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Abstract— The behaviour of low cost, direct phase modulators, 
based on injection-locked oscillators, is studied in detail, using a 
reduced-order semi-analytical formulation. The derived 
expressions allow the identification of critical design parameters, 
influencing aspects such as the sensitivity of the phase-shift 
interval versus the element tolerances or the amplitude 
modulation. An envelope-domain equation, derived from the 
same semi-analytical formulation, allows the understanding of 
qualitative changes in the modulator dynamics versus variations 
in the modulation frequency, in different operation conditions. 
The study is illustrated with a modulated push-push oscillator at 
18 GHz. Very good agreement has been obtained between the 
theoretical results and the experimental measurements.  

I. INTRODUCTION 

Recently, a number of works have proposed the use of 
injection-locked oscillators for compact and low cost direct 
phase modulators [1-4]. Among other applications, this 
concept is interesting for the implementation of phase-
modulated active antennas and coupled-oscillators systems for 
beam steering. The operation principle is based on the fact 
that the phase of an injection-locked oscillator at fixed 
frequency s changes with the bias voltage of the devices used 
[5-6]. Thus, we can obtain a phase modulator by introducing 
the modulation signal in the bias line. One problem with this 
technique is the inherent limitation of the stable phase range to 
about 180º, which would prevent QPSK modulations. Another 
critical aspect is the nonlinearity of the phase characteristic 
versus the bias voltage, with a high sensitivity near the edges 
of the stable phase-shift interval, which often gives rise to a 
practical reduction of the theoretical phase shift range.  

Several solutions have been proposed in the literature to 
overcome the above limitations [1-4]. One is the chain 
connection of two injection-locked oscillators, which can be 
difficult to implement in practice, as it requires the adjustment 
of the phase-locking range of the two oscillators, which 
should agree approximately. Another solution is the sub-
synchronization of the oscillator at one half the oscillation 
frequency, which provides an inherent doubling of the phase 
modulation. The main drawback of this technique is the 
usually narrow bandwidth of sub-synchronized oscillators and 
the requirement for a relatively high injection power. Here we 
investigate the possibility of doubling the stable phase shift 
range by using an injection-locked push-push oscillator [7-8]. 
A push-push oscillator is composed of two sub-oscillator 
circuits at 0, with 180º phase shift. Assuming perfect 
symmetry of the two sub-oscillators at 0, the odd harmonic 

terms are cancelled out at the circuit output, whereas the even 
harmonic terms are added in phase. The possible drawback is 
the lower output power of the push-push configuration. 
However, realizations with suitable power levels have been 
reported in the literature [9]. Because the circuit is injection-
locked at the fundamental frequency, we can expect a 
relatively broad synchronization bandwidth, which should 
increase the robustness of the modulator.  

The main objective of this work is the derivation of a 
general-application analytical formulation, providing insight 
into the behaviour of phase modulators based on injection-
locked oscillators. The derived expressions should allow the 
identification of critical design parameters influencing aspects 
such as the sensitivity of the phase-shift interval versus the 
element tolerances or the amplitude modulation. With an 
envelope-domain extension of the formulation, we will also 
investigate qualitative changes in the modulator dynamics 
versus variations of the modulation frequency. The techniques 
will be applied to a push-push oscillator at 18 GHz. 

II. OPERATION OF THE PHASE MODULATOR BASED ON AN 

INJECTION-LOCKED OSCILLATOR 

Initially we will consider an injection-locked oscillator, 
containing a varactor diode, in the absence of a modulation 
signal. In synchronized state, for a fixed frequency of the 
injection source s, there is constant phase shift between the 
oscillation and the injection source. This constant phase shift 
changes when varying the bias voltage of the varactor diode. 
The typical interval of stable phase values is π rad at the first 
harmonic and 2π rad at the second harmonic component. For 
the circuit simulation we will select a sensitive observation 
node, where we will connect an auxiliary generator (AG), 
with voltage VAG, frequency AG and phase AG=0 [10-11]. 
Then, the outer tier of the system describing the injection-
locked oscillator is given by: 

sj
s T s gY(V ,V , , E e ) 0    (1) 

with Y the ratio between the AG current and the AG voltage, 
Vs= VAG, the voltage amplitude, s=AG, the synchronization 
frequency, VT the tuning voltage and -s the phase shift with 
respect to the input generator. Note that the inner tier of (1) is 
constituted by the pure harmonic-balance (HB) system, 
accounting for the rest of circuit nodes and harmonic terms. 
At the time to design the phase modulator, two different 
aspects must be taken into account: the frequency bandwidth 
in synchronized state and the required range of variation of the 
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modulation signal, introduced at the varactor bias line. The 
synchronization bandwidth must be relatively broad in order 
to admit a high modulation frequency. We will initially 
assume a fixed value of the bias voltage, VT0. For the HB 
simulation of the push-push oscillator, two AGs with the same 
amplitude values Vs and phase values 0 and , are connected 
at identical nodes of two sub-oscillator circuits. Each one 
should fulfil equation (1) with the same Vs value and node 
phase 0 and , respectively. The synchronized operation 
bandwidth is determined by sweeping s between 0 and 2, 
calculating s and Vs at each sweep step, in order to fulfil Y=0, 
as shown in the references [7-8]. The technique has been 
applied to the push-push oscillator in Fig. 1. The resulting 
synchronization bandwidth for the input power=-16 dBm is 
160 MHz with this particular topology.  

 
Fig. 1 Schematic of the push-push oscillator at 18 GHz. Two AGs 
with 180º phase shift are used for the HB analysis of this circuit. 
 

Next we will determine the phase characteristic versus the 
dc bias voltage of the diode. To facilitate the analytical study, 
we will initially consider low amplitude of the injection 
source. Then, it becomes possible to linearize equation (1) 
about the free-running oscillation. At this small injection 
amplitude, we will choose an injection-locking frequency 
equal to the free-running frequency s=0, as the latter 
corresponds to the middle of the closed synchronized-solution 
curve. Thus, assuming s=0, we will obtain the following 
linearized system: 

s

T

j
V s 0 V T T0 Eg gY (V V ) Y (V V ) Y E e 0      (2) 

where YV, YVT and YEg are the complex admittance 
derivatives with respect to V,VT and Eg, evaluated in the free-
running regime. By splitting (2) into real and imaginary parts 
and adding the squares of these parts, it is easily seen that the 
above expression corresponds to an ellipse in the plane 
defined by the bias voltage VT and the oscillation amplitude Vs. 
This is in agreement with the results in Fig. 2a, obtained for 
different values of the input voltage Eg, with the harmonic 
balance method. Actually, for derivatives obtained through 
finite differences, as shown in [7], the ellipse overlaps with 
the one obtained with the HB simulations. For this HB 
simulations, we sweep s and calculate the oscillation 
amplitude and varactor bias value at each phase step in order 
to fulfil Y=0 at the two AGs (Fig. 1). The stable operation 
range corresponds to the upper section of all the solution 
curves, between the two turning points [11-12]. Note that as 

Eg increases, the solution curve deviates from a perfect ellipse, 
as the linearization is no longer valid, so it is possible to have 
a stable phase shift range slightly larger than 180º. The 
variation of the total stable range (=smax-smin) versus Eg is 
shown in Fig. 2b. On other hand, the tilt angle of the major 
axis of the ellipse increases the variation of the output power 
with the bias voltage, which will have an impact on the 
amplitude modulation. It is easily shown that this angle 
becomes zero for /2 phase shift between YV and YVT. 
Because the derivatives are taken at the free-running 
oscillation, they will depend on the particular oscillator 
topology and operation point. The possible modifications of 
the existing push-push oscillator, in order to improve the 
performance, are beyond the scope of this paper. 

 
Fig. 2 Injection-locked oscillator. (a) Variation of the output power 
versus the bias voltage of the varactor diode. (b) Variation of the 
total stable phase-shift range versus the injection voltage Eg. 
 

Starting from (2), and after some manipulations, we can  
obtain the equation that determines the phase shift variation 
with the dc bias voltage: 

Eg s G vg
T T0

0 VT T v

Y  sin( )E
V V  

V Y  sin( )

    
 

  
 (3) 

where V, T and G are, respectively, the angles of YV, YVT 
and YEg The phase variation versus the bias voltage is ruled by 
an arcsin function (Fig. 3), so the phase sensitivity increases 
when approaching the locking edges, which correspond to the 
turning points T1 and T2 in Fig. 3. The use of voltage values 
near the band edges may lead to desynchronization due to the 
tolerances of the circuit elements. For a QPSK modulation 
(and considering the later doubling action of the push-push 
configuration), we can center the modulation voltage about 
VT0 and limit the phase variation to the interval (-3π/8, 3π/8), 
leaving a phase margin of π/8 with respect to the each of the 
static stability edges. These edges correspond to 

s G vsin( ) 1        in (3). The stability margin in terms of 

the tuning voltage VT is given by: 
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 Eg G vg
T

0 VT T v

Y  1 sin(3 /8 )E
V  

V Y  sin( )

     
 

  
  (4) 

Several parameters influence the stability margin. For 
instance, it increases for smaller magnitude VTY , that is, for 

smaller sensitivity of the admittance function to the tuning 
voltage and for higher EgY . For a fixed oscillator design, we 

can still enlarge the stability margin by increasing the input 
voltage Eg, in agreement with the observations in [4]. Fig. 3 
illustrates the effect of increasing Eg on the stability margins 
in terms of VT, for the phase value -3π/8. We will select 
Eg=0.22 V for the design of the phase modulator. 
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Fig. 3 Increase of the stability margins of the phase modulator 
through an increase of the amplitude of the injection source. 

 
Fig. 4 Results of the analysis with (6) for a modulation signal going 
beyond the stable voltage range. Two different modulation 
frequencies are considered. 

III. DYNAMIC EFFECTS IN THE PHASE-MODULATED OSCILLATOR 

WITH INJECTION-LOCKED SIGNAL 

When a modulation signal is introduced through the varactor 
bias line, the solution phase becomes time varying. Thus, the 

phase corresponding to the observation node voltage can be 
written 0+(t), so the phase shift with respect to the 
synchronizing source is given by (t)-s. Due to the presence 
of the modulation signal, the circuit should be analysed with 
the envelope-transient method [11]. For a better understanding 
of the dynamic effects, we can extend the formulation (2) to 
the envelope domain. This requires the assumption of a small 
range of variation of the tuning voltage VT(t) (with respect to 
the free-running value) and linear behaviour with respect to 
the input source, in similar way to (2). Then, the envelope-
domain system can be written as:  

sjj (t)
0 0 T0 T s s Eg gY[V +ΔV +ΔV,V +ΔV ,jω +s](V +ΔV)e =-Y E e   (5) 

where all the increments are time varying and s is a complex 
frequency increment, acting as a time derivator. Performing a 
Taylor series expansion of (5), we obtain: 

sj( )
V s 0 VT s T ω s Eg gY V (ΔV +ΔV)+Y VΔV +Y (V  - jΔV) =-Y E e      (6) 

Note that unlike the case of a phase-noise analysis [7], no 
linearization is carried out with respect to the phase shift. As 
the modulation frequency decreases, the system tends to the 
linearized system consider in (2), since the time derivatives 

, ΔV   vanish from (6).  

The dynamic effects observed when varying the 
modulation frequency are captured by the simplified equation 
(6). For low modulation frequency and VT variations leading 
the system beyond the stability margin, the time-varying 
phase (t) will contain a frequency component at the beat 

frequency 2 2
u 0 s o( ) F     , with 0 the free-running 

oscillation and Fo a constant term, depending on the 
coefficients in (6). However, for modulation frequency 
fulfilling m>u, the system dynamics will not be fast enough 
for the beat frequency u to be observable. This is illustrated 
by introducing a two-level modulation signal, so that one of 
the levels is beyond the stability margin. As shown in the 
simulation of Fig. 4a, obtained from the integration of (6), for 
a relatively low frequency fm=1 MHz, the system is in 
unlocked stage during the time interval for which the voltage 
level is beyond the stable range. The observed oscillation 
takes place at the beat frequency u. For a higher modulation 
frequency (Fig. 4b), the oscillation at u is not observed. 
However, the upper section of the phase pulse (corresponding 
to varactor levels outside the stable range) is not flat, but 
grows in time as ut. With the rapid change to a varactor 
voltage within the stable section, the phase tends to a constant 
value, after a short transient, as expected in injection-locked 
operation. Thus, for a high modulation frequency, there is an 
apparent increase of the stable operation range. The same 
qualitative behaviour has been obtained with the envelope 
transient technique, based on harmonic balance. For this 
analysis, the two AGs are connected at the initial time value 
only, which enables the initialization of the two oscillations. 
Unlike (6), the modulation-voltage range is not small, but 
comprised between 0.55 and 3.2 V The results are shown in 
Fig. 5a and Fig. 5b.  
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In a different test, we have adjusted the voltage levels of 
the modulation signal in order to obtain the phase values -3/4, 
-/4,/4,3/4. The four levels belong to the stable section of 
Fig. 3. Fig. 5c and Fig. 5d show the variation of the output 
phase at the double frequency 2fs for two different values of 
the modulation frequency. We have tested the robustness of 
the phase modulator with Monte Carlo analyses in terms of 
the element tolerances and we never observed unstable 
behaviour. The circuit is also stable in temperature. The 
circuit was built and experimentally characterized. The 
measured output power is superimposed in Fig. 2. The phase 
characteristic, measured with analyser HP70000, is shown in 
Fig. 6. The measured phase noise spectrum is shown in Fig. 7. 
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Fig. 5 Envelope-transient simulations. (a) and (b) Modulation signal 
going beyond the stable voltage range. (c) and (d) Operation within 
the stable margins. 
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Fig. 6 Experimental phase characteristic versus the varactor bias 
voltage.  
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Fig. 7 Phase-noise (PN) spectrum of the injection-locked push-push 
oscillator. 

IV. CONCLUSIONS 

The behavior of phase modulators based on injection-
locked oscillators has been analyzed in detail. The main 
limitation is the high sensitivity of the phase characteristic 
versus the bias voltage near the stability edges. A simplified 
formulation has enabled the derivation of design criteria to 
increase the stability margins. The behavior in the presence of 
a modulation signal has been analyzed with the envelope-
transient method. A reduced order envelope-domain 
formulation has been used to explain the apparent stabilization 
of the circuit beyond the static stable phase-shift range. The 
techniques have been applied to an injection-locked push-push 
oscillator.  
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