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Abstract

Green AI refers to those AI methods that are friendly to the environment, i.e.,

are capable to keep the consumption of electrical energy at a minimum. In

this sense, a new numerical association rule miner is proposed that presents a

combination of the already existing offline uARMSolver, belonging to a Red AI

class, and a newly developed onlineNARMminer representing the new Green AI.

The former is devoted to exhaustive search of the evolutionary solution space,

while the latter for faster exploiting of already explored search space. The

experimental results on four transaction databases showed that, by sacrificing

the quality of the results by 0.7 %, by the onlineNARM we can obtain the results

almost 85.0 % faster than with the uARMSolver in the best test scenario.

Keywords: Green AI, Red AI, numerical association rule mining,

uARMSolver, onlineNARM.

1. Introduction

The implications and expanding the number of applications in Artificial In-

telligence (AI) have an impact on almost every step of human endeavor. The

main methods under the umbrella of AI have become a central point for re-

searchers and practitioners across the globe. The accuracy of the modern AI5

solutions now achieve limits that were unimaginable several decades ago. For
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example, AI image recognition methods are nowadays going closer to or even

beyond the accuracy achieved by humans. On the other hand, AI is now helping

in searching for new therapeutics [1] at a much faster pace than it was in the

past. Fighting climate change is another role of AI these days, which is also10

researched heavily [2, 3, 4]. Indeed, climate change should be considered as one

of the most significant challenges the humanity is facing today [5].

Even though AI influences on our lives drastically in a positive sense, ev-

ery positive thing has its price. In the case of AI, one of those is high global

energy consumption to emphasize that this process is still happening today.15

The accuracy obtained by AI solutions is a subject of many experiments, algo-

rithm adaptations, parameter tunings, and optimizations that are computation-

ally complex processes. Significantly, modern deep learning, neural architecture

search, or AutoML pipelines are amongst the major contributors to the global

carbon footprint that AI addresses. Therefore, AI impacts climate change in20

more than one way. Interestingly, Nordgren [6] pinpointed the dual role of AI

concerning climate change: on the one hand, AI contributes to the fight against

climate change, while on the other, it also contributes to climate change itself.

Human life has become endangered due to climatic changes on the Earth,

especially global warming. A solution to this problem presents the so-called25

”carbon law”, according to which emissions should be halved every decade from

2020 to 2050, when they should fall to around zero [7]. The name of the law

was given in reference to exponential technologies, whose output per size is ac-

celerating constantly, e.g., the silicon chip following Moore’s law, or modern

technologies such as 5G, the Internet of Things, AI, which follows their expo-30

nential increases of output per size in specific periods. The most advantages

towards a carbon-free society can be achieved by carbon-free digital solutions

in domains like: Energy, Manufacturing, Agriculture, Building, Services, Trans-

port and Traffic Management. Interestingly, these technologies, who are also

part of AI, can help to reduce global carbon emissions by even 15 % [8].35

The issues mentioned above are nowadays being investigated extensively in

research communities. Researchers are aware that training large-scale compu-
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tational models consumes a lot of electricity, contributing to the global carbon

footprint. In recent years, the term Red AI has been coined, which exposes [9]

that numerous AI methods are unfriendly to the environment [10]. On the con-40

trary, all the AI methods that are friendly to the environment are referred to as

Green AI. In line with this, different industries and start-ups are also trying to

follow Green AI due to the environmental impact, the reduction of energy, and

potentially saving money. This will undoubtedly come to the fore as electricity

becomes more expensive due to several world crises and high inflation.45

How to reduce computational power, to merge some critical steps in train-

ing computational models, to simplify preprocessing, or even Machine Learning

(ML) pipelines, are topical questions that present challenges for the research

community nowadays. Some solutions are smaller datasets used for training,

lighter models [11], more optimized preprocessing tasks, different hardware ar-50

chitectures, or even different neural network architectures, e.g., spiking neural

networks [12].

Association Rule Mining (ARM) is a part of data mining, where associa-

tions that are presented as implications are searched for within the transaction

databases [13]. Usually, the transaction databases can represent big data when55

dealing primarily with market basket analyses or other business data [14]. We

try to obtain new insights that help us to adapt to business needs. Nowadays,

there are two primary methods for ARM, which can be classified in two groups,

i.e., deterministic and stochastic. The deterministic methods ensure that we find

an optimum solution in an unpredictable time. Still, we sacrifice computational60

and time resources, while the stochastic nature of an algorithm does not guar-

antee the best solution, but is much less expensive in terms of computational

resources. Numerical Association Rule Mining (NARM) is a variant of canon-

ical ARM, which can also operate with numerical and categorical attributes

concurrently [15, 16]. The main benefit of this approach is that it can generally65

provide more accurate results. A considerable portion of algorithms for NARM

are based on stochastic nature-inspired population-based metaheuristics, which

are well-known algorithms capable for exploring a larger search space. This is
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needed when transaction databases consist of many numerical attributes.

All these arguments can confirm that NARM is computationally a very ex-70

pensive process, also due to the fact that the population-based algorithms need

approximately between 25 to 51 independent runs to minimize the effect of ran-

domness. Thus, there are challenges in reducing the complexity of the NARM

process to simplify and reuse rule mining models to follow the Green AI.

This paper is an extension of our conference paper that was presented at75

the SOCO 2021 conference [17]. The primary purpose of the conference paper

was to develop a Green AI method by introducing the NARM modeling that

allows reusing the NARM models online instead of always generating these

anew. A new algorithm named onlineNARM was developed and applied to the

ICI ML Wine dataset. The onlineNARM mined the association rules of similar80

quality compared with the results achieved by the offline uARMSolver. This was

also better in the lower number of the mined association rules and the lesser

computational time. In the current paper, we go a step further, and provide the

following contributions/extensions to our previous work:

• the onlineNARM is hybridized with many mechanisms that allow it exploit85

the problem search space effectively,

• the offline uAMSolver generates a state database, representing the basis

on which the onlineNARM can start (raising the new Green AI method),

• the results can be tested on four different UCI ML datasets,

• analyzing the results of the proposed method in the sense of the time and90

space,

• identifying the operation of the proposed method in the sense of explo-

ration/exploitation.

In the remainder of the paper, its structure is as follows: Section 2 discusses

the background information needed for understanding the subjects that follow.95

The design and implementation of the onlineNARM is presented in Section 3.

4



The experiments and results are the subjects of Section 4. The paper concludes

with Section 5, in which the performed work is summarized and the directions

are outlined for the future work.

2. Background information100

The background information needed for understanding the subjects that

follows is discussed in this section. The fundamentals of Differential Evolution

(DE) are reviewed first. Actually, this algorithm is used for online NARM due

to its simplicity, efficiency and adaptational ability. The basics of NARM are

illustrated next. The section is concluded with a description of a uARMSolver105

framework running on most Linux distributions as a package for solving the

NARM problems [18].

2.1. Differential Evolution

DE belongs to a class of stochastic nature-inspired population-based algo-

rithms. Although it bases on a strong mathematical definition of vector dif-110

ferences, it is considered as an evolutionary algorithm because its crossover,

mutation, and selection operators play a similar role as presented by Darwinian

natural evolution [19]. The algorithm was developed by Storn and Price in

1995 [20] and gained a big community of developers quickly by solving the con-

tinuous as well as discrete hard problems. The adaptational ability of the DE115

cause many new variants to emerge since its birth.

The DE is a population-based algorithm, where its population consists of

NP real-valued vectors. Thus, each solution represents a particular solution of

the problem to be solved. Operators of crossover, mutation, and selection are

applied to this population. There are many ways how to apply the variation

operators (i.e., crossover and mutation) to the population of solutions. The

basic so-called ’rand/1/bin’ mutation strategy, for instance, selects two solutions

randomly, and adds their scaled difference to the third solution, in other words:

u
(t)
i = x

(t)
r0 + F · (x(t)

r1 − x
(t)
r2 ), for i = 1, . . . ,Np, (1)
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where u
(t)
i denotes the trial vector, F ∈ [0.1, 1.0] is the scaling factor regulating

the rate of modification, Np represents the population size and r0, r1, r2 are

randomly selected values in the interval 1, . . . ,NP .

Two kinds of crossover are used in the DE algorithm: binomial (denoted as

’bin’) and exponential (denoted as ’exp’). The binomial crossover copies on the

same position layed elements, either from the trial or target vector, while the

exponential crossover is similar to the 1-point crossover in genetic algorithms

and copies all the elements from the trial vector until a probability of crossover

is true. The other elements are copied from the target vector. The binomial

crossover can be expressed mathematically as:

w
(t)
i,j =

u
(t)
i,j randj(0, 1) ≤ CR ∨ j = jrand,

x
(t)
i,j otherwise ,

(2)

where CR ∈ [0.0, 1.0] controls the fraction of parameters that are copied to the

trial solution, while a condition j = jrand ensures that the trial vector differs

from the original solution x
(t)
i in at least one element. The selection in the DE

is usually called as ’one-to-one’ and it can be expressed mathematically as:

x
(t+1)
i =

w
(t)
i if f(w

(t)
i ) ≤ f(x

(t)
i ),

x
(t)
i otherwise .

(3)

In the ’one-to-one’ selection, both the trial and the target solutions compete for120

surviving into the next generation, where the better between both according to

the fitness function goes to the next generation.

2.2. Numerical association rule mining

The ARM problem is defined formally as follows: Let us suppose a set of

objects O = {o1, . . . , om} and transaction database D are given, where each

transaction T is a subset of objects T ⊆ O, and the variable m designates the

number of objects. Then, an association rule is defined as an implication:

X ⇒ Y, (4)
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where X ⊂ O, Y ⊂ O, in X ∩ Y = ∅. The quality of the association rule is

evaluated using the following three measures [13]:

conf (X ⇒ Y ) =
n(X ∪ Y )

n(X)
, (5)

supp(X ⇒ Y ) =
n(X ∪ Y )

N
, (6)

incl(X ⇒ Y ) =
ante(X ⇒ Y ) + cons(X ⇒ Y )

m
. (7)

where conf (X ⇒ Y ) ≥ Cmin denotes confidence, supp(X ⇒ Y ) ≥ Smin sup-

port and incl(X ⇒ Y ) inclusion of the particular association rule X ⇒ Y .125

The parameter N in equation (6) represents the number of transactions in the

transaction database D, and n(.) is the number of repetitions of the particular

rule X ⇒ Y within D. Additionally, Cmin denotes minimum confidence and

Smin minimum support, determining that only those association rules with con-

fidence and support higher than Cmin and Smin are taken into consideration,130

respectively.

Let us notice that functions ante(X ⇒ Y ) and cons(X ⇒ Y ) in Eq. (7)

represent a set of objects belonging to either the antecedent or consequent,

respectively. Mathematically, these functions are expressed as:

ante(X ⇒ Y ) = {oπj |πj < Cp
(t)
i ∧ Th(Attr (t)πj

) = enabled},135

cons(X ⇒ Y ) = {oπj |πj ≥ Cp
(t)
i ∧ Th(Attr (t)πj

) = enabled}.

The results of the optimization algorithm are stored into an archive of asso-

ciation rules. Opposed to the traditional algorithms for ARM, where each rule

with support and confidence better than Smin and Cmin is stored uncondition-

ally, in NARM the archive is no longer generated uniformly. Instead, only those140

rules that outperform the best fitness are stored into the archive. In this way,

the size of the archive is reduced crucially.

Interestingly, each numerical attribute in NARM is determined by an interval

of feasible values limited by its lower and upper bounds. The broader the
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interval, the more association rules can be mined. The narrower the interval, the145

more specific relations are discovered between attributes. Introducing intervals

of feasible values has two effects on the optimization: To change the existing

discrete search space to continuous, and to adapt these continuous intervals to

suit the problem of interest better.

2.3. uARMSolver150

The universal framework for ARM [18] (i.e., the uARMSolver) is used as

a testbed for evaluating the proposed online NARM. It was developed in the

C++ programming language and, therefore, its main advantages are: speed,

modular design, and open-source coding. This miner covers all three steps

needed for solving the NARM problems, i.e., preprocessing, optimization, and155

visualization. Due to its simplicity and efficiency, this is included as a software

package suitable for running on most current Linux distributions (e.g., Fedora,

RedHat, etc.).

The uARMSolver is an appropriate tool to deal with datasets in the UCI

ML format [21]. These input datasets need to be preprocessed before entering160

into the optimization. Thus, a discretization of attributes is made in order to

be ready for entering into a transaction database. Although more stochastic

nature-inspired population-based algorithms are planned for inclusion into the

framework, up to this point only two algorithms are available, i.e., DE [20] and

Particle Swarm Optimization [22] (PSO). Both algorithms treat the ARM as an165

optimization problem. The visualization step supports the so-called Explanation

AI (EAI), where the different visualization methods are applied in the sense of

NARM.

It is necessary to modify the following three components of the original DE

algorithm for the uARMSolver:170

• representation of a solution,

• genotype-phenotype mapping,

• fitness function evaluation.
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Let us notice that the maximum number of fitness function evaluations (maxFEs)

is employed as a termination condition. The initial population is generated175

randomly, while the standard mutation strategies as proposed by Storn and

Price [20] and one-to-one selection, are used in this algorithm. In the remain-

der of the section, the aforementioned components are described in detail. The

section concludes with a description of the uARMSolver concept.

2.4. Representation of a solution180

Solutions in a uARMSolver (i.e., association rules) are represented in the

genotype space as real-valued vectors:

xi = {xi,1, . . . , xi,D, xi,D+1}, (8)

where sequences of elements xi,j for j = 1, . . . , D encode attributes of features,

and the xi,D+1 is the control point separating the antecedent from consequent

part of the particular association rule. Interestingly, the length of each solution

is variable, and calculated according to the following equation:

D = |Attr(C)| ·N (C) + |Attr(N)| ·N (R) + 1, (9)

where |Attr(C)| and |Attr(R)| denote the size, while N (C) and N (R) the number

of either categorical or numerical attributes, respectively. Obviously, one is

added in the equation to consider the size of the additional element, i.e., the

control point.

2.5. Genotype-phenotype mapping185

The aim of the genotype-phenotype mapping is to decode the solution in

the genotype space to its counterpart in the phenotype space. The solution in

the genotype space is of variable size and encodes the attributes of two types:

categorical and numerical. Each type is decoded from a fixed sequence of real

values. More specifically, the categorical attributes are encoded as triples:

Attr
(C)
j = ⟨πj , attrj , Thj⟩,
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where

πj − is the order number in the permutation of attributes,

attrj − is the value of the categorical attribute,

Thj − is the threshold determining the presence or absence of the attribute in the rule.

On the other hand, the numerical attributes are encoded in the genotype as

quadruples:

Attr
(R)
j = ⟨πj , Lbj , Ubj , Thj⟩,

where

πj − is the order number in the permutation of attributes,

Lbj , Ubj − are the lower and upper bounds of the numerical attribute,

Thj − is the threshold determining the presence or absence of the attribute in the rule.

Straightforward mathematical equations are employed for decoding the par-

ticular values of the phenotype [18]. This process is illustrated graphically in

Fig. 1, from which it can be seen that three integer vectors are incorporated

Figure 1: Genotype-phenotype mapping.

in the decoding process: (1) a permutation of attributes π, (2) a position pos,

and (3) an attribute type. The permutation vector is obtained after sorting190

the elements πj for j = 1, . . . , n of the corresponding attribute tuples, the po-

sition vector denotes the starting position of the particular attribute in vector

xi, and the type vector highlights the type of each attribute (i.e., categorical

10



’C’ or numerical ’R’). This vector is actually used for determining the size of

the particular attribute.195

2.6. Fitness function evaluation

After decoding an association rule X ⇒ Y from a genotype xi, the quality

of the solution needs to be evaluated in the phenotype space. The quality is

evaluated using the fitness function expressed as follows:

f(x
(t)
i ) =

α · supp(X ⇒ Y ) + β · conf (X ⇒ Y ) + γ · incl(X ⇒ Y )

α+ β + γ
, (10)

where α, β, and γ denote weights, supp(X ⇒ Y ), conf (X ⇒ Y ), and inclusion

incl(X ⇒ Y ) represent the support, the confidence, and the inclusion of the

observed association rule, respectively.

2.7. The offline concept of the uARMSolver200

The uARMSolver processes transactions in the transaction database offline

(Fig. 2). This means that all transactions are processed sequentially, while the

results of this processing are the mined association rules. Let us notice that only

Figure 2: Offline ARM concept.

those rules that improve the value of fitness function are stored into an archive

of association rules, quite the contrary to the traditional algorithms for ARM,205

like Apriori [13], where the number of stored association rules is regulated by

the thresholds Smin and Cmin .

Obviously, if more transactions emerge for importing to the transaction

database, the new association rules need to be mined. In this case, the ARM

process starts anew, wherein the consumption of computational resources (e.g.,210

space and time) increase drastically. Therefore, the online NARM is proposed
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to continue the mining process with reusing the model discovered by the uARM-

Solver.

3. Online NARM solver

The uARMSolver using a DE algorithm serves as a tool allowing a detailed215

exploration of the NARM search space. The detailed exploration is possible

because of an extended termination condition allowing a long-term stochastic

searching, and the nature of the original DE algorithm guaranteeing that the

DE search process does not trap into a local optima too quickly. As a result,

the mined rules expose the huge qualities in the sense of the fitness function.220

Contrarily, the motivation behind developing the online NARM algorithm

is to mine the high quality solutions in the short-term. This demands that

the online NARM needs to be designed very carefully by incorporating various

components allowing the issue. The incorporated components for addressing

this issue are as follows:225

• heuristic initialization,

• adaptation of the DE control parameters,

• mutation strategy,

• non-dominated solution selection,

• local search improvement heuristic,230

• termination condition.

In the remainder of the section, the aforementioned components are illustrated

in detail. The section terminates with a description of the concept of the online

NARM solver.

3.1. Heuristic initialization235

Initialization of a population can have a crucial impact on the results of the

optimization for many types of problems [23]. This component is implemented
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in the onlineNARM twofold: heuristic and random. The heuristic initialization

bases on knowledge explored by the uARMSolver. The explored knowledge,

however, is accumulated within the population. Therefore, the original uARM-240

Solver is modified, such that all the population individuals are saved into the

so-called state population file, which can be restored later by the onlineNARM

in the sense of initializing the population.

The heuristic population acts as follows: The individuals from the state

population are sorted first, and then inserted at random positions in the initial245

population. The number of inserted state individuals is controlled by a parame-

ter ratio ∈ [0.0, 1.0]. This means, when the ratio = 0.0, all the individuals from

the state population are copied into the initial population, and vice versa when

ratio = 1.0, the initial population is initialized randomly. In the case where the

initial population size is less than the state one, the remainder of the places in250

the initial population are initialized randomly.

3.2. Adaptation of the DE control parameters

The Success History based Adaptive DE (SHADE) developed by Tanabe and

Fukubaga in 2013 [24] is one of the more successful variants of the DE algorithm,

whose main advantage lays in adaptation of the DE control parameters F and255

CR. The adaptation has a crucial impact on the results of optimization in the

sense of the time and the quality. Therefore, this mechanism is included into

the onlineNARM as well.

Historical memories MCR and MF , with a size limited by parameter H, are

used by the adapting mechanism. Initially, the elements of the history memory

MCRi
and MFi

are initialized to 0.5, and modified according to the following

equation [24]:

CRi = N (MCR,ri , 0.1),

Fi = C(MF ,ri , 0.1),
(11)

where N (µ, σ) denotes the randomly selected value drawn from the Gaussian

distribution with mean µ and standard deviation σ, C(µ, σ) is the randomly260

selected value drawn from the Cauchy distribution with mean µ and standard
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deviation σ, while ri is the randomly selected value drawn from the uniform

distribution in the interval [1, H].

The historical memories MCR and MF are modified according to the number

of successfully changed individuals that are updated during the particular gen-

eration, and recorded in the so-called success history SCR and SF . The contents

of these memories are modified as follows:

M
(t+1)
CR,k =

meanWA(SCR), if SCR ̸= 0,

M
(t)
CR,k, otherwise,

(12)

M
(t+1)
F ,k =

meanWL(SF ), if SF ̸= 0,

M
(t)
F ,k, otherwise,

(13)

where functions meanWA and meanWL are expressed as:

meanWA(SCR) =

|SCR|∑
k=1

wk · SCR,k, (14)

wk =
∆fk∑|SCR|

k=1 ∆fk
, (15)

and ∆fk = |f(u(t)) − f(x(t))|. The weighted Lehmer mean meanWL(SF ) in

Eq. (13) is expressed as follows:

meanWL(SF ) =

∑|SF |
k=1 wk · S2

F ,k∑|SF |
k=1 wk · SF ,k

. (16)

Finally, the parameter k represents a position in the memory where an update

is performed. This position changes in each generation, starting from the value265

k = 1 to k = H, where the parameter is reset to its initial value.

3.3. Mutation strategy

Also, an employed mutation strategy ’current-to-pbest/1/bin’ is borrowed

from the SHADE algorithm. The main advantage of this strategy is the usage

of an archive of best solutions found during the evolutionary process that col-

laborate actively by improving the current best solution.The mutation strategy

14



is expressed as follows:

v
(t)
i = x

(t)
i + F

(t)
i · (x(t)

pbest − x
(t)
i ) + F

(t)
i · (x(t)

r0 − x(t)
r1 ), (17)

where F
(t)
i denotes the scaling factor corresponding to the i-th vector, x

(t)
pbest is

a randomly selected value drawn from the top NP × pi members in generation

t, and r1 is a randomly selected individual from the best ratio of the state

population determined by the parameter pi. Thus, pi is calculated as follows:

pi = rand [pmin , 0.2], (18)

where pmin is set such that the pbest individual can in the worst case be selected

between two vectors, i.e., pmin = 2/NP . However, the archive in the online

NARM presents a state population that is initialized with the best population270

borrowed from the uARMSolver and updated with the best individuals mined

during the evolutionary search process.

3.4. Non-dominated solution selection

The onlineNARM uses a concept of domination [25] by selecting the best

solutions. As it can be seen in Eq. (10), the fitness function is expressed as275

a linear combination of three objectives: a support, confidence and inclusion.

These objectives are weighted by the coefficients α, β, and γ, while the sum is

maximized as a whole.

However, all three objectives are conflicting to each other. This means that

the multi-objective optimization approach [25] should be used in this case. On280

the other hand, we are interested in the maximum value of the fitness func-

tion. Therefore, in our study, we left the fitness function the same as in the

uARMSolver (thus comparison was kept between two miners), but changed the

selection operation in DE (Eq. (3)). Actually, the selection operation in the

original DE based on relation f(w
(t)
i ) ≤ f(x

(t)
i ) is changed with the domination285

relation f(w
(t)
i ) ◁ f(x

(t)
i ), where the sign ◁ denotes the domination relation.

According to the domination relation, the trial solution w
(t)
i is no worse than

x
(t)
i in all objectives, and is strictly better in at least one objective [25]. This

dominance is expressed mathematically as w
(t)
i ≻ x

(t)
i (is better than).
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3.5. Local search improvement heuristics290

Evolutionary Algorithms (EAs) can be applied to a broad spectrum of prob-

lems, where little domain specific knowledge has already been explored. How-

ever, their performance can be improved drastically when the algorithm is hy-

bridized with this knowledge. Practically, the domain specific knowledge can

hybridize all components of the EAs. In our study, the proposed onlineNARM295

is hybridized with the local search heuristics, besides the heuristic initialization.

According to Moscato [26], these kinds of algorithms are known under the name

Memetic Algorithms (MA).

Three types of local search heuristics are developed for the onlineNARM, as

follows:300

• swap,

• move,

• amend.

All the aforementioned local search heuristics act on the genotype level, while

their effects follow the so-called Lamarckian theory [27], according to which all

changes in a parent organism acquired during its lifetime are passed to its off-

spring. The swap local search heuristic takes one attribute in antecedent and

one in consequent randomly, and changes their corresponding elements between

each other, except the permutation one. The permutation value ensures that

the ordering does not change, and changes are made on the values of swapped

attributes only. Let us mention that the different sizes of attributes (e.g., swap-

ping between categorical and numerical attributes) also need to be taken into

consideration by this operator. The move local search acts by selecting the i-th

attribute in the antecedent and k-th in the consequent randomly and assigning

the permutation value either as πi → πj or vice versa (i.e., πj → πi), depending

on the direction of the move operation. Let us emphasize that the sort operator

in genotype-phenotype mapping moves the i-th attribute from antecedent to

consequent and, oppositely, the j-th attribute from consequent to antecedent.
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The last local search heuristic affects the values of the categorical attributes

according to the following equation:

x
(C)
i,pos[j]+1 = x

(C)
i,pos[j]+1 + sign · N (x

(C)
i,pos[j]+1, 0.05), (19)

while the numerical and real-valued values as follows:[ll]x
(R)

i,pos[j]+1 = x
(R)

i,pos[j]+1 + sign · R(x
(R)

i,pos[j]+1, 0.05), if U(0.0, 1.0) < 0.5

x
(R)

i,pos[j]+2 = x
(R)

i,pos[j]+2 + sign · R(x
(R)

i,pos[j]+2, 0.05), otherwise,
(20)

where a function sign returns either -1 if U(0.0, 1.0) < 0.5) or +1 otherwise,

and N (x
(.)
i,pos[j]+k, 0.05) for k = (1|2) denotes the random number drawn from305

the Gaussian distribution with mean x
(.)
i,pos[j]+k and standard deviation 0.05.

The local search heuristics are controlled using the parameter LS ratio.

When the local search heuristics are launched, they try to improve the target i-

th vector in the population. These are active until an improvements is detected.

In each local search phase, the neighborhood of the target vector is generated

according to the following equation:

N eigh(i) =


I.

swap if U(0.0, 1.0) < .5

move otherwise

II.

amend if U(0.0, 1.0) < .9

n/a otherwise.

(21)

As can be seen from the aforementioned equation, either swap or move local

search heuristics are selected with equal probability in the first phase. Then,

the amend local search heuristic is applied, with the probability 0.9 on the

changed hybrid vector.310

3.6. Termination condition

Selecting the proper termination condition in an onlineNARM has a crucial

impact on its performance. The maximum number of fitness function evalu-

ations (maxFEs) remains the main condition for terminating the algorithm.

However, too high a number of this parameter increases the time complexity,315
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while a too low value of this parameter can terminate it too quickly, and, conse-

quently, the better solution can be lost. Therefore, a balance needs to be found

between the too fast convergence and too long exploration of the search space.

In this algorithm, also the second termination condition is applied, according

to which the algorithm is terminated after the definite number of generations320

(i.e., convergence window CW ), where no improvements are detected anymore.

3.7. The concept of the onlineNARM solver

The original transaction database is divided into: a broker, and delta (Fig. 3).

The former represents the original transaction database in time t0 that is op-

timized initially using the offline uARMSolver. Two additional results are pro-

Figure 3: Online ARM.

325

duced after the optimization, i.e., the archive of association rules (also the

model), and the state representing a population of solutions obtained after the

last exploring of the best solution.

In time t1, new transactions have arisen that are collected into the delta

transaction database. The onlineNarm miner merges the broker and delta330

databases into the original transaction database in time t2. Besides the original

database, the online miner generates a new archive of association rules model’

and a new state’ population using the existing model and state. Thus, the

onlineNARM solver does not optimize the transaction database anew, but con-
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tinues the optimization in the state where the last miner ended. In this way,335

this consumes less computer resources, especially time.

Last but not least, the results of the onlineNARM can enter into the next

cycle of the optimization process, where the original transaction database be-

comes the broker database, the model’ changes to the model, and the state’ to

the state in the time t0 of the next cycle. This means that the model is not340

reused only once, but can be reused more times.

4. Experiments and results

The goal of our experimental work was to show that the results of the

uARMSolver, using the exhaustive evolutionary search, could be reached, or

even improved by the results obtained by the onlineNARM, which employs the345

described mechanisms, allowing it to converge in significantly less time. As a

result, the energy consumption is reduced drastically by decreasing the compu-

tational complexity, and, thus, justifies the foundations of the green AI.

Two types of the DE algorithm were used in the comparative study: (1)

the original offline uARMSolver, and (2) the hybrid onlineNARM. The for-350

mer serves for the initial exhaustive search space exploration, while the latter

for the subsequent fast search space exploitation. Thus, the onlineNARM algo-

rithm was hybridized with: heuristic initialization, adaptation of the DE control

parameters, and using the ’current-to-pbest/1/bin’ mutation strategy, the non-

dominated selection and the local search heuristics. The algorithms used the355

parameters as illustrated in Table 1 during the runs. Each algorithm was run

30 times, and the best solutions according to the fitness function were observed

in the analysis.

The population size presents a standard value as proposed by the DE commu-

nity. The termination condition maxFEs highlights the particular algorithm’s360

exploration/exploitation characteristics: While the offline miner emphasizes the

exploration capability, the onlineNARM is more exploitative. Actually, these

values represent a fair balance between too exhaustive exploration and too fast
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Table 1: Parameter setting of the DE algorithms in the tests.

Nr. Parameter Abbr. uARMSolver OnlineNARM

1 Population size NP 100 100

2 Fitness func. evaluations maxFEs 1,000,000 1,000

3 Convergence window CW 200 2

4 Scale factor F 0.5 adaptive

5 Crossover rate CR 0.9 adaptive

8 Mutation strategy DE ’rand/1/bin’ ’cur.-to-pbest/1/bin’

7 Heuristic initialization ratio n/a 0.5

8 Local search probability LS ratio n/a 0.1

convergence to the local optima, as found during the extensive experiments. The

DE control parameters F and CR were set either on the fixed values in the offline365

uARMSolver and adaptive in the onlineNARM. The original ’rand/1/bin’ muta-

tion strategy was employed in the first and the lSHADE ’current-to-pbest/1/bin’

in the second case. The last two parameters are applied in the onlineNARM

only.

Both algorithms were applied for solving the transaction databases from370

the UCI ML datasets [21]. As can be seen from Table 3, four datasets were

Table 2: Characteristics of the UCI ML datasets.

Nr. Dataset #tran. #attr. Type

1 Abalone 4,177 9 Mixed

2 Page blocks 5473 11 Numerical

2 Mushroom 8,125 22 Categorical

3 Adult 32,561 14 Mixed

selected, with different numbers of transactions, numbers of attributes, and

their corresponding types. The purpose of the selection was to capture the

various datasets according to these various characteristics.

In order to simulate a trend of incoming transactions, a reversible process375
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was taken into consideration, which divides the original database into two partial

databases according to the amount of transactions expressed by the percentage

of the original ones. If, for instance, 10 % is selected, the higher 10 % of

the transactions in the original database were attached to the broker, and the

remainding 90 % to the delta database.380

To assess the results obtained by the uARMSolver on the final databases

with the results of the onlineNARM on the partial broker database substituted

with the delta ones, a cosine similarity between two classifiers u and v (i.e.,

the vectors of the results) is used that is expressed by the Schwartz-Cauchy

inequality [28], as follows:

cosϕ =
|u · v|

||u|| · ||v||
, (22)

where the term |u · v| denotes the inner product of two vectors, and the term

||.|| refers to the absolute value of the vector.

The quality of the mined association rules were estimated according to

Eq. (10) by both algorithms, thus, making the comparison possible. How-

ever, the better between trial and target solutions in one-to-one selection in385

the offline uARMSolver is selected according to the fitness function, while the

non-dominated selection decides, which of the two solutions will survive in the

onlineNARM.

4.1. Hardware configuration

All runs were made on a personal computer IBM Lenovo using the following390

configurations:

• Processor - AMD Ryzen 7-1700 3.90 GHz × 8,

• RAM - 16 GB,

• Operating system - Linux Ubuntu 22.04 Jammy Jellyfish (x86-64)19,

• Cinnamon Version - 5.2.7.395

All versions of the tested algorithms were implemented within the Eclipse CDT

Framework Version 2022-03.
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4.2. Results

The following four reports are provided to justify the hypothesis set at the

beginning of the section:400

• analysis of the detailed results,

• quality analysis of the aggregate results,

• time complexity analysis of the aggregate results,

• analysis of the convergence speed.

In the remainder of the section the aforementioned tests are discussed in detail.405

4.2.1. Analysis of the detailed results

In this experiment, we compared the performance of the onlineNARM by

various partial broker databases with the results as obtained by the uARM-

Solver on the original transaction database. The partial broker databases were

observed at milestones determined by 10 %, 25 %, 50 %, 75 %, and 90 % of the410

original database that are substituted with the corresponding delta databases

to the original ones. The results of the offline uARMSolver, representing 100 %

of the original database, and this one, were added to the study as well. In

summary, six instances of the problem were considered. The goal of the on-

lineNARM was to get as near to the results of the uARMSolver as possible415

disregarding which broker database it was started from.

The detailed results obtained by the ARM on the Adult database are pre-

sented in Table 3. The table is arranged into columns representing the partic-

ular instances and rows representing various variables. The variables refer to

the performance indicators and highlights the behaviour of the algorithm from420

different points of view. The meanings of the variables are presented in Table 4.

Because the advanced analysis of the results according the quality and the time

are performed in the remainder of the section, the focus, here, is on the detailed

analysis of the performance indicator Rules. Indeed, the number of Rules in-

creases from the value 611 achieved by the uARMSolver to the value 731 by the425
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Table 3: Detailed results obtained by the Adult mining.

Variable
onlineNARM uARMSolver

10 % 25 % 50 % 75 % 90 % 100 %

Broker DB 3,257 8,141 16,280 24,420 29,304 32,561

Delta DB 29,304 24,420 16,281 8,141 3,257 0

Rules 713 600 703 662 731 611

Best fitness 0.799120 0.799498 0.799652 0.799693 0.799693 0.799693

At FEs 318 181 170 96 65 845

At time 149.62 93.17 104.33 71.76 73.59 479.60

LS calls 239 219 217 251 259 n/a

LS success 113 81 66 87 104 n/a

LR rate 0.4728 0.3699 0.3041 0.3466 0.4015 n/a

Total time 355.54 340.35 371.64 291.17 352.07 5,460.32

Table 4: Meaning of the variables.

Variable Meaning

Broker DB the size of the broker database per a particular instance

Delta DB the size of the delta database per a particular instance

Rules the number of rules mined

Best fitness the best fitness function value

At FEs the effective fitness evaluations needed for achieving the best

fitness

At time the effective time needed for achieving the best fitness

LS statistics the number of calls, successful calls, and the rate of the suc-

cessful calls

Total time the total time needed for fulfilling the prescribed fitness func-

tion evaluations

onlineNARM except its instance starting with 25 % of the transactions of the

original database, where 600 association rules are mined only.
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4.2.2. Quality analysis of the aggregate results

The goal of this experiment was to compare the results of the onlineNARM

obtained by optimization of all four observed transaction databases according430

to a quality of solutions, and to show that the onlineNARM can achieve results

near to the optimal (i.e., as achieved by the uARMSolver). In line with this, the

detailed results obtained by both solvers in the first experiment are aggregated

and examined closely.

The mentioned results according to the quality are presented in Table 5,435

from which it can be seen that the onlineNARM achieved results equal to the

Table 5: Results of the UCI ML dataset mining according to the best fitness.

Dataset
onlineNARM uARMSo.

10 % 25 % 50 % 75 % 90 % 100 %

Abalone 0.958733 0.959691 0.962883 0.962883 0.962883 0.962883

Page blocks 0.893438 0.902153 0.905320 0.911594 0.912446 0.912629

Mushroom 0.703177 0.703177 0.692967 0.688764 0.703177 0.703177

Adult 0.799120 0.799498 0.799652 0.799693 0.799693 0.799693

Average 0.838617 0.841129 0.840205 0.840733 0.844549 0.844595

optimal at the higher instances of the broker databases (i.e., ≥ 50 %), while

these are near to the optimal at the lower instances.

Two statistical test were conducted to show that the results achieved by the

onlineNARM are not statistically significantly different from the results of the440

uARMSolver: (1) a 2-tailed pairwise t-test for significance level α = 0.01, and

(2) a cosine similarity test. The results of these statistical tests are illustrated in

Table 6. As can be seen from the table, the results of the onlineNARM are not

significantly different from the optimal results according to the 2-tailed parwise

t-test for the significance level 0.01. Also the cosine similarity test indicates445

the irrelevant differences in the quality of mined association rules between both

miners.
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Table 6: Results of the statistical tests.

Dataset
Parwise t-test Cosine similarity

p-value p < 0.01 cos ϕ SC

Abalone 0.145997 No 0.999998 ≈ 1

Page blocks 0.058864 No 0.999971 ≈ 1

Mushroom 0.149438 No 0.999961 ≈ 1

Adult 0.175609 No 1.000000 ≡ 1

4.2.3. Time complexity analysis of the aggregate results

The analysis of time complexity addresses the results obtained by both min-

ers according to the total time, and it is divided into two parts: In the first450

part, the comparison between the onlineNARM by mining the association rules

on various instances of the broker databases is conducted without considering

the initialization phase, while, in the second part, this phase is also taken into

consideration.

The results of the first part are presented in Table 7, from which it can be455

seen that the onlineNARM spends from 4.27 % by handling the Page blocks

Table 7: Results of the UCI ML dataset mining according to the total processing time without

considering the initialization phase.

Dataset
onlineNARM uARMSolver

10 % 25 % 50 % 75 % 90 % 100 %

Abalone 50.70 45.77 51.44 52.81 49.43 1047.63

Page blocks 56.13 61.86 74.10 73.55 69.47 1553.15

Mushroom 37.65 35.62 36.29 30.71 34.61 654.49

Adult 355.54 340.35 371.64 291.18 352.07 5,460.32

Average 125.00 120.90 133.37 112.06 126.39 2,178.89

transaction database to 6.32 % for the Adult database of the total time spent

by the uARMSolver, on average.

The situation is changed slightly, when the initialization phase, performed

with the uARMSolverI (i.e., uARMSolver on the particular broker database) on460
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the particular broker database, is taken into account (Table 8). The results in

Table 8: Results of the UCI ML dataset mining according to the total processing time with

also considering the initialization phase.

Dataset
uARMSolverI+onlineNARM uARMSolver

10 % 25 % 50 % 75 % 90 % 100 %

Abalone 138.07 260.074 687.89 689.11 1,044.71 1,047.63

Page blocks 191.60 480.97 877.85 1,324.33 1,635.76 1,553.15

Mushroom 103.56 172.49 441.42 554.91 806.43 654.49

Adult 910.76 1,775.24 3,369.75 4,608.17 5,957.40 5,460.32

Average 335.99 672.19 1344.23 1794.13 2,361.08 2,178.89

the table show that the total time of the initialization phase consumed by the

uARMSolverI cannot be neglected. Indeed, the consumption of time is expanded

from 36.47 % by mining the rules in the Mushroom database to 46.17 % by

mining in the Abalone database, in average.465

However, when particular instances of the broker databases are taken into

consideration, the following assertion holds: The lower the instance, the higher

the total time savings. Obviously, the opposite also holds: The higher the

instance, the smaller the savings. For instance, the savings amount to even

more than 85 % for the instance containing the 10 % of transactions from the470

original transaction database, and 0 % saving for the instance containing the

90 % of transactions of the original transaction database.

4.2.4. Analysis of the convergence speed

This experiment was devoted to indicating how effective an evolutionary

search process of the particular miners is. In line with this, the number of fitness475

function evaluations (FEs) was recorded, when the best fitness was detected.

This number has a crucial influence on setting the convergence window CW

that represents the second termination condition used in both miners.

The results of the experiment are illustrated in Table 9. From the table,

it can be seen that the instances of broker databases containing the smaller480
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Table 9: Results of the UCI ML dataset mining according to the FEs.

Dataset
onlineNARM uARMSolver

10 % 25 % 50 % 75 % 90 % 100 %

Abalone 561 194 100 100 171 288

Page blocks 228 196 321 183 98 718

Mushroom 268 530 97 227 54 9,236

Adult 318 181 170 96 65 845

Average 343.75 275.25 172.00 151.50 97.00 2,771.75

number of transactions in the broker database demand more fitness functions

evaluations to converge. When comparing the FEs achieved by the onlineNARM

with those obtained by the offline uARMSolver, it can be concluded that the last

one needed more evaluations to converge. This fact can be ascribed to the fact

that the offline uARMSolver does not use any hybrid methods for improving its485

evolutionary search process.

Interestingly, the convergence window CW terminates the execution of the

search process in the uARMSolver, while the onlineNARM is more sensitive

on the maxFEs termination condition. Although the convergence window was

set extremely low in the onlineNARM, the diversity of population ensured dis-490

covering the new promising solutions, and, thus, prevented it from terminating

prematurely.

4.3. Discussion

The time complexity of the stochastic nature-inspired population-based al-

gorithms, like EAs, is usually limited by using the parameter maxFEs. Here,495

the main issue is how to determine this parameter such that the corresponding

EA is already able to discover the new best solutions, and to prevent the evo-

lutionary search process from getting stuck in the local optima. There, we are

confronted with the problem of exploration/exploitation [29]. This means too

much selection strength, too fast loss of the population diversity. On the other500

hand, although the population diversity is a required condition for discovering
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the best solutions, it does not ensure that these can really be discovered. Due to

a lack of theoretical studies in the domain, the reasonable setting of these values

was determined experimentally. As a result, the proposed values, as found in

our study, could be a good starting point for other potential researches.505

In order to decrease the value of the parameter maxFEs, generally, the

proposed method applies the offline uARMSolver for an exhaustive evolution-

ary search at the beginning that consumes a reasonable number of the fitness

function evaluations. The reasonable number was determined by the second ter-

mination condition in the form of the convergence window CW experimentally,510

such that this was suitable for all the problems under consideration in general.

For instance, the uARMSolver needs almost 100 generations (i.e., FEs = 9, 236

or 9, 236/100 ≈ 100 generations) to obtain the best solution by mining the rules

within the Mushroom database, although the same algorithm found the optimal

solutions earlier for the other databases (Table 9). Therefore, the selection of515

the parameter CW = 200 seems reasonable in summary.

The onlineNARM is applied with reusing the model built by uARMSolver,

whose time complexity can be controlled with the lower value of maxFEs =

1, 000 and CW = 2 due to the quicker convergence of the online algorithm. The

results of this algorithm according to the total time are promising, especially for520

the instances with a lower number of transactions in the broker databases. For

instance, the quality of the results by the onlineNARM are only 0.7 % worse

than by the uARMSolver on average (Table 5), although these were obtained by

the former algorithm in even 84.24 % less time on average (Table 8), when the

smallest size of the broker database (i.e., 10 %) is observed. Finally, the question525

should arise, how to define the value of the parameter maxFEs more precisely.

Obviously, the answer to this question might be found in an analysis of the

exploration/exploitation behavior of the onlineNARM algorithm on different

problems.

Furthermore, the faster convergence of this algorithm is ensured by addi-530

tional mechanisms, like: heuristic initialization, adaptation of the F and CR

parameters, mutation strategy ’current-to-pbest/1/bin’ using an archive of the
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previous best solutions, non-dominated selection, and local search heuristics.

Heuristic initialization, for instance, depends on the setting of the parameter

ratio that regulates if the initial solutions are generated heuristically or ran-535

domly. When the majority of the initial solutions are generated heuristically,

the final result is usually a fast convergence to the local optima, while the ma-

jority of the random initial solutions cause a slow convergence. The evidence

of the faster convergence is reflected in Table 9, where the onlineNARM used

87.59 % of fitness function evaluations less than the uARMSolver (Table 9) on540

average.

Indeed, some drawbacks of the method have been discovered during the

research study. These can be summarized in two facts as follows:

• identifying the distribution of transaction classes in the broker database

with the original one,545

• improper handling with the big data.

The present study assumes that the transactions in UCI ML datasets are

aggregated in some history ordering. Therefore, the broker datasets are gener-

ated by dividing the original dataset into two parts according to the dividing

percentage and regardless of the classes of the transactions being subjects of the550

dividing. This dividing, actually, does not consider that the distribution of the

transactions in a broker database needs to be equal with those in the original

(Fig. 4).

This distribution is not so important in datasets of variable size, where the

transactions are added to the transaction database online. However, simulating555

the online process, like in our case, can prevent the onlineNARM from achieving

the same results as the uARMSolver on each instance of the problem, especially,

due to the different distribution of transaction classes.

As discovered during the experimental work, the uARMSolver could have

a problem with handling big data, due to reading the whole data from the560

transaction database into a computer memory. Obviously, the problem could

be solved easily by paging parts of the real from the virtual memory, where only
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Figure 4: The Figure presents a comparison of

distributions of transaction classes between the

original and broker datasets obtained from the

Mushroom UCI ML dataset by dividing per-

centage of 10 %. As can be seen from the Fig-

ure, there are 29 different classes into which

transactions can be classified. In the original

dataset, these classes are normally distributed,

while the distribution is more scattered in the

case of the broker dataset.

parts of the whole database are presented in the computer memory at once. As

a matter of fact, we did not observe this kind of problem, because we did not

deal with the raw big data, in our study.565

However, only one cycle of the onlineNARM was tested during our prelim-

inary tests. Obviously, when the onlineNARM with reusing the model would

repeat over more cycles, the savings in time (and indirectly in energy consump-

tion) will be increased drastically.

5. Conclusion570

The ARM is a hard ML problem in the sense of time and space complexity

and consequently demands a lot of electrical energy for solving on digital com-

puters. Therefore, it is classified in the class of Red AI, that represents a set of

algorithms consuming too much electrical energy, and are indirectly unfriendly

for the environment. This paper proposes a combination of the offline uARM-575

Solver and onlineNARM, capable of drastic decreasing of the time complexity,

and, consequently, also the electrical consumption by solving the problem. This

method could be a potential candidate for classification in the Green AI class.

A lot of directions exists for improving the method: At first, the more com-

plex transaction databases could be taken into consideration (e.g., the Hadoop580

environment for big data analytics). Next, the onlineNARM could be included

into the uARMSolver framework as an independent process that could use the
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uARMSolver for initialization. Furthermore, the onlineNARM could be applied

to data arising in data centers and cloud computing platforms, where huge

electricity consumption takes place. Finally, additional improvements could be585

conducted, in order to reveal the processes of exploration and exploitation in

more detail. The result of this study could help us to determine the termination

condition in the onlineNARM more precisely.
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