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Abstract. Advance warning of seasonal conditions has the
potential to assist water management in planning and risk
mitigation, with large potential social, economic, and ecolog-
ical benefits. In this study, we explore the value of seasonal
forecasting for decision-making at five case study sites lo-
cated in extratropical regions. The forecasting tools used in-
tegrate seasonal climate model forecasts with freshwater im-
pact models of catchment hydrology, lake conditions (tem-
perature, water level, chemistry, and ecology), and fish mi-
gration timing and were co-developed together with water
managers. To explore the decision-making value of forecasts,
we carried out a qualitative assessment of (1) how useful
forecasts would have been for a problematic past season and
(2) the relevance of any windows of opportunity (seasons and
variables where forecasts are thought to perform well) for
management. Overall, water managers were optimistic about
the potential for improved decision-making and identified ac-
tions that could be taken based on forecasts. However, there
was often a mismatch between those variables that could
best be predicted and those which would be most useful for

management. Reductions in forecast uncertainty and a need
to develop practical, hands-on experience were identified as
key requirements before forecasts would be used in opera-
tional decision-making. Seasonal climate forecasts provided
little added value to freshwater forecasts in these extratrop-
ical study sites, and we discuss the conditions under which
seasonal climate forecasts with only limited skill are most
likely to be worth incorporating into freshwater forecasting
workflows.

1 Introduction

We rely on freshwater to deliver a range of vital services,
and managing catchments and lakes to ensure these ser-
vices are delivered can be highly challenging. Unexpected
seasonal climate conditions can exacerbate the problem as
heatwaves, droughts, or prolonged wet periods can stress al-
ready vulnerable systems. Advance warning of flow, water
quality, or biological conditions, a season in advance, could

Published by Copernicus Publications on behalf of the European Geosciences Union.



1390 L. A. Jackson-Blake et al.: Opportunities for seasonal forecasting to support water management

pave the way for protective measures to be put in place, with
potentially great ecological, economic, and societal benefits
(Bruno Soares et al., 2018; Bruno Soares and Dessai, 2016).
Seasonal forecasts have the obvious potential to assist man-
agement of flow-regulated catchments, where water level can
be adjusted in anticipation of wet or dry seasons, and much
attention has been given to this in recent years (e.g. Maurer
and Lettenmaier, 2004; Turner et al., 2017, 2020; Peñuela et
al., 2020). However, there are many other situations in which
forecasts could assist water managers in delivering key ser-
vices, protecting vulnerable aquatic habitats and species, and
in meeting environmental objectives.

Within the water sector, predicting conditions a season
in advance can make use of two sources of seasonal pre-
dictability, i.e. (1) antecedent and initial conditions such as
how much water is stored in the catchment/lake at the start
of the period, and (2) how weather is likely to evolve over the
coming season. The relative importance of these sources of
predictability varies greatly by location and depends on the
catchment/lake characteristics, season, forecast horizon, and
variable of interest (e.g. Shukla and Lettenmaier, 2011; Ar-
nal et al., 2018). To incorporate both sources of predictabil-
ity into forecasts, seasonal climate model outputs can be
used to drive statistical or process-based surface water mod-
els. Seasonal climate models provide, for instance, probabil-
ities of wetter or drier and cooler or hotter conditions sev-
eral months in advance. One of the main sources of sea-
sonal climate predictability is the coupled ocean–atmosphere
El Niño/ La Niña pattern (Troccoli, 2010), so seasonal cli-
mate models tend to perform better in the tropics, which
are more affected by these phenomena (e.g. Manzanas et al.,
2014; Beverley et al., 2019; Johnson et al., 2019). Away from
the tropics, seasonal climate forecasting is challenging, and
forecast quality varies geographically and strongly depends
on the variable and season of interest. The added value of us-
ing seasonal climate forecasts in freshwater forecasting out-
side the tropics is therefore often less clear (e.g. Peñuela et
al., 2020; Arnal et al., 2018).

Many seasonal hydrologic and drought prediction systems
have been developed over the last decade, using a variety of
forecasting methods. Seasonal streamflow forecasting is the
most advanced, with many examples of systems that produce
regional or even global operational forecasts (e.g. Arnal et
al., 2018; Bennett et al., 2017; Emerton et al., 2018; Prud-
homme et al., 2017; Wood and Lettenmaier, 2006). These
systems generally perform better than climatology (i.e. re-
sampled historic streamflow), although forecasting methods
that incorporate seasonal climate data have only been found
to perform better than methods that rely on historic meteo-
rological data over shorter lead times and/or in certain lo-
cations and seasons (e.g. in winter for 40 % of Europe; Ar-
nal et al., 2018). For lake water level, probably the longest
established operational seasonal forecasting system is for
the Great Lakes in the USA/Canada, where empirical and
process-based catchment and lake models are forced with

historic meteorological data, in some cases taking monthly
climate forecasts and long-term climate projections into ac-
count by the use of weightings (Gronewold et al., 2011, 2017;
Fry et al., 2020). This system has been shown to offer some
skill, although forecasted variability is generally lower than
observed (Fry et al., 2020). Meanwhile, seasonal forecasts of
water quality and ecology are rare, despite their potential rel-
evance for management. The few examples we could find in-
cluded river nutrient loads in a Korean catchment (Cho et al.,
2016) and turbidity exceedance in a drinking water source in
the Pacific Northwest (Towler et al., 2010), and while both
studies focused primarily on method development, Towler et
al. (2010) showed that their workflow, which incorporated
seasonal climate forecasts, resulted in an improvement in
skill over climatology.

For standing waterbodies, the use of short-term weather
forecasts, i.e. timescales of up to 10 d ahead, has been
advanced in a number of lake water quality studies
(e.g. Thomas et al., 2020; Carey et al., 2021), but
we found only one application at seasonal timescales,
where empirical methods were used to forecast lake
surface water temperature (https://climate.copernicus.eu/
lake-surface-water-temperature, last access: 9 March 2022).
The focus of the WATExR project, a European Union (EU)
project funded by the European Research Area for Climate
Services (ERA4CS), was to help address this gap by fo-
cusing on seasonal forecasting of water quality and ecol-
ogy and including standing waterbodies. Pilot seasonal fore-
casting tools were co-developed with water managers at five
catchment–lake case study sites, with four in Europe and
one in South Australia. The focus was on extratropical areas,
where seasonal climate predictability is lower. Tools link sea-
sonal climate forecasts with models which predict freshwater
variables of interest to decision-makers at each site, includ-
ing river discharge, lake water level and water temperature
(described in detail in Mercado-Bettín et al., 2021), water
quality, algal bloom risk, and fish migration.

The substantial advances in the development of oper-
ational streamflow forecasting systems have enabled im-
proved water management in some areas of the world. In
a recent study, for example, Turner et al. (2020) found
that a large proportion of dams and reservoirs in the USA
use seasonal stream inflow forecasting to inform water re-
lease. However, snowpack data were inferred to be the main
source of information for deriving streamflow forecasts, with
more limited evidence for seasonal climate information be-
ing used. Certainly in Europe, recent studies have found that
seasonal climate products are still rarely used to inform wa-
ter management (e.g. Bruno Soares et al., 2018). Barriers to
use include low climate forecast skill at extratropical lati-
tudes, the probabilistic nature of the forecasts, and factors
such as a lack of awareness of what is available, accessibil-
ity, and level of expertise or training required (Bruno Soares
and Dessai, 2016; Bolson et al., 2013). A variety of stud-
ies have emphasised that a key way of increasing the use
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of climate products in decision-making is co-development,
whereby scientists and decision-makers together frame and
develop the scientific information and tools that are use-
ful and usable for decision-making (Brasseur and Gallardo,
2016; Bruno Soares and Dessai, 2016). Another key aim of
the WATExR project was, therefore, to facilitate and explore
the value of using seasonal climate information to help sup-
port freshwater management. A case-study-based approach,
and involving water managers through every stage of devel-
opment, ensured that the forecasting tools developed were
user-friendly and tailored to individual site needs.

In this paper, our main aim is to test how useful the fore-
casting tools developed as part of the WATExR project are
for supporting decision-making. To do this, we first used the
forecasting tools to simulate historic seasons at the case study
sites and then assessed, together with end-users, the potential
for improved management and key challenges. This assess-
ment process involved two exercises. In the first (Sect. 3.1),
we generated forecasts for a single historic season, selected
by water managers, when seasonal climate resulted in prob-
lematic conditions in each study site. Managers then assessed
how useful forecasts would have been, whether they would
have helped mitigate the impacts of the seasonal event, and
identified barriers to operational use. In the second exercise
(Sect. 3.2), we carried out a more comprehensive assessment
of the seasonal forecasting windows of opportunity at each
site, i.e. those seasons, variables, or event types which could
be reliably forecasted, their perceived usefulness, and which
windows of opportunity would be of most use for manage-
ment. We then discuss the results in terms of the wider liter-
ature and review the opportunities and barriers for seasonal
forecasting to support water management (Sect. 4). This in-
cludes a discussion of the conditions under which seasonal
forecasting is most likely to be useful for decision-making,
where the use of seasonal climate forecasts is most likely to
provide added value, and future priorities.

2 Methods

2.1 Case study sites

Forecasting tools were developed at five case study sites,
with four in Europe and one in South Australia (Fig. 1). All
are catchment–lake systems, and lake water level is regulated
at all but the Irish site. The main characteristics of the catch-
ments and lakes/reservoirs are given in Table 1, and catch-
ment maps are shown in SI1 in the Supplement (see code
and data availability section).

Mount Bold reservoir is the largest in South Australia.
Its main water supply is the Onkaparinga River, but during
the dry season inflows are supplemented with pumped water
from the Murray River via a pipeline. Mount Bold provides
water to the Happy Valley reservoir further downstream,
which is the drinking water source for the city of Adelaide

Figure 1. Location of the five study sites in Europe and Australia.

(around 1.3 × 106 people). Pumping water through the Mur-
ray pipeline is expensive, and operational decisions relating
to pumping and release would benefit from advance knowl-
edge of the likely hydrological conditions. In addition, the
reservoir is susceptible to phosphorus resuspension, which
contributes to algal blooms in the Happy Valley reservoir.

The Wupper reservoir is located near Cologne and is cre-
ated by a large dam on the Wupper River. Its catchment is
heavily built up compared to the other study sites, and the
reservoir is an important recreational area. The water level is
managed for flood control, maintaining environmental flows,
and recreation, all of which are challenging as the water level
fluctuations are large. Cyanobacterial blooms are problem-
atic during hot summers and low water levels.

Lake Vansjø is located in one of the most productive agri-
cultural areas of Norway which, combined with the preva-
lence of phosphorus-rich clay soils in its catchment, means
it is prone to poor water quality. The lake has two main
basins, an eastern and a western basin, and is a very im-
portant recreational area. The eastern basin (Storefjorden) is
deeper and provides drinking water to the city of Moss (pop-
ulation of 60 000) and flows in to the shallower western basin
(Vanemfjorden). The focus in this study was on the western
basin, where algal blooms are particularly problematic. Toxic
cyanobacteria blooms led to bathing bans in much of the pe-
riod from 2000 to 2007, for example. Water level in the lake
is regulated for hydropower, flood protection, and recreation.

Sau reservoir is the main water supply source for the
Barcelona metropolitan area, with a population of up to
4.4× 106 people. It is part of the Ter River catchment, which
is the main source of water to the reservoir. The reservoir is
vulnerable to both wet and dry seasonal climate events, as
high river discharge washes in nutrients from the catchment
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Table 1. Main characteristics of the catchment–lake study sites and a description of the water managers involved in the project.

Site End-user Catchment Lake Land use (%) Lake Max Water
area area elevation depth residence

(km2) (km2) (m) (m) time (years)

Mount Bold reservoir, South Australian Water 357 2.5 Pasture: 39 244 45 0.2–0.6
Australia (senior research Semi-natural: 19

programme manager; Built up: 18
environmental release Crops and horticulture: 14
manager) Other: 10

Wupper reservoir, Wupperverband 215 2.1 Grassland: 48 250 31 0.2
Germany (head of water Built up: 25

resources and flood risk Forest: 19
management; technical Agriculture: 8
staff)

Burrishoole Marine Institute 85 3.9 Rough grazing: 73 25∗ n/a n/a
catchment, Ireland (station manager; Forestry: 22

postdoctoral researcher) Waterbodies: 5

Western basin of Lake Morsa River Basin 690 36 Forest: 79 26 19 0.21
Vansjø, Norway Management Authority Agriculture: 16

(manager) Waterbodies: 5

Sau reservoir, Spain ATL Water Supply 1522 5.7 Forest, semi-natural: 83 425 60 0.2
Company (head of Agriculture: 15
water treatment and Built up: 2
resources; technical staff)

∗ At Lough Feeagh, around 100 m upstream of the fish monitoring point. Note: n/a stands for not applicable.

resulting in poor water quality, whilst dry and warm seasons
may result in low water levels, algal bloom development, and
anoxia.

Sau, Mount Bold, and Wupper reservoirs are part of a
larger chain of reservoirs, and water managers therefore
face challenges in developing optimum release and pump-
ing strategies throughout the chain. All the lake and reser-
voir sites face water quality challenges. High river discharge
may wash in excess nutrients and lead to poor water qual-
ity, while prolonged dry and warm periods are often associ-
ated with algal blooms. The primary management opportu-
nity at these sites is in adjusting water storage, release, and
pumping strategies to minimise operational costs, while en-
suring drinking water provision, flood protection, recreation,
minimum environmental flows, and environmental protec-
tion. Advance warning of cyanobacteria bloom risk was of
particular interest to the end-users in Lake Vansjø, in order
to inform lake monitoring strategies, as was the likelihood
of meeting water quality environmental targets. Additional
background information on these four lake/reservoir sites is
provided in Mercado-Bettín et al. (2021).

In the Burrishoole catchment in northwestern Ireland, the
focus was on the timing of diadromous fish migration. This
site is an extremely important Atlantic salmon and eel re-
search catchment, with historic data on fish migration go-
ing back to the 1950s, together with a comprehensive catch-
ment monitoring programme. The primary end-user interest

at this site was the sustainable management of diadromous
fish stocks and the development of a prototype seasonal fore-
casting tool that could be potentially transferred elsewhere in
Ireland to inform the timing of eel trap and release schemes,
for example, which are carried out in Ireland to enable eels
to safely migrate around run-of-river hydropower structures.

2.2 Co-development and assessment

The water managers engaged in the project included reser-
voir operators and water supply companies at the Mount
Bold, Wupper and Sau reservoirs, the Morsa River Basin
Management Authority in Norway, which is a partnership
organisation responsible for implementation of the Euro-
pean Water Framework Directive (WFD; 2000/60/EC) in
the catchment, and the Marine Institute in Ireland, who are
responsible for diadromous fish stock monitoring and in-
forming fisheries management (Table 1). One or two peo-
ple were involved in the project from each organisation, in-
cluding someone in a position to take water management
decisions or, in the case of Mount Bold, responsible for re-
search into new operational methods. A technical staff mem-
ber (i.e. with responsibility for running models and analysing
data) from each end-user organisation was also involved the
project, where necessary. Water managers from Mount Bold
and Wupperverband had experience in using catchment hy-
drology, water quality, and reservoir models, and the ultimate
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goal at these sites would be to run seasonal forecasting work-
flows in-house. At Sau and Vansjø, the aim was to develop a
user-friendly forecast output rather than for the end-users to
run the workflows themselves.

Water managers were involved in the design of the fore-
casting tools from the start as active project members to en-
sure that the tools matched their interests and needs. This
also meant that they were able to interpret the probabilistic
forecasts and the reliability information included with fore-
casts and, thus, carry out an informed assessment of the value
of the forecasts for decision-making. Formal co-development
and assessment exercises included the following:

– An initial workshop to introduce seasonal forecasting,
define the main management challenges and priorities
at each site, and discuss ways in which forecasts could
contribute to decision-making.

– A forecasting tool co-development workshop to agree
on the desired features, functionality, and information
layout at each site.

– A workshop on communicating and visualising seasonal
forecast uncertainty and reliability information (more
details and outcomes are briefly described in Sect. 2.4).

– Interactions to assess end-user perceptions on the qual-
itative value of forecasts, i.e. the practical potential for
improved management, including the following:

a. An assessment of the usefulness of forecasts for a
selected historic event (Sect. 3.1). This involved
water managers first selecting a historic season of
interest. Researchers then generated forecasts for
this season and shared them with managers, who
were asked a set of questions, via an online ques-
tionnaire, to determine their interpretation of the
forecasts and their potential usefulness (full ques-
tions are given in SI2; see the data availability sec-
tion). Results were then discussed individually be-
tween researchers and water managers at each case
study site via a facilitated virtual call, and then case
studies shared experiences and main findings at a
workshop.

b. Assessment of the usefulness of windows of oppor-
tunity (Sect. 3.2). Researchers at each case study
site generated a list of the variable–season–event-
type combinations that could be reliably forecast
(the windows of opportunity). The potential value
of these for management was then explored via
an online survey, where water managers were also
asked to select any additional windows for which
they were most interested in obtaining reliable fore-
casts (see Fig. A1 in the Appendix for the survey
design).

2.3 Forecasting workflows

The surface water variables of interest varied between sites.
The Irish site focused on the timing of diadromous fish
migration to inform the monitoring and management of
fisheries. Elsewhere, all water managers were interested in
streamflow forecasts. Water temperature was also of broad
interest, as it is the most basic water quality parameter which
affects a host of other biogeochemical and ecological pro-
cesses, and it can be simulated relatively robustly using
process-based models. This was the water quality end-point
forecast in the German, Spanish, and Australian sites. At
Lake Vansjø in Norway, water temperature alone would not
be enough to inform decision-making, and the end-user was
also eager for forecasts of water quality parameters, in par-
ticular the risk of toxic cyanobacteria blooms.

A range of different models was used to produce fore-
casts for the freshwater variables of interest (hereafter termed
freshwater impact models). In most cases, these impact mod-
els integrate seasonal climate forecasts, knowledge of an-
tecedent conditions, and the characteristics of the system to
predict the future state. The different variables of interest
were simulated as follows:

– Streamflow, lake level, and lake water tempera-
ture. Details of the modelling workflow used in the
lake/reservoir sites are given in Mercado-Bettín et
al. (2021). In brief, a process-based catchment hydrol-
ogy model was used to simulate streamflow and, in
turn, provided input to a process-based lake model
which simulated lake water level and temperature. Dif-
ferences in site characteristics led to different mod-
els being used at different sites. For catchment hy-
drology, the spatially distributed mesoscale Hydrologic
Model (mHM; Samaniego et al., 2010) was used at Sau,
the semi-distributed SimplyQ model (Jackson-Blake et
al., 2017) at Vansjø, and the semi-distributed Genie Ru-
ral (GR) models, implemented within the airGR R pack-
age (Coron et al., 2017), were used elsewhere (GR4J at
Mount Bold and Burrishoole; GR6J at Wupper). Lake
thermodynamics and water level were simulated us-
ing GOTM (General Ocean Turbulence Model; http:
//gotm.net, last access: 8 March 2022) in Vansjø and Sau
and GLM (General Lake Model; Hipsey et al., 2019) in
Mount Bold and Wupper reservoirs.

– Timing of fish migration. At the Irish site, a statisti-
cal model was developed to predict the timing of the
seaward migration of Atlantic salmon (Salmo salar),
brown trout (Salmo trutta), and European eel (Anguilla
anguilla). Daily fish counts were estimated for each
species using correlative models, with predictor vari-
ables of stream discharge, water temperature, a proxy
for fish preparedness for migration, moonlight expo-
sure, and, for eels, rate of change in water temperature
over the previous 20 d. Daily stream discharge was es-
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timated using GR4J. Daily water temperature was esti-
mated using a four-parameter air temperature to water
temperature statistical model, where daily water tem-
perature was linearly correlated with lagged air temper-
ature. Fish preparedness for migration was estimated by
first estimating the photoperiod-weighted degree days
after the winter solstice (taking photoperiod and water
temperature data as input) and then fitting fish count
data to nonlinear unimodal functions of photoperiod-
weighted degree days.

– Algal bloom risk. At the Norwegian site, algal bloom
risk was estimated using a continuous Gaussian
Bayesian network (GBN). Water quality observations
from the previous year were used to produce proba-
bilistic estimates for growing season (May–October)
mean concentrations of total phosphorus (TP), chloro-
phyll a (chl a), lake colour, and growing season max-
imum cyanobacteria biovolume (cyano), incorporat-
ing interrelationships between variables. Meteorologi-
cal nodes were not included in the network after cross-
validation showed that they did not increase (and some-
times decreased) the predictive performance, meaning
that this impact model did not include seasonal climate
data as input.

To produce seasonal surface water forecasts, freshwater im-
pact models were first warmed up, where necessary, using
historic meteorological forcing data, and then run for the fu-
ture target season of interest using seasonal climate model
output as forcing data.

For historic meteorological data, we used ERA5 reanaly-
sis data, the latest reanalysis produced by the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF; Hers-
bach et al., 2020), which is a global dataset with 0.25◦ hor-
izontal resolution and hourly temporal resolution. For sea-
sonal climate predictions, we used the ECMWF’s most re-
cent long-range forecasting system, SEAS5 (Johnson et al.,
2019), a global dataset with 1◦ horizontal resolution. SEAS5
seasonal forecasts are publicly available as real-time opera-
tional forecasts from 2018 (50 members) and as retrospec-
tive seasonal forecasts (hindcasts) for the period 1993–2016
(25 members). Hindcasts were used in this study. SEAS5
was bias corrected using ERA5 with quantile mapping (see
Mercado-Bettín et al., 2021, for details). All climate data
were downloaded and post-processed using the climate4R
bundle of packages (Iturbide et al., 2019). ERA5 is a natu-
ral choice to use in combination with SEAS5 as it is used to
initialise SEAS5 and, therefore, ensures consistency between
variables. Local sources of meteorological data could be used
instead and may be less biased than ERA5. However, ERA5
is available on a global grid and for the period of time, vari-
ables, and temporal resolution required in the project, which
was not the case for local data in a number of the case studies.
A workflow using ERA5 is also more easily generalisable
and transferable, which was one of the project’s objectives.

However, in the Irish site, local meteorological data were
used to bias correct the ERA5 data. In future workflows, it
would be worth exploring the newly available bias-corrected
ERA5 data (Cucchi et al., 2020). Alternative seasonal climate
forecasting systems were used at the start of the project, be-
fore SEAS5 became available (including CFS and SEAS4),
without substantial differences in seasonal climate forecast-
ing skill.

Forecasts of catchment discharge and lake temperature
were produced four times a year for the boreal seasons
of spring (March–May), summer (June–August), autumn
(September–November), and winter (December–February).
The fish model and GBN produce one forecast per year, for
the months when seaward fish migration occurs in Ireland
and for the 6-month (May-October) growing season used in
ecological status classification in Norwegian lakes.

2.4 What does a seasonal forecast look like?

Seasonal climate forecasts are predictions of how the weather
will evolve over the next season (typically 3 to 6 months
ahead). Day-to-day forecasts are unreliable over such long
horizons, so forecasts are instead used to say whether the
next season will, on average, show broad differences to nor-
mal. Forecasts are, therefore, usually given as the probability
of falling into one of three terciles: below normal, normal, or
above normal. The statistical fish model uses terciles to sum-
marise whether migration timing is likely to be early, normal,
or late relative to normal. Instead of terciles, a binary classi-
fication was used to summarise water quality predictions in
Norway, with the probability of being in two WFD-relevant
classes (e.g. above or below good ecological status).

Quantification and effective communication of forecast
quality is a crucial element of seasonal forecasting. Fol-
lowing the literature recommendations (Taylor et al., 2015;
WMO, 2008), two kinds of forecast quality information were
provided alongside forecasts:

1. Forecast uncertainty. SEAS5 has 50 ensemble members
or 25 in hindcast mode. Each member is a priori equally
likely and was used to produce 25 impact model fore-
casts. The divergence of members provides informa-
tion about future predictability, with better agreement
between members indicating higher predictability and
lower forecast uncertainty. In practice, this information
is given as the probability of the tercile, i.e. the percent-
age of ensemble members which fall into each tercile.

2. Historic skill. This describes how well the forecast per-
formed historically when compared to observations.
Forecasts should not be used to inform management
if the system has no skill, regardless of the agreement
between ensemble members. Skill was quantified for
each season and tercile using the probabilistic relative
operating characteristic skill score (ROCSS). This is a
simple and easy-to-interpret measure of skill, which is
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well suited to communication with decision-makers. It
ranges from 1 (a perfect forecast) to−1 (a perfectly bad
forecast). A value of zero indicates no skill compared
to a climatological prediction. A significance test was
carried out to indicate whether forecasts were signifi-
cantly better than climatology (α = 0.05). In Norway,
only two classes were forecast by the GBN, and so the
Matthews correlation coefficient (MCC) was used in-
stead of ROCSS, as it is well suited to summarising
the overall skill of binary classifiers. MCC ranges be-
tween 0 and 1.

To help design forecasting tools which presented these two
sources of quality information in a user-friendly way, we
held a workshop on visualising and communicating uncer-
tainty. After providing background on the two kinds of fore-
cast quality information, we discussed end-user preferences
for how the information should be presented. We took, as a
starting point, findings from the EU FP7 EUPORIAS project,
which had a particular focus on communicating forecast
quality (Taylor et al., 2016), including recommendations that
(1) forecasts should not be provided when there is no skill,
as research has shown that end-users tend to be influenced by
the forecast even if it has no value; (2) qualitative skill and
uncertainty categories and visual cues should be provided to
help users make sense of skill information; (3) attempts to
classify skill as good or poor are subjective, and so thresh-
olds should be decided on together with end-users; (4) a sin-
gle measure of confidence should be considered, which com-
bines quantile likelihoods with a measure of historic skill,
to simplify interpretation and to ensure, for example, that
managers are mistrustful of forecasts with no historic skill,
regardless of whether tercile probability is high; and (5) a
tiered or layered approach to presenting forecast quality in-
formation is a useful means of avoiding confusion, where dif-
ferent levels of information may be selected by different user
groups.

Following on from discussions at this workshop, the fore-
cast presentation varied somewhat between sites, given a
range of preferences. At all sites, however, the tercile proba-
bilities and historic skill scores were categorised and accom-
panied by descriptive text summaries to aid in the interpre-
tation. Managers were involved in deciding on the appropri-
ate categories and wording. Tercile probabilities (i.e. agree-
ment between ensemble embers) were split into four cate-
gories, i.e. very low (< 35 %), low (35 %–49 %), medium
(50 %–64 %), and high (65 %–100 %). For historic skill, the
ROCSS text summary was either skilled or none, according
to whether ROCSS was significantly positive or not. His-
toric skill given by MCC in Norway was summarised quali-
tatively as none (< 0.2), low (0.2–0.39), medium (0.4–0.59),
or high (> 0.6). A combined confidence score was also pro-
vided, integrating the two types of forecast quality informa-
tion. We opted to derive this by setting it to be the same as the
tercile probability unless the historic skill was none, in which

case it was also none. For water quality forecasts in Norway,
if the class probability was high, then the overall confidence
was the same as the historic skill; if class probability was
medium, then the overall confidence was the historic skill re-
duced by one class. An example of a forecast can be seen
for Lake Vansjø at https://watexr.data.niva.no/ (last access:
17 January 2022).

2.5 Identifying windows of opportunity

Windows of opportunity for seasonal forecasting were re-
quired for the second assessment exercise (Sect. 3.2). These
were identified at each site using historic skill scores
(Sect. 2.4). SEAS5 hindcasts were compared to ERA5, and
impact model forecasts were compared to observations. Skill
was calculated for every season in the 24-year period (1993–
2016) or longer, where possible (1981–2019 for the GBN
in Norway and 1993–2019 for fish migration timing in Ire-
land). At the Irish and Norwegian sites, real observations
were used to assess skill. Elsewhere, forecasts were com-
pared to pseudo-observations, i.e. model output derived by
running models forced with ERA5 data. Skill calculated us-
ing pseudo-observations ignores impact model error and is
therefore a best-case estimate. However, as seasonal climate
skill is likely the largest source of uncertainty, this is still
a useful first assessment of forecast performance. Statistical
significance (95 % confidence) of ROCSS was then used to
identify windows of opportunity, i.e. season, variable, and
tercile combinations for which forecast performance was sig-
nificantly better than expected from a forecast with no dis-
criminative skill (ROCSS= 0). Windows of opportunity re-
ported in this paper summarise those already reported in
Mercado-Bettín et al. (2021) for Sau and Mount Bold and for
streamflow and lake water temperature forecasting in Vansjø.
In addition, we report updated results for Wupper, using an
improved model calibration, and new results for Burrishoole
and for lake water quality forecasting in Vansjø. The win-
dows of opportunity identified present a useful first indica-
tion of where seasonal forecasts may be reliable enough to
support decision-making, but they should be interpreted with
some caution due to the small sample size (a short hindcast
period is split into three terciles, i.e. eight data points per ter-
cile), the use of pseudo-observations for some sites or vari-
ables, and the somewhat subjective 5 % significance thresh-
old chosen to identify robust forecasting windows.

3 Results

3.1 Usefulness of seasonal forecasts during a historic
season

In the first assessment exercise, water managers were asked
to choose a historic season in which seasonal climate resulted
in problems in their study site. The events chosen are sum-
marised in Table 2, along with associated surface water im-
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Table 2. Seasonal events selected by water managers, associated surface water impacts, and management opportunities identified (had
advance warning been available at the time).

Site Climate event Surface water impacts Management opportunities

Mount Bold Boreal autumn 2006 High water demand. Low reservoir Strategic planning of water
reservoir (Australian spring; Sep– level at the beginning pumping and associated lower
(Australia) Nov). A dry and hot of the pumping season. water pumping costs.

autumn during the Poor water quality.
Millennium Drought
(1996 to mid-2010).

Wupper Summer 2003 heatwave. Reservoir level had to be lowered Store extra water in a series of
reservoir substantially to supply drinking water upstream reservoirs in advance.
(Germany) further downstream. Associated

eutrophication. Downstream water
quality was also impacted.

Burrishoole Low rainfall in spring Around 80 % of salmon migrated during Being prepared for sampling
catchment 2010, which followed a 19–22 May, which is later (sufficient staff; equipment) during
(Ireland) very cold winter. than average. key migration periods ensures

efficient data collection and
minimises the impacts of sampling
on fish health (e.g. reduced time in
traps).

Lake Vansjø Very high rainfall in High water level and flooding of farmland Lower lake level in advance. Extra
(Norway) autumn 2000. and sewage stations; high nutrient monitoring to screen for toxic

inputs. Toxic algal blooms in summer blooms at bathing sites.
2001 (and proceeding summers until
2007).

Sau reservoir High precipitation in Large water, sediment, and organic Lower the lake level in advance.
(Spain) autumn 2019. matter fluxes from upstream. Lake Store good quality water in an

flooding and poor reservoir water upstream reservoir.
quality. Increased treatment costs.

pacts and opportunities identified for mitigating the impacts,
given a reliable enough forecast. Dry and hot seasons were
chosen in Mount Bold and Wupper, with associated problems
with low reservoir water levels, problems meeting demand,
and poor water quality. A dry season was also selected in
Burrishoole, which was accompanied by a later-than-normal
salmon run. Prolonged wet periods and associated lake flood-
ing and poor water quality were selected in Sau and Vansjø.

3.1.1 Forecasts for the selected events

Forecasts produced for the seasons of interest and pre-
sented to water managers are summarised in Table 3 (see
Sect. 2.4 for an explanation of the confidence information
that accompanied the forecasts). For climate forecasts, over-
all confidence in predictions was uniformly low. Even when
there was good agreement between forecast ensemble mem-
bers and high tercile probability, low historic skill and non-
significant ROCSS meant that no confidence could be placed
in forecasts. However, some positive ROCSS were present
(e.g. in Australia) and, although not significant, may be pro-
viding added value to freshwater impact model forecasts.

Freshwater impact model forecasts, meanwhile, had
medium or high skill in one or more of the variables of inter-
est at most sites, suggesting a lack of sensitivity to seasonal
climate (discussed further in Sect. 4).

3.1.2 Value of forecasts for decision-making

Water managers were then asked to assess whether forecasts
would have been useful had they been available in advance
and, if so, how. Questions and full responses are given in
SI2 (see the code and data availability section) and are sum-
marised in Table 4, where common themes which emerged
across study sites have been highlighted. Managers at all
sites could see the potential value of forecasts. However, even
given skilful forecasts for at least some of the variables of in-
terest, forecasts would only have been used qualitatively as a
pointer to the best strategies rather than directly feeding into
operational management. Main barriers were forecast skill
and uncertainty, as well as more general issues of trust. Even
where skill was high, water managers said that they would
need to observe the forecasts performing well themselves to
build confidence that they were providing trustworthy addi-
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Table 3. Summary of forecasts for the historic events selected by water managers. Note: cyano – cyanobacteria; D – day of migration;
BT – bottom water temperature; P – precipitation; Q – inflow discharge; ST – surface water temperature; T – air temperature.

Site Season Model Variable Observed Forecast Confidence

Probabilitya Skillb Overall
confidencec

Mount Bold 2006,
SEAS5

P Below Below Medium (60 %) None (0.27) None
(Au) southern T Above Above Low (40 %) None (0.33) None

spring
(Sep–Nov)

Impact
Q Below Below High (72 %) Skilful (0.48) Medium
ST Normal Above Low (44 %) None (−0.04) None
BT Above Below/normal Low (36 %) None (0.38/0.4) None

Wupper 2003,
SEAS5

P Below Above Medium (55 %) None (−0.14) None
(Ge) summer T Above Above/below Low (35/35 %) None (−0.61) None

(Jun–Aug)

Impact
Q Below Above Medium (52 %) None (−0.59) None
ST Above Below Low (44 %) None (−0.15) None
BT Above Above High (92 %) Skilful (0.71) High

Burrishoole 2010,
SEAS5

P Below Below Low (48 %) None (−0.23) None
(Ir) spring T Normal Below Low (44 %) None (0.23) None

(Mar–Jun)

Impact Salmon mean D Later Later High (88 %) None (0.25) None

Vansjø 2000,
SEAS5

P Above Normal Low (36 %) None (0.25) None
(No) autumn T Above Below Medium (56 %) None (−0.26) None

(Sep–Nov)

Impact Q Above Below Low (36 %) None (−0.01) None

2001,
Impact

Chl a ≤ poor ≤ poor n/a High (0.71) Medium
summer Cyano ≥ goodd

≤moderate Medium (64 %) High (0.78) Medium
(May–Oct)

Sau (Sp) 2019,
SEAS5

P Above Above Low (48 %) None (0.1) None
autumn T Normal Above Medium (52 %) None (0.17) None
(Sep–Nov)

Impact
Q Above Above Low (43 %) Skilful (0.47) Medium
ST Above Normal High (76 %) None (0.05) None
BT Normal Above High (100 %) Skilful (0.54) High

a Probability of the most likely tercile, discretised into three categories, i.e. low (33 %–49 %), medium (50 %–64 %), or high (65 %–100 %). b Historic skill score is ROCSS (summarised
qualitatively as “none” for non-significant results; otherwise as “skilful”) or MCC in Norway, which is discretised into none (< 0.2), low (0.2–0.39), medium (0.4–0.59), or high (> 0.6).
c Probability and skill were combined into a single score with four classes, i.e. none, low, medium, or high (see Sect. 2.4). d Cyanobacterial blooms did occur near the bathing beaches but
not at the lake monitoring point. Note: n/a stands for not applicable.

tional information, thus showing the importance of personal
experience. Managers at all but the Norwegian and Irish sites
also stated that their trust in the freshwater impact model
forecasts was low in part because of the low skill of the sea-
sonal climate forecasts.

3.2 Windows of opportunity and assessment of their
usefulness

In the second exercise for exploring the potential for fore-
casts to support management, we carried out a more compre-
hensive assessment of whether the season, variable, and ter-

cile combinations which could be forecast with reasonable
confidence (the windows of opportunity) were considered
useful for water management. Managers also highlighted ad-
ditional windows which they felt would be particularly use-
ful for supporting management, if forecast reliability were to
increase.

There were few windows of opportunity in seasonal cli-
mate (Table A1). There were 0 windows in Ireland, 3 in Ger-
many, 5 in Spain, 8 in Australia, and 10 in Norway. The 5 %
significance level used means that some of these may be false
positives (tests were carried out on up to 108 data slices per
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Table 4. Aggregation of water manager feedback on the usefulness of forecasts for the chosen historic seasons.

Question Response Mount Bold Wupper Burrishoole Vansjø Sau
(Au) (Ge) (Ir) (No) (Sp)

Would the Yes
forecasts have Somewhat X X X X X
been useful? No

If so, how would they Indication of appropriate reservoir
X X X

have been used? management strategies

Inform staffing levels/monitoring X X

Key barriers? Uncertainty and low historic skill X X X X X

Need to develop personal experience of
X X X

added value

site, with four seasons× three terciles× up to nine variables,
so we would expect on average five false positives per site).

A substantially larger number of impact model variables
showed significant skill (Table 5). This suggests that an-
tecedent conditions/inertia are responsible for much of the
skill, further supported by the fact that bottom water tem-
perature was better predicted than surface water tempera-
ture (15 versus 5 windows, respectively; Table 5), likely be-
cause of its lower sensitivity to seasonal climate (discussed
in Sect. 4.2).

Opinions on the usefulness of the windows of opportu-
nity are summarised in Table 5 (full responses are given in
SI3; see the code and data availability section), together with
the windows which water managers were most interested in.
All the windows of opportunity for discharge were thought
to be of medium or high relevance, and almost all combi-
nations of season/tercile were highlighted as being desirable
for management. For surface water temperature, spring to au-
tumn above-normal forecasts were seen to be the most use-
ful, due to often strong links between warm summer water
and problematic algal growth. Many of the other windows of
opportunity in surface water temperature were thought to be
of medium or low relevance. As mentioned above, bottom
water temperature was the variable that was most success-
fully forecast, with 15 windows of opportunity across the
case study sites. However, it was also the variable that was
thought to be least useful for management, with four of the
windows being ranked as having low or no relevance. Over-
all, we found a mismatch between the variables that were
thought to be most useful for management and those which
could best be forecast. This can be seen, for example, in the
difference between the number of current versus desired skil-
ful windows for the different variables (Table 5; discussed
further in Sect. 4.1 and 4.2).

In addition, a number of water managers commented that
they would require information on more than just the most
probable tercile, such as the likelihood of extremes, which
are particularly challenging for management.

Responses from the Irish site are not shown in Table 5,
as a large range of population statistics were explored. The
following three windows of opportunity were found: early
median day of migration for trout, later-than-normal day
when 5 % of salmon have migrated, and later-than-normal
day when 25 % of eel have migrated. These were all thought
to be extremely relevant for management. The most desired
windows of opportunity were for the day when 25 % of the
population has migrated, the mean day of migration, and, for
eel, the day when 75 % of the population has migrated, al-
though the skill in the timing of all percentiles was of inter-
est to check forecast consistency. Although all terciles were
thought to be relevant, earlier-than-normal forecasts were
considered the most useful, as acting on a wrong early fore-
cast would have relatively minor consequences, whereas de-
laying action because of a later-than-normal forecast could
result in fish mortality if the forecast were wrong.

4 Discussion: opportunities and barriers for seasonal
forecasting to inform water management

4.1 Water manager views on forecast value and key
barriers

Water managers were generally enthusiastic about the fore-
casting tools developed and their potential to assist them in
preparing for the coming season. They identified actions that
could be taken, given a reliable enough forecast, to help re-
duce the negative impacts of otherwise unforeseen events.
They were well aware of the limited skill of many of the
forecasted variables and were generally comfortable with the
idea of working with probabilistic forecasts. For most sites,
the act of setting up the impact models was in itself a valu-
able process, and managers were often enthusiastic about the
new system knowledge gained in doing so and for the work-
flows to be more generally useful (for forecasting at shorter
timescales, for example).
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Table 5. Windows of opportunity in surface water variables and end-user assessment of their relevance for management. Note: L – low/none;
M – medium; H – high. Ticks show the windows for which managers particularly wanted skilful forecasts. Where letters and ticks coincide,
the window was both skilfully forecast and particularly useful. Irish case study responses are given in the text.

Variable Boreal Tercile Windows of opportunity and Total Desired
season or class their relevance for management windows windows

Sau Wupper Vansjø Mount Bold
(Sp) (Ge) (No) (Au)

Discharge
Winter

Above X X X

6 39

Normal M X X X
Below X X X

Spring
Above X M X X
Normal X X X
Below X X M X H X

Summer
Above X X X
Normal X X X
Below M X X X

Autumn
Above H X X X X
Normal X X X
Below X X X X

Surface water
Winter

Above

5 15

temperature Normal
Below L

Spring
Above X X M X
Normal X
Below M X

Summer
Above H X X X
Normal X
Below L X

Autumn
Above X X X
Normal X
Below X

Bottom water
Winter

Above L X

15 8

temperature Normal
Below L M

Spring
Above L M X M
Normal
Below M X M

Summer
Above M M X X
Normal X
Below L M X X M

Autumn
Above L
Normal
Below L

Chl a Growing

Upper or lower n/a n/a

H X

n/a 3 3
Cyanobacteria season H X
Colour (May–Oct) M
Total P X

Note: n/a stands for not applicable.
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Despite general enthusiasm, no-one felt that forecasts
could be incorporated directly into operational management
straight away. In all cases, forecasts would only be used
qualitatively in the first instance, to provide a general indi-
cation of how conditions might evolve, rather than to drive
operational models (Sect. 3.1.2), matching the findings of
Bruno Soares et al. (2018). Trust and lack of personal experi-
ence were key issues raised by most managers. The other key
limitation, raised at all sites, was forecast quality (i.e. high
forecast uncertainty and low skill; see Sect. 2.4). The simi-
larity in responses across the contrasting study sites suggests
that these manager viewpoints are likely to be more widely
applicable. Forecast uncertainty was a barrier at most sites, as
there was often close to an even distribution of probabilities
across terciles for the selected historic events (Sect. 3.1.1),
making it difficult for managers to know whether to act
based on forecasts. While a reduction in forecast uncertainty
(i.e. increased sharpness) could help in increasing the uptake
of seasonal forecasts in operational water management, stud-
ies have shown that even highly uncertain forecasts can sig-
nificantly improve reservoir management, as long as forecast
uncertainty is explicitly accounted for. This could be done,
for example, within an optimisation framework (e.g. Ficchì
et al., 2016). More widespread use of optimisation routines
in water management could also therefore increase the value
of seasonal forecasts for management. Increasing the skill
of forecasting systems remains a top priority, however (dis-
cussed further in Sect. 4.4), as, no matter how sharp the fore-
casts, they should not be used to inform management if the
forecasting system has been proven to have no skill.

There was general enthusiasm for many of the windows of
opportunity, i.e. the variables, seasons, and terciles for which
the forecasting systems showed the most potential. However,
there was often a mismatch between what could best be pre-
dicted and what was considered most useful (Table 5). Sea-
sonal discharge forecasts were of particular interest, for ex-
ample, but there were few discharge windows of opportunity.
Bottom water temperature, meanwhile, could be forecast rea-
sonably well at many sites, yet had limited management rel-
evance.

At all sites, the sustained uptake of project outputs into the
future requires operationalisation and maintenance, which is
often a challenge as ongoing funding is required. An addi-
tional barrier to the direct uptake of the tools is that they
do not include reservoir operations or interactions between
management choices and catchment/lake conditions. How-
ever, at many sites there are plans for the knowledge and
workflows generated to be used beyond the project duration.
In Sau reservoir in Spain, for example, researchers are now
providing monthly reports to the end-user for seasonal fore-
casts with a 1-month lead time, while in the Wupper reservoir
in Germany, Wupperverband are incorporating the workflow,
using a variety of climate products, into their longer-term
management plans. At the Irish site, parts of the workflow
(published in the fishcastr R package developed during WA-

TExR; see code and data availability section) are already be-
ing used for other ongoing analyses of fish migration, but
additional funding is required for the operationalisation of
the forecasting system and expansion to a wider area. At
the Mount Bold reservoir, SA Water were encouraged by the
WATExR project results and have decided to invest in an in-
ternal follow-on project to establish a seasonal forecasting
methodology.

4.2 Sources of seasonal predictability and management
implications

As mentioned in the introduction, seasonal predictability in
freshwater impact model predictions derives from knowledge
of initial conditions and of climate over the target season. At
the majority of study sites, there were a number of windows
of opportunity where freshwater variables could be forecast
with reasonable skill (Sect. 3.2). Seasonal climate forecasts
themselves had very limited skill at these extratropical lati-
tudes, so it seems likely that the impact model windows of
opportunity were primarily due to models capturing how ini-
tial conditions and system inertia influence the target season.
This could explain the better performance of bottom water
temperature forecasts compared to surface water temperature
and discharge forecasts, as the latter two are more sensitive
to seasonal climate. Although further work is needed to con-
firm the sensitivity of the different variables to seasonal cli-
mate and initial conditions (and will be the topic of an up-
coming paper), the initial indication is that those variables
that are most sensitive to climate are the hardest to generate
reliable seasonal forecasts for (due to low seasonal climate
model skill in our study areas). However, in this case, they
were also the variables which were most useful for manage-
ment, given the importance of streamflow for reservoir oper-
ations and of surface water temperature in controlling algal
blooms.

The low skill of the seasonal climate forecasts is typical
of skill over much of Europe, parts of North America, Rus-
sia, northern China, and other mid-latitude areas (Johnson et
al., 2019; MacLachlan et al., 2015). Seasonal forecasting to
support water management in these areas with low climate
model skill will, therefore, be largely reliant on initial con-
ditions as the main source of seasonal predictability. High-
quality forecasts, which can be used to inform management,
are then most likely in catchments/lakes where initial con-
ditions exert a larger influence. This is the case in larger
systems and for variables or ecological species which are
less sensitive to seasonal climate. For streamflow forecasts,
for example, initial conditions provide much of the forecast-
ing skill, and predictability is highest, in slower-responding
catchments with larger water storage and groundwater con-
tributions (Pechlivanidis et al., 2020; Girons Lopez et al.,
2021; Donegan et al., 2021; Harrigan et al., 2018). Many
successful streamflow forecasting systems do not include
seasonal climate model forecasts, showing that a great deal
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can be achieved using only historic information, in some
cases/seasons outperforming predictions which use seasonal
climate model forecasts (e.g. Peñuela et al., 2020; Arnal et
al., 2018). In lakes and reservoirs, the storage buffering ef-
fect has also been shown to reduce the importance of stream-
flow forecast skill, particularly when the reservoir capacity is
large compared to variability in inflow (Maurer and Letten-
maier, 2004; Turner et al., 2017). Studies looking at sources
of predictability for seasonal water quality and ecology are
currently lacking, but similar concepts will likely hold.

4.3 Do seasonal climate forecasts provide added value
at extratropical latitudes?

Where seasonal climate forecasts are skilful, they undoubt-
edly have the potential to provide added value to surface wa-
ter impact model forecasts. All water managers in this study
were very enthusiastic about the potential benefit of skilful
climate forecasts for improving their operations and were
particularly interested in variables which are more likely to
be sensitive to seasonal climate (e.g. discharge and surface
water temperature). Several studies have shown that skil-
ful seasonal climate forecasts can lead to sometimes large
improvements in streamflow forecasting ability (e.g. Shukla
and Lettenmaier, 2011), which may, for example, have eco-
nomic value for reservoir operations (Maurer and Letten-
maier, 2004; Turner et al., 2017).

However, in our study catchments, seasonal climate mod-
els did not produce skilful forecasts for the selected historic
events (Sect. 3.1), and there were few windows of oppor-
tunity for seasonal climate (Sect. 3.2). In areas where sea-
sonal climate model skill is low, the extra resources required
to work with seasonal climate data may not be worth po-
tentially marginal performance gains, particularly as poor
seasonal climate forecasting skill may reduce trust in any
skilful impact model forecasts that use seasonal climate as
input (Sect. 3.1.2). Particularly in larger catchments and
lakes, which are less sensitive to seasonal climate, it is likely
that attention would be better spent on developing simpler
benchmark systems. Methods inspired by ensemble stream-
flow prediction are likely candidates, potentially made more
nuanced by, for example, using the North Atlantic Oscil-
lation (NAO) index or other climate signals to condition
the forecast (e.g. Donegan et al., 2021; Najafi et al., 2012;
Sabzipour et al., 2020), or longer-term climate projections
(Gronewold et al., 2017).

In systems that are particularly sensitive to meteorologi-
cal forcing at seasonal timescales (e.g. small catchments and
lakes/reservoirs with short residence times) and where the
benefits of any windows of opportunity are large (e.g. a large
potential cost saving or particularly sensitive drinking water
source/habitat), the potential benefits of incorporating sea-
sonal climate data are greater. In this case, it may be worth in-
corporating seasonal climate data into the forecasting work-

flow, as long as there are some windows of opportunity at
lead times of interest for management.

4.4 Future priorities for more skilful seasonal
predictions

A key barrier to the use of seasonal forecasts in operational
management is forecast performance, in particular poor his-
toric skill (Sect. 4.1). To help improve performance, we see
the need for progress to be made on the following two fronts:

1. Improvements in seasonal climate model skill. Seasonal
climate models are under active development, and re-
cent advances in the prediction of climate teleconnec-
tions, such as the NAO in Europe (Wang et al., 2017;
Scaife et al., 2014), may lead to improvements in com-
ing years.

2. Improvements in freshwater impact model performance.
Improvements in impact models themselves may also
be required as, in some cases, errors derived from im-
pact models may be the dominant source of uncertainty
(e.g. Cho et al., 2016). However, probably the greatest
potential here is through improved/increased data col-
lection. Although not considered in detail here, the im-
portance of this cannot be understated. For example, ob-
served data are fundamental to developing and calibrat-
ing trustworthy impact models, correctly initialising im-
pact models, and evaluating the historic skill of forecast-
ing systems, which is a key element for building trust in
predictions.

5 Conclusions

In this study, we have explored whether pilot seasonal fore-
casting tools developed at five case study sites could usefully
support practical water management. Tools integrated sea-
sonal climate model forecasts and freshwater impact mod-
els to produce forecasts of streamflow, lake water level,
lake water temperature, and, at some sites, lake water qual-
ity/ecology and fish migration timing. Co-development was a
key part of the process, i.e. researchers and end-users worked
closely to design tools that were relevant and tailored to the
individual needs at each of the study sites. This meant that
the user community was able to make well-informed assess-
ments of forecast skill and qualitative value for decision-
making. Key outcomes include the following:

– At the majority of case study sites, there were windows
of opportunity where surface water forecasts could be
produced with enough skill to be potentially useful for
management.

– End-users were enthusiastic about the potential for
improved decision-making and identified actions that
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could be taken based on forecasts. However, even skil-
ful forecasts would only be used qualitatively in the first
instance, until trust had been built up through practical,
hands-on experience.

– Reduced uncertainty and higher historic skill were iden-
tified as key requirements for the operational use of
forecasts, as was an ability to forecast more extreme
seasonal events than just terciles (below normal, nor-
mal, or above normal). Improved procedures within op-
erational water management that take into account un-
certain forecasts (e.g. optimisation) would also likely
result in an increase in forecast management value.

– Where seasonal climate forecasts are skilful, they un-
doubtedly have the potential to provide added value to
freshwater model forecasts and assist management, in
particular in smaller systems which are more responsive
to seasonal climate.

– Outside the tropics, seasonal climate forecast skill is
limited. Despite this, forecasting within the water sector
can still be usefully carried out but relies mostly on sea-
sonal predictability derived from antecedent/initial con-
ditions and system inertia. The best chance of develop-
ing useful seasonal forecasting tools is then in slower-
responding systems (e.g. larger catchments and lakes)
which are less sensitive to climate over the target sea-
son. In this case, time is probably best spent on develop-
ing tools which use re-sampled historical meteorologi-
cal data rather than seasonal climate model output to
force impact models.

– Seasonal climate model forecasts with only patchy skill
are most likely to be worth incorporating into freshwa-
ter seasonal forecasting workflows when (1) the system
is particularly sensitive to seasonal climate (e.g. small
catchments and lakes) and (2) the potential benefits of
any windows of opportunity are large.
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Appendix A

Figure A1. Questions posed to water managers to assess the usefulness of the windows of opportunity.

Table A1. Climate variables, seasons, and terciles for which SEAS5 had significant skill, as assessed by comparison to ERA5 over the
period 1993–2016. Note: N is the number of windows of opportunity; total is the total number of variable, season, and tercile combinations
considered.

Site N /totala Skilful climate variable/season/tercile combinations

Boreal season Variableb Tercile

Mount Bold, Australia

8/108

Spring (Mar–May) rlds Above

Autumn (Sep–Nov)

tcc Above
psl Above
rsds Above
tas Normal

Winter (Dec–Feb)
psl Above
tdps Above

Summer (Jun–Aug) tcc Normal

Wupper, Germany
3/96

Spring (Mar–May) tdps Above

Winter (Dec–Feb)
rlds Normal
vas Below

Burrishoole,
0/18 None

Ireland

Vansjø,

10/96

Spring (Mar–May)

psl Normal
Norway psl Above

tas Above
tcc Normal
tdps Below
uas Above
vas Below

Winter (Dec–Feb)
rlds Normal
rsds Above
tcc Below

2/108 Early summer (May–Jul) rsds Above

Sau, Spain

5/108

Autumn (Sep–Nov) tcc Above

Spring (Mar–May)
tcc Above
psl Above

Summer (Jun–Aug)
tcc Above
tdps Above

a ROCSS were calculated for z total data slices, where z= x met variables× y seasons× 3 terciles. b Meteorological
variable abbreviations: psl – surface pressure; tcc – total cloud cover; uas – 10 m u wind component; vas – 10 m v wind
component; tas – 2 m temperature; tdps – 2 m dew point temperature; rsds – downwards surface solar radiation;
rlds – downwards surface thermal radiation; tp – total precipitation.
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Code and data availability. Supplementary information (SI1–3)
is available at https://doi.org/10.5281/zenodo.5906258 (Jackson-
Blake, 2022). A prototype forecasting tool for lake Vansjø is
available at https://watexr.data.niva.no/ (Jackson-Blake and Sam-
ple, 2020). The fishcastr R package, for seasonal forecasting of
timing of diadromous fish migration, is also publicly available
(https://doi.org/10.5281/zenodo.5109610; French, 2021). See the
WATExR project web page (https://nivanorge.github.io/seasonal_
forecasting_watexr/, last access: 11 March 2022) for future releases.
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