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Abstract — This work presents a self-oscillating mixer (SOM) 

based on a slow-wave structure for phase-noise reduction. 
Emphasis is placed on the analysis/optimization methods, which 
include aspects such as conversion gain, nonlinear distortion, and 
operation boundaries. In a first stage, the parameters of the slow-
wave structure are optimized to obtain a low phase-noise spectral 
density. As an example, a structure based on a unit cell containing 
a Schiffman section is considered. Then, the SOM behavior is 
addressed through an analytical model that should enable an 
understanding of its main operation characteristics. A practical 
FET-based circuit at 2.3 GHz is simulated with some novel 
harmonic-balance techniques and experimentally characterized. 

 Keywords — Self-oscillating mixer, phase noise, stability, 
bifurcation. 

I. INTRODUCTION 

Compact, low-cost, and low-consumption frontends are of 
paramount interest for sensor systems, imaging arrays and 
radio-frequency identification, among other. These needs have 
brought new attention [1]-[3] to self-oscillating mixers (SOMs), 
which enable an implementation of both the oscillation and 
mixing function in a single component [2]-[3]. Due to their 
active behaviour, they can also provide conversion gain. Their 
main drawback is the oscillation phase noise, which is basically 
up- or down-converted to the output signal [4]. To reduce this 
phase noise, we propose the use of a slow-wave structure, which 
should provide a high group delay in a compact size. In slow-
wave structures, a low phase velocity is achieved by increasing 
the effective capacitance and/or inductance of the line, 
implemented in practice through different strategies [5]-[6]. In 
prior works, slow-wave structures have been used in free-
running oscillators [6]-[7] but, to the best of our knowledge, 
they have not been considered yet for SOM design.  

In a first stage, the parameters of the slow-wave structure 
are optimized to maximize its frequency selectivity and, thus, 
enable a low phase noise. As an example, a structure based on 
a unit cell containing a Schiffman section is considered [5]. 
Then, the SOM behavior is addressed through an analytical 
model that should enable an understanding of its main operation 
characteristics. In fact, the multi-function capability of SOMs 
comes at the expense of a more complex behavior in an 
autonomous quasi-periodic regime [8], delimited by two 
distinct bifurcation phenomena: the asynchronous extinction of 
the oscillation, or inverse Hopf bifurcation [9], and the injection 
locking by the input source. A practical FET-based circuit will 
be simulated with some novel harmonic-balance (HB) methods 
and experimentally characterized. Note that instead of 

achieving a record performance, the goal is to describe novel 
analysis/optimization methods for SOM based on slow-wave 
structures.  

II. FREE-RUNNING OSCILLATOR 

A. Selection of the parameters of the slow-wave structure 

To obtain a low phase noise oscillation, we have used a 
short-circuited slow-wave structure based on a unit cell 
containing a Schiffman section [5] [Fig. 1(a)], though the 
procedures could equally be applied when using other slow-
wave configurations. The structure must resonate at the 
specified oscillation frequency with a high slope of the input 
susceptance /sB   . In a first step, the susceptance is 

analysed at the desired oscillation frequency  = o (2.3 GHz) 
to obtain its zeroes versus the length l [Fig. 2(a)], that is, the 
length values fulfilling B(ln) = 0. In a second step, a frequency 
sweep is carried out for each ln to evaluate /B    [Fig. 2(b)]. 
A higher slope is obtained for a longer l at the expense of closer 
additional resonances. The selected value is l = 5.48 mm. 

 
Fig. 1 (a) Slow-wave structure based on a unit cell containing a Schiffman 
section. (b) Proposed SOM. An auxiliary generator (AG) is connected to the 
source terminal for simulation purposes. (c) Prototype on Rogers 4003C.  

B. Phase noise 

In the oscillator design carried out here, the slow-wave structure 
is connected to the source terminal, as shown in Fig. 1. The 
output network contains a quarter-wave open-ended 
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transmission line at the oscillation frequency and a simple low-
pass filter with the values LIF = 10 nH and CIF = 30 pF. 
Although the phase noise should be low due to the high 
susceptance slope, it can be further minimized in HB with the 
aid of an auxiliary generator (AG). This AG is connected to the 
source terminal [Fig. 1(a)], and operates at the desired 
oscillation frequency  = o. A sweep in l is carried out, 
optimizing the AG amplitude AAG and the width w to obtain a 
zero value of the AG current-to-voltage ratio [YAG(AAG, w) = 0]. 
At each step of the sweep, the phase noise is evaluated with the 
conversion-matrix approach. Fig. 3(a) presents the variation 
versus l of the spectral density at 100 kHz offset frequency from 
the carrier. Of course, the oscillation at  = o may be 
impossible for some pairs l, w, which occurs in the shadowed 
region. Outside this region, there are two minima and the 
selected one corresponds to l = 5.62 mm and w = 2 mm, which 
will slightly reduce the size.  

 
Fig. 2. Analysis of the slow-wave structure. (a) Susceptance at  = o versus l 
to obtain the values fulfilling B(ln) = 0. (b) Evaluation of /B   at ln. 

 
Fig. 3. Phase-noise minimization with an AG. (a) Phase noise at 100 kHz vs. l, 
when optimizing w and the AG amplitude to fulfill YAG(AAG, w) = 0. (b) Phase-
noise at l = 5.6 mm. Measurement with the R&S FSWP8 Phase Noise Analyzer. 

The complete phase-noise spectrum is shown in Fig. 3(b), 
where it is compared with the experimental one, obtained with 

the R&S FSWP8 Phase Noise Analyzer. It is significantly lower 
than those obtained without the slow-wave structure in 
oscillators based on the same device (see the spectrum in [7] 
with -80 dBc at 100 kHz). Nevertheless, a higher spectra purity 
might be possible with other slow-wave structures.   

III. ANALYTICAL FORMULATION 

The analytical formulation of the SOM containing the slow-
wave structure will be based on a simple model (Fig. 4). There 
are two fundamental frequencies: the oscillation frequency o 
and the input frequency 1. The nonlinear transconductance 
current is: 

2 3
2 3( ) ( ) ( ) ( )mi t g v t g v t g v t     (1) 

with gm > 0, g3 < 0. The voltage v and current i will be expressed 
in a Fourier basis at the frequencies o, 1, IF = 1o and 
s = 1+o:  
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where due to the oscillator autonomy, the phase of Vo is 
arbitrarily set to zero. The frequency-domain system is:  
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where Ay and Ag are frequency-dependent functions accounting 
for the passive linear network (and thus, including the effect of 
the slow-wave structure). For the simple model of Fig 4: 
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And the expressions of Io, I1 and IIF are: 
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where some low amplitude terms have been neglected. For 
small Ein, Io will be real since Vs and VIF will be negligible. Thus, 
the oscillation frequency is determined by Im[Ay(o)] = 0. 
Assuming for simplicity Yds  0, Zgs = jXgs and Zs = jXs, and 
splitting the equation at o into real and imaginary parts: 

  1( , ) 1
0,   0g o

s
gs s o g gs

oR I V V
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     (6) 

Due to the high slope of Bs (Section II), the o value resulting 
from the second equation will be very close to the resonance 
frequency of the slow-wave structure. When Ein increases, IIF 
will increase too and, from (3)-(5), the complex term 
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* *
2 11 )( s IFg V V V V *

2 1IFg V V  of Io [see (4)] will give rise to a 

deviation of the oscillation frequency o from the one predicted 
from Im[Ay(o)] = 0. This will lead to an undesired dependence 
of the IF frequency on the input power Pin. However, in the 
presence of the slow-wave structure this frequency variation 
should be limited.  

For small Ein, we can approach V1  −Ag(1)Ein/[1+Ay(1)]. 
Then, under the reasonable assumption of a small IF current 
through Yds, the linear conversion gain (Gc) is: 

    
 

  1

2 2

2 22
2 1

4 Re ( ) /

4 Re ( ) ( ) / 1 ( )

c o out IF IF in

c o out IF og y

G R Z I E

G R Z A g V A



  

 

 
  (7) 

The terms Ag(1) and Ay(1) will have an impact on Gc, so the 
effects of Zgs and Zs should be compensated for a flat gain.  

When increasing Ein, the gain will vary as: 
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As gathered from (4), from certain Pin, the oscillation amplitude 
Vo will decay due to the increase in |V1| [Fig. 5(a)]. However, 
this amplitude has not significantly decreased at the 1 dB 
compression point. In fact, there are two mechanisms for gain 
compression: the decrease of Vo in 12 og V V and the growth in 

magnitude of the negative term in (8), which can be written in 
a compact manner as g3f(Vo,V1,VIF,Vs). The second effect will 
lead to compression at a lower Pin for a higher small-signal 
conversion gain (giving larger |VIF| and |Vs|). Fig. 5(b) presents 
the evolution of Gc, as well as the magnitudes of the second and 
third terms in (8) versus Pin. The magnitude of the third term 
experiences a quicker growth near the compression point.  

Zg Zgs i(v)

Ein Zs

Yds Zoutv
+

‐

 
Fig. 4. Simple SOM model. The nonlinear transconductance current is i(v), 
where v is the control-voltage waveform. For convenience, the blocks are 
expressed in terms of the immittances used in the mathematical derivations. 

 

As Pin continues to increase, the growth of |V1| will give rise 
to a significant reduction of both Vo and |VIF|, which will 
become zero at an inverse Hopf bifurcation [9] [Fig. 5(b)]. For 
each 1, this Hopf bifurcation is obtained by solving the 
following system in terms of Ein,H, V1,H and o,H. 
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Under the nonlinear transconductance (1), the oscillation 
frequency is obtained from Im[Ay(o)] = 0 and Ein,H is: 
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Ein,H increases with gm and decreases with g3 and Ag(1).  

 
Fig. 5. Mechanism for the gain compression. (a) Gc and amplitudes V1 and Vo 
vs. Pin. (b) Gc and magnitude of the second and third terms of (8) versus Pin.  

IV. PRACTICAL SOM DESIGN 

The proof-of-concept SOM is based on the PHEMT ATF-
34143 (Fig. 1). The bias point is VGS = -0.5 V and VDS = 2 V, 
with a consumption of 16 mW. Initially, we have performed a 
HB analysis of the small signal conversion gain versus the IF 
frequency. As seen in Fig. 6, positive gain is obtained above 
and below the free-running frequency. About this frequency, 
there is a narrow region with no heterodyne gain because of the 
DC feeds. Moreover, within this region the oscillation will get 
locked by the input source. Fig. 7(a) presents the variation of Gc 
for two different values of the input frequency with 
measurements superimposed. In consistency with the analytical 
study, the gain compression occurs at smaller input power for a 
larger small-signal gain. Fig. 7(b) presents the deviation of the 
oscillation frequency (vs. Pin) with respect to the free-running 
value, greatly reduced by the slow-wave structure and Fig. 7(c), 
the third-order intermodulation distortion. The discrepancies 
with respect to the simulation results are attributed to modelling 
inaccuracies. 

 
Fig. 6. Small-signal conversion gain versus the intermediate frequency. 
  
For an exhaustive calculation of the inverse Hopf 

bifurcations (providing the SOM operation boundaries), a 
small-signal AG (which plays the role of the oscillation), 
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operating at o, is introduced into the circuit. In this case, the 
AG is connected in parallel at the gate terminal. For each in, a 
double sweep is carried out in the Ein and o , evaluating the 

AG small-signal admittance at each sweep step. This provides 
the function ( , , )in in oY P  , which will be zero at the ( , )in inP
values where the oscillation is extinguished. The set of these 
bifurcations is detected by exporting the function

( , , )in in oY P   and calculating its roots from the intersection of 

the zero-value contours of its real and imaginary parts. This 
method does not require any optimization of the AG and for 
each Pin or in, it provides all the coexisting secondary Hopf 
bifurcations in an exhaustive manner. The results are shown in 
Fig. 8, with measurements superimposed. The Hopf locus has 
two sections, above and below the oscillation frequency in free-
running conditions o.  

 
Fig. 7. (a) Gain variation versus Pin for two different IF frequencies. (b) 
Variation of the oscillation frequency. (c) Third order intermodulation.  

 
When moving towards the locking region (from a quasi-

periodic regime), the oscillation frequency o progressively 
approaches in and the two become equal at a local-global 
saddle node bifurcation [9], which geometrically corresponds 
to a turning point of the periodic solution curve. At the 
fundamental frequency of the locked/periodic solution, one has: 

 0j
AG AG N inY A F E e     (10) 

where  is the opposite of the phase shift between the AG-node 
voltage and Ein, and FN is a linear and frequency-dependent 

function. Note that the HB system constitutes the inner tier of 
(10). At any turning point, the Jacobian matrix of (10) with 
respect to AAG and  will be singular. The locking saddle-node 
bifurcations constitute a subset of these points, which, as easily 
derived, can be obtained from the condition: 

/  0AG AG AGY V V     (11) 

The locus provided by (11) (Fig. 8) includes locking points (up 
to the merging with the Hopf locus) and turning points of the 
periodic solution curves (after the oscillation extinction). The 
locking region is very narrow (due to the high quality factor of 
the slow-wave structure), as confirmed in the experimental 
characterization.   

 
Fig. 8 Operation boundaries of the SOM, determined by bifurcation phenomena. 

V. CONCLUSION 

A self-oscillating mixer based on the use of a slow-wave 
structure for phase-noise reduction has been presented, together 
with an insightful analytical model and some new analysis 
methods for an optimum design.  
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