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A B S T R A C T   

Quantum random number generation (QRNG) has become a topic of growing interest in recent years due to 
important applications in cryptography and simulations. Interferometric detection of phase diffusion in gain- 
switched single-mode semiconductor lasers is one of the main generation techniques. In this paper, we study 
experimentally and theoretically the phase diffusion in gain-switched discrete mode laser diodes. We derive a 
stochastic rate equations model for the laser electric field that avoids numerical instabilities that appear when 
simulating amplitude and phase equations. Measurements are performed in order to extract the parameters of 
our semiconductor laser. Spontaneous emission rate coupled into the lasing mode is measured as a function of the 
carrier number for bias currents below threshold. A quadratic dependence is obtained that permits us to evaluate 
the validity of the linear approximations that have been used to describe laser phase diffusion in QRNG. The good 
agreement between experiments and theory permits us to give a realistic quantitative description of the 
dynamical evolution of the phase statistics in this type of QRNGs.   

1. Introduction 

Random numbers are essential for many applications including 
cryptography, Monte Carlo simulations, massive data processing, stock 
market prediction, gambling, etc. [1,2]. Typical random number gen-
erators (RNG) use software algorithms (pseudorandom number gener-
ator, PRNG) or hardware physical devices. Examples of physical 
processes utilized to generate randomness include: Johnson’s noise, 
Zener noise, radioactive decay, chaos noise [3,4], stochastic pulse-to- 
pulse fluctuation in the supercontinuum [5], and quantum phenomena 
[1]. Quantum random number generators (QRNGs) are a particular case 
of physical RNGs in which random numbers are extracted from quantum 
events. The main advantage of QRNGs is that their inherent quantum 
mechanical processes are the best guarantee for offering optimum se-
curity and privacy while maintaining high performance [2,6]. 

Quantum optics is the basis of most of the existing QRNGs [2]. 
Single-photon sources, light emitting diodes or laser diodes are used in 
these generators. QRNGs based on single-photon detection methods 
include: generators measuring photon arrival time [7], branching path 
generators [8], attenuated pulse generators [9], and photon counting 
generators [10]. A comparison between some of these methods can be 
found in [11]. Multiphoton QRNGs have also been proposed and 

demonstrated. Some examples include generators based on amplified 
spontaneous emission (ASE) signals [12,13], and on quantum vacuum 
fluctuations [14]. Also special interest has been focused on generators 
using semiconductor lasers as sources. A first approach measures the 
phase noise in continuous wave operation [15–17]. A second approach 
considers fluctuations of the light when the laser bias current is modu-
lated in a large signal regime[18–22]. 

In these last systems high bit-rate random numbers are obtained by 
interferometric detection of pulses generated by gain-switched single- 
mode semiconductor lasers [6,18–20,22]. Fast rates, up to 43 Gbps 
random bit generation, have been demonstrated [19]. The current 
applied to a single-mode laser diode is periodically modulated from a 
well below threshold value to a value above threshold. While the laser is 
below threshold the phase of the laser fluctuates due to spontaneous 
emission noise, which is quantum mechanical by nature. Periodic gain 
switching provides a pulse train in which each laser pulse has a random 
phase. Phase fluctuations are converted into amplitude fluctuations by 
using interference effects in an unbalanced Mach–Zehnder interferom-
eter, with a delay that matches the pulse repetition period. Detection 
and filtering of the amplitude is performed to generate random data with 
an almost uniform distribution. Advantages of QRNGs based on pulsed 
gain-switching of single-mode laser diodes include simplicity, low-cost, 
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high-speed, robustness, and operation with flexible clock frequencies 
[19]. They can be made of commercially available components with 
high signal levels that permit the use of standard photodetectors. 
Moreover indium phosphide photonic integrated circuit versions have 
been demonstrated [6]. 

The understanding and description of the physical processes under-
lying the operation of a QRNG are essential for achieving a maximum 
level of security, specially for quantum key distribution systems [23]. 
Therefore a QRNG must be precisely characterized and measured. For 
the case of QRNGs based on laser phase diffusion due to spontaneous 
emission noise, it is essential a good quantitative description of the 
dynamical evolution of the statistics of that phase. This description can 
be made when the complete set of parameters of the stochastic rate 
equations is known for the specific laser device. In this way we can 
obtain a realistic dependence of the phase diffusion on the laser and 
modulation parameters. 

One of the key ingredients in the Langevin-type rate equations that 
simulate this type of QRNGs is the spontaneous emission noise term 
since it is the term responsible for their randomness. The spontaneous 
emission rate that appears in that term has been assumed to depend 
linearly on the carrier density [19,22–25]. However a more realistic 
description for that dependence is that corresponding to the bimolecular 
recombination [26], that is a quadratic dependence. Also stochastic rate 
equations for the photon number and optical phase of the laser have 
been considered [19,22–25,27,28]. Numerical solution of these equa-
tions is problematic when the bias current is below threshold because 
negative photon numbers can eventually appear causing numerical in-
stabilities [25]. Recently, parameter extraction of a single longitudinal 
mode laser has been performed[27] for describing gain-switching 
operation of that device. A very good quantitative agreement between 
numerical and experimental results has been shown for a very wide 
operation range [27,28]. 

In this paper, we report an experimental and theoretical study of the 
phase diffusion in gain-switched semiconductor lasers. We perform the 
experiments using the single-mode discrete mode laser used in [28]. In 
the first part we obtain an electric field rate equations model that has the 
advantages of i) avoiding the above mentioned numerical instabilities, 
and ii) describing the evolution of the optical phase without any kind of 
saturation term. The measurement of the spectral linewidth and emitted 
power as a function of the below threshold bias current, and the use of 
the Schawlow-Townes formula permit us to find the spontaneous 
emission rate as a function of the carrier number. We find that the 
quadratic dependence describes well the experimental results. Also we 
will evaluate the validity of the linear approximations that have been 
used to describe the phase diffusion. 

The paper is organized as follows. In Section 2 we derive the theo-
retical model. Section 3 is devoted to the extraction of the laser pa-
rameters and the analysis of the experimental results. In Section 4 we 
theoretically analyze the phase diffusion obtained with the extracted 
parameters and different types of spontaneous emission rates, and 
finally in Section 5 we discuss and summarize our results. 

2. Theoretical model 

The dynamics of a gain-switched single-mode semiconductor laser 
can be modelled by using a set of rate-equations. These stochastic dif-
ferential equations read (in Ito’s sense) [26,27,29] 
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where p(t) is the photon density, ϕ(t) is the optical phase in the reference 
frame corresponding to the resonant frequency at the threshold current 
[30], and n(t) is the carrier density. In these equations I(t) is the injected 
current, Va the active volume, e the electron charge, vg the group ve-
locity, g(n) the material gain, ∊ the non-linear gain coefficient, Γ the 
optical confinement factor, τp the photon lifetime, Rsp(n) is the rate of 
the spontaneous emission coupled into the lasing mode, and α is the 
linewidth enhancement factor. The carrier recombination rate is an +

bn2
+ cn3, where a, b and c are the non-radiative, spontaneous, and 

Auger recombination coefficients, respectively. We consider a material 

gain g(n) given by g
(

n) =
dg
dn(n − nt

)

, where dg
dn is the differential gain and 

nt the transparency carrier density. The Langevin terms Fp(t) and Fϕ(t) in 
Eqs. (1)–(2), represent fluctuations due to spontaneous emission, with 
the following correlation properties, < Fi(t)Fj(t

′

) >= δijδ(t − t′ ), where 
δ(t) is the Dirac delta function and δij the Kronecker delta function with 
the subindexes i and j referring to the variables p and ϕ. 

In order to write the corresponding equations for the number of 
photons inside the laser, P(t), and the number of carriers in the active 
region, N(t), we make the following change of variables: P = pVp,N =

nVa, where Vp is the volume occupied by the photons, to obtain: 

dP
dt

=

[
GN(N − Nt)

1 + ∊P
−

1
τp

]

P+Rsp

(

N
)

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2Rsp
(
N
)
P

√

Fp

(

t
)

(4)  

dϕ
dt

=
α
2

[

GN

(

N − Nt

)

−
1
τp

]

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Rsp
(
N
)

2P

√

Fϕ

(

t

)

(5)  

dN
dt

=
I(t)
e

−

(

AN +BN2 +CN3
)

−
GN(N − Nt)P

1 + ∊P
(6)  

where GN = Γvg
dg
dn/Va,Nt = ntVa,A = a,B = b/Va,C = c/V2

a ,∊ = ∊Γ/Va, 
and where we have used that Γ = Va/Vp. Our departure equations have 
been written for the photon density (or number), and optical phase. This 
permits a straightforward comparison with the models that analyze 
QRNG systems based on gain-switching of single-mode laser diodes 
[19,22,24,25] 

The above mentioned systems are such that a large signal modulation 
of the bias current is applied to the device in such a way that a random 
evolution of the optical phase is induced by the spontaneous emission 
noise, specially when the bias current is below the threshold value. 
Theoretical information on these generators has been mainly obtained 
by numerical integration of the stochastic rate equations. Integration of 
these equations is usually performed by using the Euler–Maruyama 
method for numerical integration of stochastic differential equations 
[31,32]. However some problems can appear when integrating Eqs. (4)– 
(6). If the photon number is very small (that is for bias currents close or 
below threshold) negative photon numbers can be obtained that lead to 
numerical instabilities due to the square root factor multipliying the 
noise term in Eqs. (4)–(5). A possible solution could be solving the 
equations with the constraint that the photon number is non-negative, 
and so P is equalled to zero when it becomes negative [25]. However, 
this algorithm would not work because a division by zero would be done 
in Eq. (5) in order to calculate the phase value at the following inte-
gration step. This problem also appears in all numerical algorithms in 
which the same operation is performed, for instance the Heun’s pre-
dictor–corrector algorithm[27]. In any case, numerical solutions of the 
equations without any type of constraint would be desirable. A different 
model, in which the variables P and N appearing in the square root terms 
multiplying the random terms are substituted by their averaged values, 
has been considered [25]. However the statistics of the variables can be 
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different to those obtained with Eqs. (4)–(6) because the stochastic 
differential equations are different. 

In order to get an integration algorithm for Eqs. (4)–(6) without the 
previous problems we begin by observing that the frequency of events in 
which a negative P appears decreases as the integration time step is 
decreased. In this way a solution is to decrease that time step until no 
instabilities are observed. However that situation occurs when the time 
step is so small that integration for a large number of periods in order to 
get significant statistics is not practical. The usual solution for this 
problem has been the integration of the corresponding rate equations for 
the complex electric field, E, instead of equations for P and ϕ [33]. P does 
not appear inside the square root factors that multiply the noise terms 
and hence no instabilities are observed. However, when changing the 
variables from usual rate equations for E [33] to P and ϕ we obtain that a 
gain saturation term appears in the equation for ϕ, in contrast to Eq. (5). 
Taking into account that a non-saturated linear gain term must appear in 
the equation for the phase [25,27,29] we need to modify the electric 
field rate equations of [33] in order to be consistent with Eq. (5). We 
then consider the following rate equations: 
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where E(t) = E1(t)+iE2(t) is the complex electric field and ξ(t) =
ξ1(t)+iξ2(t) is the complex Gaussian white noise with zero average and 
correlation given by < ξ(t)ξ*(t′ ) >= δ(t − t′ ) that represents the sponta-
neous emission noise. The only change with respect to Eq. (7) of [33] is 
that the saturation term does not multiply iα in our first term of Eq. (7). 
Applying the rules for the change of variables in the Ito’s calculus[34] to 

P =

⃒
⃒
⃒E|2 = E2

1 +E2
2 and ϕ = arctan(E2/E1) in Eqs. (7)–(8), we obtain our 

initial Eqs. (4)–(6). Therefore the integration of the electric field rate 
Eqs. (7)–(8) solve the previously mentioned problems because they 
correspond to our departure equations and they avoid numerical 
instabilities. 

In the next section we will describe experiments performed with the 
single longitudinal mode semiconductor laser that we used in [28]. In 
[27] measurement of the intrinsic parameters of a similar laser was 
performed. We will consider most of these parameters for our laser. The 
numerical values of the parameters are then: GN = 1.48× 104s− 1, Nt =

1.93× 107,∊ = 7.73× 10− 8,τp = 2.17ps, α = 3,A = 2.8 × 108 s− 1, B =

9.8 s− 1, and C = 3.84 × 10− 7 s− 1. Simulation and experimental results 
show not only qualitative but also a remarkable quantitative agreement 
for a very wide range of gain-switching conditions [27,28]. 

3. Experimental results 

A Discrete Mode Laser (DML) (Eblana Photonics EP1550-0-DM-H19- 
FM) was used in our experiments. The device is a multi-quantum well 
laser in a ridge waveguide with index perturbations for inducing single- 
mode operation. The temperature of the device was held constant at 25◦

C by using a temperature controller (Luzwavelabs LDC/E-Temp3). The 
CW bias current, I, was controlled with the Luzwavelabs LDC/E- 
Current200 laser driver. The threshold current of the laser is Ith=
14.14 mA, the emission wavelength is 1546.985 nm at I = 30 mA, and 
the wavelength separation between consecutive longitudinal modes is 
1.28 nm. 

In order to check that the parameters measured in [27] are appro-
priated for our device we have performed the measurements shown in 
Fig. 1. In Fig. 1(a) the square of the relaxation oscillation frequency, fr, 
obtained from relative intensity noise (RIN) spectra as a function of 
I − Ith, is shown. A linear relation is obtained. The slope of the linear fit, 

(2.35 ±0.04) GHz2/mA, gives a value for the differential gain GN =

(1.48 ± 0.03) × 104 s− 1 [35], very similar to that in [27], 1.47× 104s− 1. 
The value for Nt that we consider is slightly different to that in [27] 
because the threshold currents are slightly different. In order to check 
the values of A,B, and C we measure the laser linewidth as a function of 
|I − Ith|for bias currents slightly below threshold with a high resolution 
(10 MHz) optical spectrum analyzer, BOSA (Aragon Photonics, BOSA 
210). We follow the measurement procedure of [35] in order to obtain 
the width (FWHM) of the optical spectrum, Δν. Our experimental results 
for Δν are shown in Fig. 1(b) indicating a linear dependence with the 
current. This dependence is also obtained from theoretical analysis 
because when the current is slightly below threshold it is shown that 
[35]: 

Δν =
τnGN

2πe
|I − Ith| (9)  

where τn is the differential carrier lifetime at threshold. Using the slope 
of the corresponding linear fit, (3.71 ±0.12) GHz/mA, together with Eq. 
(9) we obtain a value of τn = (0.25 ± 0.01) ns. We can compare with the 
result obtained from our parameters because τn is given by τn =

(A + 2BNth + 3CN2
th)

− 1 where Nth = Nt +1/(GNτp) = 5.045 × 107 is the 
carrier number at threshold [26]. Using our parameters in this expres-
sion we obtain τn = 0.24 ns. This value is consistent with that derived 
from Fig. 1(b) validating in this way our choice of parameters. We note 
that A, B, and C parameters were extracted in [27] using a different 
method, mainly based on the measurement of RIN spectra. 

The Schawlow-Townes law gives the value of the linewidth below 
threshold and is accurate for the amplified spontaneous emission (ASE) 
regime [26]. This formula reads 

Δν =
Rsp
(
N
)

2πP
(10)  

where P and N are the averaged steady-state values of the photon and 
carrier number, respectively. The approximation of Rsp by its value at 
threshold [35] gives precisely Eq. (9). If instead doing this 

Fig. 1. (a) Squared relaxation oscillation frequencies as a function of I − Ith. (b) 
Linewidth as a function of |I − Ith|for bias currents below threshold. Linear fits 
are also plotted with solid lines. 
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approximation we use the general Eq. (10) for an extended range of 
currents below threshold we can measure Δν in order to get information 
about Rsp(N). This measurement is done with an optical spectrum 
analyzer (OSA, Anritsu MS9710B) with a worse wavelength resolution 
(0.06 nm) but with a better sensitivity than those of BOSA. The line-
width and the power emitted close to the lasing mode frequency, Pw, as a 
function of the bias current are shown in Fig. 2. 

Pw has been measured by centering the ASE spectrum around its 
maximum and using a wavelength span of 1 nm. Δν (Pw) decrease (in-
crease) in the well-below threshold regime as the bias current increases 
as illustrated in Fig. 2. Their product can be used to evaluate Rsp(N)

because Rsp(N) = 2πΔνP and P is proportional to Pw, that is P = kPw 

where k is the proportionality constant. 
Fig. 3(a) shows that the product ΔνPw is an increasing function of 

I/Ith. In order to know the dependence of ΔνPw as a function of the 
carrier number we can use Eq. (6) to calculate the steady state value of N 
corresponding to I. In the well-below threshold regime the stimulated 
emission term can be neglected and N is obtained by solving the cubic 
equation: AN + BN2

+ CN3
− I/e = 0, with the A,B,C corresponding to 

our laser. Fig. 3(b) shows the real root of this equation as a function of 
the current. Using this dependence in the experimental data shown in 
Fig. 3(a) we can obtain ΔνPw as a function of N. This dependence is 
shown in Fig. 3 (c) and would give Rsp = Rsp(N), provided k is known, 
because Rsp(N) = 2πkΔνPw(N). 

A linear dependence of Rsp on N is typically used in rate equation 
models. A more rigorous treatment [26] considers a quadratic depen-
dence: Rsp(N) = βBN2 where β is the fraction of spontaneous emission 
coupled into the lasing mode. Assuming this dependence we get 
ΔνPw(N) = βBN2

/(2πk), so we can get the value of k if ΔνPw is linearly 
fit vs N2 and if the value of β measured for the laser is used (β = 5.3×

10− 6) [27]. The linear fit, shown in Fig. 4(a), has a slope s = (7.36 ±

0.04) × 10− 13 HzW, and so k = βB/(2πs) = (1.12 ± 0.01) × 107 W− 1. 
We now analyze the validity of the linear approximation for Rsp(N). 

The estimation of k permits us to calculate Rsp(N) = 2πkΔνPw(N). Values 
of Rsp(N) for our experimental data are shown in Fig. 4(b). Also two 
linear fits are plotted in that Figure. The first one considers a dependence 
Rsp(N) = β1(N − N0) while the second one is a linear fit in which crossing 

the origin is imposed, that is Rsp(N) = β2N. The values of the fit pa-
rameters are: β1 = (4900 ± 200) s− 1, N0 = (2.39 ± 0.17)× 107, and 
β2 = (2300 ± 100) s− 1. The β2 parameter has been calculated as the 
slope of the regression straight line obtained when fixing the intercept of 
that line to the zero point, (N,Rsp) = (0,0). We note that the dependence 
Rsp(N) = βN, where β is constant, is frequently used in the literature 
[33,36,37] being usually considered when modelling QRNG in gain 

Fig. 2. (a) Full width at half maximum of the optical spectrum and (b) power as 
a function of the bias current relative to threshold. 

Fig. 3. (a) Linewidth-power product as a function of I/Ith (b) Calculated carrier 
number relative to threshold vs I/Ith, and (c) Linewidth-power product as a 
function of N/Nth. 

Fig. 4. (a) Linewidth-power product as a function of N2 (b) Rate of sponta-
neous emission coupled into the lasing mode as a function of N. Results for 
linear fits are plotted with red and blue solid lines. Theoretical results obtained 
for the quadratic dependence are shown with black solid line. 
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switched laser diodes [6,19,22,24,25]. Results from Fig. 4(b) show that 
while Rsp(N) = β1(N − N0) seems a reasonable approximation, consid-
ering Rsp(N) = β2N does not seem in principle adequate in order to get a 
proper quantitative agreement between experimental and theoretical 
results. 

The better description obtained when using Rsp(N) = β1(N − N0) can 
be understood if the Taylor expansion of N2 around Nth is performed: 

N2 ∼ N2
th + 2Nth(N − Nth). In this way Rsp

(

N
)
=

βBN2 ∼ βB
(

2NthN − N2
th
)
= 2βBNth

(

N − Nth
2

)

. The parameters of the 

linear dependence are then β1 = 2βBNth and N0 = Nth/2. The evaluation 
of these parameters using those of the model gives β1 = 5240s− 1 and 
N0=2.52 × 107, values that are close to those obtained with the linear fit 
with two parameters. Fig. 4(b) also shows the values obtained with 
Rsp(N) = βBN2. As expected, the linear fit with two parameters becomes 
a good approximation of the quadratic rate of spontaneous emission as N 
approaches Nth. In the next section we will discuss the validity of the 
linear approximations for describing phase diffusion. 

4. Theoretical results 

In this section we will theoretically analyze the dynamical evolution 
of the statistics of the relevant variables with a special focus on the 
optical phase. We consider an injected bias current that follows a square- 
wave modulation of period T with I(t) = Ion during T/2, and I(t) = Ioff 
during the rest of the period. Fig. 5(a), (b), and (c) show the dynamics of 
the photon number, optical phase and carrier number, respectively, 
when Ion = 30mA, Ioff= 7 mA, and T = 1 ns for three consecutive pe-
riods. The laser is switched-off with a bias current well below threshold, 
close to Ith/2, in order to get randomness of the phase due to the spon-
taneous emission noise. Integration of Eqs. (7)–(8) with Rsp(N) = βBN2 is 
performed by using the Euler numerical scheme [31,32] with an inte-
gration time step of 0.01 ps. We integrate these equations for consecu-
tive bias current pulses in such a way that the initial conditions for one 
period correspond to the final values of the variables at the end of the 
previous period. All our results will be plotted in one time window of 
duration T. 

Fig. 5(a) shows P in a logarithmic scale in order to better appreciate 
the fluctuations. At first P is random and determined by the spontaneous 
emission events. After the switch-on, P develops relaxation oscillations 
and begins to decrease at t = 0.5 ns that is when Ioff is applied. Around 
t = 0.7 ns, P reach again random values with an average similar to that 
found at the beginning of the period. The optical phase for those three 
realizations is shown in Fig. 5(b). ϕ is calculated at each integration step 
from E1 and E2 in such a way that it is a continuous function of time 

within each period. Fig. 5(b) shows that ϕ decreases after the bias cur-
rent changes to Ioff , in such a way that the final value at the end of the 
period is much smaller than 0 (more than several multiples of 2π). The 
initial value of the phase at the beginning of the period, ϕ0, is taken as 
the value of the phase at the end of the previous period, ϕT, but in the [0,

2π) range, that is ϕ0 = ϕT– int
(

ϕT
2π

)

2π. Note that the conversion to the 

[0, 2π) range is necessary if a calculation of well defined statistical mo-
ments of the phase is required. If no conversion is done, not even the 
averaged phase, < ϕ(t) >, could be calculated because ϕdecreases in 
each period in a magnitude of more than several 2π. For large values of P 
the noise term in Eq. (5) is negligible, so ϕ evolves in a deterministic 
way. However, for small values of P the noise term in Eq. (5) dominates 
the other term of that equation and so ϕ mainly evolves in a random 
way. Therefore, similarly to P, fluctuations of ϕ are more important at 
the beginning and at the end of the pulse. The carrier number evolution 
is shown in Fig. 5(c). N displays relaxation oscillations before beginning 
to decrease after t = 0.5 ns. This decrease is monotonous since Ioff is 
smaller than the threshold current. 

The results included in Fig. 5 have been obtained by integrating Eqs. 
(7)–(8). We have also integrated the equations for the photon number 
and optical phase, Eqs. (4)–(6), with different integration time steps, Δt, 
under the conditions of Fig. 5. In these integrations we have recorded the 
percentage of integration time steps in which P becomes negative. These 
percentages are 2.3, 0.9 and 0.1% for Δt= 0.1, 0.01, and 0.001 ps, 
respectively. These results indicate that even with a very small Δt, like 
0.001 ps, problems are found in a significant fraction of integration steps 
when using Eqs. (4)–(6). 

The quantity that is relevant for determining the performance of this 
system as a QRNG is the standard deviation of the phase. This is shown 
as a function of time in Fig. 5(d). σϕ(t) has been calculated by averaging 
over 5 ×104 periods. σϕ(0) > 0 due to our choice of random initial 
conditions. Large increases of σϕ(t), corresponding to phase diffusion, 
occur at the beginning and at the end of the period because P has small 
values determined by the spontaneous emission noise. Phase diffusion is 
characterized by a linear increase of σ2

ϕ with t. We can check this 
dependence by fitting the values of σ2

ϕ from t = 0.75 ns to t = 1 ns: we 
obtain a linear fit with a correlation coefficient of 0.999. During the 
deterministic evolution of ϕ (between 0.2 and 0.6 ns, approximately) σ2

ϕ 

oscillates around a value that increases linearly with t [38]. The fre-
quency of these oscillations is the relaxation oscillation frequency[38]. 
These oscillations can be barely seen in Fig. 5(b) because their amplitude 
is small compared to the value of σ2

ϕ(T). 
From now on we will evaluate the suitability of the different linear 

spontaneous emission rate terms considered in the previous section for 

Fig. 5. (a) Photon number, (b) phase, and (c) carrier number evolution for three consecutive periods are shown with black, red, and green lines. (d) Standard 
deviation of the phase as a function of t. In this figure Ioff = 7 mA and T = 1 ns. 
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describing the transient statistics of our system. We will compare results 
obtained with Rsp,1 = β1(N − N0), Rsp,2 = β2N, and Rsp,3 = β1N with the 
results obtained with Rsp = βBN2, that is the best available description of 
that rate. The advantage of Rsp,1 and Rsp,3 with respect to Rsp,2 is that β1 
and N0 have simple expressions in terms of the parameters of the model 
(β1 = 2βBNth,N0 = Nth/2) in contrast to β2 that must be calculated from 
a fitting of the experimental results. We have considered Rsp,3 because it 
corresponds to the linear dependence of Rsp on N for which the 
parameter, β1, has a simple expression in terms of the parameters of the 
model. 

Figs. 6(a), 6(b) and 6(c) show the dynamical evolution of the aver-
aged photon number, phase and carrier number, respectively, consid-
ering the previously mentioned dependences for Rsp(N), when Ioff has 
been increased to 12 mA. This bias current is below the threshold value 
and is enough for making the phase to diffuse at the beginning and the 
end of the period as it can be seen in Fig. 6(d) in which σϕ(t) has been 
plotted. 

Fig. 6 shows that the linear approximations are good for describing 
the statistics with the exception of Rsp,3. It would be expected that the 
best description is that corresponding to Rsp,1 because it corresponds to 
the linear expansion of βBN2 around Nth. Ioff is close to threshold in Fig. 6 
(0.85 Ith), so the deviations of N with respect to Nth are not large. We can 
confirm that it is the best approximation by making zooms of Fig. 6(b) 
and Fig. 6(d) that are shown in the insets of these figures. 

The inset of Fig. 6(d) also shows in a much clearer way the oscilla-
tions of σϕ(t) at the relaxation oscillation frequency. The reason why 
Rsp,3 gives the worst description is that it overestimates the spontaneous 
emission rate as it can be seen in Fig. 4(b): Rsp,3 corresponds to a straight 
line with β1 slope and crossing through the origin. This overestimation 
can also be seen in Fig. 6(a) in which < P > obtained with Rsp,3 has the 
largest values at the beginning and the end of the period. 

The increase of the speed of QRNGs based on gain-switched lasers is 
obtained by decreasing the modulation period. For very short periods Ioff 
can not be very small because then laser pulses with significant power 
would not be fired. In this sense it is interesting to check again the 
validity of the linear approximations when T is decreased. Fig. 7(a) 
shows σϕ(t) under the same conditions of Fig. 6 but decreasing T to 0.3 
ns. The best linear approximation is that corresponding to Rsp,1. The 
relative errors of σϕ(T) for Rsp,1,Rsp,2 and Rsp,3 are 0.2%, 4% and 19%, 
respectively. These relative errors are smaller when Ioff decreases in 
order to increase σϕ as it is shown in Fig. 7(b) where results for T = 0.3 
ns and Ioff = 7mA. They are 0.15%, 0.9% and 6%, for Rsp,1,Rsp,2 and 
Rsp,3, respectively. 

In order to gain insight on the gain-switched operation we have done 
simulations under various operating conditions. Fig. 8 shows σϕ(T) as a 
function of Ioff ,Ion, and T, taking as a reference the situation illustrated in 

Fig. 5. In this way we analyze the dependence of the fluctuations of the 
phase on bias current, pulse current amplitude and pulse frequency. 
Fig. 8(a) shows that σϕ(T) increases monotonously as Ioff decreases since 
the strength of the phase fluctuations is more important at the beginning 
and the end of the period (this is also illustrated when comparing Fig. 5 
and Fig. 6). The situation is not monotonous when analyzing σϕ(T) as a 
function of Ion because there are some oscillations, as it can be seen in 
Fig. 8(b). The origin of these oscillations is related to the relaxation 
oscillations. Our gain saturation coefficient is such that only two clear 
relaxation oscillation peaks appear before reaching the steady state. The 
maximum value of σϕ(T) at Ion=19 mA corresponds to a situation in 
which just one peak is emitted with its maximum appearing at T/2. The 
minimum value is obtained at Ion=23 mA. It corresponds to the situation 
in which the second relaxation oscillation spike is beginning to appear. 
The maximum at Ion=26 mA corresponds to the situation in which there 
is no emission after the second fully developed relaxation oscillation 
peak. The last minimum, at Ion=30 mA corresponds to the situation at 
which the photon number at T/2 is close to its steady state value, as it 
can be seen in Fig. 5. Fig. 8(c) shows the variation of σϕ(T) as a function 

Fig. 6. (a) Averaged photon number, (b) averaged phase, (c) averaged carrier number, and (d) standard deviation of the phase as a function of t. Results for different 
dependences of Rsp(N) are plotted with lines of different colours, as indicated in the legend. In this figure Ioff = 12 mA and T = 1 ns. 

Fig. 7. Standard deviation of the phase as a function of time for T = 0.3 ns and 
(a) Ioff= 12 mA, and (b) Ioff= 7 mA. Results for different dependences of Rsp(N)

are plotted with lines of different colours, as indicated in the legend. 
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of T. For small values of T there are some oscillations that can be 
attributed to the relaxation oscillations of the laser. When T > 0.65ns 
the increase of σϕ(T) is monotonous: longer values of the time for which 
the laser is switched off produce larger values of the fluctuations of the 
phase. 

5. Discussion and conclusions 

The best description for the spontaneous emission rate is that cor-
responding to a quadratic dependence on the carrier number[26]. The 
considered linear approximations have advantages and disadvantages. 
Rsp,1 is the best approximation when the carrier number is close to Nth. 
Simulation results obtained with Rsp and Rsp,1 are similar when N is close 
to Nth because Rsp,1 is an approximation to Rsp that only works well close 
to Nth because it is derived from a Taylor expansion of Rsp(N) around Nth. 
However, the use of Rsp,1 in simulations gives unphysical results when 
the bias current is small enough to obtain N smaller than Nth/2 because 
we would obtain a negative spontaneous emission rate since Rsp,1 =

2βBNth(N − Nth/2). This also produces numerical problems when inte-
grating Eqs. (4) and (5) since Rsp,1 appears within a square root sign. 
That problem does not appear for the other considered linear de-
pendences. However, Rsp,3 = 2βBNthN has the problem of a very large 
overestimation of the spontaneous emission rate that causes very large 
values of < P > when the spontaneous emission noise dominates the 
evolution (see Fig. 6). The use of Rsp,2 = β2N has a different problem: β2 
has no expression in terms of the parameters of the model and so, no 
direct physical meaning can be assigned to β2. Also β2 must be obtained 
from an extra fitting, that shown in Fig. 4. Concerning the description of 
the phase fluctuations, Fig. 6, and Fig. 7 show that the best (worst) linear 
description is given by Rsp,1 (Rsp,3). We have discussed three different 
expressions for the linear dependence of the spontaneous emission rate 
because they are used in the literature when modelling gain switching in 
laser diodes. Comparison of these dependences with the quadratic one is 
of interest for knowing the validity of the linear approximations. 

The simulation results relative to the phase statistics, mainly average 
and standard deviation of the phase, have not been compared with ex-
periments, so direct validation of these results has not been done in this 
work. This will be the subject of future work. Our approach for obtaining 
a good description of the phase evolution has been to compare experi-
mental and theoretical results in the static case for extracting the model 
parameters. Using these parameters in the rate equation model we have 
obtained the time evolution of the phase statistics. Most of the results 
shown in our work correspond to long current pulses in such a way that 
more than one relaxation oscillations peak is observed. We have chosen 
these conditions because they correspond to a typical operation of 
commercial QRNGs based on gain-switching of laser diodes. 

Summarizing, we have analyzed theoretically and experimentally 
the phase diffusion appearing in gain-switched single-mode semi-
conductor lasers. This study finds application in multi-photon QRNGs 
based on interferometric detection of pulses with random phases 
because it contributes to a better statistical characterization of the en-
tropy source of these generators. We have obtained an electric field 
stochastic rate equations model with the advantage of avoiding the 
numerical instabilities that appear for the below threshold operation, 
that is the regime in which the randomization is achieved. We have used 
[27] for an initial estimation of the laser parameter values. Further 
measurements have been performed in order to get a complete set of 
parameters of the model for our laser. Using the Schawlow-Townes 
formula, that gives a good description of the below threshold situa-
tion, we have experimentally obtained the spontaneous emission rate 
coupled into the lasing mode as a function of the carrier number. We 
have compared the obtained quadratic dependence with the linear ap-
proximations that have been used to describe laser phase diffusion in 
QRNG, discussing advantages and disadvantages of the linear approach. 
We have calculated the dynamical evolution of the statistics of the op-
tical phase. A realistic quantitative description of the variance of the 
optical phase has been obtained because it relies in a model for which 
the extraction of the laser parameters has been performed. 
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[35] P. Pérez, A. Valle, I. Noriega, L. Pesquera, Measurement of the intrinsic parameters 
of single-mode vcsels, J. Lightwave Technol. 32 (8) (2014) 1601–1607. 

[36] G.P. Agrawal, N.K. Dutta, Semiconductor Lasers, Springer Science & Business 
Media, 2013. 

[37] C. Mirasso, A. Valle, L. Pesquera, P. Colet, Simple method for estimating the 
memory diagram in single mode semiconductor lasers, IEE Proc.-Optoelectron. 141 
(2) (1994) 109–113. 

[38] C. Henry, Phase noise in semiconductor lasers, J. Lightwave Technol. 4 (3) (1986) 
298–311. 

A. Quirce and A. Valle                                                                                                                                                                                                                        

http://refhub.elsevier.com/S0030-3992(22)00149-9/h0025
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0025
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0030
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0030
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0030
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0035
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0035
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0040
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0040
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0040
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0045
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0045
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0050
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0050
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0050
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0055
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0055
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0055
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0060
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0060
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0060
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0065
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0065
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0065
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0070
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0070
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0075
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0075
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0080
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0080
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0080
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0085
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0085
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0085
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0090
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0090
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0090
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0095
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0095
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0095
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0100
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0100
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0100
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0105
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0105
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0105
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0110
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0110
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0110
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0115
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0115
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0115
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0120
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0120
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0120
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0130
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0130
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0135
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0135
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0135
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0140
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0140
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0140
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0140
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0145
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0145
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0150
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0150
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0155
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0155
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0160
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0160
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0165
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0165
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0165
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0170
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0170
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0175
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0175
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0180
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0180
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0185
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0185
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0185
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0190
http://refhub.elsevier.com/S0030-3992(22)00149-9/h0190

	Spontaneous emission rate and phase diffusion in gain-switched laser diodes
	1 Introduction
	2 Theoretical model
	3 Experimental results
	4 Theoretical results
	5 Discussion and conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	References


