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Abstract

This paper proposes that elastic potentials, which may be rigorously formulated using the

negative Gibbs free energy or the complementary strain energy density, may be used as the

yield surface of elasto-plastic constitutive models. Thus, the yield surface may be assumed

in some materials as an elastic potential surface for a specific level of critical complementary

strain energy density. Traditional approaches, such as the total strain energy criterion, only

consider second order terms, i.e., the elastic potential is centred at the origin of the current

stress state. Here, first order terms are considered, and consequently, the elastic potential

may be translated, which allows to reproduce the desired level of tension-compression

asymmetry. The proposed approach only adds two additional parameters, e.g., uniaxial

compressive and tensile yield limits, to the elastic ones. For linear elasticity, the proposed

approach provides elliptical yield surfaces and shows a correlation between the shape of

the ellipse and the Poisson’s ratio, which agree with published experimental data for soils

and metallic glasses. This elliptical yield surface also fits well experimental values of amor-

phous polymers and some rocks. Besides, the proposed approach automatically considers

the influence of the intermediate stress. For non-linear elasticity, a wider range of elastic

potentials, i.e., yield surfaces, are possible, such as distorted ellipsoids. For the case of

incompressible non-linear materials, the yield surfaces are between von Mises and Tresca

ones.

1. Introduction

Although the concepts of work and energy are essential in continuum solid mechanics, they

are not so commonly or easily integrated in yield criteria, which limit elastic and plastic states.

Notable attempts, such as the total strain energy criterion [1, 2], are not currently used. In the

related field of fracture mechanics, energy is generally accepted as a criterion for crack initia-

tion; in fact, its origin is due to Griffith [3], who originally applied the first law of thermody-

namics to solve the failure problem of a cracked glass and proposed a critical energy criterion.

Nowadays, the Theory of Critical Distances (e.g., [4]) allows to apply stress-based criteria,

avoiding the singularity of stresses at the crack front, and, on the other hand, the average strain

energy density criterion [5] is another successful method for fracture assessment. Fracture
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mechanics is one of the fields that the author has worked in and motives this work [6, 7], and

the other is constitutive modelling of soft soils using elasto-plastic models [8, 9].

Energy concepts are also helpful in providing additional techniques to solve elasticity prob-

lems (e.g., [10]). Also, a restrictive form of elasticity that is usually called Green elasticity or

hyperelasticity (e.g., [11]) requires the existence of strain energy potential functions (Fig 1):

sij ¼
@U0

@εij
and εij ¼

@Uc0

@sij
ð1Þ

Cauchy stresses and small strains are considered in this paper.

Hyperelastic formulations guarantee that the first law of thermodynamics is satisfied. For

isothermal conditions, the strain energy per unit volume, U0, also called strain energy density,

and the complementary strain energy per unit volume, Uc0, are equivalent to the Helmholtz

free energy and Gibbs free energy with negative sign, respectively (e.g., [12]).

Fig 1. Strain energy for uniaxial stress.

https://doi.org/10.1371/journal.pone.0275968.g001
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The search for more accurate yield surfaces has led to the development of complex surfaces

with an increasing number of fitting parameters. Besides, the yield criteria are material-spe-

cific. In rocks, for example, some recent advanced models (e.g., [13]) require calibration of fit-

ting functions, while the empirical Hoek-Brown [14] criterion is still the most popular for

rocks due to its simplicity. In this manner, yield criteria should preferably be based on solid

theoretical principles, cover an ample range of materials and have a few parameters that are

easily calibrated, e.g., the uniaxial tension and compressive yield limits (e.g., [15]).

This paper tries to open a path for theoretically based yield surfaces using elastic potentials,

which may be rigorously formulated using the negative Gibbs free energy or the complemen-

tary strain energy density (e.g., [16]). Thus, the yield surface may be assumed in some materials

as an elastic potential surface for a specific level of critical complementary strain energy den-

sity. Here, rate-independent continuous materials under isothermal conditions are considered.

Contrary to the total strain energy criterion, the elastic potential is not necessary centred at the

origin of the current stress state because first order terms are also considered here, and conse-

quently, the elastic potential may be translated. The proposed approach only adds two addi-

tional parameters, e.g., uniaxial compressive and tensile yield limits, to the elastic ones. This

allows to correlate, for example, the shape of the yield surface and the Poisson’s ratio, which

controls the shape of the elastic potential.

The basis and capabilities of the proposed approach are presented and some of its main fea-

tures are validated using data available in the literature. In this manner, Section 2 presents the

case of linear isotropic materials, both incompressible and compressible materials, where elas-

tic potentials lead to von Mises and elliptical yield surfaces, respectively. Sections 3, 4, 5 and 6

present application to soils, rocks, metallic glasses and polymers, respectively. Section 7 further

examines non-linear isotropic elasticity, which provides distorted elliptical yield surfaces and,

for the case of an incompressible non-linear material, could lead to Tresca criterion. Finally,

some conclusions are drawn.

2. Linear isotropic elasticity

2.1 Elastic potential

Linear elasticity may be easily formulated within the hyperelastic framework (e.g., [10]); it is

enough to assume that the elastic potential is a quadratic form:

Uc0 ¼ U0 ¼ as2

i þ bsisj i; j; k ¼ 1; 2; 3 ð2Þ

Here, contracted notation is used for the sake of brevity and elastic potentials are presented

in terms of unordered principal stresses, σi, for the sake of visualization in the principal stress

space. As the material is isotropic, the behaviour for each principal direction should be identi-

cal. It is quickly demonstrated that:

@2Uc0

@si
2
¼ 2a ¼

1

E
and

@2Uc0

@si@sj
¼ b ¼ �

n

E
ð3Þ

Thus, using the more common elastic parameters of Young’s modulus (E) and Poisson’s

ratio (ν), the elastic potential for linear elasticity is:

Uc0 ¼ U0 ¼
1

2E
s2

i � 2nsisj

� �
ð4Þ

The shape of the elastic potential is an ellipsoid in the principal stress space and an ellipse

using the octahedral normal and shear stresses (Fig 2). For the particular case of an
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incompressible material (ν = 0.5), the elastic potential degenerates into a cylinder (Von Mises);

for the case of ν = 0, it is a sphere, and for the strange case of ν = −1, it degenerates into two pla-

nar surfaces of maximum mean stress. The positive definite property of the strain energy

(Uc0�0) gives the limit values of the Poisson’s ratio (−1�ν�1/2). From a geometrical point of

view, this means that the elastic potentials should be convex surfaces (e.g., [17]).

Using Eqs (1) and (4), it may be shown that ν controls the strain path (shape of the elastic

potential), while 1/2E acts like a kind of elastic multiplier:

εe
ij ¼

@Uc0

@sij
¼

1

2E
@ð2EUc0Þ

@sij
ð5Þ

2.2 Yield surface

The proposed approach here assumes that the yield surface should correspond to an elastic

potential surface for a critical value of the complementary strain energy density (Uc0 = Uc0,y).

The subscript “y” is used here to denote the critical specific value of the strain energy that lim-

its the elastic domain (yield surface). For linear elasticity, U0 and Uc0 are the same and it is not

necessary to distinguish. However, the critical value should be defined in terms of Uc0 and not

U0 because it is the one that constitutes a local minimum according to the principle of mini-

mum complementary energy (e.g., [10]).

Uc0;y ¼ U0;y ¼
1

2E
s2

i � 2nsisj

� �
ð6Þ

This implies a yield surface that is an ellipsoid in the principal stress space. For the particu-

lar case of an incompressible material (ν = 0.5), the yield surface is the von Mises cylinder (Fig

2). In this manner, the elastic potential is proposed here to be used both to establish the stress-

strain relationship (Eq 4) and to define the yield surface (Eq 6).

Fig 2. Linear elastic potentials for different Poisson’s ratios in octahedral stress plot.

https://doi.org/10.1371/journal.pone.0275968.g002

PLOS ONE Elastic potentials as yield surfaces for isotropic materials

PLOS ONE | https://doi.org/10.1371/journal.pone.0275968 October 26, 2022 4 / 18

https://doi.org/10.1371/journal.pone.0275968.g002
https://doi.org/10.1371/journal.pone.0275968


2.3 Tension-compression yield asymmetry

Most materials show a tension-compression yield (and strength) asymmetry, i.e., the yield

stress at compression is usually higher than that at tension. In Eq (6), no distinction between

compressive and tensile stresses was made because the predicted behaviour is symmetric at

tension and compression. Besides, the quadratic form proposed in Eq (2) for linear elasticity is

not fully general because the linear term in stresses and the constant term, which are irrelevant

for the linear elastic stress-strain behaviour, are missing. If those terms are added to Eq (2), the

following general form of the complementary strain energy density is obtained:

Uc0 ¼ U0 ¼ as2

i þ bsisj þ csi þ d ð7Þ

Introducing the linear and constant terms implies that the current (initial) state does not

necessary correspond to a zero-stress and zero-strain state. This seems reasonable because the

material may have previously suffered whatever strains and stresses and, from a practical point

of view, only requires an incremental calculation of the elastic deformations from the current

(initial) state.

In Eq (7), the strain energy density has units of energy per volume, i.e., pressure. Thus, coef-

ficients a and b have units of the inverse of pressure (Eq 3), c is dimensionless and d has units

of pressure and it may be combined with the strain energy density for the sake of simplicity.

Hence, Eq (7) may be simplified by reorganizing the parameters as follows:

s2

i þ
b
a
sisj þ

c
a
si þ

d � Uc0

a
¼ 0 ð8Þ

where b/a = −2ν (Eq 3). As for the Poisson’s ratio, the values of the other parameters have cer-

tain limits to ensure that Uc0�0.

The yield surface may be obtained by imposing a limit value of the complementary strain

energy density, Uc0,y in Eq (8). Once the Poisson’s ratio is determined, the two remaining

parameters may be obtained from the yield stresses for two different stress paths. For example,

using the uniaxial tensile and compressive yield stresses (−σt and σc), the yield surface is

s2

i � 2nsisj � ðsc � stÞsi � scst ¼ 0 ð9Þ

or using the hydrostatic tensile and compressive yield stresses (−pt and pc), the yield surface is

s2

i � 2nsisj � ð1 � 2nÞðpc � ptÞsi � 3ð1 � 2nÞpcpt ¼ 0 ð10Þ

Thus, the yield surface has 3 parameters (e.g., ν, σc and σt, Eq 9). Please, note that compres-

sive stresses are assumed as positive and the parameters σt and pt are defined as positive (abso-

lute) values.

The third term in Eqs (7–10) causes a translation of the elastic potential, i.e., the yield sur-

face, which may be interpreted as a shifted origin or an initial hydrostatic stress state, σ0, so

that the elastic potential ellipsoid (Fig 2) is shifted and its origin is at σ0. Please, note that σ0 is

not an “apparent” or measurable initial stress and may be considered simply as a broad ideali-

zation of internal forces, stress history, atmospheric pressure. . . Using σ0, the elastic potential

(Eq 7) or the yield surface (Uc0,y) may be alternatively expressed as:

Uc0 ¼ U0 ¼
1

2E
ððsi � s0Þ

2
� 2nðsi � s0Þðsj � s0ÞÞ ð11Þ
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The relationship between σ0 and coefficients c and d is given by Eqs (7) and (11).

c ¼ �
1 � 2n

E
s0 and d ¼

3ð1 � 2nÞ

2E
s2

0
ð12Þ

Using Eqs (9–11), the initial or shifting stress (σ0) may be expressed as a function of the

yield stresses

s0 ¼
sc � st

2ð1 � 2nÞ
ð13Þ

s0 ¼
pc � pt

2
ð14Þ

3. Application of the linear case to soils

Soil response is clearly non-linear, but the application of the linear formulation (Section 2)

gives a first approximation, as will be shown. As commonly done for soils, compressive stresses

are assumed to be positive and the stress invariants p and q are used:

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
½ðs1 � s2Þ

2
þ ðs2 � s3Þ

2
þ ðs3 � s1Þ

2
�

r

; p ¼
s1 þ s2 þ s3

3
ð15Þ

Thus, using those stress invariants (p and q) and K and G, the yield surface based on the

elastic potential (Eq 6) may be expressed as

Uc0;y ¼
q2

6G
þ

p2

2K
ð16Þ

It is necessary to apply the translation to account for the tension-compression asymmetry

(Eq 11). Besides, in the case of soils, tensile stresses are usually null (pt�0) and the hydrostatic

compressive yielding stress (pc) is usually called the mean preconsolidation pressure. Hence,

the translation given by Eq (14) is pc/2 and Eq (16) becomes

Uc0;y ¼
q2

6G
þ
ðp � pc=2Þ

2

2K
ð17Þ

The shape of the elastic potential and yield surface given by Eq (17) is completely analogous

to the yield surface and plastic potential of the Modified Cam Clay (MCC) model [18]

f ¼ g ¼ q2 þM2pðp � pcÞ ¼ 0 ð18Þ

where M is the stress ratio at critical state and may be correlated with the critical state friction

angle for triaxial compression (σ2 = σ3, ordered principal stresses) as follows

sin�cr ¼
3M

6þM
ð19Þ

Thus, the analogy between the proposed yield surface (Eq 17) and that of the MCC model

(Eq 18) gives the following equivalences:

M2 ¼
3G
K
¼

9ð1 � 2nÞ

2ð1þ nÞ
ð20Þ

p2

c ¼ 8KUc0;y ð21Þ
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Eq (20) implies a direct relationship between the Poisson’s ratio (an elastic parameter of the

soil) and the stress ratio at critical state (a plastic and failure parameter of the soil). Interest-

ingly, neither of those two parameters depend on the confining pressure. The relationship is

plotted in Fig 3 and generally agrees with published values (S1 Appendix). The published val-

ues correspond to parameters for specific constitutive models calibrated from laboratory

experiments, mainly drained triaxial compression tests. Some scatter in the data may arise

from soil anisotropy, soil nonlinearity and Poisson’s ratio determination, calibration or spe-

cific meaning within the used constitutive model. On the other hand, Federico and Elia [19]

explored several empirical correlations between the Poisson’s ratio and the friction angle of

soils. For comparison with experimental data, they interpreted values provided by Wroth [20].

These data are also included in Fig 3, showing a good agreement with the proposed

relationship.

4. Application to rocks

The proposed yield surface may also be applied to some rocks (Fig 4). Since most rocks behave

as quasi-brittle materials, the yield surface becomes a failure envelope. The experimental data

in Fig 4 correspond to Solnhofen limestone (after Mogi [21]). The main capabilities of the

yield surface (Eq 9) are:

• It is able to reproduce different compression/tension strength asymmetry ratios. In fact, the

ratio may directly be an input value. In rocks, which are natural materials, this is particularly

Fig 3. Relationship between Poisson’s ratio and critical state friction angle for soils.

https://doi.org/10.1371/journal.pone.0275968.g003
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useful because the uniaxial compression/tension strength ratio is usually known and it varies

in the range 5–40.

• It is able to automatically consider the influence of the intermediate stress (σ2) in a logical

and natural manner. Fig 4 shows experimental results of true triaxial tests [21] and the influ-

ence of σ2 is properly captured by the model.

• The shape of the failure surface (i.e., elliptical, Eq 9) is similar to a parabolic curve in the area

of interest (please, refer to the black solid line, σ2 = σ3, in Fig 4). Due to the large compres-

sion/tension strength asymmetry ratio, experimental values are only available for relatively

low confining stresses (area of interest). Besides, the most common failure criterion for

rocks is parabolic and empirical [14].

For rock types other than Solnhofen limestone, the proposed linear model (Eq 9) usually

underestimates the influence of the confining stress. Non-linear models within the proposed

framework (Section 7) could be used to better reproduce the influence of the confining stress.

5. Application to metallic glasses

Metallic glasses are macroscopically isotropic, exhibit nearly zero tensile ductility and very lim-

ited compressive plasticity, and cannot be work-hardened. Thus, the yield surface may be

Fig 4. Elastic potentials as yield surfaces for Solnhofen limestone. Lines: Eq 9. Symbols: experimental data after Mogi [21].

Compressive stresses positive.

https://doi.org/10.1371/journal.pone.0275968.g004
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assumed to be the failure surface, as previously done for rocks (Section 4). Here, the data gath-

ered by Liu et al. [22] are reinterpreted within the proposed framework for linear elastic isotro-

pic materials (Section 2).

For the sake of comparison with Liu et al. [22], the yield surface (Eq 11) is represented as a

shifted ellipse in the Mohr’s diagram (normal and shear stresses on the failure plane (σ, τ)):

t

ty

 !2

þ
s � s0

sy

 !2

¼ 1 ð22Þ

where σ0 is the initial (or shifting) stress and τy and σy are the vertical and horizontal semi-axes

of the ellipse, respectively. Their ratio is the parameter that controls the shape of the ellipse, α
= τy/σy, and may be related to the Poisson’s ratio, ν. For the sake of consistency with other

parts of this paper, compressive stresses are assumed to be positive.

From Eq (11), using the Mohr’s circle and assuming triaxial (σ2 = σ3) or plane strain (σ2 = ν
(σ1+σ3)) conditions, the following relationships between α and ν may be found:

a2 ¼
1 � 2n

2
Triaxial ð23Þ

a2 ¼
1 � 2n

2ð1 � nÞ
Plane strain ð24Þ

Fig 5 shows the relationship between α and ν. The correlation is analogous to that shown in

Fig 3 for soils. Although some uncertainties arise in the comparison because the stress triaxial-

ity of the data is not clear and experimental α values are influenced by their calculation process,

the correlation between the shape of the yield surface and the Poisson’s ratio is clear.

Similarly to Eq (13), the shifting stress σ0 in Eq (22) may be determined based on the uniax-

ial compression and tensile strengths (σc and −σt, respectively):

s0 ¼
sc � st

4a2
ð25Þ

As an example of the matching properties of the proposed yield surface (Eq 22), the experi-

mental data by Qu et al. [23] are fitted in Fig 6. The fitting is based on the tensile and compres-

sive strengths (σc = 1.84 GPa and σt = 1.66 GPa) and the α value given by Qu et al. [23] (α =

0.41), which is in the range provided by triaxial (Eq 23, α = 0.36) and plane strain (Eq 24, α =

0.45) conditions using the reported value [22] of the Poisson’s ratio (ν = 0.37).

6. Application to amorphous polymers

Synthetic polymers are highly popular nowadays and their mechanical behavior is a subject

under intense study. Raghava et al. [24] presented an interesting study on the macroscopic

yield behavior of amorphous synthetic polymers. Their experimental results on polycarbonate

(PC) and polyvinyl chloride (PVC) are compared with the proposed linear model (Eq 9) in Fig

7. The results are normalized by the uniaxial tensile yield stress (σt). Raghava et al. [24] mea-

sured Poisson’s ratios of ν = 0.42 and 0.38 and yield asymmetry ratios of σc/σt = 1.2 and 1.33

for PC and PVC, respectively.

The agreement between the experimental data and the proposed yield surface in Fig 7 is

good and the slight differences between PC and PVC are also captured. To populate Fig 7 in

the compressive side, the experimental data by Whitney and Andrews [25] on Polystyrene

(PS) are also included. Here, the goal is just to envisage some of the potential capabilities of the
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Fig 6. Fitted yield surface of a metallic glass tested by Qu et al. [23].

https://doi.org/10.1371/journal.pone.0275968.g006

Fig 5. Relationship between α and ν for metallic glasses.

https://doi.org/10.1371/journal.pone.0275968.g005
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proposed framework, but further and more detailed validations are required in polymers and

other materials.

7. Non-linear isotropic elasticity

7.1 A general example

Some materials, such as granular materials, show a non-linear response (Fig 1), even for the

elastic range. In these stress-dependent materials, the stiffness is assumed to vary with the

stress state.

For isotropic materials, the complementary strain energy density may be expressed just as a

function of stress invariants. The principal stresses will be here used for visualization of the

elastic potential. Many different types of non-linear elasticity may be formulated within the

hyperelastic framework (e.g., [12, 26]); here, for demonstration, the following complementary

strain energy density function is assumed as an example:

Uc0 ¼ as2n
i þ bsn

i s
n
j þ csi þ d i; j; k ¼ 1; 2; 3 ð26Þ

where n is a material parameter that controls the material non-linearity. This formulation has

the advantage that the stiffness is stress-dependent, not just mean pressure-dependent, and it

may be reduced to the linear case (Eq 7) by assuming n = 1. Besides, the stiffness roughly

Fig 7. Fitted yield surfaces of amorphous polymers tested by Raghava et al. [24]. Polycarbonate (PC) (σc/σt = 1.2; ν
= 0.42) [24]; Polyvinyl Chloride (PVC) (σc/σt = 1.33; ν = 0.38) [24]; Polystyrene (PS) [25].

https://doi.org/10.1371/journal.pone.0275968.g007
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follows a power law (approximately Ei / s
2ð1� nÞ
i ). Thus, the common range is between n = 1

(constant modulus) and n = 0.5 (roughly linear stress-dependency of the stiffness). It is worth

noting that non-linear hyperelastic models always introduce a “stress-induced” anisotropy

(e.g., [27]). The analysis of the non-linear elastic behaviour of this hyperelastic model is

detailed in S2 Appendix.

It is convenient to introduce two mathematical tweaks in Eq (26). Firstly, negative values of

the stress are not possible in Eq (26) when n6¼1. Introducing a “back” stress, σb, (pressure) is

useful to avoid negative values. Hence, positive “model” stress values, σ�, are:

s� ¼ sþ sb ð27Þ

This type of translation of the stress axes is quite common, for example, with the atmo-

spheric pressure.

Secondly, it is useful to introduce a reference stress (pressure), s�ref , so that the dimensions

of constants a and b do not depend on n and may be expressed as a function of a reference

Young’s modulus and a reference Poisson’s ratio, Eref and νref, for that reference stress.

s�ref may be arbitrarily chosen, but σb is a fitting parameter that determines the stress for

which the stiffness is null. Thus, Eq (26) may be expressed as:

Uc0 ¼
s�2ref

Eref

1

2nð2n � 1Þ

s�i
s�ref

 !2n

� nref
s�2ref

Eref

1

n2

s�i
s�ref

 !n
s�j

s�ref

 !n

þ c
s�i
s�ref
þ d ð28Þ

Similarly to the linear elastic case, the yield surface may be defined as the elastic potential

(Eq 28) for a limit value of the complementary strain energy density (Uc0,y). Consequently,

once the non-linear elastic constants (Eref, νref, n, σb) have been determined, the additional two

constants of the yield surface (c, Uc0,y−d) may be obtained from the yield stresses for two differ-

ent stress paths, for example, the uniaxial or hydrostatic yield stresses at tension and

compression.

For the non-linear case, the shape of the elastic potentials (i.e., yield surfaces) in the princi-

pal stress space are distorted ellipsoids (Figs 8–11). In Figs 8–11, simple values have been cho-

sen for the constants, namely pt = 0, σb = 0.1pc, νref = 0.3 and Eref ¼ s
�
ref = 1 (arbitrary units).

The non-linear elastic potentials reflect the asymmetries caused by the non-linear elastic

behaviour, such as larger elastic regions for higher compressive stresses. This kind of distorted

elliptical yield surfaces have experimentally been measured, for example, for clays (e.g., [28]).

For a detailed validation of a particular model within the proposed approach, a specific labora-

tory campaign is required.

In the deviatoric plane (Fig 11), the stress-dependency (non-linearity) distorts the circular

section for linear elastic materials (n = 1) towards rounded triangles, similar to Lade-Duncan

[29] or Matsuoka-Nakai [30] surfaces, which in turn may be viewed as a kind of rounded

Mohr-Coulomb.

7.2 Incompressible non-linear isotropic materials

A simple way of formulating a non-linear incompressible hyperelastic model is by using just

the deviatoric component of the complementary strain energy density:

Uc0 ¼ Ud ¼
1

12Gref

s1 � s2

sref

 !2n

þ
s2 � s3

sref

 !2n

þ
s1 � s3

sref

 !2n" #

ð29Þ
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Similarly to Eq (26), the quadratic power of 2 is replaced by 2n in Eq (29). Besides, ordered

principal stresses are considered in Eq (29) to avoid negative values in the base of the 2n expo-

nent. For full visualization in the principal stress space, they may be alternated. Assuming σref

Fig 8. Non-linear elastic potential in 3D principal stress space (n�0.5, νref = 0.3, pt = 0, σb = 0.1pc): (a) compressive side view; (b) tensile side view.

https://doi.org/10.1371/journal.pone.0275968.g008

Fig 9. Biaxial non-linear elastic potentials (σ3 = 0).

https://doi.org/10.1371/journal.pone.0275968.g009
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= 1 (arbitrary units) for the sake of simplicity, the yield surface is:

12GrefUc0;y ¼ ðs1 � s2Þ
2n
þ ðs2 � s3Þ

2n
þ ðs1 � s3Þ

2n
ð30Þ

Eq (30) is equivalent to the Hosford yield criterion [31]. The results for several n values are

plotted in the deviatoric or π–plane (Fig 12) and they do not vary with the mean pressure.

Interestingly, the yield surface reduces to the von Mises criterion for the linear case (n = 1) (as

already mentioned) and to the Tresca criterion for a linear stress-dependency (n = 0.5). The

information available in the literature [32] confirms that the yielding of non-linear incom-

pressible materials, such as soft soils under undrained conditions, is better captured by Tresca

than by von Mises criterion.

8. Conclusions

This paper proposes that yield surfaces may be assumed to be elastic potential surfaces for spe-

cific levels of critical complementary strain energy density in some materials. Traditional

approaches, such as the total strain energy criterion, only consider second order terms, i.e., the

initial strain energy is null and the elastic potential is centred at the origin of the current stress

state. Here, first order terms are considered, and consequently, the elastic potential may be

translated, which allows to reproduce the desired level of tension-compression asymmetry.

Fig 10. Non-linear elastic potentials in octahedral stress plot for the triaxial plane (σ2 = σ3).

https://doi.org/10.1371/journal.pone.0275968.g010

PLOS ONE Elastic potentials as yield surfaces for isotropic materials

PLOS ONE | https://doi.org/10.1371/journal.pone.0275968 October 26, 2022 14 / 18

https://doi.org/10.1371/journal.pone.0275968.g010
https://doi.org/10.1371/journal.pone.0275968


The proposed approach shows a correlation between the shape of the yield surface and

the Poisson’s ratio, which control the shape of the elastic potential. This correlation agrees

well with published values in the literature for soils and metallic glasses. Besides, the yield

surface is elliptical as experimentally measured. Published experimental data of amorphous

synthetic polymers also agree well with this elliptical yield surface. For rocks, the tension-

compression strength asymmetry is large and the elliptical yield surface in the area of inter-

est (i.e., low confining stresses) fits well experimental data points, which have traditionally

been fitted using parabolic curves. Besides, the proposed approach automatically considers,

in a natural and logical manner, the influence of the intermediate stress (σ2), yet the linear

case usually underestimates the influence of the confining stress and non-linear models are

required.

Introducing non-linear elasticity in the proposed approach gives a wide range of elastic

potentials, such as distorted ellipsoids, which are similar to those experimentally measured, for

example, for clays. In the deviatoric plane, the shapes of the yield surfaces are similar to that of

Matsuoka-Nakai, for example. Further experimental investigation is needed for detailed vali-

dations of specific models. For the case of incompressible non-linear materials, the yield sur-

faces are between von Mises and Tresca ones.

As hyperelasticity or associated plasticity, the proposed framework to derive yield surfaces

using elastic potentials may be considered just as a classifying criterion and a possible

approach to formulate yield surfaces in some specific materials.

Compressive stresses and strains are assumed to be positive

Fig 11. Non-linear elastic potentials in deviatoric plane.

https://doi.org/10.1371/journal.pone.0275968.g011
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