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Abstract
This paper presents a novel, exact, semi-analytical solution for the quasi-static drained expansion of a cylindrical cavity in

soft soils with fabric anisotropy and structure. The assumed constitutive model is the S-CLAY1S model, which is a Cam

clay-type model that considers fabric anisotropy that evolves with plastic strains, structure and gradual degradation of

bonding (destructuration) due to plastic straining. The solution involves the numerical integration of a system of eight first-

order ordinary differential equations, three of them corresponding to the effective stresses in cylindrical coordinates, other

three corresponding to the components of the fabric tensor and one corresponding to the amount of bonding and another

corresponding to the specific volume. The solution is validated against finite element analyses. When destructuration is

considered, the solution provides slightly lower values of the effective radial and mean stresses near the cavity wall.

Besides, the specific volume is further reduced due to loss of bonding. Parametric analyses and discussion of the influence

of soil overconsolidation, expansion of the cavity and initial amount of bonding are presented.
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List of symbols
a Radius of the cylindrical cavity

D Elastic stiffness matrix

e Void ratio

fy Function of the yield surface

G Shear modulus

K0 Coefficient of lateral earth pressure at rest

M Slope of the critical state line

p0
Mean effective stress: p0 ¼ r0rþr0hþr0zð Þ

3

p0m Size of the yield surface

p0mi Size of the intrinsic yield surface

q Deviatoric stress: q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
r0r � r0h
� �2þ r0r � r0z

� �2þ r0h � r0z
� �2

q

q Invariant for anisotropic models. Radius of the

yield surface in p-plane
Q Invariant for anisotropic models: Q ¼ 2

3
q2

St Sensitivity

s Deviatoric stress

ur Radial displacement

a Fabric tensor

a Inclination of the yield surface

ad Deviatoric fabric tensor

D Incremental operator

K Plastic multiplier

e Strain

g Stress ratio: g = q/p0 or g ¼ rd=p0 (tensor)
j Slope of swelling line from t� ln p0 space
k Slope of the natural post-yield compression line

from t� ln p0 space
ki Slope of the intrinsic yield compression line from

t� ln p0 space
m Poisson’s ratio

n Auxiliary variable for the radial position

n ¼ ur
r ¼

r�r0
r

Bold notation is used for tensors.

Compressive stresses and strains are assumed as positive

because it is the conventional sign notation in geotechnical

engineering.
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n, nd Absolute and relative effectiveness of plastic

strains in destructuration

r; r0 Total and effective stresses

ra Internal cavity pressure

r0p Effective radial stress at the elastic/plastic

boundary

t Specific volume

v Bonding parameter

x, xd Absolute and relative effectiveness of rotational

hardening

Abbreviations
CS Critical state

CSL Critical state ratio

YS Yield surface

Subscripts/superscripts
0 Initial

d, v Deviatoric, volumetric

H, V Horizontal, vertical

i Any of the axis components r, h, z
p Plastic

r, h, z Cylindrical coordinates

1 Introduction

Cavity expansion theory has been applied widely in

geotechnical problems (e.g. [24, 25, 38]). Analytical

solutions cover both cylindrical and spherical cavities,

expansion from a null or finite initial radius, undrained or

drained conditions and different types of material consti-

tutive models (e.g. [43]). Chen and Abousleiman [7]

developed a rigorous semi-analytical solution for the

undrained expansion of a cylindrical finite cavity in a

modified Cam clay (MCC) material. The solution is rig-

orous because it is developed without any approximation

imposed on the mean and deviatoric stresses and it is semi-

analytical because it requires the numerical integration of a

system of three first-order ordinary differential equations,

corresponding to the effective stresses in cylindrical coor-

dinates. Vrakas [39] has later presented a more general

solution for the undrained cylindrical cavity expansion,

considering any type of two-invariant model belonging to

the critical state (Cam clay) family, using large strain

formulation also in the elastic zone and reducing the

numerical procedure to a single nonlinear equation.

Chen and Abousleiman [8] extended their previous

solution [7] to drained conditions. The extension is non-

trivial because the volumetric strain is no longer null and

must be considered as an additional variable in

combination with the effective stresses. The distinctive

feature of Chen and Abousleiman [8] is the ingenious

introduction of an auxiliary variable that is the ratio of the

particle displacement in the radial direction to its present

radial position (n = ur/r). Thus, the solution for drained

conditions requires adding a partial differential equation

for the specific volume (t) and using the auxiliary variable

(n) instead of the radial coordinate (r).

Chen and Abousleiman [7, 8] solutions have opened the

path for semi-analytical solutions for anisotropic critical

state plasticity models, and it is a subject currently

undergoing intense study [5, 6, 9, 10, 18–22, 34, 44]. These

anisotropic solutions add three partial differential equations

to the system, corresponding to the fabric tensor. All these

anisotropic models assume isotropic elasticity for sim-

plicity. Models that consider anisotropic elasticity (e.g.

[4, 29] are beyond the scope here. Table 1 summarizes the

main features of the solutions that follow the Chen and

Abousleiman [7, 8] approach for the cylindrical cavity

expansion problem and are directly related to the proposed

solution here. Sivasithamparam and Castro [34] showed

that the rotational hardening law must be considered to

obtain realistic results, and Chen et al. [10] discussed the

benefits of using a rotational hardening law that predicts a

Table 1 Summary of semi-analytical cavity expansion solutions

directly related to the proposed solution

Type of

constitutive

model

Model

name and

reference

Undrained

solution

Drained

solution

Isotropic

critical state

MCC Chen and

Abousleiman

[7]

Chen and

Abousleiman

[8]

Anisotropic

without

rotational

hardening

K0-AMCC

[36]

Li et al. [20] Li et al. [19]

Anisotropic

with rotational

hardening by

plastic

volumetric

strains

Dafalias

[11, 12]

Chen and Liu [9] Liu and Chen

[21]

AMCC

model

with SMP

criterion

[42]

Chen et al. [5]

Anisotropic

with rotational

hardening by

both

volumetric

and deviatoric

plastic strains

S-CLAY1

[40]

Sivasithamparam

and Castro [34]

Chen et al. [6]

Fabric

anisotropy

and structure

S-CLAY1S

[16]

Sivasithamparam

and Castro [35]

Proposed

solution
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unique critical state as done by Sivasithamparam and

Castro [34], using the SCLAY1 [40] model for the cylin-

drical cavity expansion problem.

The authors [35] have recently developed a theoretical

solution that considers fabric anisotropy and structure using

the S-CLAY1S constitutive model [16] for undrained

conditions. Using a constitutive model that considers soil

structure and gradual degradation of bonding (destruc-

turation) allows reproducing the strength loss in sensitive

clays (e.g. immediately after pile driving) [35]. This paper

presents the corresponding solution for drained conditions

using the auxiliary variable proposed by Chen and

Abousleiman [8]. Although solutions for cavity expansion

in isotropic strain-softening soils (e.g. [24]) and interpre-

tation of pressuremeter tests in sensitive soils (e.g.

[17, 30, 31]) using a post-failure strain softening had been

presented, the authors’ solutions are the first ones for ani-

sotropic, structure (inter-particle bonding) and destruc-

turation behaviour of plastic nature of clays. It is worth

noting that neglecting soil structure leads to inaccurate

predictions of clay responses under external loading (e.g.

[3, 13, 15, 27, 28]).

In this way, this paper presents a novel, exact and semi-

analytical cylindrical cavity expansion solution for drained

conditions and for natural clays, which exhibit fabric ani-

sotropy and structure. The solution is developed using the

S-CLAY1S constitutive model [16], which considers fabric

anisotropy that evolves with plastic strains, structure and

gradual degradation of bonding (destructuration) due to

plastic straining. In cavity expansion problems, real situa-

tions are commonly close to the undrained case for clays,

but depending on the rate of loading and the soil perme-

ability, the behaviour may be partially drained (e.g. [15]).

For these cases, the proposed drained solution sets the other

limit values.

The assumptions and mathematical derivation of the

semi-analytical solution are presented in Sect. 2. A system

of eight first-order ordinary differential equations that

require numerical integration is obtained. Details of the

mathematical formulation are included as separate appen-

dixes for simplicity and clarity. Validation of the semi-

analytical solution against finite element analyses, results

and parametric analyses are portrayed in Sect. 3. The

solution allows to obtain the increase in the cavity pressure

with the radial expansion of the cavity and variations of

stresses, specific volume, fabric anisotropy and amount of

bonding around the cavity (Sect. 3). Besides, the stress

paths at the cavity wall are also presented in Sect. 3.

Finally, the main conclusions are summarized in Sect. 4.

2 Mathematical formulation and semi-
analytical solution

2.1 Assumptions and basic equations

The following assumptions are made to simplify the study

of the quasi-static expansion of a cylindrical cavity of

initial radius a0 under drained conditions:

1. The axis of the cylindrical cavity is assumed as the

vertical axis, and the initial stress state is homogeneous

and consists of a horizontal effective stress and a

vertical effective stress (r0H; r
0
V).

2. The soil has an initial uniform void ratio (e0 ¼ t0 � 1).

3. The pore water pressure is always equal to its initial

hydrostatic value (u0); consequently, its value is

irrelevant for the solution. For the sake of simplicity,

its value is assumed as 0 here, and effective and total

stresses are the same (rH ¼ r0H; rV ¼ r0V).
4. The initial horizontal stress on the cavity is also rH,

and it increases up to ra, upon expanding the cavity to

a final radius a (Fig. 1).

5. Soil behaviour is reproduced using the S-CLAY1S

constitutive model [16], which assumes isotropic

elasticity.

6. The symmetry axis of the initial soil plastic cross-

anisotropy (transversely isotropic material) is the

vertical one. This ensures that the cavity keeps as a

cylinder and does not change to an elliptic shape (e.g.

[45]).

7. The problem has axial symmetry; thus, shear stresses

vanish and, due to the infinite extent of the soil, plane

strain conditions hold.

8. Cylindrical coordinates (r,h,z) are used throughout the

paper because they are principal directions for this

problem. Principal effective stresses are radial r
0

r,

tangential r
0

h and vertical r
0
z.

9. Large strain deformation is considered in the plastic

region using natural (or logarithmic) strains, but small-

strain deformation is used in the elastic region.

The last simplifying assumption has a negligible influ-

ence on the results because in the elastic region, the strains

are much smaller than those in the plastic annulus. For

example, Vrakas [39] presented a solution that considers

large strains also in the elastic zone, and the differences are

insignificant.

The equilibrium equation in the radial direction for

cylindrical coordinates, which are principal directions,

using effective stresses may be written as

or0r
or

þ r0r � r0h
r

¼ 0 ð1Þ
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where r is the current radial position of a soil particle. As

per assumption 3 above, total and effective stresses are the

same.

Under drained conditions, the Eulerian equation for a

soil particle at a specific moment with the aid of the aux-

iliary independent variable n proposed by Chen and

Abousleiman [8] can be converted to the Lagrangian form

as

n ¼ ur
r
¼ r � r0

r
ð2Þ

2.2 Constitutive model: S-CLAY1S

The S-CLAY1S model, developed by Karstunen et al. [16],

is an extension of the S-CLAY1 model [40] incorporating

the influence of bonding and destructuration. Anisotropic

plastic behaviour is included in the model through an

inclined yield surface and a rotational component of

hardening to represent the development or erasure of fabric

anisotropy during plastic straining. Soil structure is mod-

elled using intrinsic and natural yield surfaces [14]. To

make the paper self-contained, the two yield surfaces (in-

trinsic and natural) and the three hardening laws of the

S-CLAY1S model are summarized in the following.

For the simplified conditions of a triaxial stress space

and for an initial cross-anisotropy fabric with the main axis

being the vertical one (e.g. a vertically cut sample), the

yield function can be expressed as [40]

f y ¼ q� ap
0

� �2

� M2 � a2
� �

p
0

m � p
0

� �

p ð3Þ

where q is the deviatoric stress, p0 is the mean effective

stress, M is the critical state value of the stress ratio (where

g ¼ q=p0) and p0m and a define the size and inclination of

the natural yield curve, respectively (Fig. 2).

The intrinsic yield surface is of smaller size but same

orientation as the yield curve of the natural soil (Fig. 2).

The size of the intrinsic yield surface is defined by the state

variable p
0
mi which is linked to the size of the natural yield

surface by

Fig. 1 Geometry of cylindrical cavity expansion: a cylindrical cavity; b horizontal cross section

Fig. 2 The S-CLAY1S natural and intrinsic yield surfaces in triaxial

stress space and visualization of invariant q

1920 Acta Geotechnica (2022) 17:1917–1933
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p
0

m ¼ 1þ vð Þp0

mi ð4Þ

where v defines the amount of bonding.

The first hardening law is analogous to that of the MCC

and describes the change of size of the yield curve, which

is assumed to be related solely to plastic volumetric strains

(as in MCC)

dp
0

mi ¼
tp

0

mi

ki � j
depv ð5Þ

where t is the specific volume, ki is the slope of the

intrinsic post-yield compression curve in the t - ln p0

plane and j is the slope of the swelling line in the com-

pression plane.

The second hardening law (rotational hardening)

describes the change of inclination of the yield curve

produced by plastic straining, both volumetric and shear

strains.

da ¼ x
3g
4
� a

� �

hdepvi þ xd
g
3
� a

� �

depd
	

	

	

	


 �

ð6Þ

where x is a material constant that controls the absolute

effectiveness of plastic strains in rotating the yield surface

towards the target value. Similarly, xd controls the relative

effectiveness of shear and volumetric strains.

The third hardening law (destructuration) [16] describes

the degradation of bonding with plastic straining by both

volumetric and shear strains.

dv ¼ �nv depv
	

	

	

	þ nd depd
	

	

	

	

� �

ð7Þ

where n and nd are two additional model constants con-

trolling the rate of degradation (in an analogous manner to

x and xd in Eq. 6). Full details of the hardening laws and

determination of the model constants may be found in

[16, 40].

2.3 Invariants

The natural yield surface of the model (Fig. 2) can be

expressed in generalized form as

fy ¼
3

2
r0d � adp

0� �T
r0d � adp

0� �

� M2 � aTdad
� �

p0m � p0
� �

p0

ð8Þ

where

r0d ¼ r0r � p0 r0h � p0 r0z � p0
� 
T ð9Þ

and

ad ¼ ar � 1 ah � 1 az � 1½ �T ð10Þ

p0 ¼
r0r þ r0h þ r0z
� �

3
: ð11Þ

Sivasithamparam and Castro [34] proposed a new

invariant for the S-CLAY1 model (q), which simplifies the

development of mathematical solutions for cylindrical

cavity expansion in plastic anisotropic soils. The same

invariant was also used for S-CLAY1S [35]

q ¼
ffiffiffiffiffiffiffi

3

2
Q

r

ð12Þ

where

Q ¼ r0d � adp
0� �T

r0d � adp
0� �

¼ s2r þ s2h þ s2z ð13Þ

and si are the following deviatoric stresses

si ¼ r0di � adi p
0 ¼ r0i � adi þ 1

� �

p0 for i ¼ r; h; z ð14Þ

and adi are deviatoric components of the fabric tensor.

Using this invariant (q), the natural yield surface of the

S-CLAY1S model has a similar form as that of isotropic

Cam clay models

fy ¼ q2 � M2 � a2
� �

p0m � p0
� �

p0: ð15Þ

2.4 Elastoplastic stiffness matrix

The increments of elastic strains in r, h and z directions

may be obtained using the isotropic linear elastic stress–

strain relationship as

deer
deeh
deez

8

<

:

9

=

;

¼ 1

E

1 �m �m
�m 1 �m
�m �m 1

2

4

3

5 �
dr0r
dr0h
dr0z

8

<

:

9

=

;

ð16Þ

where Young’s modulus E is defined in terms of shear

modulus G and Poisson’s ratio m as

E ¼ G 1þ mð Þ: ð17Þ

G is calculated in the S-CLAY1S model using the cur-

rent stress state as

G ¼ 3 1� 2mð Þt
2 1þ mð Þj p0 ð18Þ

The components of plastic strain increments dep in r, h
and z directions are calculated using the plastic multiplier

K for the S-CLAY1S model, which considers an associated

flow rule.

depr
deph
depz

8

<

:

9

=

;

¼ K �

ofy
or0r
ofy
or0h
ofy
or0z

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

ð19Þ

The plastic multiplier can be written in a matrix form as
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K ¼ H
ofy
or0r

ofy
or0h

ofy
or0z


 � dr0r
dr0h
dr0z

8

<

:

9

=

;

ð20Þ

where

H ¼ � 1

H0 þHa þHv
ð21Þ

H0 ¼
of y

op
0
mi

op
0
mi

oepv

of y
op0 ð22Þ

Ha ¼
ofy
oad

� �T

oad

oepv

� �

� ofy
op0

� �

þ oad

oepd

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

3

ofy
or0d

� �

� ofy
or0d

� �

s

" #

ð23Þ

Hv ¼
ofy
ov

ov
oepv

ofy
op0

	

	

	

	

	

	

	

	

þ ov
oepd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

3

ofy
or0d

� �

� ofy
or0d

� �

s

" #

ð24Þ

All required derivatives and the derivation of the plastic

multiplier are presented in Appendixes 1 and 2,

respectively.

Using decomposition of the strain vector

(de ¼ dee þ dep) and Eqs. (16–24), the elastoplastic con-

stitutive equations in the form of compliance and stiffness

matrixes can be derived as

der
deh
dez

8

<

:

9

=

;

¼

1

E
þHn2r � m

E
þHnrnh � m

E
þHnrnz

� m
E
þHnhnr

1

E
þHn2h � m

E
þHnhnz

� m
E
þHnznr � m

E
þHnznh

1

E
þHn2z

2

6

6

6

6

4

3

7

7

7

7

5

�
dr

0

r

dr
0

h
dr

0

z

8

<

:

9

=

;

ð25Þ

dr
0
r

dr
0

h
dr

0

z

8

<

:

9

=

;

¼ 1

C

c11 c12 c13
c21 c22 c23
c31 c32 c33

2

4

3

5 �
der
deh
dez

8

<

:

9

=

;

ð26Þ

All terms in Eq. (26) are defined in Appendix 3.

2.5 Rotational hardening rule

As derived by Sivasithamparam and Castro [34], the

changes in the fabric components (dadr , da
d
h and dadz ) with

the radial direction are

dadi
dr

¼ UiH nr
dr

0
r

dr
þ nh

dr
0

h

dr
þ nz

dr
0
z

dr

 !

for i ¼ r; h; z

ð27Þ

where

Ui ¼ x
3 r

0

i � p0
� �

4p0
� adi

 !

ofy
op0

� �

 

þxd

r
0
i � p0

� �

3p0
� adi

 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

3

ofy
or

0d

� �

� ofy
or

0d

� �

s

!

for i ¼ r; h; z

ð28Þ

2.6 Bonding and destructuration

The degradation of bonding with plastic straining is given

by the destructuration hardening law (Eq. 7). In three

dimensions, the plastic strain increments depv and depd are

defined as

depv ¼ K
of y
op0 ð29Þ

depd ¼ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

3

ofy
or0d

� �

� ofy
or0d

� �

s

ð30Þ

Degradation of bonding along the radial direction can be

obtained by substituting Eqs. (29–30) with Eq. (20) (plastic

multiplier) into Eq. (7).

dv
dr

¼ XH nr
dr

0
r

dr
þ nh

dr
0

h

dr
þ nz

dr
0

z

dr

 !

ð31Þ

where

X ¼ vn
ofy
op0

� �

þ nd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

3

ofy
or0d

� �

� ofy
or0d

� �

s

 !

ð32Þ

2.7 Hardening rule of the intrinsic yield surface

The changes in size of the intrinsic yield surface are pro-

vided by the hardening law (Eq. 5) and can be obtained as

dp
0

mi ¼ K
t

ki � j
p

0

mi

of y
op0 ð33Þ

2.8 Solution procedure

The radial and tangential strain increments may be defined

in natural strain form as

der ¼ � o drð Þ
or

and deh ¼ � dr

r
ð34Þ
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where r and dr are position of a material particle in the

radial direction and change in the position of that particle,

respectively.

For cylindrical cavity and plane strain conditions, the

vertical strain is zero, i.e. dez ¼ 0, and the volumetric

strain

dev ¼ der þ deh ð35Þ

The auxiliary independent variable n defined in Eq. (2)

can be written in differential form as

dr

r
¼ dn

1� n
ð36Þ

By substituting Eqs. (34, 36) and dev ¼ dt
t into Eq. (35)

der ¼ � dt
t
þ dn
1� n

ð37Þ

By substituting Eq. (34, 36) into (26, 27, 31), applying

plane strain conditions, i.e. dez ¼ 0, and following the

approach used by Chen and Abousleiman [8], the change of

specific volume can be obtained from Eqs. (2, 34, 37), and

the following eight partial differential equations in terms of

the auxiliary variable n are found (three corresponding to

stress increments, one to specific volume change, three to

rotation of the yield surface and one to destructuration)

dr0r
dn

¼ � r0r � r0h
1� n� t0

t 1�nð Þ

dr0h
dn

¼ � c12
c11

r0r � r0h
1� n� t0

t 1�nð Þ
þ c11 � c12
C 1� nð Þ

" #

� c22 � c12ð Þ
C 1� nð Þ

dr0z
dn

¼ � c31
c11

r0r � r0h
1� n� t0

t 1�nð Þ
þ c11 � c12
C 1� nð Þ

" #

� c32 � c31ð Þ
C 1� nð Þ

dt
dn

¼ Ct
c11

r0r � r0h
1� n� t0

t 1�nð Þ
þ c11 � c12
C 1� nð Þ

" #

dadr
dn

¼ UrH nr
dr0r
dn

þ nh
dr0h
dn

þ nz
dr0z
dn

� �

dadh
dn

¼ UhH nr
dr0r
dn

þ nh
dr0h
dn

þ nz
dr0z
dn

� �

dadz
dn

¼ UzH nr
dr0r
dn

þ nh
dr0h
dn

þ nz
dr0z
dn

� �

dv
dn

¼ XH nr
dr0r
dn

þ nh
dr0h
dn

þ nz
dr0z
dn

� �

ð38Þ

The system of eight first-order ordinary differential

equations (Eq. 38) governs the expansion of the cylindrical

cavity in the plastic region. Boundary conditions for the

elastic/plastic boundary and the elastic solution (Appendix

4) are required for the complete mathematical formulation

of the problem. The corresponding stress state at the

elastic/plastic boundary is the same as that for the

undrained case of the S-CLAY1S model [35] because the

natural yield surface is the same (Fig. 2) and the volu-

metric strains are null in the elastic region (Appendix 4).

Thus, the specific volume and the stresses at the elas-

tic/plastic interface are

tp ¼ t0 ð39Þ

r0z;p ¼
3

1þ 2K0

p00

r0r;p ¼ r0r0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

3
q2 � r0z0 � K0r0z0

� �2
� �

r

r0h;p ¼ r0h0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

3
q2 � r0z0 � K0r0z0

� �2
� �

r

ð40Þ

where

r0r0 ¼ r0h0 ¼
3K0

1þ 2K0

p00 and r0z0 ¼
3

1þ 2K0

p00 ð41Þ

and

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q20 þ q2 � q0 � ap0
0

� �2
� �

r

ð42Þ

q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2
r0
r0 � p

0
0

� �2 þ r0
h0 � p

0
0

� �2 þ r0
z0 � p

0
0

� �2
� �

r

ð43Þ

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 � a20
� �

p0
m � p

0
0

� �

p0
q

ð44Þ

Equations (39,40) and the initial values of the amount of

bonding and the fabric tensor (anisotropic components) are

the initial conditions for solving the differential equations

in Eq. (38). The position of the elastic/plastic interface

using the auxiliary variable, np, is

np ¼
ur
r

� �

r¼rp
¼

r
0

r;p � r
0

r0

2G0

ð45Þ

As presented by Chen and Abousleiman [8], a rela-

tionship between n and r can be written in the form of the

specific volume

dr

r
¼ tn 1� nð Þ

tn 1� nð Þ2 � t0
dn ð46Þ

Integrating the above equation, the material position, r,

can be expressed as

r

a
¼ exp

Z n

na

tn 1� nð Þ
tn 1� nð Þ2 � t0

dn

 !

ð47Þ

where na is the value of the auxiliary variable at the cavity

wall and is na ¼ 1� ð aa0Þ.
Substituting Eq. (45) into (47), the position of the

elastic/plastic boundary may be obtained
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rp
a
¼ exp

Z np

na

tn 1� nð Þ
tn 1� nð Þ2 � t0

dn

 !

ð48Þ The system of equations (Eq. 38), imposing the

boundary conditions at the elastic/plastic interface can be

1. Data: initial stress state, model parameters and / 0

2. Set initial anisotropic components ( , and )

3. Set initial bonding ( = 0)
4. Set initial specific volume ( = 0)
5. Determine stresses at initial yield ( ,

′ , ,
′ and ,

′ )

6. Set initial ⁄ = 1
7. Transform 

0⁄ to auxiliary variable 

8. While ( ≤ )
Solve for given , , ,

′ , ,
′ , ,

′ and 0

Solve partial differential equation:

( , , , )=lsode("ODE" ( ,
′ , ,

′ , ,
′ , , , , , ) , { } )

lsode:
9. function = ( , { })

9.1. Obtain:
[ ′ ′ ′ ] =

9.2. Calculate:

for i=r,θ,z and
′ , , ′

′ for r,θ,z and hardening modulus ℋ

11, 12, 13, 22, 23, 33 and
Φi for i=r,θ,z  
Ω degradation of bonding

9.3. Compute:
′
⁄

′

⁄
′
⁄

⁄ ⁄ ⁄

and 

endfunction

10.
Update   ⁄ ← ⁄ + ∆ ⁄ ( ∆ ⁄ = ( ⁄ − 1)⁄ )

← + 1

Transform ⁄ to auxiliary variable 
11. Get ′ , ′ , ′ , , , , from ( , , , )

End
12. Calculate excess pore pressure ∆
13. If (OCR > 1) Calculate elastic stresses

End

Fig. 3 Solution procedure for solving ordinary differential equations of cylindrical cavity expansion in GNU Octave
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solved numerically; here, the standard differential solver

‘lsode’ available in GNU Octave v4.0 was used. Figure 3

summarizes the solution procedure.

3 Results and discussion

3.1 Validation

Validation of the proposed semi-analytical solution has

been performed by comparison of its results with finite

element simulations using the commercial code Plaxis 2D

2019 [2]. The S-CLAY1S model has been implemented as

a user-defined soil model in Plaxis, using an automatic

substepping in combination with a modified Newton–

Raphson integration scheme [32, 33].

The geometrical model (Fig. 4) is based on that used by

González et al. [15] for plane strain cylindrical cavity

expansion. The boundary condition at the outer boundary is

a fixed radial stress (equal to the initial value) and free

radial displacements. Sensitivity analyses of mesh refine-

ment and load step size were performed to confirm their

small influence.

To account for large displacements, the numerical code

uses an updated Lagrangian formulation [23] and adopts

the co-rotational rate of Kirchhoff stress (also known as

Hill stress rate). The details of the implementation can be

found in Van Langen [37].

For the sake of comparison with previous studies, Bos-

ton blue clay (BBC) is considered and its modified Cam

clay (MCC) parameters are taken from Chen and Abous-

leiman [7] and additional anisotropic parameters from [34]

(S-CLAY1) (see Table 2). Additional parameters for

intrinsic compressibility, bonding and destructuration are

those used in Sivasithamparam and Castro [35], which

were based on information available in the literature. These

parameters are just for illustrative purposes, without aiming

to reach a detailed calibration of the parameters using

experimental tests.

BBC is a moderately sensitive marine clay and, for

example, Whittle et al. [41] use a value of St = 4.5. For the

S-CLAY1S model, that implies v0 = 3.5 (Table 2). For

parametric analyses, four times this value (v0 = 14) and a

null value (v0 = 0) have also been used.

The overconsolidation ratio (OCR) of BBC varies with

depth. To provide a broad representation of different

depths, several OCR values are considered, namely 1, 1.5,

3 and 5. Their corresponding initial state parameters are

shown in Table 3 and are the same as in Sivasithamparam

and Castro [34, 35] for the sake of comparison.

The results of the finite element simulations perfectly

match those of the proposed semi-analytical solution as

may be observed in Fig. 5 for the void ratio and stresses

around the cavity as an example. In this paper, the stresses

are normalized by the initial vertical stress, either effective

or total stress since they are the same. The finite element

analyses are slightly less computationally demanding and

in slightly better agreement with the semi-analytical solu-

tion than for the undrained case [35] because the soil is not

incompressible.

3.2 Internal cavity pressure

To expand the cavity, an internal pressure (radial stress),

ra, must be applied. Its value must monotonically increase

to continue with the expansion of the cavity. When the

cavity has been notably expanded (around a/a0[ 2), ra
approaches an asymptotic limit value, sometimes called

pressuremeter limit pressure.

Figure 6 shows its variation with the normalized cavity

radius for different OCR and v0 values. As expected, the

radial stress increases with the OCR and decreases with the

initial amount of bonding (v0). As happens for undrained

conditions [35], mechanical overconsolidation and initial

bonding have similar effects on the load–displacement

curve (Fig. 6), but the influence of the initial bonding is

limited beyond values around v0[ 3.5. For drained con-

ditions, the radial stress is larger and increases more

gradually than for undrained conditions. For example, for

a/a0 = 2, the radial stress is around 90% the limit pressure

for drained conditions, while it is around 97% for

undrained conditions [35].

3.3 Stresses around the cavity

Figure 7 shows the stresses and the specific volume around

the cavity when the cavity radius is twice the initial one

(a/a0 = 2). For the sake of comparison, results for the case

without destructuration (S-CLAY1, i.e. k = 0.15 and

v0 = 0) are also included in Fig. 7. The extension of the

plastic annulus depends on the OCR. For normally con-

solidated conditions, all the material points yield just when

the cavity expansion begins, but plastic strains are negli-

gible beyond r[ 10a.

It is worth noting that the extensions of the plastic annuli

are slightly different for the cases with and without

destructuration. Their values are the same using the aux-

iliary variable (Eq. 45), but when that value is converted to

the radial coordinate (Eq. 48), they are slightly different

because the soil compressibilities, i.e. the specific volume

variations, are different.

Near the cavity, the vertical stress is usually the inter-

mediate one and it is equal to the average of the other two

(plane strain conditions):

r0z ¼ ðr0r þ r0hÞ=2 ð49Þ
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When destructuration is considered, critical state (CS) is

not usually reached for common expansions of the cavity

(e.g. a/a0 = 2) and common rates of destructuration (e.g.

n = 9 and nd = 0.2), because very large strains are neces-

sary for a complete loss of structure (fully remoulded

state).

(a)

(b)

Fig. 6 Radial stress at cavity wall during cavity expansion: a influence
of overconsolidation; b influence of initial bonding

Table 2 Soil properties, Boston blue clay

Basic parameters Anisotropy* Destructuration

j m0 k M a0 x xd v0 ki n nd

0.03 0.278 0.15 1.2 0.46 80 0.76 3.5 0.12 9 0.2

*Following Wheeler et al. [40]

Table 3 Soil state parameters, Boston blue clay

OCR r0z0(kPa) K0 e0 G0 (kPa)

1 160 0.5 1.09 3873

1.5 160 0.55 1.04 3969

3 120 0.71 1.00 3363

5 100 0.92 0.96 3223

Fig. 4 Finite element model for cylindrical cavity expansion

Fig. 5 Validation of the theoretical solution against finite element

analyses
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Normalized effective mean stresses for different OCR

values are plotted in Fig. 8. The increase in the effective

mean stress may be correlated with the improvement of the

soil, e.g. its stiffening. The area of increase in the effective

mean stress is limited to 3–4 cavity radii. This area of

influence is similar to that of the undrained case [35] and to

that measured by some authors (e.g. [1, 26]).

3.4 Specific volume

As well-known, volumetric strains are null in the elastic

region (e.g. [43]), but in the plastic region, the soil com-

presses and the initial void ratio or specific volume

decreases (Fig. 7). The loss of bonding near the cavity

increases the soil compressibility, and therefore, the

specific volume is lower near the cavity when destruc-

turation is considered (S-CLAY1S).

Figure 9 shows the decrease of the specific volume at

the cavity wall as the cavity expands for different OCRs

and v0. When the soil is overconsolidated, the specific

volume does not nearly change at the beginning of the

cavity expansion, but later, the specific volume reduction is

similar to the normally consolidated case. The loss of

bonding causes an important reduction of the specific

volume from the beginning. The specific volume tends to a

final asymptotic value that correspond to CS conditions.

The decrease of the specific volume of a point at the

cavity wall during cavity expansion is represented in a p0 �
t plane (Fig. 10) for different OCR values, namely 1, 1.5

and 5, and for the cases with and without destructuration,

i.e. S-CLAY1S (ki = 0.12 and v0 = 3.5) and S-CLAY1

(k = 0.15 and v0 = 0), respectively. The lines represent the

path from the beginning of the expansion (initial specific

volume t0) (a/a0 = 1) until a cavity expansion large enough

to reach the critical state line (CSL), namely a/a0 = 10. It is

worth noting that the initial specific volumes for the cases

using the S-CLAY1S model are the same ones as those

when the S-CLAY1 model is used and those in Siva-

sithamparam and Castro [35] for the sake of comparison.

Consequently, slightly different void ratios of the CSL for

different OCRs were obtained when using the S-CLAY1S

model. Destructuration causes a further reduction of the

specific volume and a slightly lower mean effective stress

at CS.

(a)

(b)

(c)

Fig. 7 Influence of destructuration on specific volume and stress

distributions around the cavity: a OCR = 1; b OCR = 1.5; c OCR = 5

Fig. 8 Increase in effective mean pressure around the cavity
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3.5 Stress paths

For a better understanding of the problem, it is useful to

observe the effective stress paths (ESP) followed by a point

at the cavity wall during cavity expansion. Figures 11 and

12 show the stress paths for different OCR values in p0 � q

stress plane and deviatoric stress plane (p-plane),

respectively. The stress paths illustrate the stress state of a

point at the cavity wall from the beginning of the expansion

(initial K0 state) (a/a0 = 1) until a final cavity expansion of

a/a0 = 10. In Fig. 11, the point corresponding to a/a0 = 2 is

also indicated with an open square symbol for the sake of

comparison.

In the p0 � q stress plane, if the soil is overconsolidated,

the stress paths goes up vertically until reaching the yield

surface. It is worth noting that the initial yield surface

(YS0) plotted in Fig. 11 corresponds to the triaxial plane,

while yielding is here reached for a different value of the

Lode’s angle (Fig. 12) [10]. Later, the stress path pro-

gressively approaches the CSL. The yield surface rotates

towards plain state condition and increases due to the

increase in the mean effective pressure caused by the

drained expansion of the cavity (Figs. 11 and 12).

The initial amount of bonding (v0) does not notably

change the followed stress paths (Fig. 13), but higher

values of v0 cause larger destructurations (Eq. 7), and

consequently, lower final stresses.

Figure 12 also shows the path followed by the a�p0
vector, which depicts the centre of the anisotropic yield

surface. It shows how the yield surface rotates from triaxial

compression conditions towards plane strain conditions.

Destructuration causes a reduction of effective stresses (p0),
but the influence of destructuration on the evolution of

fabric anisotropy (a) is minor, as it will be presented in the

next section.

3.6 Fabric anisotropy

The evolution of fabric anisotropy is quite similar for the

cases with and without destructuration, i.e. for the

S-CLAY1S and S-CLAY1 models, respectively (Fig. 14).

The anisotropic hardening law (Eq. 6) is the same for both

models, and the differences are mainly caused by the dif-

ferences in the specific volume.

At the cavity wall, the fabric tensor approaches a con-

stant value that may be analytically obtained as

ar ah az½ � ¼ 1þ
ffiffiffi

3
p

M=9 1�
ffiffiffi

3
p

M=9 1
� 


(a ¼ M=3), which corresponds to critical state and plane

strain conditions (refer to Sivasithamparam and Castro [34]

for further details). Please note that this value is the same

for both drained and undrained conditions and for the S-

CLAY1 and S-CLAY1S models. When destructuration is

considered, large strains are necessary to reach CS (i.e., full

loss of bonding). For example, in Fig. 14 (a=a0 ¼ 2), a is

close to M=3, but not exactly M=3 yet.

Fig. 10 Specific volume variations with effective mean pressure at

cavity wall until a/a0 = 10

(a)

(b)

Fig. 9 Specific volume at cavity wall during cavity expansion:

a influence of overconsolidation; b influence of initial bonding
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(a)

(b)

(c)
Fig. 12 Stress paths at cavity wall in p-plane until a/a0 = 10:

a OCR = 1; b OCR = 1.5; c OCR = 5

(a)

(b)

(c)

Fig. 11 p0-q stress paths at cavity wall until a/a0 = 10: a OCR = 1;

b OCR = 1.5; c OCR = 5
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3.7 Structure and amount of bonding

Cavity expansion usually generates plastic strains, which in

turn cause a loss of bonding of the structured clay (Fig. 15)

as per the assumed destructuration hardening law (Eq. 7).

The loss of bonding (destructuration) is proportional to the

current bonding parameter (Eq. 7). Consequently, the loss

of bonding may be normalized by the initial amount of

bonding in Fig. 15.

It may be observed in Fig. 15 that the loss of bonding at

the cavity wall is nearly independent of OCR, and only the

extension of the plastic zone and, consequently, the

extension of the zone where the amount of bonding

decreases is influenced by OCR. Figure 15 corresponds to

the case with a=a0 ¼ 2, but larger radial expansions of the

cavity generate larger soil distortions and larger destruc-

turation of the soil, both in terms of extension and amount

of destructuration. For example, for a=a0 ¼ 10, full loss of

bonding is reached at the cavity wall (Fig. 9).

4 Conclusions

A novel, exact and semi-analytical cylindrical cavity

expansion solution for natural clays has been rigorously

developed using the S-CLAY1S constitutive model, which

(a)

(b)

(c)

Fig. 14 Changes in fabric anisotropy: a OCR = 1; b OCR = 1.5;

c OCR = 5

(a)

(b)

Fig. 13 Influence of initial bonding on stress paths (until a/a0 = 10). a
p0–q plane; b p-plane
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is a Cam clay type of model that considers fabric aniso-

tropy that evolves with plastic strains, structure and gradual

degradation of bonding (destructuration) due to plastic

straining. The solution involves the numerical integration

of a system of eight first-order ordinary differential equa-

tions, three of them corresponding to the effective stresses

in cylindrical coordinates, other three corresponding to the

components of the fabric tensor and one corresponding to

the amount of bonding and another for the specific volume.

The semi-analytical solution has been developed using

the auxiliary variable introduced by Chen and Abouislei-

man 8, and the solution has been validated against finite

element analyses, using Boston blue clay as the reference

natural clay.

When destructuration is considered, i.e. using the

S-CLAY1S model, the solution provides lower values of

the effective radial and mean stresses near the cavity wall

than those obtained when destructuration is not considered

(S-CLAY1). Besides, the specific volume is further

reduced due to loss of bonding.

Evolution of fabric anisotropy is similar with both

S-CLAY1 and S-CLAY1S soil models. The slight differ-

ences are caused by the different soil compressibilities. The

initial vertical cross-anisotropy caused by the soil deposition

changes towards a radial anisotropy after cavity expansion.

Analytical values are provided for the fabric anisotropy at

the cavity wall for large cavity expansions, i.e. at CS. Those

analytical values are the same for drained and undrained

conditions and for both S-CLAY1 and S-CLAY1S soil

models.

For common values, the soil near the cavity does not

reach CS, i.e. full remoulding and a constant stress state.

The loss of bonding extends along the plastic annulus

surrounding the cavity (larger for larger OCR and imposed

radial displacements), being the largest at the cavity wall

and progressively decreasing until a null loss of bonding in

the elastic zone.
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Appendix 1: Derivatives

The partial derivatives used in the analytical solution are

ofy

or0
i

¼
p0 M2 � a2 � g2
� �

3
þ 3si � sra

d
r � sha

d
h � sza

d
z

� �

for i ¼ r; h; z

where

g ¼ q

p0

q ¼
ffiffiffiffiffiffiffi

3

2
Q

r

and

ofy

op
0
mi

¼ �p0 M2 � a2
� �

1þ vð Þ

op0mi
oepv

¼ tp0

ki � jð Þ 1þ vð Þ M2 � a2ð Þ M2 � a2 þ g2
� �

ofy
op0

¼ p0 M2 � a2 � g2
� �

� 3 sra
d
r þ sha

d
h þ sza

d
z

� �

ofy

oadi
¼ �3sip

0 þ 3adi
q2

M2 � a2
for i ¼ r; h; z
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0d
i

¼ 3si for i ¼ r; h; z
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oepv

¼ x
3 r

0
i � p0

� �

4p0
� adi

 !
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¼ xxd
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� �

3p0
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� �
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Fig. 15 Loss of bonding caused by cavity expansion
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Appendix 2: Derivation of the plastic
multiplier

The consistency condition ( _fy ¼ 0) is developed as:

_fy ¼
ofy
or0i

dr0i þ
ofy
op0mi

dp0mi þ
ofy
oad

dad þ
ofy
ov

dv ¼ 0

for i ¼ r; h; z

and in terms of plastic strains, it is:

_fy ¼
ofy

or0
i

dr
0

i þ
ofy
op0

m

op
0
m

oepv
depv þ

ofy
oad

oad

oepv
depv þ

ofy
oad

oad

oepd
depd
	

	

	

	

þ ofy
ov

ov
oepv

depv þ
ofy
ov

ov
oepd

depd
	

	

	

	 ¼ 0 for i ¼ r; h; z

Thus, the plastic multiplier is

Appendix 3: Elastoplastic solution

c11 ¼
1

E2
1� m2 þ EHn2h þ 2EmHnhnz þ EHn2z
� �

c12 ¼ c21 ¼
1

E2
�EH nh þ mnzð Þ½

þm 1þ m� EHnhnz þ EHn2z
� �


c13 ¼ c31 ¼
1

E2
�EHnr mnh þ nzð Þ½

þm 1þ m� EHn2h þ EHnhnz
� �


c22 ¼
1

E2
1� m2 þ EHn2r þ 2EmHnrnz þ EHn2z
� �

c23 ¼ c32 ¼
1

E2
mþ m2 þ EHmn2r � EHnhnz
�

�EHmnr nh þ nzð Þ�

c33 ¼
1

E2
1� m2 þ EHn2r þ 2EmHnrnh þ EHn2h
� �

C ¼ � 1þ m
E3

�1þ mþ 2m2ð Þ þ EH �1þ mð Þn2r þ EH �1þ mð Þn2h
�2EHmnhnz � EHn2z þ EHmn2z � 2EHmnr nh þ nzð Þ

" #

where

ni ¼
ofy
or0i

for i ¼ r; h; z

Appendix 4: Elastic solution

The solution for the elastic stresses (r0r, r0h, r0z) (total

and effective stresses are the same here) and the radial

displacement (ur) may be found, for example, in Yu

[43]

r0r ¼ r0H þ r0r;p � r0H

� � rp
r

� �2

ð50Þ

r0h ¼ r0H þ r0r;p � r0H

� � rp
r

� �2

ð51Þ

r0z ¼ r0V ð52Þ

ur ¼
r0r;p � r0H

2G0

r2p
r

ð53Þ

where r0r;p is the radial stress at the elastic/plastic boundary

(Eq. 40) and r0H and r0V are the horizontal and vertical

stresses, respectively.
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