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Abstract — This contribution emphasizes the relevance of Prof. 

Vittorio Rizzoli’s works on stability and phase-noise analysis and 
describes how they have impacted more recent investigations. 
Regarding the stability analysis, in 1985 he developed a frequency-
domain formulation that provided unvaluable insight into the way 
how the perturbed system should be described and analyzed. This 
formulation enabled the application, for the first time, of the 
Nyquist criterion to circuits simulated with harmonic balance 
(HB). In 1994, he derived a HB formulation for phase-noise 
analysis, which considered both the frequency modulation, 
associated with the timing noise, and the frequency conversion 
effects; it provided a complete prediction of the noisy oscillator 
spectrum at small and large offset frequencies from the carrier. 
Departing from these relevant contributions, more recent 
advances in the two topics will be described.  

Keywords —stability analysis, phase-noise analysis. 

I. INTRODUCTION 

The instability of nonlinear circuits is a common problem 
that often invalidates the prototypes and increases the 
production costs. If the simulated solution is unstable, the 
measured solution will be qualitatively different and will 
usually contain self-generated oscillations. Harmonic balance 
(HB) is insensitive to the stability properties and, by default, 
will converge to unstable solutions, less involved from a 
computation point of view. Thus, checking the stability of the 
HB solution is essential to validate its physical existence, which 
requires the introduction into the system of a small perturbation. 
In 1985 [1], Prof. Rizzoli and his co-author developed a 
frequency-domain formulation that provided unvaluable insight 
into the way how the perturbed system should be described and 
analyzed. It enabled the application, for the first time, of the 
Nyquist criterion [1]-[2] to circuits simulated with harmonic 
balance (HB). Prof. Rizzoli also addressed the qualitative 
stability changes in the physical solutions under the continuous 
variation of a circuit parameter [3]-[7], such as a bias voltage, 
the input power, or the input frequency, and related these 
qualitative changes to bifurcation phenomena [8]. A local 
bifurcation is obtained when a real pole or a pair of complex-
conjugate poles of the perturbed solution cross the imaginary 
axis under the continuous variation of the parameter. He derived 
mathematical conditions for the fundamental types of local 
bifurcation based on the evaluation of the HB characteristic 
determinant at the (real) frequencies of the crossing poles. All 
these major contributions were published in 1988 in his famous 
paper “State of the Art and Present Trends in Nonlinear 
Microwave CAD Techniques” [9], which also included aspects 
such as optimization, frequency conversion and noise. 

In 1994, Prof. Rizzoli and his co-workers presented a 
complete methodology for the noise analysis [10] of forced and 

autonomous circuits, including the fundamental aspect of phase 
noise. This is an undesired characteristic of microwave sources 
that degrades the timing accuracy and gives rise to a broadening 
of the carrier spectrum, susceptible to cause interferences and 
demodulation errors. The work [10] derived a HB formulation 
for phase-noise analysis, which considered both the frequency 
modulation, associated with the timing noise, and the frequency 
conversion; this enabled a complete prediction of the oscillator 
spectrum at small and large offset frequencies from the carrier. 

II. STABILITY ANALYSIS 

The stability analysis predicts the solution response to the 
small perturbations that are always present in real life. This 
analysis is involved, and for years it has been addressed in non-
rigorous manners. In small-signal conditions, one common 
mistake is the application of the Rollet stability criteria to two-
port networks that do not satisfy the Rollet’s proviso: when 
unloaded, the network must not have any poles in the right-hand 
side (RHS) of the complex plane. Another source of error is the 
application of the Nyquist criterion [11] to functions that can 
exhibit both RHS zeroes and poles.  

Prof. Rizzoli’s work [1] presented a rigorous perturbation 
analysis of nonlinear circuits described with harmonic balance 
[9], [12]-[13]. In [9] a piecewise formulation is used, in terms 
of the voltages V  and currents I of the nonlinear subnetwork. 
Considering the fundamental frequency o, at each harmonic 
frequency ko, we have [9]: 

( ) ( ) ( ) 0o k o k k oH A k V B k I D k       (1) 

where A and B are the frequency-dependent matrixes that 
describe the passive-linear circuitry and  are the driving 
functions. For the stability analysis of any solution of (1), a 
small amplitude perturbation of complex frequency was 
introduced in [1], expressed in terms of a complex exponential 
exp{(+)t}. Two fundamental aspects were considered: (i) 
due to the small amplitude of the perturbation it is possible to 
linearize the nonlinear devices about the steady-state solution 
(in the case of periodic regimes, this linearization should be 
carried out with the conversion-matrix approach), (ii) there are 
no sources at the perturbation frequencies. Thus, the following 
homogeneous system was derived [9]: 

  ( ) 0o cdiag Y j k Y V           (2) 

where Y is the passive-linear admittance that relates the voltage 
and currents and Yc is the admittance conversion matrix that 
relates the current and voltage increments as: cI Y V   . An 

analogous formulation in terms of impedance is also possible. 
Because the system (2) is homogeneous, its determinant is zero:  
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     det ( ) det 0o cdiag Y j k Y j             (3) 

and corresponds to the system characteristic determinant. The 
roots of this determinant provide the generalized eigenvalues or 
poles associated to the steady-state solution [1]. As written, 
equation (3) (involving all the circuit reactive elements) should 
be solved in terms of a complex frequency, which is only 
feasible for very simple circuits. Instead, Prof. Rizzoli proposed 
the application of the Nyquist criterion [1]-[2], [9] to the 
determinant in (3). This criterion provides the difference 
between the number of zeroes and poles of a complex function 
(the determinant in this case) located in the RHS, that is, N = Z-
P. We are interested in Z, which agrees the number of 
generalized eigenvalues located in the RHS. The crucial 
advantage of the determinant (3) is that one can be sure that 
P = 0. This is because neither the conversion matrix Zc nor the 
passive network impedance can exhibit any RHS poles. Thus, 
one will obtain Z from the number of clockwise encirclements 
about the origin of the function: 

 det ( )o cdiag Y k Y        (4) 

The solution may be stable for a given set of circuit-element 
values or parameters. However, when varying continuously one 
of these parameters, , one may obtain a qualitative change of 
the stability properties, this corresponding to a bifurcation [8]. 
In [1], [3] Prof. Rizzoli presented a formal derivation of the 
mathematical conditions fulfilled by the characteristic 
determinant at the main types of local bifurcations from DC and 
periodic regime. In a local bifurcation either a real pole or a pair 
of complex conjugate poles crosses the imaginary axis, which 
implies the fulfilment, at the bifurcation parameter value o, of 
the following condition: 

 det , 0o      (5) 

From a periodic regime at o, there are three types of local 
bifurcations [1]-[3], [5]-[7], [14]: D-type, for  = 0, flip-type 
for  = o/2 and Hopf-type for  = o, where  is a non-
rational number. In the first two cases the determinant is real, 
and the only unknown will be o. In the third case the 
determinant is complex, and the two unknowns will be  and 
o. Though calculated in a different manner [15], Fig. 1 presents 
an example of bifurcation loci of a test-bench amplifier at 
1.5 GHz, traced in the plane defined by the gate-bias voltage 
and input power. The amplifier is unstable in the shadowed 
regions because of two different phenomena: Hopf bifurcations, 
leading to an undesired autonomous quasi-periodic regime, and 
flip bifurcations, leading to a frequency-division by two.  

The HB analysis of oscillatory solutions is more involved 
than that of forced ones; this is because there are no input 
sources at the oscillation frequency. Thus, the HB system 
admits a solution with zero value at the oscillation frequency 
and its multiples, to which HB will converge by default (e.g., 
the DC solution of a free-running oscillator). Moreover, the 
oscillation frequency depends on the circuit elements. In [16]-
[17], a mixed HB formulation was presented, which included 
the oscillation frequency as an unknown. This was done by 
replacing the imaginary part of a state variable with the 
oscillation frequency. In fact, this imaginary part can be 

arbitrarily set to zero due to the oscillation invariance versus 
phase shifts (since there are no independent sources at the 
oscillation frequency). Because of the coexistence of solutions, 
convergence to the oscillatory one will require a proper 
initialization procedure [16].  

 
Fig. 1. Bifurcation loci of a test-bench power amplifier. 

The work [18] proposed a formulation able to deal with free-
running and injection locked oscillators in a systematic manner. 
Because the HB problem is the lack of sources at the oscillation 
frequency, a probe is introduced in the HB formulation. This is 
an artificial generator at the oscillation frequency that must 
fulfill a non-perturbation condition of the steady state [18]. This 
condition is added to the HB system and solved jointly with this 
system through a Newton-Raphson algorithm. Note that the 
probe introduces two extra unknowns: its amplitude and 
frequency (in a free-running solution) or its amplitude and 
phase (in an injection-locked solution). The work [18] 
continued the investigation of bifurcation phenomena in 
injection-locked oscillators [4] and frequency dividers; it 
provided an efficient method to trace the bifurcation loci since 
the probes helped remove some singularities of the circuit. In 
[19], the probe non-perturbation equation was solved in a two-
tier fashion, that is, applying a Newton-Raphson algorithm to 
the probe equation (outer tier) in terms of its own variables 
(amplitude and frequency/phase), and considering the HB 
system as an inner tier. The bifurcation conditions were 
formulated in a different way, making use of the properties 
fulfilled by the probe at each kind of bifurcation [19]. This two-
tier analysis paved the way to introduce probes (in the form 
auxiliary generators [20]) in commercial simulators, where the 
non-perturbation condition is achieved with the software 
optimization tools. Even these days, the analysis of oscillatory 
solutions suffers from limitations; for instance, in the case of a 
system with several subcircuits in an oscillatory state [20], or in 
the presence of coexistent oscillation modes.  

In commercial software, there is also a lack of stability 
analysis tools, and numerous efforts have been devoted to the 
derivation of stability-analysis methods compatible with 
commercial HB. The work [21] proposed the use of a 
normalized determinant that satisfies P = 0 and is obtained by 
calculating a sequence of open-loop transfer functions from the 
device intrinsic terminals. In [22], this procedure was extended 
to large-signal regimes. A fully different approach is the one 
proposed in [23], which relies on the fact that all the closed-
loop transfer functions that can be defined in a linear system 
share the same denominator and, thus, will exhibit the same 
poles, which should agree with the roots of the characteristic 
determinant in (3). The poles are calculated [23] by obtaining a 
closed-loop transfer function in commercial software through 

6

Authorized licensed use limited to: BIBLIOTECA DE LA UNIVERSIDAD DE CANTABRIA. Downloaded on January 16,2023 at 14:21:29 UTC from IEEE Xplore.  Restrictions apply. 



the introduction, for instance, of a small-signal current source, 
and applying pole-zero identification to this function. This way 
the possible coexistence of RHS zeroes and poles is no longer 
a problem since both the poles and zeroes are calculated and, 
thus, distinguished in the identification procedure. This method 
is very reliable and has become widely used. Nevertheless, in 
the case of complex topologies there can be problems of 
observability. This is because, unlike the poles, the zeroes 
depend on the selected transfer function and may lead to a 
cancellation or quasi-cancellation of RHS poles. Recently, a 
method for the stability analysis of circuits with complex 
topologies [24] has been proposed, which combines the 
calculation of the characteristic determinant (as in [1]), with 
pole-zero identification [23]. The characteristic determinant 
with P = 0 is obtained by splitting the topology into smaller 
blocks that are open-circuit (short-circuit) stable, and obtaining 
the total impedance (admittance) matrix at the ports defined in 
the partition. Pole-zero identification [23] is used to verify the 
stability of the smaller-size blocks. Fig. 2 presents the analysis 
of a system of three power amplifiers (considered blocks) at 800 
MHz under output-coupling effects. Because P = 0, one can 
safely apply the Nyquist criterion [1] to the determinant of the 
impedance matrix that accounts for the whole system.   

 
(a) 

 
                      (b)                                                     (c) 

Fig. 2. Test-bench of three power amplifiers under output coupling effects. The 
Nyquist criterion is applied to the characteristic determinant for two input-
amplitude values. (a) Stable. (b) Unstable. 

III. PHASE-NOISE ANALYSIS 

As shown in [10], [25], a noisy oscillator can be described 
in the frequency domain by introducing noise sources 

about the components ko in the perturbed HB system: 
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where X  is the vector of state variables. System (6) accounts 
for the frequency conversion occurring in the nonlinear devices 
[10]. However, and due to the invariance of the oscillatory 
solution with respect to phase shifts, the HB Jacobian matrix is 

singular at the free-running oscillation ( = 0). As a result, 
system (6) may become ill-conditioned for low . This ill-
conditioning is less severe for a higher accuracy in the 
calculation of the steady-state oscillation [26]. Prof. Rizzoli 
combined (6) with a different type of formulation: the carrier-
modulation approach [10], in which the imaginary part of one 
of the state variables is replaced with o, which should become 
modulated by the noise perturbations.: 

,
'( ) ( )

, ( )
'

k o k o
H k

o

XH k H k
J

X
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

 
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  (7) 

where the imaginary part of one of the state variables is 
suppressed in 'X . In (7), the noise sources are modulated 
sinusoids located at the carrier harmonics, with random pseudo-
sinusoidal phase and amplitude modulation laws of frequency 
 [10]. For many years, the combination of the two approaches 
circumvented the ill-conditioning problems of (6). However, as 
shown in [27], the carrier modulation approach has an 
extraordinary conceptual value, as it can be used to connect 
time- and frequency-domain methods for phase-noise analysis.  

The work [28] presented a time-domain analysis of the noisy 
oscillator based on a decomposition of its perturbed solution as 

[ ( )] [ ( )] ( ( ))px t t x t t x t t       . This distinguishes the 

perturbations in the direction of the oscillation limit cycle, or 
timing noise (t), and the orbital-deviation perturbations ( )x t
[29]. Due to lack of a phase reference, (t) can grow 
unboundedly, unlike ( )x t , which will necessary remain small 

due to the restoring mechanism of the stable periodic oscillation. 
The works [28]-[29] derive a single scalar nonlinear differential 
equation in (t), fully decoupled from ( )x t , to which a 

detailed stochastic characterization is applied. Then, the 
oscillator power spectral density (PSD) due to the timing noise 
is obtained from [ ( )]x t t , which remains bounded despite 

the unbounded growth of (t). The work [27] presented a 
translation of the procedures in [28]-[29] to the frequency-
domain. In fact, the carrier modulation and the timing noise are 
related as ( ) ( )ot t     and at a sufficient frequency 

distance from the carrier, the phase noise spectrum obtained in 
[28]-[29] analytically agrees with the one provided by the 
carrier modulation approach [10]. As a result, it is possible to 

use this approach to determine the variance 2 ( )t of the timing 

noise. This depends on the noise sources, white and colored, 

and can be expressed as 2 2
,

1

( ) ( )
M

w i
i

t c t t  


   [29], where cw 

is due to the combined effect of all the white noise sources and 
,i is associated to each of the M colored noise sources. As 
shown in [30], both cw and the constant coefficients in the 
expressions of ,i can be extracted from the application of the 
carrier modulation approach under different noise excitations. 
For instance, the coefficient cw can be extracted by considering 
only the set of white noise sources. When applying the carrier-
modulation approach, the phase-noise noise spectrum will have 
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the form: 2 2/f w oS c f f . Then, the PSD of [ ( )]x t t , with 

a Lorentzian shape about each ko [28]-[29], will be: 

 
2 2

*
2 4 4 2 2

( )
( )

NH
o w

k k
k NH o w o

f k c
S f X X

f k c f kf


 

  (8) 

Fig. 3 shows an example of the procedure, applied to an 
oscillator at 5 GHz in the presence of white-noise sources only.  

 
Fig. 3. Calculation of the PSD of [ ( )]x t t . 

IV. CONCLUSION 

The works by Prof. Rizzoli have provided the microwave 
community with rigorous and practical methods for nonlinear 
circuit analysis. This document focuses on some relevant 
aspects of his work on stability and phase noise, in which he 
made outstanding conceptual contributions that paved the way 
for other more recent research.  
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