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Abstract
The fracture toughness reflects the rock resistance to crack propagation, and therefore represents an important parameter 
for rock fracture assessments. From a strict point of view, the real fracture toughness ( K

IC
 ) corresponds to a cracked situa-

tion in which the notch radius is theoretically equal to zero. However, most of the defects in rocks have a finite radius and, 
therefore, should be studied as notch-type defects. Here, the notch effect is numerically studied together with the influence 
of the grain size and the sorting coefficient (grain size uniformity) on the apparent fracture toughness ( K

IN
 ). To this end, 

several four-point bending tests with different U-shaped notch radii, mean grain sizes and degrees of uniformity in grain size 
and shape have been simulated using the Discrete Element Method. In order to represent the grains of the rocks, the Voronoi 
tessellation is used to create randomly sized and distributed polygonal blocks. These Voronoi polygons have been defined, 
on the one hand, by an average edge length of 1, 2 and 3 mm, and, on the other hand, by a different number of iterations 
( n ) in the relaxation process during the generation of the polygons, which defines the grain size uniformity. The numerical 
analyses performed and the interpretation of the results show a clear notch effect in all the studied cases, as the apparent 
fracture toughness ( K

IN
 ) increases with notch radius. Finally, the obtained stress fields at the notch tip have been compared 

to those obtained from the traditional finite element method.

Highlights

•	 Four-point bending tests with U-shaped notches simulated using the Discrete Element Method.
•	 Different notch radii, mean grain sizes and degrees of uniformity are studied.
•	 Results show a clear notch effect, increase of apparent fracture toughness with notch radius.
•	 Interpretation of the results using the Theory of Critical Distances.
•	 A linear relation between the critical distance of the rock and the grain size is observed.
•	 The critical distance slightly increases when less uniform grains are studied.

Keywords  DEM · Rock · Grain size · Sorting coefficient · Notch effect · Theory of critical distances

1  Introduction

A comprehensive understanding of rock fracture processes 
is a major issue of interest in many engineering fields such 
as civil engineering (e.g., slopes, foundations), underground 
engineering (e.g., tunneling, mining) or energy engineer-
ing (e.g., gas–oil extractions, coal gasification, geothermal 
energy). The fracture initiation is affected to a great extent 
by the boundary conditions that are not linked to the rock 
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mass or rock matrix itself (e.g., external loads, presence of 
water). However, other microstructural and macrostructural 
aspects such as rock composition and mineralogy (e.g., grain 
size, grain bonding) or the presence of different scale defects 
also play a key role in the fracture processes (e.g., Hoek 
1968; Palmström 1995; Hudson and Harrison 1997; Jaeger 
et al. 2007).

Defects are generally classified as crack-type defects, 
those with a theoretical vanishing (or at least negligible) 
root radius, or as notch-type defects, those with a finite and 
non-negligible root radius. Rock fracture mechanics (e.g., 
Whittaker et al. 1992; Aliabadi 1999; Jaeger et al. 2007) 
traditionally addresses different practical applications such 
as rock cutting, hydraulic fracturing or underground exca-
vations from a conservative perspective, assuming that the 
analysed stress risers behave as crack-type defects, based 
on the use of the conventional Stress Intensity Factor (SIF). 
However, that approach might be too conservative in many 
practical situations, since notch-type defects generate less 
demanding stress fields than crack-like defects and, there-
fore, develop a higher load-bearing capacity (e.g., Neuber 
1958; Peterson 1959; Pluvinage 1998; Taylor 2007). This is 
what is generally called the notch effect, which is numeri-
cally evaluated in this work.

This paper is based on two previous works of the authors 
(Justo et al. 2017, 2020b). In the first one, the notch effect 
of four different rocks was experimentally studied based on 
the application of the Theory of Critical Distances (TCD) 
through a parameter called the critical distance ( L ), which 
is assumed by the TCD as an intrinsic material parameter 
with length units. The physical meaning of L is still a fun-
damental challenge among researchers (Taylor 2017), but 
it is independent of the geometrical features of the stress 
concentrator and is related to the size of the dominant source 
of microstructural heterogeneity in the material (e.g., Askes 
and Susmel 2015). A common source of microstructural het-
erogeneity in the case of rocks is the grain size (e.g., Taylor 
2017). In fact, Justo et al. (2017) confirmed that there is 
a linear relation between the critical distance of rocks and 
their mean grain size. Aiming to go deeper into those results, 
the second work was focused on numerically simulating the 
influence of grain size on the fracture behaviour of rocks, 
namely on the main mechanical properties (tensile strength, 
fracture toughness, Young’s modulus and Poisson’s ratio) 
and on the notch effect (through the analysis of the apparent 
fracture toughness). To do so, several discrete numerical 
analyses were performed to simulate unconfined compres-
sion tests, Brazilian tests, and four-point bending tests (as 
those carried out in the laboratory by Justo et al. 2017) with 
variable mean grain sizes. Particles were defined by means 
of Voronoi tessellations with relatively uniform shape in all 
the cases (with a sorting coefficient very close to unity), rep-
resenting polygonal grains and ideal non-porous, crystalline 

and isotropic rocks. The modelled materials were ideal zero 
porosity crystalline rocks, whose parameters have the same 
order of magnitude as those of the Macael marble tested in 
Justo et al. (2017). To make the computational cost feasible, 
the modelled grains (1–3 mm) were much larger than those 
of the Macael marble (average grain size of 335 µm), and 
consequently, the intention was not to reproduce the same 
behaviour observed in the laboratory but to represent models 
of rock-like materials within a realistic order of magnitude.

Here, it is intended to extend those works and consider 
not only the influence of the mean grain size but also the 
grain size distribution (i.e., sorting coefficient) as a variable. 
Following the methodology used by Justo et al. (2020b), 
additional discrete numerical models have been con-
structed in this work to simulate the same type of Single 
Edge Notched Bend (SENB) specimens with variable notch 
radii and subjected to four-point bending conditions (i.e., 
mode I loading conditions), keeping the same mean grain 
sizes constant but varying the degree of uniformity of the 
grains (i.e., increasing the sorting coefficient). These models 
represent ideal non-porous, crystalline and isotropic rocks 
with different grain sizes and sorting coefficients, and allow 
to obtain, for each case, the stress state in the surrounding 
of the notches at the onset of crack initiation and propaga-
tion. The stresses derived from the Discrete Element Method 
(DEM) are interpreted according to the TCD, which is used 
to analyse the variation of the apparent fracture toughness 
with the notch radius. Finally, those DEM stress fields used 
for the analyses of the notch effect are compared to those 
obtained by the finite element method (FEM), to compare 
discrete and continuum approaches and to validate the con-
sidered methodology.

A limitation of this study is that only intergranular frac-
ture is considered. This may be valid or representative for 
some specific rocks or materials, where intergranular frac-
ture is the only fracture micromechanism (e.g., Ortiz and 
Suresh 1993). However, in many other rocks, such as in the 
marble used here as a reference, intergranular fracture coex-
ists with transgranular fracture. If transgranular fracture was 
simulated (e.g., Hofmann et al. 2015; Peng and Wong 2017), 
the fracture toughness would be reduced, because in some 
cases, the fracture would occur earlier through the grains. 
Besides, the notch effect would also be reduced, because the 
presence of a grain at the notch tip would not restrict frac-
ture as much as if the grains were unbreakable, as occurs in 
this paper. Finally, Li et al. (2019, 2021) present a detailed 
discussion of the methods to consider transgranular frac-
tures and their influence. For example, finite-discrete ele-
ment methods (FDEM) allow for transgranular fracturing 
and also for advanced contact algorithms (e.g., Zhao et al. 
2018; Wang et al. 2021a). Likewise, in DEM, multi-scale 
tessellations can be applied to simulate transgranular fractur-
ing (e.g., Wang and Cai 2018). A novel technique, such as 
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the grain-based finite-discrete element methods (GB-FDEM) 
used by Abdelaziz et al. (2018) or Li et al. (2020), would be 
suitable to consider transgranular fractures in this problem 
and extend the present work.

2 � Background

The notch effect in rocks, especially in crystalline rocks, 
depends on the grain size as a consequence of its relation-
ship with L . For example, to evaluate when the notch root 
radius is negligible, this is compared with L , since it has 
been observed for different materials that the notch effect is 
generally negligible when the notch radius is smaller than 
L . Using laboratory tests to study the influence of the grain 
size on the notch effect is extremely difficult, because rocks 
have many different features, such as inhomogeneities, com-
plex grain size distributions, grain aspect ratio, porosity, etc. 
Numerical analyses, and in particular the DEM, are avail-
able suitable tools at present for an in-depth analysis of this 
problem.

Block-based DEMs allow the rocks to be modelled as 
an assemblage of blocks (grains) with different boundary 
conditions, which makes them an appropriate tool for the 
problem addressed in this work. In the literature, four meth-
ods are typically used to simulate grain structure, namely 
disk-shaped grains (e.g., Potyondy and Cundall 2004), 
square-shaped grains (e.g., Li and Konietzky 2015), tri-
angular grains (e.g., Kazerani 2013) and polygonal grains 
(e.g., Kazerani and Zhao 2010). The polygonal grain struc-
ture appears to be a more realistic representation of the 
microstructure of rock-type materials (especially crystal-
line rocks). The conventional polygonal structure is usually 
generated using the Voronoi tessellation technique (e.g., Gao 
et al. 2016). Here, the grains are generated using the Voronoi 
tessellation, which allows a random distribution of the grains 
to be defined with a controlled mean size. This technique 
provides blocks with similar shapes to the grains of zero 
porosity crystalline rocks, similar to those observed by the 
authors for different marbles (e.g., Justo et al. 2017). Voro-
noi-based discrete models have been successfully used to 
simulate rock-like materials under different considerations, 
for instance, for compression, Brazilian and fracture tough-
ness tests (Chen et al. 2015). The influence of grain size, 
pore size and mineral composition have also been studied 
using this technique (e.g., Li et al. 2017a; Chung et al. 2019; 
Liang et al. 2021). Voronoi tessellations were first extended 
to 3D models by Ghazvinian et al. (2014), who simulated 
crack damage development in brittle rocks. Thus, this tech-
nique has proven to be appropriate for the problem under 
study. Finally, Lisjak and Grasselli (2014) and Zhang and 
Wong (2018) present reviews of these numerical techniques 

and the introductions of Li et al. (2019) and Wang et al. 
(2021b) summarise some of the latest numerical advances.

Different criteria can be found in the literature to predict 
fracture loads of notched components subjected to mode I 
loading (e.g., Kipp and Sih 1975; Carpinteri 1987; Sew-
eryn 1994; Gómez et al. 2000; Lazzarin and Zambardi 2001; 
Yosibash et al. 2004; Taylor 2004) or even mixed mode 
loading conditions (e.g., Papadopoulos and Paniridis 1988; 
Seweryn and Mróz 1995; Yosibash et al. 2006; Berto et al. 
2007). Among them, the most widely used criteria at the 
moment are probably the following ones:

•	 The Cohesive Zone Model (CZM), first proposed by 
Barenblatt (1959) and Dugdale (1960) to describe the 
stress fields and fracture processes near the defect tip.

•	 Finite Fracture Mechanics (FFM), based on the assump-
tion that the crack grows by finite steps determined by 
a condition of consistency of both energy and stress 
requirements (Carpinteri et al. 2008).

•	 The Strain Energy Density (SED) criterion, an energy-
based approach that combines the elementary volume 
proposed by Neuber (1958) and the local Mode I concept 
of Erdogan and Sih (1963).

•	 The Theory of Critical Distances (TCD), first proposed 
by Neuber (1958) and Peterson (1959), although it has 
not been until the last decades with the development of 
finite element analyses that this methodology has been 
scientifically applied and further developed (e.g., Taylor 
and Wang 2000; Taylor 2001, 2007; Susmel and Taylor 
2003; Cicero et al. 2012).

One of the greatest advantages of the TCD consists of the 
possibility of obtaining (semi-) analytical results to correctly 
perform static assessments without any loss of accuracy 
(Cornetti et al. 2016), and without the need for significant 
computational efforts as commonly required by the SED 
criterion or by the CZM, for example. However, despite its 
simplicity and potential for the analysis of fracture processes 
as demonstrated for a wide range of materials (e.g., metals, 
ceramics, polymers and composites), scarce work can be 
found on the application of the TCD in the particular field 
of rock mechanics. Some examples of the application of the 
TCD on rock mechanics are, for instance, the works of Lajtai 
(1972), Ito and Hayasi (1991), Ito (2008) or Schwartzkopff 
et al. (2017). The authors have recently applied the TCD 
for the fracture assessment of several rocks under different 
temperature and loading conditions (Justo et al. 2017, 2020a, 
2021), and given the successful results, the evaluation of the 
notch effect in this work is also performed using this local 
failure criterion.

All the failure criteria indicated above, including the 
TCD, use the fracture toughness ( K

IC
 ) for the fracture 

assessment of structural components. Indeed, this parameter 
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represents the residual strength of a cracked component to 
crack propagation. By definition, the fracture toughness is 
an intrinsic property of the material. It addresses crack prob-
lems where the notch radius can be assumed to be equal 
to zero and, therefore, where no notch effect is deployed. 
However, when notch-type defects are analysed, an appar-
ent fracture toughness ( K

IN
 ) should be considered instead of 

the strictly real value of K
IC

 , as demonstrated, for example, 
by the authors in previous works (Cicero et al. 2014; Justo 
et al. 2017). With this, the interpretation of the notch effect 
is performed in this work by analysing the variation of the 
apparent fracture toughness with the notch radius.

For the correct application of the TCD, the stresses 
around the notch tip must be assessed. In the particular cases 
of mode I loading conditions, as those considered in this 
work, the stresses are evaluated along the bisector plane of 
the notch tip and, to do so, numerical methods provide a 
suitable tool. The different geological processes that rocks 
have undergone over millennia makes them highly hetero-
geneous materials. However, despite this generally accepted 
condition, it is a common practice to consider the rock as a 
continuum in order to simplify the rock mechanics analyses. 
In fact, applications of the TCD found in the literature are 
generally based on continuum stress assessments regardless 
of the analysed material, even for rock-type materials. This 
continuum approach might be a suitable option when global 
responses are of interest (e.g., Eberhardt et al. 2004), but it is 
less appropriate for applications where detailed information 
is required for more accurate assessments. For example, Gui 
et al. (2016), investigated the grain size effect simulating 
Brazilian disks and unconfined compression tests using dis-
tinct element analyses, and they reported that larger particle 
sizes produce a higher stiffness and strength of the intact 
rock. Li et al. (2017b) also used distinct element analyses to 
simulate crack initiation and propagation of a granular rock. 
Liu et al. (2018) numerically studied the so-called Fracture 
Process Zone (FPZ) by means of the DEM, addressing size 
effect and particle size. Likewise, Wang et al. (2019) stud-
ied the influence of mineral heterogeneity on the thermo-
mechanical behaviour of rocks also using the DEM. Consid-
ering all of the above, it is clear that detailed microstructural 
analyses require discrete numerical approaches.

3 � Numerical Analyses

Two types of numerical analyses have been considered in 
this work. The first one uses the DEM to simulate the rock 
specimens as an assemblage of grains. Idealized crystalline 
and non-porous rocks are modelled, in which grain size and 
uniformity are the analysed variables. This microstructure 
could correspond to a marble, such as the Macael marble 
analysed by Justo et al. (2017). In fact, this work takes as 

a reference the experimental results obtained in Justo et al. 
(2017), for the definition of the parameters of the models. 
However, it is not the purpose of this research to simulate the 
exact behaviour of the previously analysed Macael marble 
(which has a relatively smaller grain size than the studied 
models), but to model ideal rock-like materials with compa-
rable and realistic properties.

The proposed ideal rock simulations allow the effect of 
the grain size and the degree of uniformity to be studied in 
isolation, without the influence of other possible variables. 
Thus, the interpretation of the results becomes straightfor-
ward and generalizable conclusions can be reported. The 
second approach is based on the use of the FEM and aims 
to compare the stress fields around the notches and, in par-
ticular, at the bisector plane, where stresses are assessed 
according to the TCD.

3.1 � Discontinuum Approach

In this work, the Universal Distinct Element Code, UDEC 
v6.00 (Itasca 2010), is used to numerically study the influ-
ence of the grain size and its uniformity on the apparent frac-
ture toughness of notched rock specimens. This code refers 
to a particular DEM scheme that uses deformable contacts 
and an explicit, time-domain solution. It consists of a block-
based method that models the rock masses as an assembly 
of blocks with interfaces (or contacts), allowing the simula-
tions of rock fracturing. The rock behaviour is described by 
the interaction between these blocks. Thus, the contact laws 
govern the macroscopic response of the material according 
to normal and tangential behaviour at the interfaces. The 
DEM allows finite displacements and rotations of discrete 
bodies (including complete detachment), and considers the 
interaction of the fractured rock fragments.

To represent the grains of the rock, the Voronoi tessel-
lation is used to generate randomly sized polygonal blocks. 
These polygons are defined by an average edge length ( l ), 
which has been varied in this work to consider the effect of 
the grain size. Likewise, the blocks (grains) are discretised 
into constant-strain finite-difference triangular zones defined 
by a maximum edge length ( e ). These zones make the blocks 
deformable. Here, e = l has been considered to keep the pro-
portion of zones within the blocks roughly constant and, 
on average, each grain is approximately subdivided into 
seven zones in all the cases. The authors have not performed 
mesh sensitivity analyses of the influence of the parameter 
e , information about the influence of the l∕e ratio may be 
found in Fabjan et al. (2015). At the same time, the size and 
shape uniformity of the Voronoi polygons is defined by the 
number of iterations ( n ) in the relaxation process during the 
generation of the mesh (Itasca 2010), in such a way that the 
increasing number of iterations leads to Voronoi polygons of 
more uniform size and shape. n has been set to 30, to provide 
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a relatively uniform distribution of the grain size, and also 
to 1 to provide less uniform grains, as observed in Fig. 1. 
This figure represents the considered Voronoi tessellations 
with average edge lengths ( l ) of 1, 2 and 3 mm, as well as 
with different degrees of uniformity by considering n = 30 
and n = 1.

For a detailed description of the modelled grain condi-
tions, Fig. 2 provides the size distribution curves for all the 
considered combinations of l and n , in which the grain diam-
eter corresponds to the diameter of ideal circular grains with 
the same area as the actual modelled grains. Both frequency 
and cumulative frequency are represented in percentage.

It is observed that those grains modelled with n = 30 
present a very narrow variation of the grain size, i.e. nearly 
uniform distribution. In contrast, those curves in Fig. 2 cor-
responding to n = 1 keep the same mean grain size as in 
the models with n = 30 but present a larger variation of the 
grain size. With this, Table 1 summarises some statistical 
values of the modelled grains, namely the mean grain diam-
eters (corresponding to the diameters of ideal circular grains 
with an equivalent area), their standard deviations, the first 
quartile (Q1), the third quartile (Q3) and the sorting coef-
ficients defined as the ratio between the first and third quar-
tiles (Q1/Q3). This latter parameter indicates that the size 
distribution is relatively uniform for n = 30 as the coefficient 
is close to 1. In contrast, as the sorting coefficient increases 
for n = 1, the size distribution of the grains is less uniform.

Regarding the definition of the constitutive models, the 
grain behaviour has been defined in this work by a linearly 

elastic isotropic model, using the parameters indicated in 
Table 2.

On the other hand, the grain boundaries or contacts have 
been defined by the Coulomb slip model with residual 
strength. This model provides a linear representation of 
joint stiffness and yield limit, and is based upon elastic stiff-
ness, frictional, cohesive and tensile strength properties, and 
dilation characteristics common to rock joints (Itasca 2010). 
This residual strength simulates the displacement-weaken-
ing of the joint by loss of frictional, cohesive and/or tensile 
strength at the onset of shear or tensile failure. That is, when 
a joint is fractured, the joint tensile strength, the joint fric-
tion angle and the joint cohesion are set to residual values. 
Table 3 gathers the used parameters (Justo et al. 2020b) for 
the Coulomb slip constitutive model and the residual val-
ues, as well as the joint normal and shear stiffnesses, which 
are zone size dependent (Itasca 2010). It should be high-
lighted that the ratio between the cohesion and the tensile 
strength values indicated in Table 3 looks quite unusual 
and would be wrong considering classical constitutive laws 
in continuum mechanics, where cohesion comprises both 
adhesion between particles and interlocking. However, since 
polyhedral Voronoi elements and only intergranular frac-
ture are being considered, the interlocking is very strong. 
Thus, the contact cohesion has been reduced to get realistic 
strength values. The tensile strength test models reported 
in Justo et al. (2020b) show only tensile failure along the 
grain boundaries, leading to a single vertical macro-fracture. 
In contrast, the uniaxial compression test models showed 
tensile fracturing, but also some shear fracturing in the 

Fig. 1   Representation of the 
Voronoi tessellations for an 
average edge length ( l ) equal to 
1, 2 and 3 mm and for n equal to 
30 and 1
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boundaries, which indicates that the parameters used lead 
to realistic failure modes.

The definition of these parameters is clarified by the 
authors in a previous work (Justo et al. 2020b). They corre-
spond to an ideal zero porosity crystalline rock that loosely 
resembles a Macael marble tested by the authors (Justo 
et al. 2017). Since the modelled grains (1–3 mm) are much 
larger than those of the Macael marble (average grain size 
of 335 µm), a detailed calibration was not considered nec-
essary and only a reasonable macroscopic response of the 
same order of magnitude as that of the marble was searched. 

Fig. 2   Size distribution curves of the modelled grains defined by an average edge length ( l ) of 1, 2 and 3 mm and by n = 30 and n = 1

Table 1   Statistical parameters 
of the modelled grains

n = 30 n = 1

l=1 mm l=2 mm l=3 mm l=1 mm l=2 mm l=3 mm

Mean grain diameter (mm) 1.109 2.213 3.187 1.094 2.198 3.183
Standard deviation (mm) 0.132 0.290 0.631 0.233 0.413 0.591
First quartile, Q1 (mm) 1.175 2.347 3.466 1.226 2.453 3.504
Third quartile, Q3 (mm) 1.058 2.167 3.165 0.959 1.913 2.895
Sorting coef. (Q1/Q3) 1.110 1.083 1.095 1.278 1.282 1.210

Table 2   Parameters for the 
linearly elastic isotropic 
constitutive model of the intact 
blocks (grains)

Parameter Value

Bulk density (kg/m3) 2715
Bulk modulus, K (GPa) 56
Shear modulus, G (GPa) 29
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Table 4 shows, for comparison purposes, the uniaxial com-
pression strength ( �c ) and tensile strength ( �u ) values of the 
Macael marble together with those obtained from numerical 
models. In particular, the results of the uniaxial compression 
test, Brazilian test and direct tensile test models with an 
average edge length ( l ) of 1, 2 and 3 mm (and n = 30) are 
included in this table. The emergent values of �

c
 are slightly 

lower than those of the Macael marble, while the emergent 
values �u of the Brazilian test models are slightly higher than 
those of the laboratory tests. No direct tensile tests were 
performed in the laboratory for the Macael marble, so the 
emergent values of �u obtained from the direct tensile test 
models cannot be directly compared. However, the tensile 
strength of the Macael marble was also characterised by the 
authors (Justo 2020) by means of four-point bending and 
three point bending tests, obtaining �u values of 17.53 MPa 
and 13.94 MPa, respectively. Thus, although the tensile 
strength values derived from the direct tensile test models 
are relatively high (possibly because of the selected contact 
tensile strength and cohesion values indicated in Table 3), 
they are still within a realistic order of magnitude.

Based on the aforementioned meshing criterion and 
constitutive models, several four-point bending tests have 
been numerically simulated. These models consist of 
180 × 30 mm size specimens under plane strain conditions, 
with variable U-shaped notch radii ( � ) of 1, 2, 3, 4, 7, 10 
and 15 mm to assess the notch effect, all of them having a 
notch length equal to half of the height (i.e., 15 mm). The 
geometry of the models is depicted in Fig. 3. As observed 
in the figure, the Voronoi tessellation has only been gen-
erated within a specified range around the notch, where 
the fracture is assumed to start. The rest of the model is 
analysed by means of the Finite Difference Method (FDM) 
using the same material constitutive model for the whole 
geometry. For the sake of simplicity, the same values of 
the bulk ( K ) and shear ( G ) moduli have been used in the 
continuum domain as for the grain-based domain. From a 
strict point of view, the elastic parameters ( K and G ) of the 
continuum domain should be the emergent properties of 
the Grain-Based Models (GBM). Since these are not ini-
tially known, the same values as those of the grain-based 
domain were used. The models were not recalculated 
with the emergent values of K  and G, because the differ-
ences were not large and it was assumed that, for isostatic 
problems as those studied in this work, their influence is 
small. Besides, different sizes have been checked for the 
DEM region, providing similar stress fields around the 
notch tip. For this reason, the Voronoi tessellation has only 
been applied within a 30 × 30 mm size region as shown in 
Fig. 3. The objective of simplifying the construction of the 
models by only introducing the Voronoi tessellation at the 
center of the specimen models was to reduce the computa-
tional cost. In this manner, the models are computationally 
efficient without a significant influence on the results.

The random arrangement of the Voronoi polygons 
(grains) produces a scatter of the results, as in reality. For 
this reason, a repetitiveness of six models has been con-
sidered for each mean grain size, degree of uniformity 
and notch radius combination, only varying the randomly 
generated Voronoi blocks.

Table 3   Parameters for the Coulomb slip constitutive model with 
residual strength of the joints (grain boundaries)

Parameter Value

Joint cohesion, jc (MPa) 24.5
Joint dilation angle, jd (º) 5
Joint friction angle, jf  (º) 35
Joint tensile strength, jt (MPa) 49.0
Joint residual cohesion, jcr (MPa) 0
Joint residual friction angle, jrf  (º) 25
Joint residual tensile strength, jrt (MPa) 0
Joint normal stiffness, jkn (GPa/mm): e=1 mm 1880
Joint shear stiffness, jks (GPa/mm): e=1 mm 938
Joint normal stiffness, jkn (GPa/mm): e=2 mm 938
Joint shear stiffness, jks (GPa/mm): e=2 mm 469
Joint normal stiffness, jkn (GPa/mm): e=3 mm 626
Joint shear stiffness, jks (GPa/mm): e=3 mm 313

Table 4   Comparison between the numerically obtained uniaxial 
compression strength ( �

c
 ) and tensile strength ( �

u
 ) values and those 

obtained in the laboratory for the Macael marble

a From Brazilian tests
b From direct tensile tests

�
c
 (MPa) �u

a (MPa) �u
b (MPa)

Macael marble 86.6 10.0 –
Numerical model with l = 1 mm 72.5 11.3 17.4
Numerical model with l = 2 mm 71.5 11.8 17.5
Numerical model with l = 3 mm 79.8 12.7 17.5

Fig. 3   Geometry of the simulated four-point bending test discrete 
numerical models (example for � = 4 mm, l = 2 mm and n = 30)
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The simulations have been executed under displace-
ment control, specifying a constant vertical velocity at the 
upper loading points (Fig. 3) sufficiently small to minimise 
shocks to the system, and zero vertical velocity condi-
tions at the supports. Thus, quasi-static calculations have 
been performed under mode I loading. Considering these 
boundary conditions, the failure load F (with force/depth 
length units) has been calculated for each of the individual 
numerical models (see the scheme in Fig. 4). Considering 
the analysed specimens as beams, the bending moment 
( M ) between the loading points is constant in a four-point 
bending configuration as depicted in Fig. 4:

where s is the span between the outer supports. In parallel, 
the horizontal stress law along the bisector of the notch can 
be equated to a pair of forces ( f  ) with a lever arm ( z ), or 
in other words, to a bending moment ( M ). This bending 
moment is related to that in Eq. (1) as follows:

Thus, the failure load ( F ) is derived from the bending 
moment generated at the bisector of the notch tip just in the 
calculation step prior to the appearance of the first crack 
(Justo et al. 2020b):

The obtained F values are collected in Table 5 for the 
different notch radii ( � ), grain sizes ( l ) and degrees of uni-
formity ( n).

These models assume that the cracks will propagate only 
along the grain boundaries. Thus, only intergranular failure 

(1)M =
F

2
⋅

s

3

(2)M =
F

2
⋅

s

3
= f ⋅ z

(3)F =
6 ⋅ f ⋅ z

s

is being considered. As a consequence, the minimum radius 
of the aforementioned notches has been limited to the grain 
size in each case ( � ≥ l ). This restriction is intended to 
avoid the possibility of a notch not having at least one grain 
boundary at the tip, which could cause the breakdown of 
the calculation model. Figure 5 shows, as an example, some 
representative numerical models for each grain size after the 
appearance of the cracks at the notch tip, once the failure 
load has been exceeded.

3.2 � Continuum Approach

The influence of the grain size cannot be directly assessed 
using FEM analyses, since the materials are modelled as a 
continuum instead of as an assemblage of blocks. As a con-
sequence, the failure criterion established for the discrete 
numerical models (crack initiation when shear or tensile 
strength of the grain contacts is reached) cannot be imposed 
in a continuum approach. However, in this work, the stress 
fields of both methods are compared, aiming to analyse the 
extent of the differences between the two types of analyses.

In this case, a finite element code called PLAXIS 2D 
(2017), has been used to model the test specimens. The 
simulated rock samples correspond to the same geometry 
as that shown in Fig. 3, including the same notch radii. 
The finite element mesh has been refined in the region 
surrounding the notches as depicted in Fig. 6, with a view 
to avoiding any possible influence of the mesh. For this 
reason, no repetitiveness of the models has been consid-
ered in this case, as the influence of the mesh is consid-
ered to be negligible.

On the other hand, a linear elastic constitutive model 
has been used to simulate the rock and, therefore, only two 
parameters are required: the Young’s modulus ( E ) and the 
Poisson’s ratio ( v ). These deformational parameters cor-
respond to the macro-scale behaviour of the rocks. Thus, 
they cannot be derived from the parameters in Table 2 that 
define the behaviour of the grains. The parameters used in 
the FEM models have been obtained from the unconfined 
compression test simulated by the authors in a previous work 
(Justo et al. 2020b) by means of DEM, considering the same 
idealised non-porous crystalline rock material with different 
grain sizes. These parameters are collected in Table 6 and 
correspond to the emergent elastic properties for each of the 
analysed grain sizes.

With regards to the boundary conditions of the FEM 
models: all the contours have been set free except for the 
supporting points and loading points. In this case, the 
simulations are not performed under displacement con-
trol. Instead, to obtain comparable stress fields to those 
of the DEM approach, the failure loads derived from the 
DEM models (Table 5) have been directly introduced in the 

Fig. 4   Scheme of the bending moment in studied rock beams and 
stress field in the bisector plane of the notch
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four-point bending test models as boundary conditions (i.e., 
as external loads).

4 � Analytical Interpretation

This research studies the fracture of U-notched rock speci-
mens. To this end, the fracture analysis is equated to a situ-
ation in a cracked component where the apparent fracture 

Table 5   Obtained failure loads 
(F) from the numerical models

Notch radius n = 30 n = 1

F (N/mm)
l =1 mm

F (N/mm)
l =2 mm

F (N/mm)
l =3 mm

F (N/mm)
l =1 mm

F (N/mm)
l =2 mm

F (N/mm)
l =3 mm

� = 1 mm 14.53 – – 15.20 – –
13.39 – – 14.77 – –
10.08 – – 11.75 – –
12.87 – – 11.66 – –
14.95 – – 15.22 – –
11.88 – – 11.99 – –

� = 2 mm 14.79 16.83 – 12.74 22.85 –
16.48 14.59 – 16.19 16.42 –
14.42 17.16 – 14.59 19.42 –
16.60 16.29 – 15.07 16.65 –
16.85 18.66 – 16.62 18.55 –
12.62 13.76 – 17.49 18.97 –

� = 3 mm 15.76 17.39 26.23 18.57 22.80 17.76
13.44 15.77 18.31 13.06 19.69 25.10
21.05 23.09 22.95 14.12 20.23 16.90
15.54 18.45 21.81 19.15 17.30 17.29
16.08 20.28 20.01 16.95 15.99 19.82
17.29 18.55 23.60 17.33 20.53 21.94

� = 4 mm 17.68 20.99 20.81 17.10 20.47 19.68
20.05 21.42 27.13 19.53 23.58 30.70
17.67 20.60 19.48 19.81 21.00 24.43
18.77 24.13 23.13 16.46 21.12 27.89
17.00 19.03 24.03 22.69 20.95 24.56
18.01 22.92 24.80 22.18 23.51 24.72

� = 7 mm 20.81 23.95 26.36 23.59 26.61 26.05
22.52 25.46 23.32 21.87 24.72 27.12
20.79 22.65 27.47 23.28 25.58 25.89
18.09 23.96 26.72 25.47 21.91 27.08
19.34 23.89 26.03 22.09 25.46 25.67
23.40 22.67 21.48 18.18 26.66 26.47

� = 10 mm 17.99 24.79 25.32 25.95 17.46 28.26
23.42 25.49 25.04 21.62 27.77 33.06
20.86 28.44 27.83 17.95 23.88 19.89
20.20 25.38 30.73 25.25 24.88 30.72
24.32 22.68 29.84 26.01 26.60 26.08
22.47 24.16 23.93 23.36 23.85 30.85

� = 15 mm 23.86 27.43 25.22 23.73 31.44 29.13
24.54 24.52 29.98 19.86 29.18 29.66
23.32 24.23 26.98 26.94 26.94 22.51
25.45 26.68 31.15 27.91 24.09 33.73
23.16 25.61 29.48 23.78 31.36 29.60
23.78 23.42 30.30 26.84 29.99 31.42
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toughness ( K
IN

 ) is considered instead of the real fracture 
toughness ( K

IC
 ). In this way, the notch effect is considered 

through K
IN

.
K
IN

 can be determined using the formulation proposed by 
Srawley and Gross (1976), for Single Edge Notched Bend 
(SENB) specimens, as those modelled in this work and 
shown in Fig. 3:

where F is the failure load of each of the simulated models 
(Table 5), h is the specimen height ( h = 30 mm) and Y  is 
a compliance non-dimensional factor that only depends on 
the geometry of the specimen and is given by the following 
expression:

with

(4)K
IN

=
F ⋅ Y

h1∕2

(5)Y =
3 ⋅

(

so − si

)

⋅ �
1∕2

0
⋅ X

2h ⋅
(

1 − �0

)3∕2

Fig. 5   Examples of formed 
cracks in DEM models for an 
average edge length ( l ) equal to 
1, 2 and 3 mm and for n equal to 
30 and 1

Fig. 6   Representation of the 
simulated four-point bending 
test finite numerical models

Table 6   Parameters for the linear elastic finite element models of the 
rock samples

l=1 mm l=2 mm l=3 mm

E (GPa) 66.83 64.84 63.95
v 0.342 0.370 0.390
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so and si represent the spans between the outer supporting 
rollers (150 mm) and the inner loading points (50 mm), 
respectively, and �0 is the relative crack length defined as the 
ratio between the initial notch length (15 mm) and the total 
height (30 mm) of the specimen ( �0 = 0.5 ). With all this, 
given the four-point bending test configuration and geometry 
depicted in Fig. 3, the Y factor is equal to 10.16.

The analytical interpretation of these numerically 
obtained results is performed using the TCD, and more 
specifically the Line Method (LM). A detailed descrip-
tion of this methodology is presented by Taylor (2007). 
The LM is a local failure criterion based on the stress law 
over a certain distance ( d ) from the notch tip. It states that 
failure occurs when the average stress over d is equal to 
the inherent strength ( �0 ) of the material, as represented 
in Fig. 7.

The distance d is related to a material characteristic 
parameter called the critical distance ( L ) which, in the case 
of rocks, is in the order of a few millimeters (e.g., Cicero 
et al. 2014). It can easily be demonstrated that d = 2L (e.g., 
Taylor 2007). Thus, the failure criterion can be written as 
follows when the LM is considered:

Based on this expression and considering the stress distri-
bution function along the bisector of the notch tip proposed 
in the past by Creager and Paris (1967), the LM of the TCD 
provides the following analytical solution for the assessment 
of the apparent fracture toughness:

This expression is used to assess the notch effect (i.e. the 
variation of K

IN
 with the notch radius) and the influence of 

(6)

X = 1.9887 −

[(

3.49 − 0.68�0 − 1.35�2

0

)

⋅ �0 ⋅

(

1 − �0

)

(

1 + �0

)2

]

− 1.32�0

(7)1

2L ∫
2L

0

�(r)dr = �0

(8)K
IN

= K
IC

√

�

4L
+ 1

the grain size and uniformity on it, using as a reference the 
numerical results derived from Eq. (4).

Fig. 7   Schematic representation of the stress law in the bisector of the 
notch and the LM criterion

Fig. 8   Variation of the apparent fracture toughness with the notch 
radius for different grain sizes ( l ) of 1 mm, 2 mm and 3 mm, for the 
particular case of n = 30

Fig. 9   Variation of the apparent fracture toughness with the notch 
radius for different grain sizes ( l ) of 1 mm, 2 mm and 3 mm, for the 
particular case of n = 1
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5 � Results

5.1 � Notch Effect

The notch effect is graphically shown in Figs. 8 and 9 docu-
menting the variation of the apparent fracture toughness 
with the notch radius for n = 30 (Fig. 8), representing a 
relatively uniform grain structure, and n = 1 (Fig. 9), for 
less uniform grain structures. Each of the dots in the graphs 
corresponds to the individual results of the apparent fracture 
toughness ( K

IN
 ) calculated with Eq. (4), while the dashed 

(Fig. 8) and solid (Fig. 9) lines stand for the best-fit curves 
according to Eq. (8), which corresponds to the LM of the 
TCD. Three different curves are depicted in both graphs, 
for grain sizes of 1 mm (A), 2 mm (B) and 3 mm (C). The 
statistical method considered to fit the curves to the data 
points is the least squares method in all the cases, leaving 
fracture toughness ( K

IC
 ) and the critical distance ( L ) as free 

variables.
In all the cases, the notch effect looks clear, since the 

apparent fracture toughness shows a continuous increment 
with the notch radius. This increment seems to lessen as the 
notch radius increases. However, the notch size after which 
the notch effect is negligible has not been captured with the 
analysed range of notches. In parallel, the notch effect is also 
supposed to be negligible below a certain notch radius as 
stated by Taylor (2017). However, this is neither observed in 
Figs. 8 and 9. The physical reason explaining this phenom-
enon is probably related to the stress concentration region 
around the notch tip. The smallest notches develop the high-
est stress concentration at the notch tip, probably affecting 
only a small number of grains, while the stresses in the case 
of the largest notches are not so concentrated just at the tip 
and are somehow distributed among more grains in the sur-
rounding of the notch tip. Consequently, if the notch radius 
is sufficiently small, differences in stress concentrations 
would probably be insignificant compared to the scatter of 
the numerical or experimental results and, in the opposite 
situation of a theoretically infinite notch radius, the notch 
concentration would be null and would behave as a section 
reduction rather than as a stress riser.

Likewise, a clear displacement of the three curves is 
directly observed when analysing both Figs. 8 and 9. Similar 
trends are observed in both cases. The curves move upwards 
as the grain size increases, which implies an increment of 

the fracture toughness. On the other hand, the curves slightly 
flatten when the grain size increases, which seems to indi-
cate that the notch effect is less significant when the grain 
size is larger.

With this, Table 7 gathers the corresponding results of 
both K

IC
 and L variables derived from the adjustment of 

Eq. (8) for each of the analysed combinations of l and n . The 
coefficient of determination ( R2 ) is also given in Table 7 to 
specify the goodness of fit of each of the curves with respect 
to the mean numerical values. It is observed that, in general 
terms, the value of the fracture toughness ( K

IC
 ) is roughly 

constant for both values of the parameter n . Thus, K
IC

 seems 
to be influenced only by the average grain size in statistical 
terms. On the other hand, the value of the critical distance 
( L ) presents a certain decrease when moving from n = 30 to 
n = 1, or in other words, it reduces when grain size is less 
uniform. These trends are consistent for the three analysed 
grain sizes with l equal to 1, 2 and 3 mm. This is easily 
observed in Fig. 10, which gathers in a single plot the best-fit 
curves of the LM of the TCD represented in Figs. 8 and 9. 
It is observed that the three curves A, B and C tend to move 
downwards and to slightly flatten for more uniform grains 

Table 7   Summary of the 
parameters derived from the 
best-fit curves (LM)

n = 30 n = 1

l=1 mm l=2 mm l=3 mm l=1 mm l=2 mm l=3 mm

KIC (MPa·m1/2) 0.776 0.974 1.203 0.792 1.017 1.173
L (mm) 1.467 2.251 3.623 1.311 2.142 2.849
Coef. of determination (R2) 0.940 0.791 0.981 0.903 0.908 0.740

Fig. 10   Comparison between the best-fit curves of the variation of 
the apparent fracture toughness with the notch radius represented in 
Figs.  8 and 9 for different grain sizes ( l ) of 1 mm, 2 mm and 3 mm, 
for both n = 30 and n = 1
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(i.e., n = 30), which gives as a result the values of K
IC

 and 
L collected in Table 7.

Similar responses have been observed in previous experi-
mental studies as those performed by Justo et al. (2017), in 
four different rocks. Figure 11 represents the case of the 
Macael marble as an example. The dots correspond to the 
individual test results while the dashed line indicates the 
best-fit curve according to Eq. (8), the same as in Figs. 8, 
9 and 10. Although it is not the purpose of this work to 
reproduce the same behaviour, both the experimental and 
the numerical results offer similar trends within a relatively 
similar order of magnitude.

Finally, comparing in Fig. 12, the values of the critical 
distances and the mean grain size, there seems to be a linear 
relation among them. This relation should be considered in 
qualitative terms, since the performed numerical simula-
tions are an idealisation of the real problem. For example, 
3D effects are neglected here, as plane strain conditions are 
being considered. Besides, only intergranular fractures are 

considered. Taylor (2017) related the critical distance of dif-
ferent materials with clearly distinguishable microstructural 
distances such as the grain size in the case of rocks. He 
reported that in most of the cases, L lies between 1 and 10 
times this distance. Although an accurate definition of the 
relation between L and the grain size still requires further 
research, this research shows that the correlation exists for 
zero porosity crystalline rocks. This relation could allow 
simplified finite element analyses to be performed for the 
fracture assessment of rocks considering the influence the 
grain size through the critical distance.

5.2 � Comparison of the Stress Fields

According to the TCD, the stresses are evaluated along the 
bisector plane of the notch tip in the case of mode I load-
ing conditions, as those analysed in this work. For this rea-
son, the stresses normal to this plane corresponding to both 
the DEM and FEM analyses are compared here. Figure 13 
gathers some representative curves for both approaches, 
including the stress laws for � = 3 mm (Fig. 13a), � = 7 mm 
(Fig. 13b) and � = 15 mm (Fig. 13c), all of them for a mean 
grain size of 1 mm and 3 mm and for the particular case 
of n = 30. In general terms, good agreement is observed 
between the solid curves corresponding to the continuum 
approach and the dotted curves corresponding to the dis-
crete approach. The illustrated DEM curves correspond to a 
particular random case and can vary in each model depend-
ing on the actual position of the grains. Besides, 20 history 
points were considered along the bisector plane to represent 
the latter DEM curves in all the cases.

If the stresses of FEM and DEM results are compared 
for r = 0 mm, in general, the maximum stress at the notch 
tip seems to be slightly higher when FEM is used, although 
the difference is practically negligible when the grain size 
is sufficiently small. Besides, the stepped appearance of the 
dotted curves softens as the grain size decreases. In fact, in 
those curves corresponding to the models with a grain size 
of 1 mm (Fig. 13a1, b1, c1), the differences between the 
DEM and FEM curves are insignificant.

The observed influence of the grain size close to the notch 
is somehow absorbed by the LM of the TCD, which evalu-
ates the stresses along a certain distance ( 2L ) from the notch 
tip instead of considering the maximum stress at the tip. 
This distance is assumed to be sufficiently small not to be 
affected by the boundary of the model. According to the 
critical distance values obtained from the numerical models 
and gathered in Table 7, this hypothesis is valid.

The consequences of the notch effect can be directly 
observed in the plots of Fig. 13. The stress concentrations 
around the notch tip are relatively higher for the smallest 
notch radii, as expected. When the notch radius is sufficiently 
large (e.g., 15 mm), the notch effect tends to vanish and the 

Fig. 11   Variation of the apparent fracture toughness with the notch 
radius of the Macael marble (Justo et al. 2017)

Fig. 12   Variation of the critical distance with the mean grain size
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Fig. 13   Comparison of the numerically obtained stress laws in the bisector of the notch tip for (a) ρ = 3 mm, (b) ρ = 7 mm and (c) ρ = 15 mm, 
both for grain sizes of 1 mm and 3 mm and for the particular case of n = 30

Fig. 14   Comparison of the 
numerically obtained DEM 
and FEM stress contours 
( �

xx
 ) around the notch tips 

for ρ = 3 mm, ρ = 7 mm and 
ρ = 15 mm, both for grain sizes 
of 1 mm and 3 mm and for the 
particular case of n = 30
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stresses approximate to those corresponding to a simple sec-
tion reduction with no appreciable stress intensification.

Finally, aiming to support the results observed in Fig. 13, 
Fig. 14 represents the horizontal stress contours near the 
notch tip considering both the FEM and the DEM models. 
These stresses correspond to the moment just prior to failure 
and, as in Fig. 13, they stand for the same representative 
cases, i.e., for � = 3 mm, � = 7 mm and � = 15 mm. All of 
them are for a mean grain size of 1 mm and 3 mm and for the 
particular case of n = 30. In consistence with Fig. 13, good 
agreement is observed between the stresses of the continuum 
and discontinuum approaches, not only along the bisector 
planes but also throughout the surroundings of the notches. 
The influence of the presence of grains on the stress contours 
is more pronounced for the largest grains (i.e., 3 mm), which 
confirms the staggered shape of the curves (see Fig. 13a2, 
b2 and c2). In contrast, for the smallest analysed grains (i.e., 
1 mm), the stress variation is appreciably smoother and very 
close to that obtained with the continuum approach.

6 � Conclusions

This work studies the influence of the grain size and its 
uniformity on the apparent fracture toughness ( K

IN
 ) of 

an idealised non-porous crystalline rock. To this end, dif-
ferent four-point bending tests with variable notch radii, 
grain sizes and degrees of uniformity have been numeri-
cally studied, using block-based numerical models based 
on DEM. The main limitation of these models is the fact 
that only intergranular fracture is considered, not account-
ing for the possible coexistence between intergranular and 
transgranular fracturing. The interpretation of the results 
is based on the use of the LM of the TCD, which analyses 
the stress fields along the bisector of the notch tip. Finally, 
these stresses have been compared with those obtained 
from a traditional continuum approach.

Based on the obtained results, the following conclu-
sions should be highlighted:

•	 The notch effect is clear for the range of analysed notch 
radii regardless of the grain size or uniformity, as the 
apparent fracture toughness increases with the notch 
radius in all the cases.

•	 The best-fit curves of K
IN

 corresponding to the LM of 
the TCD show that the fracture toughness increases 
with the grain size. Additionally, it seems that the 
notch effect is relatively softened with the grain size 
as well, as the curves slightly flatten when the grain 
size increases.

•	 The fracture toughness   does not vary with the degree 
of uniformity, if the mean grain size is the same. On 

the other hand, the critical distance slightly decreases 
when less uniform grains are analysed.

•	 There seems to be a linear relation between the critical 
distance of the rock and the grain size. However, the 
obtained relation should be understood in qualitative 
terms, as the problem studied corresponds to an ideal-
ised situation in which the 3D effect is neglected and 
only intergranular fracture is considered.

•	 DEM and FEM provide similar stress fields at the notch 
tip when the grain size is sufficiently small. The stag-
gered stress curves associated to the discrete approach 
soften as the grain size decreases. In general terms, 
good agreement between the two types of models have 
been obtained for the studied range of notch radii and 
grain sizes.

With all this, the TCD provides a suitable tool for the 
fracture assessment of rocks with notch-type defects. 
Likewise, discrete numerical approaches allow detailed 
analyses to be performed when precise information is 
required, as the influence of the grain size and its uniform-
ity for example. However, in general terms, finite element 
analyses provide accurate approximations when the global 
behaviour is studied and the influence of microstructural 
aspects (e.g., grain size) can be neglected.
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