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Abstract 

Polymer-metal gears become increasingly interesting to manufacturers and researchers for their 

advantages to combine the two material’s efficiencies. Despite the variety of studies in the 

literature, there is a significant drop in the number of studies concerning the Gear Mesh Stiffness 

(GMS). The variation of the GMS by time has a major influence on the dynamic response of 

transmission. Therefore, this study proposes to take into consideration the viscoelastic behaviour 

of polymer in order to model effectively the GMS of a gear system. The suggested rheological 

model is the Generalized Maxwell Model (GMM). It is first used to model the viscoelastic 

behaviour of the plastic material of the pinion. Then, Pole Zero Formulation (PZF) is employed to 

identify parameters of the proposed model. A numerical simulation is then carried out to illustrate 

the results of this new approach adopted on a pure Nylon 6,6-steel pinions. The evolution of the 

GMS is illustrated to highlight the viscoelastic behaviour’s model presented in this paper. Finally, 

the influence of the change in the temperature is investigated.  

Keywords: Gear mesh stiffness, generalized Maxwell model, recovery, viscoelastic behaviour, 

spur gear, pole-zero formulation 

1. Introduction

The importance of polymer gears for the transmission of power and motion is increasing due to 

their intrinsic material’s characteristics. Therefore, they have emerged as competitive alternatives 

to traditional metal gears in a wide range of applications for their manufacturing cost reduction, 

their ability to reduce the high sliding occurring in the mesh and their self-lubrication. These 

several advantages are associated to the viscoelastic behaviour of the material that cannot be 

described with Hook’s law which make it an interesting subject. In the review made by Singh et 

al. (Singh et al., 2018), it is mentioned that most researchers focused on design features (Kim, 

2006)(Imrek, 2009)(Düzcükoǧlu et al., 2010) and performance characteristics (Mao et al., 2009) 

(Li et al., 2011)(Mertens & Senthilvelan, 2016) of polymer gears. These studies are mainly based 

on an experimental approach and only few studies used simulation and numerical aspects. In 

addition, in the review made by Marafona et al. (Marafona et al., 2021), it is  mentioned that there 

is minimum diversity on the models used to simulate the GMS of polymer gears. Furthermore, the 

majority of these models are finite element models, and few analytical ones were implemented. A 

numerical simulation of the GMS will thus bring an interesting addition in the field of polymer 

gears. But first, it is preferable to understand the viscoelastic behaviour of polymers and to propose 

an appropriate model to be used in this study.  

The viscoelastic behaviour of polymers is usually modelled using rheological models. Two 

categories of models were developed where they represent the relation between stress and strain. 
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The first category of derivative fractional models were proposed by Bagley and Torvik (Bagley & 

Torvik, 1985) after being developed by mathematicians interested in fractional derivatives. The 

goal is to establish relation of fractional derivation between stress and strain. It can match the 

behaviour by using less parameters. A new element called “spring-pot” is thus proposed whose 

behaviour is between that of a pure spring and that of a pure shock absorber. In this context, the 

second one represents the relation strain-stress in the form of an assembly of springs and dashpots. 

Springs characterize material’s elasticity and dashpots characterize its viscosity. In this category, 

there are simple models and more complex ones called generalized models. The generalized ones 

are the assembly of a finite number of cells in series or in parallel. Each cell is composed of a 

spring in series or in parallel with a dashpot. The number of elements used to effectively model 

material behaviour using generalised models can increase rapidly. It can thus result in the 

identification of an important number of parameters. Regardless of this main drawback, this 

category of models, specially the generalized ones, can usually be used to a better and more precise 

modelling of viscoelastic behaviour (Jrad et al., 2013). Therefore, one of them is going to be used 

in this study.  

These models however are characterized by the following moduli. The storage modulus represents 

the elastic behaviour of the structure, and the loss modulus represents the viscous one (Ganeriwala 

& Rotz, 1985). The stress can be put into a form of Fourier series expression which depends on 

these moduli. Eventually, Stress-strain (Blanc & Ravasoo, 1996), creep (Almagableh et al., 2008), 

or recovery (Joo et al., 2007) curves can be determined. There are also primitive models to simulate 

viscoelastic behaviour where the most common are Maxwell and Kelvin-Voight. Derivatives from 

those models are also developed in the literature (Mainardi & Spada, 2011). Maxwell model is 

composed of a spring and a dashpot in series while Kelvin-Voight is composed of a spring and a 

dashpot in parallel. As mentioned earlier, generalized models allow for better viscoelastic 

modelling, with the following models being the most commonly used. GMM is combination of 

Maxwell cells in parallel and Generalized Kelvin-Voight model (GKM) is a combination of 

Kelvin-Voight cells connected in series. The former is generally used to determine the relaxation, 

storage and loss moduli, while the latter is generally used to determine the creep, storage and loss 

compliances. Formulas are established to find equivalence between these models (Serra-Aguila et 

al., 2019).  Both models can thus give similar results but given the ability of the GMM to give the 

moduli directly, it is the one chosen for this study. 

The goal of the work developed through this paper is to effectively model the GMS of a gear 

system by considering the viscoelastic behaviour. However, the GMS is the most commonly 

studied parameter when it comes to vibration analysis in gear systems. When it is modelled 

properly, it can give more advanced and reliable analysis tools to be used in industry 4.0. In the 

literature, many approaches were developed to model the meshing stiffness of metallic spur gears 

such as empirical formula (Henriot, 1985), approximation factors (International standard ISO 

6336), numerical approach (Chaari et al., 2009) Finite Element Analysis (FEA) (Fernandez Del 

Rincon et al., 2013)…. Other studies have modelled the GMS of several gear types with different 

geometries, such as spur gears (Cui et al., 2019)(Farhat et al., 2020), helical gears (Walha et al., 

2011)(Han & Qi, 2019), bevel gears (Driss et al., 2014)(Sun et al., 2019), worm gears (Chakroun 

et al., 2021) and planetary gears (Shen et al., 2020). 

While there are numerous studies on GMS in metallic gears, there is a significant gap on polymer 

ones. The variation of possibilities of modelling the viscoelastic behaviour in the literature is 

enormous and the choice of an appropriate model is difficult. This behaviour of polymeric 
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materials is treated by many researchers. The study of Meuleman et al. (Meuleman et al., 2007) 

used a FEA code called “mechanical event simulation” that allows the modelling of a dynamic 

system. The authors studied the contact between a pair of gears with the same polymer (POM) 

material and a pair of gears with different materials, metal (steel) and polymer (POM). The mesh 

stiffness is then deduced from the bending deflection equation using the value of Young's modulus, 

which is not the case for polymers. The study of Lin and Kuang (Lin & Kuang, 2008) also modelled 

polymer gears using FEA model. But modelling the GMS was totally different from the ones 

mentioned previously. It is described by a numerical approximation based on curve-fitted 

coefficients for Nylon 6,6. Similarly, analytical results are obtained for POM gears with a relation 

derived from Nylon 6,6 approximation. The meshing stiffness is position-dependent and its 

variation due to the operating time influenced by viscoelasticity is not taken into account. One 

other approximate approach was developed in the study of Hasl et al. (Hasl et al., 2017). The 

method is abbreviated to the acronym “ACORA” meaning “actual contact ratio”. The calculation 

of the mesh stiffness used constant factors from DIN 3990. Then, by analogue parametrization, it 

is proposed to adapt a modified GMS to ACORA mesh stiffness. Finally, this mesh stiffness is a 

fluctuation between a maximum and a minimum number, which means that the viscoelastic 

behaviour has not been considered. Other researchers considered meshing stiffness related 

parameters (i.e., transmission error)(Tsai & Tsai, 1997)(Kodeeswaran et al., 2017) but without 

considering the time varying GMS. One can mention the work of Hiltcher et al. (Hiltcher et al., 

2006) who investigate the load sharing in gear teeth using GKM. The use of GKM is also 

mentioned in other polymer gear studies (de Vaujany et al., 2008)(Cathelin et al., 2015). Yet, these 

studies did not show the influence of the viscoelastic behaviour on the GMS signal. As a 

conclusion, it is important to model the viscoelastic behaviour using a proper rheological model in 

order to study its influence on the GMS of a gearing system. 

Eventually, it can be deduced that literature showed a lack in using rheological models to simulate 

the viscoelastic behaviour of polymers in gear applications. It is important to introduce them to 

simulate the behaviour of this type of materials. In this paper, the objective is to model the polymer 

using the GMM rheological model which is ideal for harmonic steady state excitation (Jrad et al., 

2017) which is the case of gear teeth. Thus, GMM is used to model pure Nylon 6,6 as material of 

the gear running against a steel pinion to eventually deduce the GMS of this proposed spur gear 

system. The identification method for GMM parameters used here is pole-zero formulation (PZF). 

Eventually, the strain of one tooth of the polymer gear for one and multiple cycles is modelled. 

From this strain, the meshing stiffness of one tooth is determined. An overlay is then performed to 

deduce the GMS signal. Finally, the influence of viscoelastic behaviour and temperature on this 

signal is illustrated.  

Nomenclature  

𝑍 Impedance  𝑤 The face width of a tooth  

𝜔 The angular frequency 𝐹 The load applied by the steel pinion 

𝑛 GMM number of cells 𝐹𝑡 
The tangential load applied by the steel 

pinion 

𝐸∞ GMM equilibrium modulus 𝛿𝑐 
The contact deflection of the Nylon 6,6 

gear 

𝐸𝑖 
GMM 𝑖est spring elastic 

modulus (𝑖 ∈ [1 𝑛]) 
𝛿𝑏 

The Bending deflection of the Nylon 

6,6 gear 



4 

𝜂𝑖 
GMM 𝑖est dashpot viscosity 

(𝑖 ∈ [1 𝑛]) 
ℎ The thickness of teeth contact 

𝜔𝑧,𝑖 𝑖est zero (𝑖 ∈ [1 𝑛]) 𝑙 The chordal thickness of a tooth  

𝜔𝑝,𝑖 𝑖est pole (𝑖 ∈ [1 𝑛]) 𝑒 
The strain value of non-recovered 

material  

𝑇𝑧,𝑖 
Period of the 𝑖est zero (𝑖 ∈
[1 𝑛]) 

𝜀𝑐𝑟𝑒𝑒𝑝 Creep-strain  

𝑇𝑝,𝑖 
Period of the 𝑖est pole (𝑖 ∈
[1 𝑛]) 

𝜀𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 Recovery-strain  

𝜆 and 𝜃 Constants  𝜏𝑚 Torque of the motor 

𝑓1 
Frequency coincides with 

the first zero  
𝑅𝑝 The pitch radius of the pinion  

𝑓2 
Frequency coincides with 

the last pole 
𝐾 The meshing stiffness 

𝜎 Stress  𝐺𝑀𝑆 The gear mesh stiffness of the gear pair  

𝜀 Strain  𝑘𝑐 Contact stiffness 

∅ The phase angle  𝑘𝑏 Bending stiffness  

𝐸′ Storage modulus  𝐼�̅� Moment of inertia 

𝐸′′ Loss modulus  𝐴�̅� Area of the cross section  

𝐸𝑏 Bending modulus 𝑆𝑖 Cross section 

𝐺 Shear modulus  𝑛𝑠 Number of tooth slices 

𝑠ℎ Shear factor 𝑟 Radius of the tooth profile 

𝑛𝑏 
Teeth number of the Nylon 

6,6 gear  
𝜐 Poisson’s ratio 

𝐿𝑒 Length of a tooth    

 

2. The rheological model of the viscoelastic behaviour 

Viscoelasticity is a combination of elastic and viscous behaviours. The elasticity of a material is 

an instantaneous behaviour and is often modelled using a linear spring (see Fig. 1(a)).  
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Fig. 1 (a) Linear spring, (b) Maxwell model (c) Zener model, (d) generalized Maxwell model 

and (e) the impedance of the corresponding model. 

The impedance Fig. 1(e) of a spring is usually the Young's modulus of the material being modelled 

𝐸, which is written as follows:  

𝑍 = 𝐸 =
𝜎

𝜀
 (1) 

Dashpots are added to springs to model the viscous behaviour. Usually, they are added to a spring 

in parallel or in series. When springs and dashpots are combined and defined by the right 

parameters, they can model several types of materials. There are simple models such as Kelvin-
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Voigt, Maxwell and Zener (Hristov, 2019). Generalized models, such as GKV or GMM, provide 

a better approximation of reality than non-generalized models, with a larger number of parameters 

to be identified (Serra-Aguila et al., 2019). This study focuses on modelling the behaviour of a 

Nylon 6,6 gear meshed with a steel pinion. Therefore, GMM, a combination of Maxwell cells (i.e., 

Maxwell model) connected in parallel, is chosen. By adding a dashpot in series with a spring, the 

combination becomes a Maxwell model (see Fig. 1(b)). The inverse of the impedance in Maxwell's 

model is written in a complex form as follows, where 𝜔 is the angular frequency:  

1

𝑍(𝜔)
=

1

𝐸
+

1

𝑗𝜔𝜂
 (2) 

Therefore, the impedance becomes:  

𝑍(𝜔) =
𝑗𝜔𝐸𝜂

𝐸 + 𝑗𝜔𝜂
 (3) 

When a Maxwell model is connected to a spring in parallel, it becomes a Zener model that is shown 

in Fig. 1(c) (i.e., GMM with only one Maxwell cell). The impedance of this model is then written 

as follows:  

𝑍(𝜔) = 𝐸∞ +
𝑗𝜔𝐸1𝜂1

𝐸1 + 𝑗𝜔𝜂1
 (4) 

GMM consists of several Maxwell cells mounted in parallel as shown in Fig. 1(d). Each Maxwell 

cell is composed of a spring 𝐸𝑖 and a dashpot 𝜂𝑖 connected in series. Eventually, their combination 

in GMM can properly model the viscoelastic behaviour of polymers. A single spring 𝐸∞ is also 

connected in parallel to the Maxwell cells to model the static stiffness. The rheological formulation 

of the impedance 𝑍 is written as follows: 

𝑍(𝜔) = 𝐸∞ + ∑
𝑗𝜔𝐸𝑖𝜂𝑖

𝐸𝑖 + 𝑗𝜔𝜂𝑖

𝑛

𝑖=1

 (5) 

Where 𝑖 ∈ [1 𝑛] and 𝑛 is the number of Maxwell cells. With this model, it is possible to obtain 

different types of results. It is proposed to use it to investigate the creep-recovery of each tooth 

individually to eventually determine the GMS. In the study of Rosato et al. (Rosato et al., 2001), 

it is mentioned that the shape of strain depends on the type of stress applied. After considering a 

harmonic stress applied on a gear tooth, it is possible to have the strain-time curve which shows 

the said creep-recovery phenomenon. The proposed shape of this curve correlates with that given 

by the mentioned study. 

3. Parameter identification method 

It is mentioned in the study of Renaud et al. (Renaud et al., 2011) that PZF are very suitable for 

identifying parameters on transfer functions. It based on the CRONE method which is mentioned 

in the study by Oustaloup (A. Oustaloup, 1991). It takes the frequency domain and divides it into 

frequency sub-domains of equal length for each pole-zero couple. This method considers the area 

under the test curve and approaches it with an area of a rectangle with the height of the phase value 
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of the corresponding subdomain. Then, zeros are taken at random with the value equal to the first 

value of the subdomain while poles are deduced from zeroes. Then, a correction is made on the 

first zero 𝜔𝑧,1 and the last pole 𝜔𝑝,𝑛 to eliminate the edge effects that appear in this method. The 

main drawback of this method is its unreliability for non-smooth phase curves, which is not the 

case in this study. The first zero and the last pole are identified directly from the experimental 

creep-strain curve. With CRONE approach, the sum of terms in equation (5) becomes a product 

which is given by equation (6) of the PZF.  

𝑍(𝜔) = 𝐸∞ ∏
1 + 𝑗𝜔/𝜔𝑧,𝑖

1 + 𝑗𝜔/𝜔𝑝,𝑖

𝑛

𝑖=1

 (6) 

Where, 𝑧 and 𝑝 are indices to identify a zero and a pole, respectively. Usually, the impedance  

𝑍(𝜔) (see equation (6)) of PZF is stress divided by strain. Therefore, it can be considered as a 

transfer function. Generally, the identification method uses the experimental data of modulus 
|𝑍(𝜔)| and phase ∅(𝜔) of the transfer function 𝑍(𝜔) which can be written in the following 

expression:  

𝑍(𝜔) = |𝑍(𝜔)|𝑒(𝑗∅(𝜔))  (7) 

The modulus |𝑍(𝜔)| and phase ∅(𝜔) of the associated PZF are written as follows (Renaud et al., 

2011)):  

|𝑍(𝜔)| = 𝐸∞ ∏
√1 + (𝜔/𝜔𝑧,𝑖)

2

√1 + (𝜔/𝜔𝑝,𝑖)
2

𝑛

𝑖=1

  (8) 

∅(𝜔) = ∑ (tan−1 (
𝜔

𝜔𝑧,𝑖
) − tan−1 (

𝜔

𝜔𝑝,𝑖
))

𝑁

𝑖=1

  
(9) 

In this study, the investigation focuses on gear teeth where the applied loads are harmonic.  The 

frequency of these loads is low compared to the ones used in experimental Dynamic Mechanical 

Analysis (DMA) tests. The identification method is based on a creep-strain experimental 

measurement performed by Almagableh et al. (Almagableh et al., 2008). The test is done on a 

Nylon 6,6 specimen with dimensions of 18.5 × 10 × 1.6mm3. The attempt here is to use this 

creep-strain test and deduce poles and zeros to finally obtain the same curve numerically. The 

GMM parameters are thus deduced to eventually use them to model the behaviour of the Nylon 

6,6 gear. Fig. 2 shows the parameters that are directly identified from experiment (i.e., 𝐸∞, 𝜔𝑧,1 

and 𝜔𝑝,𝑛).  
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Fig. 2 Identified parameters from the experimental creep-strain curve. 

The period of the first zero 𝑇𝑧,1 can be directly identified from the first asymptote at 𝑡0 = 0𝑠. The 

period of the last pole can be identified from the period of the experimental creep-strain test (i.e., 

at 𝑡 = 𝑇𝑝,𝑛). The static modulus 𝐸∞is identified from the asymptote of the last measured point. 

Using Zener model (Mainardi & Spada, 2011), the period of the first zero 𝑇𝑧,1 is deduced and 

written as follows: 

𝑇𝑧,1 =
𝜂1

𝐸1
+

𝜂1

𝐸∞
 (10) 

The first zero and pole can be deduced from the impedance as follows (Renaud et al., 2011):  

𝑍(𝜔) = 𝐸∞ +
𝑗𝜔𝐸1𝜂1

𝐸1 + 𝑗𝜔𝜂1
= 𝐸∞

1 + 𝑗𝜔 (
𝜂1

𝐸1
+

𝜂1

𝐸∞
)

1 + 𝑗𝜔
𝜂1

𝐸1

= 𝐸∞

1 +
𝑗𝜔

𝜔𝑧,1

1 +
𝑗𝜔

𝜔𝑝,1

 (11) 

𝜔𝑧,1 = (
𝜂1

𝐸1
+

𝜂1

𝐸∞
)

−1

=
1

𝑇𝑧,1
=

𝐸∞𝐸1

𝜂1(𝐸∞ + 𝐸1)
 (12) 

𝜔𝑝,1 = (
𝜂1

𝐸1
)

−1

=
𝐸1

𝜂1
 (13) 

The first zero and the last pole are sufficient to deduce the remaining poles and zeros. Therefore, 

the first pole is not used here. To achieve this, the constant phase approach mentioned in the work 

of Jrad et al. (Jrad et al., 2013) is used here. The phase angle between a pole and a zero is considered 

equal to 
𝜋

2
 when they are with the same order and equal to 0 elsewhere (see Fig. 3). This approach 

considers an estimated average phase angle of the impedance 𝑍(𝜔) (see equations (6) and (7)). It 

is measured between the first zero and the last pole in the studied frequency range. 

𝜎0

𝐸∞
 

𝑇𝑧,1 

𝑡 

𝜀 

𝑇𝑝,𝑛 

The shape of creep-strain 

experimental curve  
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Fig. 3 Approach of constant phase. 

The ratio between two consecutive poles is equal to the ratio between two consecutive zeros. This 

ratio must be constant to obtain a constant phase between two consecutive zeros. Two constants 𝜆 

and 𝜃 are identified in equations (14) and (15): 

ln(𝜆) = ∅
ln(𝑓2) − ln(𝑓1)

∅ +
𝜋
2 (𝑛 − 1)

 (14) 

ln(𝜃) = (
𝜋

2
− ∅)

ln(𝑓2) − ln(𝑓1)

∅ +
𝜋
2 (𝑛 − 1)

 
(15) 

The average phase angle ∅ is identified in the frequency domain considered [𝑓1 𝑓2]. The first zero 

and the last pole coincide with 𝑓1 and 𝑓2 respectively. Zeros are deduced from the first zero 

following equation (16): 

𝜔𝑧,𝑖+1 = 𝜔𝑧,𝑖𝜆 𝜃 (16) 

While poles are deduced from the last pole equation (17):  

𝜔𝑝,𝑖 =
𝜔𝑝,𝑖+1

𝜆 𝜃
 (17) 

The constant 𝜆 is what relates poles and zeroes:  

𝜔𝑝,𝑖 = 𝜆𝜔𝑧,𝑖 (18) 

Eventually, parameters of GMM are deduced from the identified poles and zeros following these 

relations:  

𝐸𝑖 = 𝐸∞ ∏ (
𝜔𝑝,ℎ

𝜔𝑧,ℎ
) (

𝜔𝑝,𝑖 − 𝜔𝑧,ℎ

𝜔𝑝,𝑖 + 𝜔𝑝,ℎ(𝛿𝑖ℎ − 1)
)

𝑁

ℎ=1

 (19) 

𝜔𝑧,1 𝜔𝑝,1 𝜔𝑧,𝑛 𝜔𝑝,𝑛 𝜔𝑝,𝑖 

ln (𝜆) ln (𝜃) ln (𝜆) ln (𝜆) ln (𝜃) 

𝜔𝑧,𝑖  

ln (∅) 

𝜋

2
  

0  
𝑓 

Mean 

phase  
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𝜂𝑖 =
𝐸𝑖

𝜔𝑝,𝑖
 (20) 

The procedure to find relations (19) and (20) is the linkage between PZF (equations (6) and (7)) 

and GMM parameters (equation (5)). It is detailed in the study of Renaud et al. (Renaud et al., 

2011). The flow chart of the procedure to determine GMM parameters is shown in Fig. 4.  

 

Fig. 4 Flow chart of GMM. 

4. Numerical procedure  

To properly model the results of a creep-strain test using GMM, it is suggested to use 5 Maxwell 

cells (i.e., n=5). This number is chosen by considering the minimum possible number of cells to 

model the results in the most adequate way. With a processor Intel(R) Core(TM) i5 and a memory 

card of 8Go RAM, the simulations with 5 Maxwell cells take 5 seconds to identify GMM 

parameters. With 4 Maxwell cells, the results are 10% less accurate than 5 Maxwell cells. With 6 

Maxwell cells, however, the simulation time is 10 seconds, which is double the time of the chosen 

configuration with almost the same accuracy of 5 Maxwell cells (i.e., less than 1% more accurate). 

With more cells, the results are similar, but each added cell doubles the time needed. Therefore, 

the most appropriate number of cells is 5 for the proposed study. Yet, more cells can give similar 

results as well. The identified parameters of GMM using PZF are presented in Table. 1. 

Choosing the number of 

Maxwell cells: 

𝑛 

Calculating poles and zeros using 

the approach of constant phase: 

𝜔𝑧,𝑖 and 𝜔𝑝,𝑖 

Identifying the first zero, the last pole 

and the equilibrium modulus form 

creep-strain experimental test: 

𝜔𝑧,1, 𝜔𝑝,𝑛 and 𝐸∞ 

Identifying the parameters of GMM 

using PZF (equations (19) and (20)): 

𝐸𝑖 and 𝜂𝑖  

Deducing the impedance:  

𝑍(𝜔) 

GMM  
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Table. 1 Parameters of GMM at 28°C 

𝐸∞ = 1300 MPa 𝜂1 = 1505 N s/mm2 

𝐸1 = 1626 MPa 𝜂2 = 2223 N s/mm2 

𝐸2 = 2801 MPa 𝜂3 = 2873 N s/mm2 

𝐸3 = 4222 MPa 𝜂4 = 3849 N s/mm2 

𝐸4 = 6600 MPa 𝜂5 = 7461 N s/mm2 

𝐸5 = 14923 MPa   

In this paper, a simulation of the results of a creep-strain test, found by Almagableh et al. 

(Almagableh et al., 2008), is carried out. The parameters of GMM are chosen in the simulation 

process to properly model the results of the creep-strain test. This allows the creep-strain of pure 

Nylon 6,6 to be correctly modelled at different temperatures, as shown in Fig. 5.  

 

Fig. 5 Numerical and experimental data of creep-strain of Nylon 6,6 at 28°C, 52°C, 76°C and 

100°C. 

The numerical and experimental data show a good correlation. Therefore, the creep-recovery of 

Nylon 6,6 can be found in different geometries and different applied loads. The creep-strain 

response is based on the fact that equation (1) can be divided into the following form:  

𝑍(𝜔) = 𝐸′(𝜔) + 𝑖 𝜔𝐸′′(𝜔) (21) 

Where 𝐸′ and 𝐸′′ are the storage modulus and the loss modulus, respectively. Creep and recovery 

are deduced from the storage and the loss modulus, respectively. Therefore, creep-strain curve is 

determined from the following relation:  

𝜀𝑐𝑟𝑒𝑒𝑝(𝑡) =
𝜎

𝐸′
 (22) 

While recovery-strain is determined using the following:  

𝜀𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦(𝑡) =
𝜎

𝜔𝐸′′
 (23) 

Having correctly modelled the behaviour of Nylon 6,6, it is now possible to adapt it to find the 

GMS of the pair of gears proposed in this paper. Modelling the load sharing in metal gears can be 

Test 28°C 

Test 52°C 

Test 76°C 

Test 100°C 
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approximated easily with a load sharing factor. However, it is tricky when polymer gears are used. 

Many advanced load sharing models are proposed by different researchers (Melick, 

2007)(Letzelter et al., 2011)(Cathelin et al., 2015). This study is considered an initiation to a new 

approach to model the GMS of a polymer-metal spur gear. It is therefore proposed to use an 

approximated model deduced from the one proposed in the study of Melick (Melick, 2007). The 

load sharing found by Melick is deduced by means of finite element analysis for different 

configurations of Stanyl gears (Stanyl GF30, Stanyl UF 23°C and Stanyl UF 140°C) coupled to a 

metal pinion. Stanyl is in fact the commercial name for Nylon 4,6 which is a material similar to 

Nylon 6,6 but with a higher modulus and melting point. The idea here is to derive an approximation 

of a load sharing model of Nylon 6.6 (with a modulus equal to 1300 MPa) by fitting the curve of 

the load sharing of Nylon 4.6 at 23°C (with a modulus equal to 3000 MPa) and Nylon 4.6 at 140°C 

(with a modulus equal to 700 MPa). An accurate load sharing model specific to the Nylon 6.6-

metal gear pair can give more credibility to this work. 

This approach considers a load-sharing function that takes into account the amount of load being 

shared between the engaged teeth. After contemplating this function, the stress can thus be 

obtained (see Fig. 6). Fig. 6(a) shows the stress applied on one tooth for one cycle. Fig. 6(b) shows 

the details of load sharing between a tooth and the teeth in its vicinity. Fig. 6(c) shows the part of 

the tooth that are involved in the engagement, maintaining and disengagement periods.  
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Fig. 6 (a) Shared stress in a single tooth cycle. (b) single tooth meshing period. (c) load 

distribution in the contact line between teeth. 

The load applied to the gear teeth is measured from the torque applied to the supporting shaft. Each 

tooth is meshed during a period 𝑇 from the engagement to the disengagement. For the engagement 

period, the load shared between teeth reach only 30% of the total load. In the maintaining period, 

the load shared reaches 90% of the applied load. Then, in the period of the disengagement, the 

load shared decreases from 75% of the total load to reach the last point of contact (see Fig. 6(b)). 
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After putting everything in place, it is now possible to proceed with numerical procedures to 

determine the GMS.  

5. Numerical GMS of a polymer-metal spur gear system 

The details of the gear pair used in this study are given in Table. 2.  

Table. 2 Characteristics of the gear system 

 Pinion  Gear  

Teeth numbers  20 30 

Material Steel (S45C) Pure Nylon 6,6 

Base circle (mm) 18.8 28.2 

Torque (N m) 24 -36 

Rotation speed (rpm) 300 200 

Radius of tooth profile (mm)  8 12 

Poisson’s ratio   0.38  

Module (mm) 2 

Pressure angle 𝛼 (°) 20 

Teeth width (mm) 23 

Contact ratio 𝑐 = 1.6 

It is shown in Fig. 7 that GMM is used to model the behaviour of Nylon 6,6. In case of a polymer 

gear meshing with a steel pinion, Singh et al. (Singh et al., 2018) mentionned that the entire 

deformation will be on the polymer gear due to the low strength of the polymeric material. 

Therefore, it is assumed that the steel pinion will not be subject to deformation. The length of the 

contact line is equal to the face width of the teeth. The GMS 𝐾(𝑡) is deduced by considering 

engagement, maintaining and disengagement periods. The gearmesh period 𝑇𝑚 is the sum of (𝑐 −
1)𝑇𝑚 during which the engagement or the disengagement is undergoing and (2 − 𝑐)𝑇𝑚 the 

maintaining period.  

 

Fig. 7 The gear pair contact model. 

The GMS 𝐾(𝑡) considered as two springs connected in series. The first one is used to model the 

bending stiffness 𝑘𝑏, and the other one is used to model the contact stiffness 𝑘𝑐. The teeth of the 

Pinion 

Gear 

Pure Nylon 6,6  

Steel   

𝐾(𝑡) 

𝑍 

𝑘𝑏 

𝑘𝑐 
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spur gear exhibit minimum torsional deflection. Nevertheless, the torsional deflection of the drive 

shafts is not taken into account, as this requires a dynamic model with several degrees of freedom 

to be considered, which is beyond the scope of this manuscript. However, this deflection become 

more influential when different types of gears (e.g., helical or bevel …) are studied.  

It is mentioned in the study of Melick (Melick, 2007) that polymer gears exhibit considerable 

bending, therefore the deflection due to this bending must be considered. It is assumed that a gear 

tooth can be modelled as a nonuniform cantilever beam (see Fig. 8).  

 

Fig. 8 The maximum bending deflection. 

The bending deflection is measured as follows (Chaari et al., 2008):  

𝛿𝑏 = 𝐹 cos2 𝛼 ∑ 𝑒𝑖

𝑛𝑠

𝑖=1

(
𝐹𝐿𝑒

3 𝑑𝑖 − 𝑒𝑖𝑑𝑖 +
1
3 𝑒𝑖

2

𝐸𝑏𝐼�̅�

+
1

𝑠ℎ𝐺𝐴�̅�

+
tan2 𝛼

𝐸𝑏𝐴�̅�

) (24) 

𝐿𝑒 is the length of the tooth divided into 𝑛𝑠 slices (see Fig. 8). The load applied by the metal pinion 

𝐹,  the pressure angle 𝛼, 𝑒𝑖 and 𝑑𝑖 are shown in Fig. 8. The moment of inertia 𝐼�̅� and the area 𝐴�̅� of 

the tooth cross sections 𝑆𝑖 (see Fig. 8) are deduced using the following expressions:  

1

𝐼�̅�

= (
1

𝐼�̅�

+
1

𝐼𝑖+1
̅̅ ̅̅ ̅

) 2⁄  (25) 

1

𝐴�̅�

= (
1

𝐴�̅�

+
1

𝐴𝑖+1
̅̅ ̅̅ ̅̅

) 2⁄  
(26) 

The modulus 𝐸𝑏 used to deduce the bending deflection is expressed as follows:  

𝐸𝑏 =
𝐸∞(1 − 𝜐)

(1 + 𝜐)(1 − 2𝜐)
 

(27) 

 

Where 𝜐 and 𝐸∞ are the Poisson’s ration and the equilibrium modulus of the Nylon 6,6. Finally, 

the bending stiffness is expressed as follows:  

𝛿𝑏 

𝐹 
𝐹 

𝐿𝑒 

𝐿𝑒 
𝑑𝑖 𝑒𝑖 

𝛼 

𝑆𝑖 
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𝑘𝑏(𝑡) =
𝐹

𝛿𝑏
 

(28) 

The contact deflection is considered to deduce the contact stiffness 𝑘𝑐 (see equation (29)). Stiffness 

is the load divided by the deflection.  In the proposed gear pair, it is equal to the load applied by 

the tangential load 𝐹𝑡 (see equation (30)) divided by the contact deflection 𝛿𝑐 of the Nylon 6,6 

gear.  

𝑘𝑐(𝑡) =
𝐹𝑡

𝛿𝑐
 (29) 

𝐹𝑡 = 𝐹 cos 𝛼 (30) 

Where 𝐹 (see Fig. 9) is the load applied by the steel pinion deduced using the following: 

𝐹 =
𝜏𝑚

𝑅𝑝
 (31) 

Where 𝜏𝑚 and 𝑅𝑝 are the torque applied to the shaft holding the pinion (e.g., the torque of a motor) 

and the pitch radius of the pinion, respectively.  

 

Fig. 9 Normal load. 

𝛼 is the pressure angle and 𝐹𝑡 is the tangential load applied by the metallic tooth. The distribution 

of tangential load 𝐹𝑡 is shown in Fig. 10(a) and (b).  

𝐹 

𝐹𝑡 

𝛼 
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Fig. 10 Geometrical parameters involved in the contact stiffness determination in the tooth (a) 

being approximated as a beam (b).  

The impedance Z is assumed to follow equation (32) where 𝜎 is the stress and 𝜀 is the strain:    

𝑍(𝜔) =
𝜎

𝜀(𝑡)
 (32) 

The load 𝐹𝑡 is distributed as stress 𝜎 at a considered contact section. Stress is written as follows:   

 
𝜎 =

𝐹𝑡

𝑆
 (33) 

With: 𝑆 = 𝑤ℎ (34) 

Where, 𝑤 and ℎ are respectively the face width of the tooth and the thickness of teeth contact. The 

latter is considered constant to simplify measurement. It is approximated using the Hertzian 

contact formula taking into account that all deformations will occur on the polymer gear. 

Therefore, the thickness of teeth contact is written as follows:  

 

ℎ = √
2𝐹𝑡

𝜋𝑤
(

1 − 𝜐2 𝐸∞⁄

1 2𝑟⁄
) (35) 

Where 𝑟 is the radius of the tooth profile of a gear presented in Fig. 11.  

𝑙 

ℎ 

𝑙 

𝑤 
ℎ 

𝜎 

𝜎 

𝐹𝑡 

𝐹𝑡 

(a) (b) 
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Fig. 11 radius of tooth profile 

The deflection is considered as contraction divided by the initial length of a beam (see Fig. 10(b)). 

In this case, the contraction corresponds to the deflection resulted from teeth engagement and the 

initial length correspond to the initial thickness 𝑙 of the tooth. Thus, the contact deflection can be 

expressed as follows:  

𝛿𝑐 = 𝑙𝜀𝑐𝑟𝑒𝑒𝑝(𝑡) (36) 

The expression of creep-strain 𝜀𝑐𝑟𝑒𝑒𝑝 is presented in equation (22). The variation of the chordal 

thickness of a tooth 𝑙 is approximated directly from a linear variation between the dedendum and 

the addendum of a tooth. Finally, the single tooth meshing stiffness is deduced from equations 

(29), (33), (34) and (36) as:  

𝑘𝑐(𝑡) =
𝑤ℎ𝜎

𝑙𝜀𝑐𝑟𝑒𝑒𝑝
 (37) 

Creep-strain 𝜀𝑐𝑟𝑒𝑒𝑝 expression is used directly from equation (22), it is not replaced here to keep 

the meshing stiffness expression in the time domain. Recovery-strain 𝜀𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 is not introduced 

in the measurement of the single tooth meshing stiffness, because, in the period when teeth are not 

involved in the meshing, they do not influence the gear meshing. On the other hand, recovery of a 

tooth in a gear pair may not be total. It is therefore considered in subsequent revolutions of the 

gears taking into account the unrecovered deformation received by the teeth. Thus, recovery-strain 

will influence creep-strain that is influencing the GMS. Finally, the meshing stiffness of a single 

tooth is written as follows:  

  

𝐾(𝑡) = 1 (
1

𝑘𝑏
+

1

𝑘𝑐
)⁄  (38) 

 

The stress 𝜎(𝑡) is introduced by following the load sharing procedure shown in Fig. 6. The creep-

recovery of a tooth over time is given in Fig. 12(a) at 28°C over time of multiple running cycles. 

A single running cycle is shown in Fig. 12(b) to visualize creep and recovery periods. Each tooth 

has a period of time 𝑇 = 𝑐𝑇𝑚 between engagement and disengagement of the gear. Creep is lasting 

along the period 𝑇. The non-linear forms represent the viscoelastic behaviour (see Fig. 12(c)). 

After that, the material tends to return to its initial state. Hence, the recovery phenomenon starts to 

𝑟 
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appear and lasts until the second engagement starts (see Fig. 12(c)) to reach a minimum value of 

strain of non-recovered material 𝑒.  

 

 

Fig. 12 (a) Creep-recovery of a gear tooth over time of multiple running cycles, (b) a single 

revolution and (c) a meshing period. 

Upon loading period, the strain of a tooth is following a similar shape to the curve of the applied 

stress (see Fig. 12(c)). Afterwards, the tooth disengages and start a recovery phenomenon. It is 

mentioned in the study of Lunn et al.  (Lunn et al., 1974) that Nylon 6,6 reaches not more than 

85% of recovery after 100 sec at ambient temperature. Recovery is not total for this modelling 

because the time that takes the tooth to recover before the second engagement is less than 100 sec 

and not enough for full recovery. For these reasons, strain reaches a value of non-recovered 

material equal to 𝑒 instead of zero for the first cycle (see Fig. 12(c)). Then, in each period, this 

value is added to the strain for each cycle as shown in Fig. 12(a). The stiffness of one tooth is 

deduced in a previous study (Chakroun et al., 2022b). The procedure followed is detailed in the 

flowchart Fig. 13.  

Creep period  

𝑇 

𝑒 

Recovery 

Recovery period  

(a) 

(b) 
(c) 
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Fig. 13 Flow chart to deduce the GMS of a polymer-metallic spur gear system 

The evolution of this stiffness over time is deduced following equation (37) and shown in Fig. 14.  

Fig. 14 Stiffness over time of one gear tooth. 

The stiffness is presented in this figure for every 10s of functioning time. The behaviour of the 

stiffness in changing from an engagement period to another. This is due to the variation of the 

modulus of the material over time, as it is receiving a harmonic load. Initially, there is a delay in 

reaching a stationary stiffness. This is due to the viscous character of the viscoelastic material. 

After a period of operation, there is always a delay in the meshing stiffness signal. But the stiffness 

no longer reaches a steady state. It is influenced by previous engagements and each time the 

Deducing the GMS using an 

overlay equation (39):  

𝐺𝑀𝑆(𝑡) 

Introducing stress using 

a load sharing factor:  

𝜎 

Deducing the single tooth stiffness from stress 

and creep-strain (equation (37)):  

𝐾(𝑡) 

Deducing the creep-strain from stress 

and impedance (equation (22)):  

𝜀𝑐𝑟𝑒𝑒𝑝(𝑡) 

GMS  

First revolution   

After 60s    

Maintaining period   
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material becomes softer than before. This results in a loss of stiffness and curved shapes. Also, the 

intermediate stage that appears in the stiffness of the engagement is the result high value of stress 

achieved in the maintaining period. Therefore, the contact portion of the maintaining period is 

influenced by the stress peak introduced between B and C, as shown in Fig. 6. 

Having considered the behaviour of one tooth, it is now possible to deduce the behaviour of all the 

teeth in the gear system. The phase between two teeth is considered and applied for all teeth of the 

gear. From these stiffness signals, a superposition is followed to deduce the GMS of the gear pair. 

It is measured using the following:  

𝐺𝑀𝑆(𝑡) = ∑ 𝐾𝑖

𝑛𝑏

𝑖=1

 (39) 

Where 𝑛𝑏 is the Nylon 6,6 gear teeth number and 𝐾𝑖 is the stiffness of the corresponding tooth 

(deduced from equation (37)). The evolution of this overlay and the change in the shape of the 

GMS is shown in Fig. 15.  

  

 
Fig. 15 : (a) The overlay done to deduce the GMS at the first engagement and (b) after 60s.  

(𝑐 − 1)𝑇𝑚 

(2 − 𝑐)𝑇𝑚 

GMS 

Tooth_0  

𝑐𝑇𝑚 
𝑇𝑚 

(a) 

(b) 

Tooth_-1  

Tooth_+1  
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In the first revolution of the gear (see Fig. 15(a)), it can be seen that the GMS in the period of 

engagement (i.e., (𝑐 − 1)𝑇𝑚) behaving in the same way as for Tooth_0 with just adding the 

constant stiffness of Tooth_-1. In the period of maintaining (i.e., (2 − 𝑐)𝑇𝑚), the behaviour of the 

GMS is the same as that of the Tooth_0. After a running time (see Fig. 15(b)), the small change in 

the shape of the GMS over time is the result of the change of the shape of the single tooth meshing 

stiffness over time shown previously in Fig. 14. This small change can be significant for a much 

longer running time. Finally, the evolution of the GMS is shown in Fig. 16.   

 

 
Fig. 16 : Evolution of GMS of the gear system by time (a) with a zoom in the beginning (b) in 

the middle (c) and the end (d) of the simulation. 

Unlike metallic gears, the GMS cannot be modelled as a square signal that is usually used in 

metallic gear application. It is completely different when a polymer gear is used. It is also different 

from that found in a quasi-static study in which the behaviour does not progress with time 

(Chakroun et al., 2022a). Similarities are only noticed in the first revolution of the gear. The 

variation of GMS here is no longer periodic. It shows a decrease in both maximum and minimum 

values over time as shown in Fig. 16(a). This is because the recovery of Nylon 6,6 is not total each 

cycle. It is also the result of the material softening found in the single tooth stiffness presented in 

Fig. 14. In addition, it shows a change in the shape each meshing period, as shown in the zoom in 

Fig. 16(b), (c) and (d). It is clear that this shape is becoming more and more concave. Thus, this is 

(a) 

28°C 

(b) (c) (d) 
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also the result of the non-total recovery. It is expected to show more visible changes for longer 

running time.  

After investigating the influence of viscoelastic behaviour of Nylon 6,6 on the GMS of the studied 

gear pair, it is now proposed to study the influence of temperature. The simulated strain signals 

shown in Fig. 5 at 28°C, 52°C, 76°C and 100°C are considered and the GMS is deduced and 

plotted in Fig 17.  

 

 

Fig 17 : Evolution of GMS of the gear system by time at 28°C (a), 52°C (b), 76°C (c) and 100°C 

(d) 

It is known that polymers are very sensitive to temperature especially when compared to metal. 

Therefore, this fact can be clearly seen in Fig 17(a) and Fig 17(b) where a slight increase in 

temperature form 28°C to 52°C led to a major change in the GMS signal. In fact, this increase in 

temperature brought it close to the glass transition of Nylon 6,6 which is equal to 57°C according 

to Tobolsky method (Champetier & Pied, 1961) and equal to 58°C according to a differential 

thermal analysis (Greco & Nicolais, 1976).  The maximum and minimum values are decreased to 

almost the half. In the other hand, the decrees over time become less steep. When more temperature 

is applied (see Fig 17(c) and Fig 17(d)), the change became less apparent.  

6. Conclusion 

Through this paper, a new approach of determining the gear mesh stiffness is presented. It uses 

generalized Maxwell model to simulate viscoelastic behaviour of Nylon 6,6 in gear applications. 

This approach brings together rheology with the study of gears. The results of the numerical 

(a) (b) 

(d) 

76°C 
100°C 

52°C 

28°C 

(c) 
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simulation illustrate that gear mesh stiffness maximum and minimum values decrease over time 

with a change in the shape of the signal. This is because the polymer gear teeth do not have enough 

time to recover from the deformation they undergo with each cycle. This is also the result of the 

softening effect of the material over running time. Finally, the gear mesh stiffness signal 

established in this study can be taken into consideration to investigate efficiently the dynamic 

behaviour and vibration responses of polymer-metallic spur gear systems. In addition, the non-

total recovery and alternating tooth geometry lead to a time-varying load sharing. This variation 

will directly influence the GMS signal. This can lead to an interesting topic that faces a coupled 

problem. Therefore, a more advanced load sharing function that takes into account the change in 

shape of the gear teeth can provide an interesting addition to this study. 
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