C in dimension two. Our first remarks are valid in
arbitrary dimension.

Throughout, let S = conv {v0, . . . , vd} be a simplex with the origin in its interior
and with rational vertex directions. For each i = 0, . . . , d, let pi be the primitive
positive multiple of vi . Let α = (α0, . . . , αd) ∈ N

d+1 be the primitive integer linear
dependence among the pi ’s. That is,

d∑

i=0

αi pi = 0 and gcd (α0, . . . , αd) = 1.

Denoting the Euclidean length of a vector x ∈ R
d by ‖x‖, and writing βi =

αi‖pi‖/‖vi‖ ∈ R>0, for each i = 0, . . . , d, we have

d∑

i=0

βivi =
d∑

i=0

αi pi = 0.

Remark 4.6 The fact that the pi ’s are primitive imposes some condition on the vector
α ∈ N

d+1. Namely, for each i ∈ {0, . . . , d}, we have

gcd (α j : j �= i) = 1.

Indeed, let � be the lattice generated by {p0, p1, . . . , pd}, and let �i be the sublattice
generated by {p j : j �= i}. Then, the primitive vector of �i in the direction of pi is

∑
j �=i α j p j

gcd (α j : j �= i)
= −αi pi

gcd (α j : j �= i)
,

which is an integer multiple of pi if, and only if, gcd(α j : j �= i) = 1.

As in the previous sections, for each i let �i be the lattice length of S ∩ Rvi . The
following lemma says that the vectors α and β = (β0, β1, . . . , βd) contain all the
information about S needed to compute the right-hand side in (6).
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Lemma 4.7 The lattice length of S ∩ Rvi equals

�i = αi

βi
+ αi

∑
j �=i β j

= αi

βi
·
∑d

j=0 β j
∑

j �=i β j
.

Proof To slightly simplify notation, we do the computations for i = 0. For this, let us
use the vectors p1, . . . , pd as the basis for a linear coordinate system in R

d . In these
coordinates, p0 becomes

p0 = − 1

α0
(α1, . . . , αd).

On the other hand, the equation of the facet of S opposite to v0 is

d∑

j=1

β j

α j
x j = 1,

so that this facet intersects the line spanned by p0 at the point

(α1, . . . , αd)
∑d

j=1 β j
= −α0

∑d
j=1 β j

p0. (8)

Thus, the segment S ∩ Rv0 has endpoints (α0/β0) p0 and (8), which implies the
statement.

Remark 4.8 Observe that the quantity ωi in the proof of Corollary 4.3 equals αi/βi .
With this in mind, one easily recovers the equality

∑
i ωi/�i = d used in that proof,

from Lemma 4.7.

Specializing to dimension two Our proof of Conjecture C in two dimensions is based
on applying Lemma 2.1 to the projection π : R

2 → R along the direction of vi , for
some fixed i ∈ {0, 1, 2}. Then, with the notation above,

(i) α0, α1, and α2 are pairwise coprime, by Remark 4.6;
(ii) the lattice length of S ∩ π−1(0) is �i ;
(iii) the lattice length of π(S) equals

α jαk

β j
+ α jαk

βk
= α jαk

β jβk
(β j + βk),

where { j, k} = {0, 1, 2} \ {i}. Here we use that the projection of the segment
[0, v j ] = (α j/β j )[0, p j ] has length αkα j/β j , since gcd(α j , αk) = 1 implies that
π(p j/αk) is a primitive lattice point in the projection.

Writing L = π−1(0), Lemma 2.1 gives us

μ(S) ≤ μ(S ∩ L, Z
2 ∩ L) + μ

(
π(S), π(Z2)

)
.
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Hence, the inequality (6) would follow from

1

� j
+ 1

�k
− 1

�i
≥ 2β jβk

α jαk(β j + βk)
. (9)

We prove this inequality under mild assumptions.

Theorem 4.9 Let S = conv {v0, v1, v2} ⊆ R
2 be a triangle with the origin in its

interior and with rational vertex directions. Let the vectors α and β, and the lengths
�i be defined as above, and let p0, p1, and p2 be primitive in the directions of v0, v1,
and v2. Assume that (α0, α1, α2) �= (1, 1, 1). Then, the inequality (9) holds for some
choice of i ∈ {0, 1, 2}. Moreover, the inequality is strict unless (α0, α1, α2) = (2, 1, 1)
and β1 = β2, up to reordering the indices.

Example 4.10 (i) The necessity of (α0, α1, α2) �= (1, 1, 1) is shown by the following
example. If S = S(1, 1, 1) (so that αi = βi = 1 for all i), then

1

� j
+ 1

�k
− 1

�i
= 2

3
and

2β jβk

α jαk(βk + βk)
= 1,

so the inequality fails.
(ii) Even if (α0, α1, α2) �= (1, 1, 1), it is not true that (9) holds for every i ∈ {0, 1, 2}.

For ω > 0, consider the simplex

S = conv {(0, ω), (−1,−1), (1,−1)}.

It has parameters (α0, α1, α2) = (2, 1, 1), (β0, β1, β2) = (2/ω, 1, 1), �0 = ω+1,
and �1 = �2 = (2ω + 2)/(ω + 2). For i = 0, we indeed have

1

�1
+ 1

�2
− 1

�0
= 1 = 2β1β2

α1α2(β1 + β2)
.

But for i ∈ {1, 2}, we get
1

� j
+ 1

�k
− 1

�i
= 1

�0
= 1

ω + 1
<

2

ω + 2
= 2β jβk

α jαk(β j + βk)
.

Proof of Theorem 4.9 Case 1: At most one of the αi s equals 1. Say α1 �= 1 �= α2. With
no loss of generality assume �2 ≥ �1. Then, by Lemma 4.7,

1

�0
+ 1

�1
− 1

�2
≥ 1

�0
= β0

α0
· β1 + β2

β0 + β1 + β2
>

β0

α0
· β1

β0 + β1
≥ 2β0β1

α0α1(β0 + β1)
.

Case 2: Two of the αi s equal 1. Assume that α1 = α2 = 1. The condition
(α0, α1, α2) �= (1, 1, 1) then implies α0 ≥ 2, so that Lemma 4.7 gives

1

�1
+ 1

�2
− 1

�0
= β1(β0 + β2)

β0 + β1 + β2
+ β2(β0 + β1)

β0 + β1 + β2
− β0

α0
· β1 + β2

β0 + β1 + β2
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= 2β1β2 + (1 − 1/α0)β0(β1 + β2)

β0 + β1 + β2

∗≥ 2β1β2 + β0(β1 + β2)/2

β0 + β1 + β2
.

Thus, the inequality we want to prove is

2β1β2 + β0(β1 + β2)/2

β0 + β1 + β2
≥ 2β1β2

β1 + β2

or, equivalently,

2β1β2(β1 + β2) + β0(β1 + β2)
2

2
≥ 2β1β2(β0 + β1 + β2).

This is equivalent to (β1 + β2)
2 ∗≥ 4β1β2, which clearly holds.

The two inequalities we used, marked with “
∗≥”, are equalities if and only if α0 = 2

and β1 = β2, respectively.

We now prove Conjecture C for d = 2 which also gives another proof of Conjec-
ture A in the plane.

Corollary 4.11 Conjecture C holds in dimension two.

Proof Let S = conv {v0, v1, v2} ⊆ R
2 be a triangle with the origin in its interior and

with rational vertex directions. Let the vectors α and β, and the lengths �i be defined
as above, taking p0, p1, and p2 primitive. In view of Lemma 4.1 we need to show that

μ(S) ≤ 1

2

(
1

�0
+ 1

�1
+ 1

�2

)

.

If (α0, α1, α2) = (1, 1, 1), then consider the lattice � generated by p0, p1, p2. Let
A be the linear transformation sending ei to pi , for i = 1, 2. Then, � = AZ

2 and
S = AS(ω) for a suitable ω ∈ R

3
>0. Moreover, since the pi s are primitive, the lattice

lengths �i are the same for every pair (S, Z
2), (S,�), and (S(ω), Z

2). Observing that
� ⊆ Z

2 is a sublattice, we may therefore apply Theorem 1.4 and get

μ(S) ≤ μ(S,�) = μ(S(ω), Z
2) = 1

2

(
1

�0
+ 1

�1
+ 1

�2

)

.

So, we assume that (α0, α1, α2) �= (1, 1, 1) and thus we can apply Theorem 4.9, which
provides us with an index i ∈ {0, 1, 2} such that the inequality (9) holds. As we saw
above, this implies the desired bound.

4.4 Analogs to Conjecture C with the Origin in the Boundary

As we said in the introduction, the question analogous to Conjecture A for general
lattice polytopes has an easy answer: the maximum covering radius among all d-
dimensional lattice polytopes equals d and is attained by, and only by, unimodular
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simplices. This phenomenon generalizes to analogs of Theorem 1.4 and Conjecture C,
which admit easy proofs. The generalization concerns the simplices S(ω), except we
now allow one of the entries of ω (typically the first one) to be zero so that the origin
becomes a vertex:

Proposition 4.12 For an ω ∈ R
d
>0 let

S(0, ω) := conv {0, ω1e1, . . . , ωded}.

Then

μ(S(0, ω)) =
d∑

i=1

1

ωi
=

∑d
i=1 Volπi (Z

d ) (πi (S(ω)))

VolZd (S(ω))
,

where πi : R
d → R

d−1 is the linear projection that forgets the i-th coordinate.

Proof S(0, ω) can be redescribed as

{

x ∈ R
d≥0 :

d∑

i=1

xi
ωi

≤ 1

}

.

In this form it is clear that μ(S(0, ω)) equals the unique μ ∈ [0,∞) such that 1d lies
in the boundary of μ · S(0, ω), which equals

∑
i 1/ωi , as stated.

Corollary 4.13 Let S = conv {0, v1, . . . , vd} ⊆ R
d be a d-simplex with rational vertex

directions. For each i = 1, . . . , d, let πi : R
d → R

d−1 be the linear projection
vanishing at vi . Then

μ(S) ≤
∑d

i=1 Volπi (Z
d ) (πi (S))

VolZd S
,

with equality if and only if S is unimodularly equivalent (by a transformation fixing
the origin) to S(0, ω) for some ω ∈ R

d
>0.

Proof Let p1, . . . , pd ∈ Z
d be the primitive vertex directions of S, so that vi = ωi pi ,

where ωi is the lattice length of the segment [0, vi ], for each i = 1, . . . , d. Then, the
linear map sending pi �→ ei , i = 1, . . . , d, sends S to S(0, ω) and Z

d to a lattice �

containing Z
d . This implies

μ(S, Z
d) = μ(S(0, ω),�) ≤ μ(S(0, ω), Z

d) =
∑d

i=1 Volπi (Z
d ) (πi (S))

VolZd S
,

by Proposition 4.12.
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The ‘if’ in the equality case is obvious: in this case � = Z
d . For the ‘only if’

suppose that � is a proper superlattice of Z
d and let p ∈ � ∩ [0, 1)d \ {0} be a

non-zero lattice point in the half-open unit cube. Let

μ = μ(S(0, ω), Z
d) =

∑d
i=1 Volπi (Z

d ) (πi (S))

VolZd S
.

Then the point 1 is the only point in the unit cube [0, 1]d that is last covered by
Z
d + μ · S(0, ω). Since 1 lies in the interior of p + μ · S(0, ω), the covering radius of

S(0, ω) is strictly smaller with respect to � than it is with respect to Z
d .

Our next results say that Proposition 4.12 and Corollary 4.13 are not only analogs
(without the factor of two) of Theorem 1.4 and Conjecture C, but also a limit of them
when wemake one of the vertices tend to zero.We consider this as additional evidence
for Conjecture C. Formally:

Theorem 4.14 Let S = conv {v0, . . . , vd} be a d-simplex with the origin in its interior
and with rational vertex directions. For each i ∈ {0, . . . , d} consider the one-
parameter family of simplices

S(i)
t := conv {v0, . . . , tvi , . . . , vd}, t ∈ [0, 1],

so that S(i)
1 = S and S(i)

0 = conv {v1, . . . , 0, . . . , vd}. For each i = 0, . . . , d let
πi : R

d → R
d−1 be the linear projection vanishing at vi . Then, there is an index

j ∈ {0, . . . , d} such that

lim
t→0

1

2
·
∑d

i=0 Volπi (Z
d )(πi (S

( j)
t ))

VolZd S
( j)
t

≥
∑d

i=0,i �= j Volπi (Z
d )(πi (S

( j)
0 ))

VolZd S
( j)
0

, (10)

with equality if and only if the primitive lattice vectors parallel to v0, . . . , vd add up
to zero.

Observe that the condition for equality includes, but is more general than, the case
when S is of the form S(ω).

Proof For each i , let ui be the primitive lattice vector parallel to vi , and let U =
{u0, . . . , ud}. We choose j to be an index minimizing the (absolute value of the)
determinant of U \ {ui } among all i . Observe that S is of the form S(ω) if and only if
all those determinants are equal to 1.

To simplify notation, in the rest of the proof we assume j = 0 and we drop the
superindex from the notation S( j)

t . Since the volume functional is continuous, we have

lim
t→0

VolZd St = VolZd S0,

and, for each i = 1, . . . , d,

lim
t→0

Volπi (Z
d )(πi (St )) = Volπi (Z

d )(πi (S0)).
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Thus, the only thing to prove is that

lim
t→0

Volπ0(Zd )(π0(St ))≥
d∑

i=1

Volπi (Z
d )(πi (S0)).

The volume on the left-hand side does not depend on t because the vertex
of St that depends on t is projected out by π0. Moreover, this volume equals∑d

i=1 Vol(π0(Zd ))(π0(Fi )), where Fi is the facet of S0 opposite to vi . Similarly,
Volπi (Z

d )(πi (S0)) = Volπi (Z
d )(πi (Fi )). Hence, the inequality follows from

Volπ0(Zd )(π0(Fi )) ≥ Volπi (Z
d )(πi (Fi )). (11)

Both sides of (11) are integer multiples of VolZd∩aff Fi Fi , with the proportionality
factors being the lattice distances from Fi to u0 and to ui , respectively. These distances
are proportional to the determinants of U \ {ui } and U \ {u0}, so our assumption on
u0 minimizing this implies the statement. Moreover, we have equality if, and only if,
all the determinants ofU \ {ui } are equal to that ofU \ {u0}. This in turn is equivalent
to

∑d
i=0 ui = 0.

Corollary 4.15 In the conditions of Theorem4.14and for the index j mentioned therein,
we have

lim
t→0

μ(S( j)
t ) ≤ lim

t→0

1

2
·
∑d

i=0 Volπi (Z
d )(πi (S

( j)
t ))

VolZd S
( j)
t

,

with equality if and only if the primitive lattice vectors parallel to v0, . . . , vd add up
to zero.

Proof This follows from Theorem 4.14 since

lim
t→0

μ(S( j)
t ) = μ(S( j)

0 ) ≤
∑d

i=0,i �= j Volπi (Z
d )(πi (S

( j)
0 ))

VolZd S
( j)
0

,

where the last inequality is Corollary 4.13.

Remark 4.16 Equation (10) is not true for all choices of j . Without any assumption
on j the proof of Theorem 4.14 carries through up to the point where we say that
(10) would follow from (11), but the latter inequality is not true in general. For a
specific example, let S = conv {(0,−1), (1, 1), (−1, 1)} and consider j = 0. Then
for i = 1, 2,

Volπ0(Zd )(π0(Fi )) = 1 < 2 = Volπi (Z
d )(πi (Fi )).

This gives

lim
t→0

1

2
·
∑d

i=0 Volπi (Z
d )(πi (S

(0)
t ))

VolZd S(0))
t

= 1

2
· 2 + 2 + 2

2
= 3

2
,
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and

∑d
i=1 Volπi (Z

d )(πi (S
(0)
0 ))

VolZd S(0)
0

= 2 + 2

2
= 2.

We finally look at the intermediate case where 0 is in the boundary of S =
conv {v0, . . . , vd} but not a vertex. We can generalize Conjecture C to

Conjecture E Let S = conv {v0, . . . , vd} be a d-simplex with 0 ∈ S\{v0, . . . , vd}, and
with rational vertex directions. Let πi : R

d → R
d−1 be the linear projection vanishing

at vi . Let I ⊂ {0, . . . , d} be the set of labels of facets of S containing 0. Then

μ(S) ≤ 1

2
·
∑d

i=0 Volπi (Z
d )(πi (S)) + ∑

i∈I Volπi (Z
d ) (πi (S))

VolZd S
. (12)

Proposition 4.17 Conjecture E ⇔ Conjecture C.

Proof The implication Conjecture E ⇒ Conjecture C is obvious, since the latter is the
case I = ∅ of the former. For the other implication, for each i = 0, . . . , d, let

�i = VolZd S

Volπi (Z
d ) (πi (S))

,

which equals the lattice length of the segment S ∩ lin {vi }. The inequality in Conjec-
ture E we want to prove becomes

μ(S) ≤ 1

2

∑

i /∈I

1

�i
+

∑

i∈I

1

�i
.

Let SI = conv {vi : i /∈ I } and SI = conv ({0} ∪ {vi : i ∈ I }). Observe that SI equals
the intersection of the facets of S containing 0, hence it is a (d − |I |)-simplex with
0 in its relative interior. SI is an |I |-simplex with 0 as a vertex. Hence, Conjecture C
and Proposition 4.12 respectively say:

μ(SI ) ≤ 1

2

∑

i /∈I

1

�i
and μ(SI ) ≤

∑

i∈I

1

�i
.

Consider the linear projection πI : R
d → R

I vanishing on SI . By Lemma 2.1,

μ(S) ≤ μ(SI ) + μ(πI (S)),

so it only remains to show that

μ(πI (S)) ≤ μ(SI ).
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This holds because πI is an affine bijection from SI to πI (S), so that πI (S) can be
considered to be the same as SI except regarded with respect to a (perhaps) finer
lattice.

5 CoveringMinima of the Simplex S(!)

5.1 The Covering Radius of S(!)

We here prove Theorem 1.4 and thus compute the covering radius of S(ω) =
conv {−ω01d , ω1e1, . . . , ωded}.
Proof of Theorem 1.4 The simplex S(ω) can be triangulated into the d + 1 simplices

Si = conv ({0, ω0e0, ω1e1, . . . , ωded} \ {ωi ei }), 0 ≤ i ≤ d,

where e0 = −1d . Writing [d]0 := {0, 1, . . . , d}, we define

P̊i =
⎧
⎨

⎩

∑

j∈[d]0\{i}
α j e j : 0 ≤ α j < 1

⎫
⎬

⎭
,

the half-open parallelotope spanned by the primitive edge directions of Si incident to
the origin. Let i ∈ [d]0 be fixed. Then, for any x ∈ R

d there is a lattice point vi ∈ Z
d

such that x ∈ vi +λSi and the dilation factor λ ≥ 0 is the smallest possible. Let Li (x)
be the set of all such lattice points vi . For a fixed v ∈ Z

d , we define

Ri (v) = {x ∈ R
d : v ∈ Li (x)}

to be the region of points that are associated to v in this way.
Explicitly these regions are translates of the P̊i , more precisely we claim that

Ri (v) = v + P̊i , for all i ∈ [d0]. Indeed, let x ∈ Ri (v), and let λ ≥ 0 be smallest pos-
sible with x ∈ v+λSi . By the definition of Si , we can write x−v = ∑

j∈[d]0\{i} α j e j ,
for some α j ≥ 0. If there were an index j such that α j ≥ 1, then x ∈ v + e j + λSi
and the intersection of this simplex and v + λSi would be a smaller homothetic copy
of Si containing x . Thus, λ would not be minimal and this contradiction implies that
x ∈ v + P̊i . Conversely, if x − v = ∑

j∈[d]0\{i} α j e j ∈ P̊i , and λ ≥ 0 is minimal such
that x ∈ v + λSi , then x − v lies in the facet of λSi not containing the origin. Since
0 ≤ α j < 1, for all j ∈ [d]0 \ {i}, the scalar λ is not only minimal for v, but for any
lattice point. Hence, v ∈ Li (x).

With this observation, the regions Ri (v) are seen to be induced by the arrangement
of the hyperplanes {xi = a}, {xi − x j = a} for all j ∈ [d]0 \ {i} and a ∈ Z, where we
define x0 = 0. We call this arrangement Ai

d . Moreover, for a point x in the interior of
Ri (v), the associated lattice point is unique, and we call it vi (x).

The smallest common refinement Ad of the arrangements A0
d , . . . ,A

d
d is known

as the alcoved arrangement (see [3, Chap. 7] for a detailed description). The full-
dimensional cells of Ad , also called its chambers, are lattice translations of the
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simplices

Cπ = conv
{
0, eπ(1), eπ(1) + eπ(2), . . . , eπ(1) + . . . + eπ(d)

}
,

where π is a permutation of {1, . . . , d}. Each chamber of Ad is the intersection of
regions Ri (v). More precisely,

intCπ = R0(0) ∩ Rπ(1)(eπ(1)) ∩ . . . ∩ Rπ(d)(eπ(1) + . . . + eπ(d))

= P̊0 ∩ (eπ(1) + P̊π(1)) ∩ . . . ∩ (eπ(1) + . . . + eπ(d) + P̊π(d)).

Therefore, the chambers Cπ are exactly those regions of points in R
d that, for each

i ∈ [d]0, are associated to the same lattice point, that is, vi (x) = vi (y) for all x, y ∈
intCπ .

After these preparations, we are ready to compute the covering radius of S(ω).
Note that, since [0, 1]d is a fundamental cell of Z

d , we only need to find the smallest
dilation factor μ so that the lattice translates of μS(ω) cover the unit cube. Moreover,
we may focus on what happens within one chamber Cπ , and by symmetry we assume
that π = Id. Among all points in CId = conv {0, e1, e1 + e2, . . . , e1 + . . . + ed}, we
are looking for a point y which is last covered by dilations of Si + e[i], for some
i ∈ [d]0, and the factor of dilation needed. Here, we write e[i] = e1 + . . . + ei . If we
let �i : R

d → R be the linear functional which takes value 1 on the facet Fi of S(ω)

that is opposite to ωi ei , this is equivalent to

y = arg max
x∈CId

min
i∈[d]0

|�i (x − e[i])|.

The key observation is that y is the point where all the values |�i (y−e[i])|, 0 ≤ i ≤ d,
are equal. This is because �i (x − e[i]) is nonnegative for x ∈ CId and because there is
a positive linear dependence among the functionals �i , so there cannot be a point y′
where they all achieve a larger value than at a point where they all achieve the same
value. Therefore, y satisfies the conditions

�0(y) = �i (y − e[i]) for every 1 ≤ i ≤ d.

The explicit expression of the functionals �i is

�0(x) =
d∑

j=1

ω−1
j x j and �i (x) =

∑

j∈[d]\{i}
ω−1

j x j −
⎛

⎝
∑

j∈[d]0\{i}
ω−1

j

⎞

⎠ xi .

Thus we need to solve the following system of equations:

d∑

j=1

ω−1
j y j =

∑

j∈[d]\{i}
ω−1

j y j −
⎛

⎝
∑

j∈[d]0\{i}
ω−1

j

⎞

⎠ yi + ω−1
0 +

∑

j>i

ω−1
j ,

123



94 Discrete & Computational Geometry (2022) 67:65–111

1 ≤ i ≤ d. This system is solved by y = (y1, . . . , yd) with

yi = ω−1
0 + ω−1

i+1 + . . . + ω−1
d

ω−1
0 + ω−1

1 + . . . + ω−1
d

.

The value that the functionals take at y is by what we said above the covering radius
of S(ω), and it is given by

μ(S(ω)) = �0(y) =
∑

0≤i< j≤d ω−1
i ω−1

j
∑d

i=0 ω−1
i

,

as desired.

Corollary 5.1 Let S ⊆ R
d be a simplex with the origin in its interior and with rational

vertex directions. If the primitive vertex directions p0, p1, . . . , pd of S satisfy p0 +
p1 + . . . + pd = 0, then Conjecture C holds for S.

Proof The proof is basically given already in Corollary 4.11. Consider the lattice �

generated by p0, p1, . . . , pd , and let A be the linear transformation sending ei to pi ,
for i = 1, . . . , d. Then, � = AZ

d and S = AS(ω) for a suitable ω ∈ R
d+1
>0 . Since the

pi s are primitive, the lattice lengths �i = (VolZd S)/(Volπi (Z
d )(πi (S))) are the same

for every pair (S, Z
d), (S,�), and (S(ω), Z

d). Using that � ⊆ Z
d is a sublattice, we

therefore apply Theorem 1.4 and get

μ(S) ≤ μ(S,�) = μ(S(ω), Z
d) = 1

2

d∑

i=0

1

�i
.

Observe that Theorem 1.4 says that (4) in Conjecture C is an equality for simplices
of the form S(ω). Other simplices may also produce an equality, as the triangle T =
S(12) ⊕ S′(12) shows:

1

2
·
∑2

i=0 Vol(πi (Z
2)(πi (T ))

VolZ2 T
= 1

2
· 3 + 3 + 2

4
= 1 = μ(T ).

5.2 The Covering Product Conjecture

The following conjecture was proposed in [10], which was the initial motivation to
compute the covering minima of the simplex S(1d+1).

Conjecture F ([10, Conj. 4.8]) For every convex body K ⊆ R
d ,

μ1(K ) · . . . · μd(K ) · vol K ≥ d + 1

2d
.

Equality is attained for the simplex S(1d+1).
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Conjecture F is known to hold for d = 2 [25]. We show it in arbitrary dimension
for the simplices S(ω).

Corollary 5.2 For every ω ∈ R
d+1
>0 , we have

μ1(S(ω)) · . . . · μd(S(ω)) · VolZd (S(ω)) ≥ (d + 1)!
2d

.

Equality can hold only if ω0 = ω1 = . . . = ωd .

Proof Since every permutation of the vertices of S(1) is a unimodular transformation,
and since the considered product functional is invariant under unimodular transforma-
tions, we can assume that ω0 ≤ ω1 ≤ . . . ≤ ωd . By Theorem 1.4, the covering radius
of S(ω) is given by

μ(S(ω)) = σd−1(ω0, ω1, . . . , ωd)

σd(ω0, ω1, . . . , ωd)
,

where σ j (ω0, ω1, . . . , ωd) = ∑
0≤i1<...<i j≤d

∏ j
�=1 ωi� is the j-th elementary sym-

metric function in the ωi s. Writing ωI = (ω0, ωi1 , . . . , ωi j ), for every index set
I = {i1, . . . , i j } ⊆ {1, . . . , d}, |I | = j , we project onto the j-dimensional coor-
dinate plane indexed by I and obtain μ j (S(ω)) ≥ μ j (S(ωI )). In particular, choosing
I = {1, . . . , j}, we have

μ j (S(ω)) ≥ σ j−1(ω0, ω1, . . . , ω j )

σ j (ω0, ω1, . . . , ω j )
. (13)

Next, in view of ω j ≥ ω j−1 ≥ . . . ≥ ω0, we get

σ j−1(ω0, . . . , ω j )

σ j−1(ω0, . . . , ω j−1)
= σ j−1(ω0, . . . , ω j−1) + ω jσ j−2(ω0, . . . , ω j−1)

σ j−1(ω0, . . . , ω j−1)

= 1 + ω jσ j−2(ω0, . . . , ω j−1)

σ j−1(ω0, . . . , ω j−1)
≥ 1 +

( j
2

)

j
= j + 1

2
,

(14)

with strict inequality unless ω j = ω j−1 = . . . = ω0.
Finally, computing the volumes of the pyramids over the d + 1 facets of S(ω)

with apex at the origin, we obtain VolZd S(ω) = σd(ω0, ω1, . . . , ωd). Combining this
with (13) and (14) yields

μ1(S(ω)) · . . . · μd(S(ω)) · VolZd (S(ω)) ≥
d∏

j=1

σ j−1(ω0, . . . , ω j )

σ j (ω0, . . . , ω j )
σd(ω0, . . . , ωd)

=
d∏

j=1

σ j−1(ω0, . . . , ω j )

σ j−1(ω0, . . . , ω j−1)
≥ (d + 1)!

2d
.
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Furthermore, equality can only hold if ω0 = ω1 = . . . = ωd as otherwise (14) would
be strict for j = d.

Note that if Conjecture B holds, then the simplex S(1d+1) attains equality in Corol-
lary 5.2 (this was the original motivation in [10] to state Conjecture B).

With the notation of the proof above, for each I ⊆ {1, . . . , d}, |I | = j , we have
μ j (S(ωI )) ≤ μ j (S(ω0, ω1, . . . , ω j )), just because S(ω) ⊆ S(ω̄), whenever ωi ≤ ω̄i ,
for all i . Therefore, the bound in (13) ismaximal among coordinate projections of S(ω).
This suggests the following common generalization of Conjecture B and Theorem 1.4.

Conjecture 5.3 For every ω ∈ R
d+1
>0 with ω0 ≤ ω1 ≤ . . . ≤ ωd , and every j ∈

{1, . . . , d}, the j-th coveringminimumof the simplex S(ω) is attained by the projection
to the first j coordinates. That is:

μ j (S(ω)) = μ j (S(ω0, . . . , ω j )) = σ j−1(ω0, ω1, . . . , ω j )

σ j (ω0, ω1, . . . , ω j )
.

Besides the case j = d (Theorem 1.4) also the case j = 1 of Conjecture 5.3 holds.
Assuming that ω0 ≤ ω1 ≤ . . . ≤ ωd , it states that μ1(S(ω)) = 1/(ω0 + ω1). Since
(13) provides the lower bound, this is equivalent to

det(Zd |Lz) ≤ ‖S(ω)|Lz‖
ω0 + ω1

,

for all primitive z ∈ Z
d \ {0}, where Lz = lin {z}. In view of det(Zd |Lz) = ‖z‖−1

and ei |Lz = (zi/‖z‖2)z, it follows from an elementary computation.

6 Conjecture D: Lattice Polytopes with k Interior Lattice Points

This section is devoted to prove Conjecture D in dimension two. The conjectured
maximum covering radius (d − 1)/2 + 1/(k + 1) is attained, in arbitrary dimension,
by the polytopes of the form

[0, k + 1] ⊕ T1 ⊕ · · · ⊕ Tm,

where each Ti is a non-hollow lattice di -polytope of covering radius di/2, with∑m
i=1 di = d − 1. The different Ti can be translated to have their (unique) inte-

rior lattice point at different positions along the segment [0, k + 1] in much the same
way as in the examples of Lemma 3.8. In the following we analyze the possibilities in
dimensions two and three:

Example 6.1 In dimension two we have a single Ti , the segment [−1, 1], but we can
place it at different heights with respect to [0, k + 1]. For each k we can construct
�(k + 3)/2� non-isomorphic lattice polygons with k interior lattice points and of
covering radius 1/2 + 1/(k + 1), namely:

conv {(0, 0), (0, k), (−1, i), (1, i)}, i = 0, . . . , �(k + 1)/2�.
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The case i = 0 coincides with the triangle Mk(0); the cases i > 0 produce kite-shaped
quadrilaterals. Observe that the triangle Mk(1) ∼= S(k, 1, 1) is very similar to Mk(0)
but has smaller area. One could expect it to achieve a larger covering radius but it does
not, as computed in Remark 3.4:

μ(Mk(1)) = k + 2

2k + 1
<

k + 3

2k + 2
= 1

2
+ 1

k + 1
if k > 1.

Example 6.2 In dimension three we can have [0, k + 1] ⊕ T with dim T = 2 or
[0, k + 1] ⊕ T1 ⊕ T2 with dim T1 = dim T2 = 1. If the latter happens then T1 = T2 =
[−1, 1] = I and, again, they can be placed at different heights along the segment
[0, k + 1]. Depending on whether T1 and T2 intersect [0, k + 1], in the interior or
at an end-point, this gives quadratically many octahedra or linearly many triangular
bipyramids, plus the square pyramid [0, k+1]⊕(I ⊕ I ) and the tetrahedron Mk(0, 0).
In the case [0, k + 1] ⊕ T , T can be either S(13) or I ⊕ I ′; the case T = I ⊕ I
being already covered above. This produces two tetrahedra [0, k + 1] ⊕ S(13) and
[0, k+1]⊕ I⊕ I ′, plus linearlymany triangular bipyramids. As happened in dimension
two, the computations of Remark 3.12 show that Mk(1, 0) and Mk(1, 1) have covering
radius strictly smaller than 1+ 1/(k + 1), even if their volume is smaller than that of
Mk(0, 0).

Since Conjecture A holds in the plane (Corollary 3.6), to prove Conjecture D in
dimension two it suffices to consider lattice polygons with at least two interior lattice
points. More precisely, we show

Theorem 6.3 Let P be a non-hollow lattice polygon with k ≥ 2 interior lattice points.
Then μ(P) ≤ 1/2 + 1/(k + 1), with equality if and only if P is the direct sum of two
lattice segments of lengths 2 and k + 1.

Remember that a lattice polytope P has (lattice) width ω ∈ N if there is an affine
integer projection from P to the segment [0, ω] but not to [0, ω − 1]. Equivalently,
the width is the reciprocal of the first covering minimum. Every non-hollow lattice
polytope has width at least two. Our next two lemmas deal with the case of width
exactly two.

Lemma 6.4 For a non-hollow lattice polygon P the following are equivalent:

(i) P has width equal to two.
(ii) The interior lattice points of P are collinear.

Proof The fact that width two implies that all interior lattice points are collinear is
straightforward to check. For the converse, without loss of generality assume that
the k interior lattice points of P are (0, 1), . . . , (0, k), with k ≥ 2. We claim that
P ⊂ [−1, 1] × R, which implies that P has width two with respect to the first
coordinate. Suppose to the contrary that P has a lattice point (x, y)with |x | ≥ 2. Then
the triangle with vertices (0, 1), (0, 2), and (x, y) is not unimodular, which implies
that it contains at least one lattice point other than its vertices, by Pick’s formula (cf.
[3, Chap. 1.4]). That point is necessarily in int P and not on the line containing (0, 1)
and (0, 2), a contradiction.
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Lemma 6.5 Theorem 6.3 holds if P has width two.

Proof We keep the convention from the previous proof that the interior lattice points
in P are given by (0, 1), . . . , (0, k), which implies that P ⊂ [−1, 1] × [0, k + 1]. Let
S be the segment P ∩ ({0}×R), which contains all the interior lattice points. Observe
that one endpoint of S is either (0, 0) or (0, 1/2) and the other is either (0, k + 1) or
(0, k + 1/2). We distinguish three cases, depending on whether none, one, or both of
them are lattice points:

• If exactly one endpoint is a lattice point, then P contains a copy of Mk(1), whose
covering radius is strictly smaller than 1/2 + 1/(k + 1) (see Example 6.1).

• If no endpoint is a lattice point, then S = {0}× [1/2, k+1/2] and P is the convex
hull of its two edges containing the endpoints of S. Without loss of generality we
assume

P = conv {(−1, 0), (1, 1), (−1, a), (1, 1 + b)},
wherea and b are nonnegative integerswitha+b = 2k. There are twopossibilities:
If a = b = k, then P is a parallelogram of covering radius at most 1/2, because
(1/2)P contains a fundamental domain ofZ

2. If a �= b, then one of them, say a, is
at least k + 1. In this case, P contains the triangle conv {(−1, 0), (−1, a), (1, 1)}
whose covering radius is bounded by 1/2+1/a ≤ 1/2+1/(k+1). Since triangles
are tight by Lemma 2.7, equality can only holdwhen P coincideswith this triangle,
implying b = 0. But in that case a = 2k and 1/2+ 1/a < 1/2+ 1/(k + 1), since
k ≥ 2.

• If both endpoints of S are lattice points, then they are given by (0, 0) and (0, k+1).
Applying Lemma 2.1 to the projection that forgets the second coordinate gives the
upper bound: The fiber S has length k + 1 and the projection of P has length 2.
For the case of equality, observe that if P has lattice points u ∈ {−1} × R and
v ∈ {1} × R such that the mid-point of uv is integral, then P contains (an affine
image of) the direct sum of [−1, 1] and a segment of length k+1. Since that direct
sum is tight by Lemma 2.8, P either is given by this direct sum or it has strictly
smaller covering radius.
Thus, we can assume that P does not have such points u and v. This implies

that P has a single lattice point on each side of S. Without loss of generality we
can assume

P = conv {(0, 0), (0, k + 1), (−1, 0), (1, a)},
for an odd a ∈ [1, 2k + 1]. We claim that the proof of Lemma 2.1 implies that
μ(P) is strictly smaller than λ := 1/2+ 1/(k + 1). Indeed, that proof is based on
the fact that λP contains the following parallelogram Q, which is a fundamental
domain for Z

2:

Q = conv {(−1/2, 0), (−1/2, 1), (1/2, a/2), (1/2, 1 + a/2)}.
But we can argue that, moreover, the vertices of Q are its only points not contained
in the interior of λP , and that each of these vertices is in the interior of some lattice
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translation of λP because the vertical offset of the left and right edges of Q is not
an integer. This implies λ is strictly larger than μ(P).

For the rest of the proof of Theorem 6.3 we can assume ω ≥ 3. Let m be the
maximum number of collinear lattice points in our polygon P . Applying Lemma 2.1
to the projection along the line containing those m points gives

μ(P) ≤ 1

ω
+ 1

m − 1
. (15)

Another useful fact is that along the direction that attains the width ω there are ω − 1
parallel lines intersecting the interior of P , each of them contains at most m lattice
points, and with every lattice point of P lying on one of those lines. Thus

k ≤ (ω − 1)m. (16)

These two bounds are enough to show that

Lemma 6.6 Theorem 6.3 holds if m ≥ 4, except perhaps for (ω,m) = (3, 4).

Proof By (15), the statement is trivial unless

1

ω
+ 1

m − 1
>

1

2
.

There are five integer solutions of this equation with ω ≥ 3 and m − 1 ≥ 3:

(ω,m − 1) ∈ {(3, 3), (3, 4), (4, 3), (3, 5), (5, 3)}.

We only need to look at the last four:

• If (ω,m − 1) ∈ {(3, 5), (5, 3)} then (15) gives μ(P) ≤ 1/3+ 1/5 = 1/2+ 1/30.
This is smaller than 1/2+ 1/(k + 1), because (16) gives, respectively, k ≤ 12 and
k ≤ 16.

• If (ω,m − 1) ∈ {(3, 4), (4, 3)} then μ(P) ≤ 1/3+ 1/4 = 1/2+ 1/12. For (3, 4)
this is enough since (16) gives k ≤ 10. For (4, 3), however, (16) gives k ≤ 12, so
we still need to consider the cases k = 11 or 12. For these we use the following
argument: ω = 4 implies that, along the direction where ω is attained, we have
three intermediate lattice lines intersecting P . Along these lines we have to place
our k ≥ 11 points, and nomore than four on each line (becausem = 4). Thus, each
line gets at least three points. This makes P contain a parallelogram Q with two
parallel edges of lattice length two and of width two with respect to the direction
of those edges. We have that Q is a fundamental domain of (2Z)2, which implies
μ(P) ≤ μ(Q) ≤ 1/2.

Thus, the cases that remain are m ≤ 3 or (ω,m) = (3, 4). These can be proven with
a case study that we only sketch here. The details can be found in the arXiv version
of this article [7]. The case study goes as follows:
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(A) (C)(B)

Fig. 3 The three possibilities in the case m = 3

• For the case (w,m) = (3, 4), in [7, Lem. 6.7] we show that one of the following
three things happen:

– k ≤ 5, in which case μ(P) ≤ 1/3 + 1/3 ≤ 1/2 + 1/(k + 1).
– P contains a fundamental domain Q of (2Z)2. As in the last paragraph of the
previous proof, this implies μ(P) ≤ μ(Q) ≤ 1/2.

– P has four collinear lattice points along one of the two intermediate lines in the
direction attaining the width, and (at least) three of them are interior to P . In
this case the intersection of P with that line has length at least 3+1/3 = 10/3,
so (15) can be strengthened to

μ(P) ≤ 1

3
+ 3

10
= 19

30
<

1

2
+ 1

7
.

This gives the statement if k ∈ {5, 6}. In the case k ≥ 7 we must have four
collinear lattice points in one of the two intermediate lines, so that we can
further improve (15) using 11/3 for the length. Then

μ(P) ≤ 1

3
+ 3

11
= 20

33
<

1

2
+ 1

9
.

This is enough since (w,m) = (3, 4) implies k ≤ 8, by (16).

• The case m ≤ 2 is trivial: it implies that P does not have two lattice points in
the same class modulo 2Z × 2Z, so it has at most four lattice points. The only
non-hollow lattice polygon with at most four lattice points is S(13).

• For the case m = 3, in [7, Lemma 6.8] we show that ω ≥ 3 and m = 3 imply
that P cannot have three collinear interior lattice points. Since the interior lattice
points cannot all be collinear (by Lemma 6.4), they must form either a unimodular
triangle, a unit parallelogram, or S(13). Thus, P is contained in one of the three
polygons of Fig. 3. From there, ad-hoc arguments show that always μ(P) ≤
1/2 + 1/(k + 1).
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Remark 6.7 Lattice polygons with m ≤ 3 contain at most nine lattice points in total,
since they cannot have two points in the same residue classmodulo (3Z)2. In particular,
they have k ≤ 6. On the other hand, the polytopes with (ω,m) = (3, 4) have k ≤ 8
by (16). Thus, the cases not covered by Lemmas 6.5 and 6.6 have between three and
eight interior lattice points. Castryck [6] enumerated all lattice polygons with k ≤ 30
up to unimodular equivalence, and showed that there are 120 + 211 + 403 + 714 +
1023+1830 of themwith k equal to 3, 4, 5, 6, 7, and 8. Hence, the arguments sketched
above can be replaced by a computer-aided computation of the covering radius of these
4301 polygons. (In fact, the covering radius needs only to be computed for those with
m ∈ {3, 4}).
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Appendix A: The Covering Radius via a Mixed-Integer Program

Here we describe an algorithmic approach to the computation of covering radii based
on a formulation of μ(P) as the optimal value of a mixed-integer program. This
formulation is already implicit in Kannan’s paper [16, Sect. 5].

Let P = {x ∈ R
d : aᵀ

i x ≤ bi , 1 ≤ i ≤ m} be a polytope with outer facet normals
ai ∈ R

d and right hand sides bi ∈ R. Without loss of generality, we assume that
bi > 0, that is, P contains the origin in its interior. Since P is bounded, there exists a
finite subset NP ⊆ Z

d such that μ(P)P + NP contains the unit cube [0, 1]d .
Proposition A.1 The covering radius μ(P) is equal to the optimal value of the follow-
ing linear mixed-integer program:

maximize μ

s.t. aᵀ
i x ≥ μbi + aᵀ

i � − M (1 − y�
i ), ∀i = 1, . . . ,m, ∀� ∈ NP ,

m∑

i=1

y�
i ≥ 1, ∀� ∈ NP ,

y�
i ∈ {0, 1}, ∀i = 1, . . . ,m, ∀� ∈ NP ,

x ∈ [0, 1]d .
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The constant M > 0 is chosen large enough such that every non-active inequality
involving M is redundant.

Proof By the periodicity of the arrangement μP + Z
d , we get that

μ(P) = min {μ ≥ 0 : [0, 1]d ⊆ μP + NP }.

Hence, the covering radius equals the minimal μ ≥ 0 such that for all x ∈ [0, 1]d
there exists an � ∈ NP such that x ∈ μP + �. This gives a mixed-integer program
with infinitely many constraints. In order to turn it into a finite program, we may also
interpret the covering radius as the supremum among μ ≥ 0 such that there exists an
x ∈ [0, 1]d such that x /∈ μP + NP .

Modeling this non-containment condition can be done as follows: For a fixed � ∈
NP , we have x /∈ μP + � if and only if there exists a defining inequality of P that is
violated, that is, there exists an i ∈ {1, . . . ,m} such that aᵀ

i x > μbi +aᵀ
i �. Introducing

the binary variable y�
i for each 1 ≤ i ≤ m and each � ∈ NP , and using a large enough

constant M > 0, this is modeled by the first two lines in the program, as the condition∑m
i=1 y

�
i ≥ 1 ensures that at least one inequality is violated for �.

We can replace the supremum by a maximum and the strict inequality aᵀ
i x >

μbi + aᵀ
i � by a non-strict one, since P is compact and the covering radius is in fact

an attained maximum.

In order to make this formulation effective, we need to find a suitable finite subset
NP ⊆ Z

d : A point x ∈ [0, 1]d is contained in z + μ(P)P , for some z ∈ Z
d , if

and only if z ∈ [0, 1]d − μ(P)P . Hence, for any theoretically proven upper bound
μ(P) ≤ μ, we can solve the mixed-integer program in Proposition A.1 with respect
to NP = ([0, 1]d − μP) ∩ Z

d and obtain the covering radius of P .

Appendix B: Graphical Method for Covering Radii of Simplices

Let T = conv {v0, v1, . . . , vd} be a lattice simplex of normalized volume V = Vol� T
with respect to a certain lattice�. The affine map defined by v0 �→ 0 and vi �→ V · ei ,
i = 1, . . . , d, sends T to the dilated standard simplex V · conv {0, e1, . . . , ed} and �

to an intermediate lattice between VZ
d and Z

d , which we still denote by �. Observe
that �T := �/VZ

d is a subgroup of Z
d/VZ

d = (ZV )d of order V and that

Z
d/� = (ZV )d/(�/VZ

d)

is, hence, a finite abelian group of order V d−1. The Cayley digraph G associated with
the quotient group Z

d/� is defined as the directed graph with vertex set Z
d/� and

edges (x + �, x + ei + �), for x ∈ Z
d and 1 ≤ i ≤ d. The following is a particular

case of [21, Lems. 3&4] (cf. also [10, Thm. 4.11]):
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Lemma B.1 In these conditions, let δ(G) be the (directed) diameter of G. That is, δ(G)

is the maximum distance from 0 to any other node of G. Then

μ(T ) = δ(G) + d

V
.

Proof The covering radius of the standard d-simplex conv {0, e1, . . . , ed}with respect
to the sublattice � of Z

d equals δ(G) + d. (This is the case v = (1, . . . , 1) of [10,
Thm. 4.11]). We divide this by V since we are looking at the V -th dilation of the
standard simplex.

Let p ∈ T be a lattice point in the lattice simplex T = conv {v0, . . . , vd} from
above. For i ∈ {0, . . . , d}, let ai be the normalized volume of the pyramid with apex p
over the facet of T opposite to vi . Observe that the normalized volume of T is given
by V = ∑

i ai . In fact, (1/V )(a0, . . . , ad) is the vector of barycentric coordinates of
p in T .

Lemma B.2 Assume gcd (a0, a1, . . . , ad) = 1. Then T is equivalent to the simplex
V ·conv {0, e1, . . . , ed}with respect to the lattice VZ

d + (a1, . . . , ad)Z. In particular,
the graph G of Lemma B.1 equals the Cayley digraph of (ZV )d/〈(a1, . . . , ad)〉 with
respect to the standard generators.

Proof The affine map f sending v0 to 0 and every other vi to Vei fulfils f (T ) =
V ·conv {0, e1, . . . , ed} and f (p) = p′ := (a1, . . . , ad), since p has the same barycen-
tric coordinates in T as p′ has in f (T ). Also, �′ := VZ

d + (a1, . . . , ad)Z is clearly
a sublattice of f (�), where � is the ambient lattice of T . We only need to show that
�′ = f (�) and for this it is enough to check that the normalized volume of f (T )

with respect to �′ equals V .
This normalized volume is the order of the quotient �′/VZ

d , and this quotient is
a cyclic group generated by p′ + VZ

d . Thus, the normalized volume is the smallest
k ∈ N such that k(a1, . . . , ad) ∈ VZ

d . We have k = V since V = a0 +· · ·+ad gives
gcd (V , a1, . . . , ad) = gcd (a0, a1, . . . , ad) = 1.

Lemma B.2 implies that a lattice simplex is determined, modulo unimodular equiv-
alence, by the volume vector (a0, . . . , ad) of any lattice point p in it, as long as
gcd (a0, . . . , ad) = 1. Since �/VZ

d is then cyclic with generator p + VZ
d , we call

T the cyclic simplex generated by (a0, . . . , ad). We denote it by T (a0, . . . , ad) and
denote by G(V ; a1, . . . , ad) the digraph in the statement.

In what follows we are interested in cyclic tetrahedra T (a, b, c, d). When a = 1,
Lemmas B.1 and B.2 are particularly easy to apply, since then G(V ; a, b, c) coincides
with the Cayley digraph of (ZV )2 with respect to the generators (1, 0), (0, 1), and
(−b,−c). That is, G(V ; a, b, c) has (ZV )2 as vertex set and from each vertex (i, j)
we have the following three arcs:

(i, j) → (i, j + 1), (i, j) → (i + 1, j), (i, j) → (i − b, j − c).

Example B.3 Figure 4 shows the computation of the covering radii of T (1, 1, 1, 2)
(V = 5) and T (1, 1, 2, 3) (V = 7): a grid with V 2 cells represents the nodes of
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2 3 4 3 1
3 4 4 2 3

2 3 3 4 4

1 2 3 4 3

0 1 2 3 2

3 4 5 4 5 5 2

2 3 4 5 6 4 1
4 5 5 6 6 3 4

3 4 5 6 5 2 3

2 3 4 5 4 5 5

1 2 3 4 3 4 4

0 1 2 3 4 5 3

G(5; 1, 1, 1) G(7; 1, 1, 2)

Fig. 4 Graphical computation of δ(G(5; 1, 1, 1)) = 4 and δ(G(7; 1, 1, 2)) = 6, implying that
μ(T (1, 1, 1, 2)) = 7/5 and μ(T (1, 1, 2, 3)) = 9/7

G(5; 1, 1, 1) and G(7; 1, 1, 2)with the origin at the south-west corner. The grid has to
be regarded as a torus, so that every cell has an east, west, north, and south neighbor.
A step north or east increases the distance from the origin by one, unless the cell that
we move to can be reached by a shorter path. When this happens, the corresponding
arc of G(V ; a, b, c) is not used in any shortest path from the origin, and we highlight
in bold the corresponding wall between cells. Using this idea, one can compute the
distance from the origin to each cell in a breadth-first search manner.

Observe that, by commutativity, we only need to consider paths that first use edges
with step (−b,−c) and then east or north steps. Thus, in order to verify that the
distances we have put are correct in the whole diagram, only the distances along the
path with steps (−b,−c) starting at the origin need to be checked. The cells along that
path have their distances also in bold, and they coincide with the cells with bold south
and west walls. The path finishes when it arrives in a cell that can be more shortly
reached from the origin by only east and north steps.

Corollary B.4 μ(T (1, 1, 1, 2)) = 7/5 and μ(T (1, 1, 2, 3)) = 9/7.

This method can also be applied to the tetrahedra Mk(1, 1) of Sect. 3.2:

Lemma B.5 For every k ∈ N we have

μ(Mk(1, 1)) = 1 + 1

2k
.

Proof Mk(1, 1) has normalized volume 4k and the point p = (0, 0, 1) has barycentric
coordinates (1/4k)(1, 1, 2k − 1, 2k − 1). Thus, Mk(1, 1) ∼= T (1, 1, 2k − 1, 2k − 1).
Figure 5 shows that δ(G(4k; 1, 2k − 1, 2k − 1)) = 4k − 1, from which Lemmas B.1
and B.2 give μ(Mk(1, 1)) = (4k + 2)/4k.
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4k–1 4k–1 2k–1

4k–1

5

3
2k+2

1
2k+1 2k 4k–1

4k–1 4k–1

2k–2

4

2
2k+1 2k+2

0

Fig. 5 Computation of δ(G(4k; 1, 2k − 1, 2k − 1)), implying μ(Mk (1, 1)) = 1+ 1/2k. Only the distance
to some cells is shown. Cells achieving the diameter are highlighted

Appendix C: The 26 Minimal Non-hollow Lattice 3-Polytopes; Proof of
Theorem 3.9

The 26minimal non-hollow lattice 3-polytopes with a single interior lattice point were
classified by Kasprzyk [18]. We list them in Tables 1 and 2, in the same order as they
appear in Kasprzyk’s Tables 2 and 4. Table 1 contains the 16 that are tetrahedra and
Table 2 the 10 that are not.

Vertex coordinates are given as the columns of a matrix, and chosen so that the
unique interior point is the origin. For the tetrahedral examples in Table 1 we include
the volume vector (a, b, c, d), consisting of the normalized volumes of the pyramids
from the origin over the facets. When the volume vector is primitive, our tetrahedron
equals the cyclic tetrahedron T (a, b, c, d) of Lemma B.2. In some cases, an additional
“description” of the example is given, which helps us later to bound its covering radius.
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Table 1 The 16 minimal non-hollow tetrahedra with exactly one interior lattice point, with their covering
radii
⎛

⎝
−1 1 0 0
−1 0 1 0
−1 0 0 1

⎞

⎠

⎛

⎝
−2 2 0 0
−2 1 1 0
−1 0 0 1

⎞

⎠

⎛

⎝
−5 5 0 0
−3 2 1 0
−2 1 0 1

⎞

⎠

⎛

⎝
−1 1 0 0
−1 0 1 0
−2 0 0 1

⎞

⎠

(1, 1, 1, 1) (2, 2, 2, 2) (5, 5, 5, 5) (1, 1, 1, 2)

S(14) (I ⊕ I ′)′ ⊕ I

µ = 3/2 µ = 3/2 μ = 9/10 μ = 7/5

⎛

⎝
−1 1 0 0
−1 0 1 0
−3 0 0 1

⎞

⎠

⎛

⎝
−1 1 0 0
−2 0 1 0
−2 0 0 1

⎞

⎠

⎛

⎝
−1 1 0 0
−2 0 1 0
−3 0 0 1

⎞

⎠

⎛

⎝
−1 1 0 0
−2 0 1 0
−4 0 0 1

⎞

⎠

(1, 1, 1, 3) (1, 1, 2, 2) (1, 1, 2, 3) (1, 1, 2, 4)

S(13) ⊕ I ′ S(13)′ ⊕ I (I ⊕ I ′)◦ ⊕ I ′
µ = 3/2 µ = 3/2 μ = 9/7 µ = 3/2

⎛

⎝
−1 1 0 0
−3 0 1 0
−4 0 0 1

⎞

⎠

⎛

⎝
−1 1 0 0
−3 0 1 0
−5 0 0 1

⎞

⎠

⎛

⎝
−1 1 0 0
−4 0 1 0
−6 0 0 1

⎞

⎠

⎛

⎝
−2 1 0 0
−3 0 1 0
−5 0 0 1

⎞

⎠

(1, 1, 3, 4) (1, 1, 3, 5) (1, 1, 4, 6) (1, 2, 3, 5)

μ = 11/9 μ = 13/10 μ = 4/3 μ = 12/11

⎛

⎝
−3 1 0 0
−4 0 1 0
−5 0 0 1

⎞

⎠

⎛

⎝
−1 1 0 0
−3 0 2 0
−4 0 1 1

⎞

⎠

⎛

⎝
−3 2 0 0
−4 1 1 0
−5 1 0 1

⎞

⎠

⎛

⎝
−4 3 0 0
−3 1 1 0
−5 2 0 1

⎞

⎠

(1, 3, 4, 5) (2, 2, 3, 5) (2, 3, 5, 7) (3, 4, 5, 7)

Pyr4(S(13))

μ = 14/13 μ = 7/6 μ = 1 μ = 18/19

For example, via this description we can identify the nine polytopes from Lemma 3.8
that have covering radius 3/2.

The exact covering radius, computed with the algorithm of Appendix A using the
SCIP solver in exact solving mode [8], is also shown. All except those of Lemma 3.8
have μ < 3/2, which provides a computer proof of Theorem 3.9. In the rest of this
section we include a computer-free proof.

C.1 The Sixteen Tetrahedra

For most of the tetrahedra in Table 1 we are going to bound the covering radius
based solely on the volume vector of its interior point. We need the following auxiliary
result about the covering radius of some (perhaps non-lattice) triangles.

Proposition C.1 For each v ∈ R
2≥1, let �v := conv {−v, e1, e2}. We have μ(�v) ≤ 1.

Equality holds if and only if v ∈ {(a, 1), (1, a)} with 1 ≤ a ≤ 2.

Proof Due to symmetry, we can assume v = (v1, v2) with v1 ≥ v2. If v2 > 1, then
�v strictly contains the triangle �w, for some w = (w1, 1) ∈ R

2≥1. By Lemma 2.7
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triangles are tight for every lattice, so that μ(�v) < μ(�w) and it thus suffices to
consider v = (a, 1), for a ≥ 1.

Let F0 be the edge of �v not containing v, and let F1 and F2 be the edges of �v

not containing e1 and e2, respectively. Further, let � = {(x, y) : x + y = 1} be the line
containing F0. An elementary calculation gives

� ∩ (F1 + e1) =
{(

2

a + 2
,

a

a + 2

)}

, � ∩ (F2 + e2) =
{(

1

a + 2
,
a + 1

a + 2

)}

,

� ∩ (F1 + (1, 1)) =
{(

2 − a

a + 2
,

2a

a + 2

)}

, � ∩ (F2 + (1, 1)) =
{(

2

a + 2
,

a

a + 2

)}

.

This already shows that the translates {0, 1}2 + �v cover the unit cube [0, 1]2, for
every a ≥ 1, so that μ(�v) ≤ 1 as claimed.

In order to decide the equality case, observe that in the covering of [0, 1]2 by these
four translates, the point (2/(a + 2), a/(a + 2)) is covered last, and is not contained
in the interior of any of the four triangles. However, the translate (2, 1) + �v may
contain this point in the interior. Noting that

� ∩ (F1 + (2, 1)) =
{(

4 − a

a + 2
,
2a − 2

a + 2

)}

,

this happens if and only if 4 − a < 2, that is, a > 2.

Remark C.2 Every non-hollow lattice triangle is isomorphic to some �v considered
with respect to a superlattice of Z

2. (Let (a, b, c) be the volume vector of an interior
point, with a ≤ b ≤ c, and take v = (b/a, c/a)). With this, Proposition C.1 provides
another proof of Conjecture A in the plane. This approach fails in higher dimensions
since, for example, we have computed that the tetrahedron �(3/2,1,1) has covering
radius 14/9 > 3/2.

Let T be a lattice tetrahedronwith the origin 0 in its interior and let (a, b, c, d) ∈ N
4

be its volume vector, written with a ≤ b ≤ c ≤ d. Let A, B,C, D be the vertices of
T labeled in the natural way (so that a is the determinant of BCD, etc.).

Lemma C.3 With this notation, suppose that the triangle OCD is unimodular. If either
of the conditions (i) or (ii) below holds, then μ(T ) < 3/2.

(i) a + b ≤ c and (a, b, c) �= (1, 1, 2).
(ii) a + b ≥ 4, 3c ≥ a + b + d, and (a, b, c, d) �= (2, 2, 2, 2).

Proof Since the triangle OCD is unimodular, there is no loss of generality in tak-
ingC = (1, 0, 0) and D = (0, 1, 0). Once this is done, A and B must have z coordinate
equal to b and −a, in order for the determinants of BCD and ACD to be a and b,
respectively. In order for the determinants of ABD and ABC to be c and d, the seg-
ment AB must intersect the plane z = 0 at the point (−c/(a + b),−d/(a + b)). That
is, T ∩ {z = 0} is the triangle �(c/(a+b),d/(a+b)) of Proposition C.1. Then, Lemma 2.1
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applied to projecting along the z coordinate gives

μ(T ) ≤ μ
(
�(c/(a+b),d/(a+b))

) + 1

a + b
.

We now consider the two cases in the statement separately: For part (i), c ≥ a + b
implies that d/(a + b) ≥ c/(a + b) ≥ 1. Proposition C.1 says that the first summand
is ≤ 1, with equality possible only if c = a + b. Thus

μ
(
�(c/(a+b),d/(a+b))

) + 1

a + b
≤ 1 + 1

2
= 3

2
,

with equality only if c = a + b and a = b = 1.
For part (ii), 3c ≥ a + b+ d implies that (−1/2,−1/2) is in �(c/(a+b),d/(a+b)), so

�(c/(a+b),d/(a+b)) contains the triangle �(1/2,1/2) = S(1, 1, 1/2). Its covering radius
is 5/4 by Theorem 1.4. Hence,

μ(T ) ≤ μ
(
�(c/(a+b),d/(a+b))

) + 1

a + b
≤ μ

(
�(1/2,1/2)

) + 1

a + b
≤ 5

4
+ 1

4
= 3

2
.

The third inequality is strict unless a+ b = 4. Because simplices are tight, the second
inequality is strict unless �(c/(a+b),d/(a+b)) = �(1/2,1/2), that is, unless c = d =
(a + b)/2, which implies a = b = c = d.

With this we can prove that all the tetrahedra in Table 1, except for the five from
Lemma 3.8, have μ < 3/2:

• (1, 1, 1, 2), (1, 1, 2, 3) are the ones whose μ we computed in Corollary B.4.
• (5, 5, 5, 5) is in the conditions of part (ii) of Lemma C.3. The hypothesis that

OCD is unimodular is trivial since C = (0, 1, 0) and D = (0, 0, 1).
• The four volume vectors in the third row satisfy the conditions a + b ≤ c and

(a, b, c) �= (1, 1, 2) of part (i) of Lemma C.3. That OCD is unimodular for them
follows from gcd(a, b) = 1, because the normalized volume of OCD divides
those of OBCD and OACD, which equal a and b, respectively.

• The four in row four satisfy the conditions a+b ≥ 4 and (a, b, c, d) �= (2, 2, 2, 2).
The condition that OCD is unimodular follows again from gcd(a, b) = 1, except
for the tetrahedron (2, 2, 3, 5).

• The remaining tetrahedron (2, 2, 3, 5) is marked “Pyr4(S(13))” because it has a
facet isomorphic to S(13) (the facet in the plane x + z = 2y + 1) and the opposite
vertex is at distance four from that facet. Lemma 2.1 applied to the projection
along the base of the pyramid gives

μ(Pyr4(S(13))) ≤ μ(S(13)) + 1

4
= 5

4
.

Remark C.4 All these tetrahedra except (2, 2, 2, 2) and (5, 5, 5, 5) have gcd(a, b, c, d)

= 1. Thus, Lemmas B.1 and B.2 can be used to compute their exact covering radii,
as we did for (1, 1, 1, 2), (1, 1, 2, 3) in Example B.3. The condition a = 1 used in
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Table 2 The ten minimal non-hollow non-tetrahedra with exactly one interior lattice point, with their
covering radii

⎛

⎝
1 0 0 0 −1
0 1 0 0 −1
0 0 1 −1 0

⎞

⎠

⎛

⎝
1 0 0 −2 −1
0 1 0 −1 0
0 0 1 0 −1

⎞

⎠

S(13) ⊕ I , µ = 3/2 I ⊕ Q4, μ = 4/3

⎛

⎝
1 0 −1 1 −1
0 1 −1 2 −2
0 0 0 3 −3

⎞

⎠

⎛

⎝
1 0 0 −2 −2
0 1 0 −1 0
0 0 1 0 −1

⎞

⎠

Bipyr3(S(13) ⊕ I ), μ = 17/18 I ⊕ I ⊕ I ′, µ = 3/2

⎛

⎝
1 0 0 0 −2
0 1 0 0 −1
0 0 1 −1 0

⎞

⎠

⎛

⎝
1 0 −2 1 −3
0 1 −1 1 −1
0 0 0 2 −2

⎞

⎠

(I ⊕ I ′)◦ ⊕ I , µ = 3/2 Bipyr2(I ⊕ I ⊕ I ′), μ = 7/8

⎛

⎝
1 0 −2 1 −1
0 1 −1 1 −1
0 0 0 2 −2

⎞

⎠

⎛

⎝
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

⎞

⎠

Bipyr2((I ⊕ I ′)◦ ⊕ I ), μ = 1 I ⊕ I ⊕ I , µ = 3/2

⎛

⎝
1 0 0 −1 1
0 1 0 −1 1
0 0 1 0 −1

⎞

⎠

⎛

⎝
1 0 −1 0 1 −1
0 1 0 −1 1 −1
0 0 0 0 2 −2

⎞

⎠

Pyr3([0, 1]2), μ = 4/3 Bipyr2(I ⊕ I ⊕ I ), μ = 3/4

that computation can be weakened to gcd(a, V ) = 1, (which these 14 tetrahedra
satisfy) since then G(V ; a, b, c) = G(V ; 1, ba−1, ca−1), where a−1 is the inverse of
a modulo V .

The Ten Non-Tetrahedra

For the ten polytopes in Table 2 we use the following direct arguments:

• Four of them are the non-tetrahedra in Lemma 3.8, of covering radius 3/2.
• There are another four that are affinely equivalent to the previous four, except
considered with respect to a finer lattice. They are marked as Bipyri ( · ), where i
is the index of the superlattice, since they are also (skew) bipyramids over their
intersection with the plane z = 0. This intersection is, in the four cases, one of
the three non-hollow lattice polygons with μ = 1. Lemma 2.1 for the projection
π onto the z-coordinate gives

μ(P) ≤ μ(P ∩ {z = 0}) + μ(π(P)) ≤ 1 + 1

4
= 5

4
,

since π(P) has length at least four in all four cases.
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• The one marked Pyr3([0, 1]2) is a pyramid with base a unimodular parallelogram
in the plane x + y + z = 1 and apex at distance three. Lemma 2.1 applied to the
projection along the base gives

μ(Pyr3([0, 1]2)) ≤ 1 + 1

3
.

• The remaining one is marked I ⊕ Q4 because it decomposes as

⎛

⎝
0 −2
1 −1
0 0

⎞

⎠ ⊕
⎛

⎝
1 −1 0 −1
0 0 0 0
0 0 1 −1

⎞

⎠ ,

where the first summand is equivalent to I = [−1, 1] and the second is a quadri-
lateral Q4. Since Q4 strictly contains a translation of S(13) and S(13) is tight
(Lemma 2.7), we have

μ(I ⊕ Q4) = μ(I ) + μ(Q4) < μ(I ) + μ(S(13)) = 3

2
.
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